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Abstract 
 

 
Bruno, Sergio Vitor de Barros; Aguiar, Alexandre Street de (Advisor). Strategic 

risk management: A framework for renewable generation investment under 

uncertainty. Rio de Janeiro, 2016, 142p. PhD Thesis – Departamento de 

Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

Despite recent trend for investment in renewable energy, high volatility in short-

term markets still may hinder some opportunities. Forwarding contracting is essential 

even in Over The Counter (OTC) markets such as the Brazilian Free Trading 

Environment. Forward contracts allow reducing revenue uncertainty, help ensure supply 

adequacy by signaling generation expansion and may also be required for project 

financing in new ventures. Still, renewable sources face the additional risk of uncertain 

generation, which, in low periods, combined with high spot prices, pose the hazardous 

price-quantity risk. Renewable investment may be fostered by applying risk management 

techniques such as forward contracting, diversification and optimal investment timing. By 

trading contracts and exploiting the seasonal complementarity of the renewable sources, it 

is possible to reduce risk exposure. The problem of investment in renewable energy 

plants may be seen as a multistage stochastic optimization model with integer variables, 

which is very hard to solve. The main approaches in the current literature simplify the 

problem by reducing the dimensionality of the scenario tree or by assuming simplifying 

hypothesis on the stochastic processes. Our objective is to introduce a renewable 

investment valuation framework, considering the main uncertainty sources and portfolio 

investment alternatives. The main contribution of this work is a method to solve, by 

applying decomposition techniques, the problem of optimal investment in seasonal 

complementary renewable plants in the Brazilian energy market. This is a multistage 

stochastic and non-convex problem. Our investment policies are devised using an 

algorithm based on Stochastic Dual Dynamic Programming (SDDP). Integrality 

constraints are considered in the forward step, where policies are evaluated, and relaxed 

in the backward step, where policies are built, to ensure convexity of the recourse 

functions. Numerical results show that it 

is not possible to assume stagewise independence of the price processes. We maintain the 

Markovian property of the stochastic processes by a discretization of the probability 

space, solvable by a known extension to the SDDP method. Performance evaluation is 

carried out using the original data, validating our heuristic. A forward energy price model 

is required in our framework. We apply the Schwartz-Smith model with spot and OTC 

data of the Brazilian market to build such a forward price curve. The framework is able to 

represent the characteristics of the Brazilian FTE and may be applied to similar markets. 

We incorporate risk aversion with coherent measures of risk and evaluate alternative 

strategies based on modern risk management concepts.   

 

 
 
 
 
Keywords  

Renewable energy investment planning; risk averse multistage stochastic 

programming; stochastic dual dynamic programming real options; Strategic risk 

management; RAROC; energy forward contracts. 
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Resumo 
 

Bruno, Sergio Vitor de Barros; Aguiar, Alexandre Street de (Orientador). Gestão 

de riscos estratégicos: um modelo para investimento em geração renovável 

sob incerteza. Rio de Janeiro, 2016. 142p. Tese de Doutorado – Departamento de 

Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

 
O investimento em fontes renováveis, apesar do crescimento recente, ainda é 

dificultado devido à volatilidade dos mercados de curto prazo. Contratos forward são 

essenciais mesmo em mercados de balcão como o Ambiente de Contratação Livre (ACL) 

Brasileiro. Contatos forward permitem a redução da incerteza sobre a receita, ajudam a 

garantir a adequação do fornecimento graças à sinalização de preços para a expansão e 

podem também ser obrigatórios para realização do project finance de novos 

empreendimentos. Apesar da oferta de contratos, as fontes renováveis ainda possuem o 

risco adicional em sua geração, o que pode, combinando-se altos preços spot em um 

momento de baixa geração, ocasionar uma exposição ao risco de preço-quantidade. 

