4 Resultados e análise da caracterização do solo e ensaios preliminares

No presente capítulo apresentam-se os resultados da caraterização do solo e dos ensaios preliminares.

4.1. Caracterização do solo

A seguir apresentam-se os resultados dos ensaios de caraterização granulométrica, índice de vazios máximo, índice de vazios mínimo e índice de vazios da amostra pluviada.

4.1.1. Granulometria

A distribuição granulométrica dos grãos é mostrada na Figura 4.1, O gráfico apresenta uma areia uniforme mal graduada com valores de diâmetro efetivo $d_{10}=0,12$ mm, médio $d_{50} = 0,186$ mm, $d_{30} = 0,16$ mm, $d_{60} = 0,194$ mm. Os coeficientes de não uniformidade e de curvatura calculados mediante a eq. (3.1) e (3.2) deram como resultado valores de CNU = 1,62 e CC = 1,01 respectivamente. A composição de areia fina e areia média do material são de 64% e 36% respectivamente.

Figura 4.1 - Distribuição granulométrica da amostra.

4.1.2. Índice de vazios mínimo

A Tabela 4.1 apresenta os valores de massa específica aparente máxima obtidos para a determinação do índice de vazios mínimo.

	4 1	D	14 1		•			100	4		<i>.</i> .
- I O holo	/	L OCH	ITOMAG	doc	oncoloc	AA	magga	achaoitian	anaranta	COCO	movimo
	-	INCOL	แลนบร	11105	CHSAIUS	uc	: massa	CSUCUIIICA		SELA	нна хнига

Corpos de	Massa de	Volume do	ρmáx	γmáx.	e _{mín} .
Prova	areia (g)	molde (cm ³)	(g/cm ³)	(kN/m^3)	
1	1640,70	1003,39	1,64	16,04	0,61
2	1624,10	1003,39	1,62	15,88	0,63
3	1623,40	1003,39	1,62	15,87	0,63
		Média	1,63	15,88	0,63

4.1.3. Índice de vazios máximo

Na Tabela **4.2** apresenta-se os valores de massa específica aparente mínima obtidos para a determinação do índice de vazios máximo.

Corpos de	Massa de	Volume do	ρmín.	γmín.	emáx.
Prova	areia (g)	molde (cm ³)	(g/cm ³)	(kN/m^3)	
1	1399,10	1003,39	1,39	13,68	0,90
2	1399,60	1003,39	1,40	13,68	0,89
3	1400,90	1003,39	1,40	13,68	0,89
		Média	1,40	13,68	0,89

Tabela 4.2 Resultados dos ensaios de massa específica aparente seca mínima

4.1.4. Índice de vazios da amostra

O método de pluviação permite obter altas densidades sem a quebra dos grãos em comparação com outras técnicas de preparação de amostras (Garnier 2007).

Os valores da massa específica aparente seca obtidos pelo método de pluviação para a determinação do índice de vazios da amostra são apresentados na Tabela 4.3.

Tabela 4.3 Resultados dos ensaios de pluviação para determinação do índice de vazios da amostra

Corpos de	Massa de	Volume na	β pluv.	γpluv.	e pluv.
Prova	areia (g)	caixa (cm ³)	(g/cm ³)	(kN/m^3)	
1	2840	1760,77	1,61	15,82	0,64
2	2860	1761,27	1,62	15,89	0,63
3	2820	1747,57	1,61	15,83	0,64
		Média	1,61	15,83	0,64

4.1.5. Análise dos resultados dos ensaios de laboratório

A partir dos resultados dos índices de vazios máximo e mínimo e o índice de vazios da amostra, obtido pelo método de pluviação, conclui-se que o solo ensaiado corresponde a uma areia compacta com densidade relativa de 0.98. Estes valores de índice de vazios obtidos apresentam-se similares aos relatados na literatura (Oliveira Filho, 1987; Souza Costa, 2005; Pacheco, 2006; Guimarães, 2014).

4.2. Ensaios preliminares

A seguir apresentam-se os resultados dos ensaios preliminares de deslocamento lateral realizados.

4.2.1. Homogeneidade do solo

Os resultados de oito ensaios CPT realizados em duas amostras de areia elaboradas pelo método de pluviação são apresentados na Figura 4.2. A localização dos ensaios foi apresentada na Figura 3.11.

Figura 4.2 – Comparação dos perfis de resistência dos ensaios CPT nas amostras 1 e 2.

4.2.2. Análise de resultados da homogeneidade do solo

Observou-se na Figura 4.2 que a resistência de ponta máxima atingida em todos os ensaios foi de aproximadamente 1,5 MPa a 1,5 m de profundidade equivalente a 5D.

Pode se concluir que os perfis obtidos dos ensaios CPT apresentam boa repetibilidade considerando que o máximo enterramento dos ensaios corresponde a uma profundidade de 0.22 m, em que há pouca dispersão dos resultados obtidos. Isto permite concluir que o método utilizado na preparação das amostras conseguiu alcançar uma boa homogeneidade e repetibilidade.

