

Samuel Felipe Mollepaza Tarazona

Modelagem centrífuga da movimentação lateral e axial de dutos em leito marinho arenoso

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel Co-Orientador: Prof. Márcio de Souza Soares de Almeida

Samuel Felipe Mollepaza Tarazona

Modelagem centrífuga da movimentação lateral e axial de dutos em leito marinho arenoso

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Celso Romanel
Orientador
Departamento de Engenharia Civil – PUC-Rio

Prof. Marcio de Souza Soares de Almeida Co-Orientador Universidade Federal do Rio de Janeiro

Prof. Alberto de Sampaio Ferraz Jardim Sayão Departamento de Engenharia Civil - PUC-Rio

Prof. Fernando Saboya Albuquerque Junior Universidade Estadual do Norte Fluminense

Prof. José Renato Moreira da Silva de Oliveira Instituto Militar de Engenharia

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de abril de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Samuel Felipe Mollepaza Tarazona

Graduou-se em Engenharia Civil pela Universidade Católica de Santa Maria, em 2011. Principais áreas de interesse: mecânica de solos, geotecnia offshore e melhoramento de solos.

Ficha Catalográfica

Tarazona, Samuel Felipe Mollepaza

Modelagem centrífuga da movimentação lateral e axial de dutos em leito marinho arenoso / Samuel Felipe Mollepaza Tarazona ; orientador: Celso Romanel ; co-orientador: Márcio de Souza Soares de Almeida. – 2015.

162 f.: il. (color.); 30 cm

Dissertação (mestrado)—Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Modelagem centrífuga. 3. Interação solo-duto. 4. Resistência breakout. I. Romanel, Celso. II. Almeida, Márcio de Souza Soares de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Agradeço primeiramente À Deus pela vida manifesta através do seu filho unigênito Jesus Cristo, Quem veio a este mundo para nos salvar.

Agradeço aos meus pais Felipe e Alicia pelo amor, incentivo e fortaleza que me deram.

A meu orientador Celso Romanel pelo apoio constante.

A meu orientador Marcio Almeida pelo apoio incondicional e pela oportunidade de desenvolver este trabalho.

Ao Departamento de Engenharia Civil da PUC-Rio.

À equipe da centrífuga, em especial a Pablo Trejo e Mario García por toda amizade, ajuda e colaboração que me deram para a conclusão deste trabalho.

À equipe do Laboratório de Geotecnia da COPPE.

À CAPES e FINEP pelo apoio financeiro.

À Technip pelo apoio nos trabalhos.

Finalmente agradeço a minha esposa pelo apoio incondicional e constante durante o desenvolvimento deste trabalho.

Resumo

Tarazona, Samuel Felipe Mollepaza; Romanel, Celso; Almeida, Marcio de Souza Soares. **Modelagem Centrífuga da Movimentação Lateral e Axial de Dutos em Leito Marinho Arenoso**. Rio de Janeiro, 2015. 162 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho aborda uma análise do problema de interação solo-duto através de modelagem em centrífuga da movimentação lateral e axial de dutos em modelos de areia submersa. Foi quantificada a resposta do solo ante a movimentação do duto em termos de mobilização das resistências pico (breakout), da evolução das forças resistentes durante a formação das bermas, e das trajetórias de forças verticallateral/axial combinadas que definem uma possível envoltória de fluência. Foi adotada uma simplificação básica dos cenários encontrados comumente na prática offshore. Para tanto, foram realizadas duas séries de ensaios em centrífuga geotécnica, aplicando deslocamentos laterais e axiais controlados em dutos com células de carga horizontal e vertical. Analisou-se históricos de carregamento plausíveis de acontecer no processo de lançamento do duto. Avaliou-se a influência do relaxamento das forças verticais decorrentes do enterramento do duto na mobilização das resistências lateral e axial. Resultados típicos dos ensaios são apresentados. Foi identificada a variação da resistência mobilizada, em termos de forças de breakout e forças máximas nas bermas, em função à relação entre as forças verticais de enterramento e as forças verticais no início da movimentação do duto. Os resultados revelam superfícies de fluência parabólicas em condições de carregamento vertical e lateral/axial combinado. Foi observado que as distâncias de mobilização das resistências axiais de breakout aumentaram em relação à porcentagem de enterramento do duto (w/D) divergindo de valores estimados na prática offshore que propõem distâncias constantes.

Palayras-chave

Modelagem centrífuga; interação solo-duto; resistência breakout.

Abstract

Tarazona, Samuel Felipe Mollepaza; Romanel, Celso (Advisor); Almeida, Marcio de Souza Soares (Co-Advisor). **Centrifuge Modelling of the Lateral and Axial Movements of Oil Pipes in a Sand Seabed.** Rio de Janeiro, 2015. 162 p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This study concerns the analysis of soil-pipeline interaction through centrifuge modelling of cyclic lateral and axial of pipeline movement in submerged sand models. Soil response related to pipeline movement was quantified in terms of breakout, evolution of resistance forces during berm formation, combined vertical-lateral/axial trajectories of forces that define a possible yield envelope. A simplification of common offshore scenarios was adopted. Two series of geotechnical centrifuge tests were accomplished by applying controlled lateral and axial movements to assess load history possible to occur in the process of pipeline laying. The influence of vertical stress relaxation due to pipeline embedment was assessed relative to vertical forces in the instance of the movements. Typical assay results are related. The variation of the mobilized resistance was identified in terms of breakout forces and maximum forces in the berms relative to vertical force history due to pipeline embedment. The results revealed parabolic yield surface in combined vertical-lateral/axial loading conditions. The mobilized distances of the breakout axial resistance increased in relation to pipeline embedment percentage (w/D) diverging from values estimated in offshore practice that propose constant distances.

Keywords

Centrifuge modelling; soil-pipeline interaction; *breakout* resistance.

Sumário

1 Introdução	20
1.1. Motivação e objetivos	21
1.2. Estrutura da dissertação	21
2 Revisão Bibliográfica	23
2.1. Modelagem Física	23
2.2. Modelagem Física em Centrífuga	24
2.2.1. Leis de Escala para modelos quase-estáticos	25
2.3. Comportamento de solos arenosos	26
2.4. Interação Solo-Duto	30
2.4.1. Penetração Vertical	31
2.4.2. Resistência Axial solo-duto	35
2.4.3. Resistência Lateral	41
3 Materiais e Métodos	52
3.1. Caracterização do material	52
3.1.1. Análise granulométrica	52
3.1.2. Análise Física	54
3.1.3. Densidade real dos grãos	54
3.2. Índice de Vazios	55
3.2.1. Índice de vazios mínimo	55
3.2.2. Índice de vazios máximo	57
3.2.3. Índice de vazios por pluviação	59
3.3. Método de preparação da amostra	59
3.3.1. Procedimento do método de pluviação seca	60
3.4. Concepção dos Modelos Centrífugos	63
3.4.1. Duto de alumínio	63
3.5. Ensaios Preliminares	64
3.5.1. Homogeneidade do solo do modelo	64
3.5.2. Enterramento do duto e alívio de tensões	65
3.5.3. Variação da velocidade de enterramento e arraste do duto	66

3.6. Ensaios CPT	66
3.7. Concepção dos Ensaios	67
3.8. Ensaio de arraste lateral	68
3.9. Ensaios de arraste axial	70
3.10. Equipamento e Instrumentação do Ensaio	73
3.10.1. Centrífuga de braço	73
3.10.2. Mini CPT	75
3.10.3. Célula de carga vertical	75
3.10.4. Célula de flexão horizontal	76
4 Resultados e análise da caracterização do solo e ensaios	
preliminares	77
4.1. Caracterização do solo	77
4.1.1. Granulometria	77
4.1.2. Índice de vazios mínimo	78
4.1.3. Índice de vazios máximo	78
4.1.4. Índice de vazios da amostra	79
4.1.5. Análise dos resultados dos ensaios de laboratório	79
4.2. Ensaios preliminares	80
4.2.1. Homogeneidade do solo	80
4.2.2. Análise de resultados da homogeneidade do solo	81
4.2.3. Forças de atuação	81
4.2.4. Análise das forças de atuação	82
4.2.5. Enterramento do duto e alivio de tensões	84
4.2.6. Análise do enterramento do duto e alivio de tensões	86
4.2.7. Variação da velocidade de enterramento e arraste do duto	87
4.2.8. Análise da variação de velocidade de enterramento e arraste do	
duto	89
4.3. Ensaios CPT	89
4.3.1. Análise dos ensaios CPT	90
5 Apresentação e análise de resultados dos ensaios de deslocamento	
lateral cíclico	92
5.1 Introdução	92