4.2.3. Forças de atuação

As curvas da Figura 4.3 apresentam a configuração geral (típica) dos registros das forças vertical e lateral versus os deslocamentos laterais durante a execução do ensaio centrifugo de deslocamento lateral cíclico.

Figura 4.3 - Forças vertical e horizontal do ensaio centrifugo.

4.2.4. Análise das forças de atuação

As curvas azul e vermelha da Figura 4.3 correspondem às forças vertical e horizontal respectivamente. Apresentam-se detalhes das mesmas na Figura 4.4, Figura 4.5 e Figura 4.6. Uma breve análise é dada a seguir.

Podem ser identificados três principais eventos do ensaio:

- Imposição do campo inercial no modelo segmento 1 (Figura 4.4);
- Atuação vertical e estabilização de tensões segmento 2 (Figura 4.5);
- Atuação horizontal segmento 3 (Figura 4.6).

O diagrama de forças do ensaio centrífugo (Figura 4.4) apresenta trechos que caracterizam os eventos do ensaio:

- > AB Início da aquisição de dados em repouso;
- BC Aceleração gradual e transmissão do campo inercial de 33G ao modelo em escala;
- CD Término das acelerações do sistema apresentando um registro constante das forças do ensaio que precede à atuação vertical do duto. Representa a primeira estabilização das forças centrífugas após o término das acelerações impostas;
- DE Representa uma diminuição gradual da forca vertical, devido à resultante da interação das forças hidrostáticas com a forca centrífuga transmitida ao duto no instante do mergulho na água;
- D'E'F' Paralelamente, a célula horizontal, durante o mergulho, é também afetada pela resultante da interação das forças hidrostáticas com o peso do duto, como mostrado em detalhe no trecho amplificado;
- GHI (Figura 4.5) Representa um aumento pico das forças vertical e horizontal, como consequência do processo de cravação do duto;
- IJ (Figura 4.5) Alivio das forças com o tempo após a instalação das deformações no solo até atingir um valor constante;
- JKL Finalmente, tem-se o registro das forças decorrentes da mobilização da resistência do solo perante o deslocamento lateral cíclico do duto (Figura 4.6).

Figura 4.4 - Detalhe do acréscimo da força vertical e lateral devido à transmissão da aceleração centrífuga ao modelo, com amplificação do trecho D'E'F'.

Figura 4.5 - Variação da força vertical e lateral devido à atuação vertical do duto.

Figura 4.6 - Variação das Forças vertical e lateral devido à atuação lateral do duto.

4.2.5. Enterramento do duto e alivio de tensões

Os registros das forças verticais e horizontais dos ensaios centrífugos de deslocamento lateral cíclico com relaxação e sem relaxação das forças verticais decorrentes do processo de cravação, em que foram avaliados os efeitos de enterramento do duto e estabilização das forças verticais resultantes, são apresentados na Figura 4.7 e Figura 4.8.

Figura 4.7 - Forças vertical e lateral do ensaio centrifugo com relaxamento de força vertical.

Figura 4.8 - Forças vertical e lateral do ensaio centrifugo sem relaxamento de força vertical.

4.2.6. Análise do enterramento do duto e alivio de tensões

Verificou-se que a configuração da curva de relaxação das forças verticais com o tempo é aproximadamente parabólica.

Analisando a Figura 4.7 observou-se que no instante da cravação do duto, as forças horizontais experimentaram um acréscimo de força, intrínseco da excentricidade da célula de carga horizontal, que diminuiu com o passo do tempo até atingir um valor constante (Figura 4.9). Este acréscimo de força não foi completamente dissipado, induzindo as forças horizontais à não partirem do patamar inicial. A correção deste mecanismo acontece no primeiro ciclo, durante a inversão do sentido do movimento do duto, quando a flexão acumulada na célula de carga horizontal é liberada na perda de contato com a berma e as forças horizontais caem trocando de sinal (Figura 4.9). Isto permitiu identificar a localização do zero (*offset*) na elaboração das curvas força *vs* deslocamento.

Figura 4.9 – Análise do processo de cravação nos ensaios com relaxamento das forças verticais.

4.2.7. Variação da velocidade de enterramento e arraste do duto

Os resultados em termos de força no protótipo de três ensaios de arraste lateral com velocidades de atuação de 0.05, 0.5 e 5 mm/s são apresentados na Figura 4.10, Figura 4.11 e Figura 4.12 respectivamente.

Figura 4.10 - Força lateral *vs* Deslocamento lateral para enterramento de 25% do diâmetro, velocidade de enterramento e arraste do duto de 0,05 mm/s do ensaio lateral 4.