5.2. Resultados dos ensaios de deslocamento lateral com w/D= 25%	95
5.2.1. Análise de resultados dos ensaios de deslocamento lateral com	
w/D=25%	98
5.3. Resultados dos ensaios de deslocamento lateral com w/D= 50%	104
5.3.1. Análise de resultados dos ensaios de deslocamento lateral com	
w/D=50%	107
5.4. Resultados dos ensaios de deslocamento lateral com w/D= 75%	111
5.4.1. Analise dos resultados dos ensaios de deslocamento laterais	
com w/D=75%	114
5.5. Análise geral dos resultados dos ensaios de deslocamento lateral	
com w/D=25, 50 e 75%	118
6 Apresentação e análise de resultados dos ensaios de deslocamento	
axial cíclico	124
6.1. Introdução	125
6.2. Resultados dos ensaios de deslocamento axial com w/D= 25%	127
6.2.1. Analise de resultados dos ensaios de deslocamento axial com	
w/D=25%	130
6.3. Resultados dos ensaios de deslocamento axial com w/D= 50%	134
6.3.1. Analise de resultados dos ensaios de deslocamento axial com	
w/D=50%	137
6.4. Resultados dos ensaios de deslocamento axial com w/D= 75%	141
6.4.1. Analise de resultados dos ensaios axiais com w/D=75%	144
6.5. Análise geral dos resultados dos ensaios de deslocamento axial	
com w/D=25, 50 e 75%	148
7 Conclusões e recomendações	154
7.1. Caracterização do solo e ensaios preliminares	154
7.2. Ensaios de deslocamento lateral cíclico	155
7.3. Ensaios de deslocamento axial cíclico	156
7.4. Sugestões	157
Referências Bibliográficas	158

Lista de Figuras

Figura 2.1 - Resultados de ensaios triaxiais CD na areia do Rio Sacramento.	
(a) amostra compacta, $Dr = 100\%$; (b) amostra fofa, $Dr = 25\%$ (adaptado	
de Lee e Seed,1967).	28
Figura 2.2 – Desenho esquemático das contribuições à envoltória de Mohr	
das parcelas de atrito, dilatância e quebra dos grãos (adaptado de Lee e	
Seed,1967).	29
Figura 2.3 – Envoltória de Ruptura	29
Figura 2.4 - Tensão axial normalizada vs deformação axial e deformação	
volumétrica vs deformação axial.	30
Figura 2.5 - Resistência de atrito axial esquemática com deslocamento de	
mobilização e breakout (Bruton et al., 2008).	36
Figura 2.6 - Fator Horizontal de força para diversos ângulos de atrito	
(Trautmann e O'rourke, 1985).	43
Figura 2.7 - Modelagem hiperbólica e representação bilinear (Trautmann e	
O'rourke, 1985).	45
Figura 2.8 – Redução das forças verticais (direita) e acréscimo das forças	
horizontais (esquerda) durante a mobilização do duto em ensaios	
normalmente carregados (Zhang et al., 2001).	46
Figura 2.9 – Superfícies de fluência normalizadas (direita) e individuais	
(esquerda) em ensaios normalmente carregados (Zhang et al., 2001).	46
Figura 2.10 - Redução das forças verticais (direita) e acréscimo das forças	
horizontais (esquerda) durante a mobilização do duto em ensaios sobre	
carregados (Zhang et al., 2001).	47
Figura 2.11 - Superfícies de fluência normalizadas (direita) e individuais	
(esquerda) em ensaios sobre carregados (Zhang et al., 2001).	47
Figura 2.12 - Comparação da predição do modelo e resultados de ensaios	
(Zhang et al., 2002).	48
Figura 2.13 - Trajetória de carregamento normalizada dos ensaios de arrastro	
(Zhang et al., 2002).	49
Figura 2.14 - Superfícies limite propostas (Zhang et al. 2002).	50

Figura 2.15 Superficies de potencial plastico propostas (Zhang <i>et al.</i> , 2002).	50
Figura 3.1 - Colocação da areia no molde de ensaio.	56
Figura 3.2 - Sequência de colocação da sobrecarga na amostra e fixação do	
conjunto a ser ensaiado na mesa vibratória.	57
Figura 3.3 - Retirado de sobrecarga, nivelamento e pesagem da amostra do	
ensaio.	57
Figura 3.4 - Sequência da colocação da areia no molde de ensaio.	58
Figura 3.5 - Levantamento do tubo de parede rígida e nivelamento da areia do	
molde.	59
Figura 3.6 - Geotêxtil instalado na caixa (esquerda) e tela colocada no trilho	
da caixa (direita).	61
Figura 3.7 - Areia colocada no funil (esquerda) e funil posicionado para a	
pluviação (direita).	61
Figura 3.8 - Recipiente perfurado colocado no trilho da caixa (esquerda) e	
colocação da areia no recipiente para a pluviação (direita).	62
Figura 3.9 – Nivelamento da superfície da areia (esquerda) e superfície	
nivelada (direita).	62
Figura 3.10 – Submersão da areia.	62
Figura 3.11 - Distribuição em planta dos ensaios CPT.	65
Figura 3.12 - Vista de Elevação do ensaio lateral.	69
Figura 3.13 - Vista em planta do ensaio lateral.	70
Figura 3.14 - Configuração geral do ensaio.	70
Figura 3.15 - Vista frontal do ensaio axial.	72
Figura 3.16 - Vista em planta do ensaio axial.	72
Figura 3.17 - Arranjo geral da centrífuga de braço (Broadbent Inc., 2011).	74
Figura 3.18 - Caixa de ensaio em deformação plana (Broadbent Inc., 2011).	74
Figura 3.19 - Arranjo do ensaio de mini-CPT.	75
Figura 3.20 - Configuração das células de carga e extensômetro utilizados.	76
Figura 4.1 - Distribuição granulométrica da amostra.	78
Figura 4.2 – Comparação dos perfis de resistência dos ensaios CPT	
nas amostras 1 e 2.	80
Figura 4.3 - Forças vertical e horizontal do ensaio centrifugo.	81

Figura 4.4 - Detalhe do acrescimo da força vertical e lateral devido a	
transmissão da aceleração centrífuga ao modelo, com amplificação	
do trecho D'E'F'.	83
Figura 4.5 - Variação da força vertical e lateral devido à atuação vertical do	
duto.	83
Figura 4.6 - Variação das Forças vertical e lateral devido à atuação lateral do	
duto.	84
Figura 4.7 - Forças vertical e lateral do ensaio centrifugo com relaxamento de	
força vertical.	85
Figura 4.8 - Forças vertical e lateral do ensaio centrifugo sem relaxamento de	
força vertical.	85
Figura 4.9 – Análise do processo de cravação nos ensaios com relaxamento das	
forças verticais.	86
Figura 4.10 - Força lateral <i>vs</i> Deslocamento lateral para enterramento de 25%	
do diâmetro, velocidade de enterramento e arraste do duto de 0,05 mm/s	
do ensaio lateral 4.	87
Figura 4.11 Força lateral vs Deslocamento lateral para enterramento de 25% do	
diâmetro, velocidade de enterramento e arraste do duto de 0,5 mm/s -	
Ensaio lateral 5.	88
Figura 4.12 Força lateral vs Deslocamento lateral para enterramento de 25% do	
diâmetro, velocidade de enterramento e arraste do duto de 5 mm/s -	
Ensaio lateral 6.	88
Figura 4.13 – Perfis de resistência CPT dos ensaios de deslocamento lateral	
cíclico.	90
Figura 5.1 - Identificação de eventos típicos em um ensaio de deslocamento	
lateral cíclico do ensaio 1.	94
Figura 5.2 - Forca Lateral <i>vs</i> Deslocamento lateral para enterramento de 25%	
do diâmetro – Ensaio 7.	96
Figura 5.3 Forca vertical vs Deslocamento lateral para enterramento de 25%	
do diâmetro – Ensaio 7.	96
Figura 5.4 Força lateral vs Deslocamento lateral para enterramento de 25%	
do diâmetro – Ensaio 8.	97