Figura 4.11 Força lateral *vs* Deslocamento lateral para enterramento de 25% do diâmetro, velocidade de enterramento e arraste do duto de 0,5 mm/s – Ensaio lateral 5.

Figura 4.12 Força lateral *vs* Deslocamento lateral para enterramento de 25% do diâmetro, velocidade de enterramento e arraste do duto de 5 mm/s – Ensaio lateral 6.

4.2.8. Análise da variação de velocidade de enterramento e arraste do duto

A escolha das velocidades de atuação para os ensaios de deslocamento lateral e axial foram baseadas numa análise, em termos de forças de *breakout* e forças máximas nas bermas, de três ensaios de deslocamento lateral com velocidades de atuação de 0,05; 0,5 e 5 mm/s respectivamente.

Pela análise da Figura 4.10, Figura 4.11 e Figura 4.12 observou-se que:

Os valores das forças de *breakout* nos três ensaios foram de aproximadamente 2,86 kN;

Os valores de força máxima por ventura da formação da primeira berma (ida) nos três ensaios foram de aproximadamente 4 kN;

Os valores de força máxima na formação da segunda berma (volta) nos três ensaios foram de aproximadamente 2kN.

Pode-se concluir que a resposta das forças resistentes dos ensaios de deslocamento cíclico, para condições de enterramento similares no modelo, é independente à variação das velocidades de atuação. Esta premissa levou à escolha da velocidade de 0,5 mm/s (enterramento e arraste) para a execução dos ensaios de deslocamento cíclico lateral e axial.

Foi escolhida a velocidade de 0,5 mm/s por permitir obter resultados consistentes, boa taxa de amostragem dos dados, e otimização do tempo de execução dos ensaios propostos.

4.3. Ensaios CPT

Os perfis de resistência das amostras dos ensaios centrífugos de deslocamento lateral cíclico (w/D= 25, 50 e 75%.) são mostrados na Figura 4.13.

Figura 4.13 – Perfis de resistência CPT dos ensaios de deslocamento lateral cíclico.

4.3.1. Análise dos ensaios CPT

Observou-se que as resistências de ponta de todos os ensaios apresentaram um formato similar atingindo um mesmo valor aproximado de 1,50 MPa para profundidades de 1,5 m.

Os perfis apresentam-se com pouca dispersão visto que provém de 6 diferentes amostras com relativa diferença entre as densidades obtidas com valores máximos e mínimos variando ao redor de 3%. Isto permite concluir que foi alcançada uma boa repetibilidade na preparação das amostras.

Considerando a Figura 4.13, foram extraídos os valores de resistência de ponta de todos os ensaios CPT a profundidades de 0,50; 1,00 e 1,50 m para o cálculo do ângulo de atrito. A Tabela 4.4 apresenta os valores do ângulo de atrito, calculados a partir dos perfis CPT dos ensaios 7, 8, 9, 10, 11 e 12 de deslocamento lateral cíclico. Uma breve discussão é dada a seguir.

As diferenças entre os valores máximos e mínimos do ângulo de atrito para profundidades de 0,5; 1,00 e 1,50 m foram de 2,60°, 1,95° e 1,16° segundo D&M e de 2,82°; 2,09°; e 1,25° segundo R&C respectivamente. Isto evidencia uma maior variabilidade da estimativa do ângulo de atrito para profundidades menores. Este fato é provavelmente relacionado à variação da densidade nas amostras e valores baixos de resistência de ponta medidos próximos à superfície, conforme observado por Bolton *et al.* (1999).

Ensaio	z (m)	σ' _v (KPa)	q _c (Mpa)	<i>φ΄</i> D&M (°)	<i>φ΄</i> R&C (°)	φ′ Médio D&M (°)	φ′ Médio R&C (°)
7	0,50	8,08	0,24	33,49	34,76		
	1,00	16,17	0,78	35,89	37,35	35,37	36,78
	1,50	24,25	1,39	36,72	38,24		
	0,50	8,25	0,28	34,14	35,46		
8	1,00	16,50	0,92	36,55	38,06	36,19	37,67
	1,50	24,76	1,82	37,88	39,49		
	0,50	8,06	0,23	33,08	34,31		36,71
9	1,00	16,12	0,75	35,72	37,17	35,30	
	1,50	24,18	1,50	37,10	38,65		
10	0,50	8,05	0,27	34,11	35,43		
	1,00	16,10	0,86	36,38	37,88	35,87	37,33
	1,50	24,16	1,51	37,12	38,68		
11	0,50	8,13	0,22	32,88	34,09		
	1,00	16,25	0,73	35,51	36,94	35,07	36,46
	1,50	24,38	1,43	36,82	38,35		
12	0,50	8,10	0,36	35,48	36,91		
	1,00	16,21	1,09	37,46	39,03	36,92	38,45
	1,50	24,31	1,76	37,81	39,41		

Tabela 4.4 – Valores do ângulo de atrito obtidos a partir dos ensaios CPT.