rigura 3.3 Força verticai vs Desiocamento fateral para enterramento de 25%	
do diâmetro – Ensaio 8.	97
Figura 5.6 - Comparação entre as forças laterais e verticais do primeiro ciclo	
do ensaio de deslocamento lateral - Ensaio 1.	100
Figura 5.7 - Comparação entre as forças laterais e verticais do segundo ciclo	
do ensaio de deslocamento lateral - Ensaio 1.	100
Figura 5.8 - Variação das forças horizontais relativas à mobilização do	
breakout - Ensaios 7 e 8.	101
Figura 5.9 - Variação das forças verticais relativas à mobilização do	
breakout – Ensaios 7 e 8.	101
Figura 5.10 – Superfícies de fluência obtidas dos ensaios 7 e 8.	102
Figura 5.11 - Superfícies de fluência normalizada relativa à força vertical	
máxima dos ensaios 7 e 8.	102
Figura 5.12 - Variação das forças laterais máximas com os ciclos.	103
Figura 5.13 - Forças laterais máximas normalizadas <i>vs</i> o número de ciclos.	103
Figura 5.14 - Força lateral vs Deslocamento lateral para enterramento de	
50% do diâmetro – Ensaio 9.	105
Figura 5.15 - Força vertical vs Deslocamento lateral para enterramento de	
50% do diâmetro – Ensaio 9.	105
Figura 5.16 - Força lateral vs Deslocamento lateral para enterramento de	
50% do diâmetro – Ensaio 10.	106
Figura 5.17 - Força vertical vs Deslocamento lateral para enterramento de	
50% do diâmetro – Ensaio 10.	106
Figura 5.18 - Variação das forças laterais relativas à mobilização do	
breakout - Ensaios Laterais 9 e 10 (w/D=50%).	108
Figura 5.19 - Variação das forças verticais relativas à mobilização do	
breakout – Ensaios Laterais 9 e 10 (w/D=50%).	108
Figura 5.20 - Superfícies de fluência obtidas dos ensaios Laterais 9 e 10	
(w/D=50%).	109
Figura 5.21 - Superfícies de fluência normalizadas relativas às forças verticais	
máximas dos ensaios Laterais 9 e 10 (w/D=50%).	109
Figura 5.22 - Variação das forças laterais máximas com os ciclos dos ensaios	
Laterais 9 e 10 (w/D=50%).	110

Figura 5.23 - Forças laterais maximas normalizadas vs numero de ciclos dos	
ensaios Laterais 9 e 10 (w/D=50%).	110
Figura 5.24 - Força lateral vs Deslocamento lateral para enterramento de	
75% do diâmetro – Ensaio 11.	112
Figura 5.25 - Força vertical vs Deslocamento lateral para enterramento de	
75% do diâmetro – Ensaio 11.	112
Figura 5.26 - Força lateral vs Deslocamento lateral para enterramento de	
75% do diâmetro – Ensaio 12.	113
Figura 5.27 - Força vertical vs Deslocamento lateral para enterramento de	
75% do diâmetro – Ensaio 12.	113
Figura 5.28 - Variação das forças laterais relativas à mobilização do $\it breakout$	
dos ensaios laterais 11 e 12 (w/D=75%).	115
Figura 5.29 - Variação das forças verticais relativas à mobilização do $\it breakout$	t
dos ensaios laterais 11 e 12 (w/D=75%).	115
Figura 5.30 - Superfície de fluência obtidas dos ensaios laterais 11 e 12	
(w/D=75%).	116
Figura 5.31 - Superfícies de fluência normalizada relativas à força vertical	
máxima dos ensaios laterais 11 e 12 (w/D=75%).	116
Figura 5.32 - Variação das forças laterais máximas com os ciclos dos ensaios	
laterais 11 e 12 (w/D=75%).	117
Figura 5.33 - Forças laterais máximas normalizadas vs número de ciclos dos	
ensaios laterais 11 e 12 (w/D=75%).	117
Figura 5.34 – Comparação das forças laterais relativas à mobilização do	
breakout dos ensaios 8, 9 e 11 (w/D= 25, 50 e 75% respectivamente).	120
Figura 5.35 – Comparação das forças verticais relativas à mobilização do	
breakout dos ensaios 8, 9 e 11 (w/D= 25, 50 e 75% respectivamente).	120
Figura 5.36 – Comparação das Superfícies de fluência obtidas dos	
ensaios 8, 9 e 11 (w/D= 25, 50 e 75% respectivamente).	121
Figura 5.37 - Comparação das Superfícies de fluência normalizadas dos	
ensaios 8, 9 e 11 (w/D= 25, 50 e 75% respectivamente).	121
Figura 5.38 – Comparação das curvas de fluência com as de	
Zhang et al. (2001).	122

Figura 5.39 – Comparação de forças normalizadas obtidas experimentalmente	
e modelos propostos na literatura (modificado de Almeida et al., 2007).	123
Figura 6.1 – Identificação de eventos típicos durante o ensaio de deslocamento)
axial cíclico.	126
Figura 6.2 – Resultado final do ensaio de interação axial.	126
Figura 6.3 - Força axial vs Deslocamento axial para enterramento de 25%	
do diâmetro – Ensaio 7.	128
Figura 6.4 - Força vertical vs Deslocamento axial para enterramento de 25%	
do diâmetro – Ensaio 7.	128
Figura 6.5 - Força axial vs Deslocamento axial para enterramento de 25%	
do diâmetro – Ensaio 8.	129
Figura 6.6 - Força vertical vs Deslocamento axial para enterramento de 25%	
do diâmetro – Ensaio 8.	129
Figura 6.7 - Variação das forças axiais relativas à mobilização do <i>breakout</i>	
dos ensaios 07 e 08.	131
Figura 6.8 - Variação das forças verticais relativas à mobilização do $\it breakout$	
dos ensaios 7 e 8.	131
Figura 6.9 - Superfície de fluência obtidas dos ensaios 7 e 8.	132
Figura 6.10 - Superfícies de fluência normalizadas relativas à força vertical	
máxima dos ensaios 7 e 8.	132
Figura 6.11 – Degradação das resistências axiais com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 7 e 8.	133
Figura 6.12 – Resistências axiais normalizadas com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 7 e 8.	133
Figura 6.13 - Força axial vs Deslocamento axial para enterramento de 50%	
do diâmetro – Ensaio 9.	135
Figura 6.14 - Força vertical vs Deslocamento axial para enterramento de 50%	
do diâmetro – Ensaio 9.	135
Figura 6.15 - Força axial vs Deslocamento axial para enterramento de 50%	
do diâmetro – Ensaio 10.	136
Figura 6.16 - Força vertical <i>vs</i> Deslocamento axial para enterramento de 50%	
do diâmetro – Ensaio 10.	136

Figura 6.17 - Variação das forças axiais relativas à mobilização do	
breakout dos ensaios 9 e 10.	138
Figura 6.18 - Variação das forças verticais relativas à mobilização do	
breakout dos ensaios 9 e 10.	138
Figura 6.19 - Superfícies de fluência obtidas dos ensaios 9 e 10.	139
Figura 6.20 - Superfícies de fluência normalizadas relativas à força vertical	
máxima dos ensaios 9 e 10.	139
Figura 6.21 – Degradação das resistências axiais com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 9 e 10.	140
Figura 6.22 - Resistências axiais normalizadas com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 9 e 10.	140
Figura 6.23 - Força axial vs Deslocamento axial para enterramento de 75% do	
diâmetro – Ensaio 11.	142
Figura 6.24 - Força vertical <i>vs</i> Deslocamento axial para enterramento de 75%	
do diâmetro – Ensaio 11.	142
Figura 6.25 - Força axial vs Deslocamento axial para enterramento de 75%	
do diâmetro – Ensaio 12.	143
Figura 6.26 - Força vertical <i>vs</i> Deslocamento axial para enterramento de 75%	
do diâmetro – Ensaio 12.	143
Figura 6.27 - Variação das forças axiais relativas à mobilização do	
breakout dos ensaios 11 e 12.	145
Figura 6.28 - Variação das forças verticais relativas à mobilização do	
breakout dos ensaios 11 e 12.	145
Figura 6.29 - Superfícies de fluência obtidas dos ensaios 9 e 10.	146
Figura 6.30 - Superfícies de fluência normalizada relativas à força vertical	
máxima dos ensaios 11 e 12.	146
Figura 6.31 - Degradação das resistências axiais com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 11 e 12.	147
Figura 6.32 - Resistências axiais normalizadas com o desenvolvimento dos	
ciclos para deslocamentos de 1,5D dos ensaios 11 e 12.	147
Figura 6.33 – Comparação das forças axiais relativas à mobilização do	
breakout dos ensaios 7, 9 e 12.	150

Figura 6.34 - Comparação das forças verticais relativas à mobilização do	
breakout dos ensaios 7, 9 e 12.	150
Figura 6.35 - Comparação das Superfícies de fluência dos ensaios 7, 9 e 12.	151
Figura 6.36 - Comparação das Superfícies de fluência normalizadas	
dos ensaios 7, 9 e 12.	151
Figura 6.37 - Comparação das forças axiais relativas à mobilização	
do breakout dos ensaios 8, 9 e 11.	152
Figura 6.38 - Comparação das forças verticais relativas à mobilização	
do breakout dos ensaios 8, 9 e 11.	152
Figura 6.39 - Comparação das Superfícies de fluência dos ensaios 8, 9 e 11.	153
Figura 6.40 - Comparação das Superfícies de fluência normalizadas	
dos ensaios 8, 9 e 11.	153

Lista de Tabelas

Tabela 2.1 Relação entre escala e protótipo (Ko, 1988)	26
Tabela 2.2 – Parâmetros de Ruptura e Módulo de Elasticidade obtidos	
do ensaio triaxial CD	29
Tabela 2.3 Valores do fator de resistência para o coeficiente de atrito axial	39
Tabela 2.4 Valores do fator de rigidez do solo C_k	
(Trautmann e O'rourke, 1985)	44
Tabela 3.1 Características da amostra	54
Tabela 3.2 Dimensões dos protótipos ensaiados.	64
Tabela 3.3 Características dos ensaios de arraste lateral	69
Tabela 3.4 Características dos ensaios de arraste axial realizados.	71
Tabela 4.1 Resultados dos ensaios de massa específica aparente seca máxima	78
Tabela 4.2 Resultados dos ensaios de massa específica aparente seca mínima	79
Tabela 4.3 Resultados dos ensaios de pluviação para determinação do índice	
de vazios da amostra	79
Tabela 4.4 Valores do ângulo de atrito, calculados a partir dos perfis CPT	90
Tabela 5.1 Resultados dos ensaios de deslocamento lateral cíclico.	92
Tabela 5.2 Parâmetros utilizados na estimativa dos valores de	
resistência lateral normalizada.	123
Tabela 6 1 Resultados dos ensajos de deslocamento axial cíclico.	124