Investimento em fontes renováveis pode ser incentivado através da aplicação de técnicas 

de gestão de riscos como contratação forward, diversificação e definição do momento 

ótimo de investimento. Através da negociação de contratos e aproveitando 

complementariedades sazonais entre as fontes, é possível minimizar a exposição aos 

riscos do mercado. O problema de investimento em centrais de energia renovável pode 

ser visto como um modelo de otimização estocástica multiestágio com variáveis inteiras, 

de difícil resolução. As principais soluções disponíveis na literatura simplificam o 

problema ao reduzir a dimensionalidade da árvore de cenários, ou assumindo hipóteses 

simplificadoras sobre os processos estocásticos. Nosso objetivo é apresentar um 

framework para valoração de investimentos em energia renovável, considerando as 

principais fontes de incerteza e alternativas para composição de uma carteira de 

investimentos. A principal contribuição desse trabalho é uma metodologia para resolver, 

utilizando técnicas de decomposição, o problema de investimento ótimo em centrais 

renováveis complementares no mercado elétrico brasileiro. Este é um problema 

estocástico multiestágio e não convexo. Nossas políticas de investimento são geradas 

através de um algoritmo baseado em Programação Dinâmica Dual Estocástica (SDDP). 

Restrições de integralidade são consideradas no passo forward, onde as políticas são 

avaliadas, e relaxados no passo backward, onde as políticas são geradas, para garantir a 

convexidade das funções de recurso. Os resultados numéricos mostram que não é possível 

assumir independência entre estágios dos processos estocásticos de preços. A estrutura 

Markoviana dos processos estocásticos é preservada usando uma discretização do espaço 

de probabilidade, que é resolvida utilizando uma conhecida extensão do SDDP. A 

avaliação da performance é feita utilizando os dados originais, validando nossa heurística. 

Nosso framework requer um modelo para o preço forward de energia. Nós aplicamos o 

modelo Schwartz-Smith usando dados do mercado spot e de balcão para construir a curva 

forward do mercado brasileiro. O framework contempla as particularidades do ACL no 

mercado brasileiro, mas também pode ser utilizado em mercados similares. Utilizando 

medidas coerentes de risco, incorporamos aversão a risco e avaliamos as estratégias 

concorrentes utilizando conceitos modernos de gestão de riscos.  

 
 
 
Palavras-chave 

Planejamento de investimentos em energia renovável; otimização estocástica 

multiestágio com aversão a risco; programação dinâmica estocástica dual; Opções Reais; 

gestão de riscos estratégicos; RAROC; contratos de energia elétrica. 
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Notation

The following notation is used throughout this Thesis. We include here

only notation used in more than one chapter, avoiding, as much as possible,

duplicate meanings for any item.

J, j Total number of investment projects, index for project
T, t, τ Investment horizon (years), index for yearly periods, index for

monthly periods
hτ Hours in month τ
Gj
τ Energy (in MWh) generated in month τ for project j (random)

πkτ Energy spot price (in $/MWh) in month τ and market k (random)
fkt Price (in $/MWh) of forward contract in year t and market k

(random)
ξt Random data for period t
FECj, FEC Physical guarantee (in average-MW) of project j, maximum power

under contract FEC = FEC1 + . . . ,+FECJ

vj Present value (in $) of investment cost of project j
α Present value of an annuity with horizon equal to project lifetime
rf Annual risk free discount rate
r Annual discount rate for risky cash�ows
l Project lifetime in years
b Project build time in years
yt Binary decision variable whether to invest or not in year t
xk

sell
t Nonnegative decision variable indicating amount of forward con-

tract (as a fraction of maximum FEC) to sell in year t in market
k

xjt Nonnegative decision variable indicating fraction of project j to
purchase in year t

xt J + K dimensional vector of continuous decision variables xt :=
(x1

t , . . . , x
J
t , x

1sell
t , . . . , xK

sell
t ) for period t

gFt (xt, ξt) �xed cash �ow upon investment in period t
gOPERt (xt, ξt) market clearing cash �ow for period t
zt Binary variable taking a value of one if an investment has already

been made in or before period t and zero otherwise
Xt Constraints on the continuous decisions variables for period t
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1

Introduction

1.1
Motivation and Objective

Investments in renewable electricity generation have been gaining prom-

inence as countries work to reduce the share of fossil fuels in their energy mix.

Favored by public opinion, due to its environmental appeal, its growth is largely

a consequence of the development of new technologies and increasing returns

to scale, which have improved the economic viability of such investments. It is

thus desirable to obtain frameworks to foster investment in renewable genera-

tion.

One of the advantages of such projects is that they take two to three years

to be built, similar or even faster then a thermoelectric power station. Larger

facilities, such as hydroelectric power stations, require an average of �ve or

more years to be built and may face long licensing issues with environmental

agencies. The short build time reduces uncertainty and enables a expedite

operation, which all contribute to reduced �nancing costs.

In Brazil, mechanisms to increase the share of renewable sources in the

Regulated Trading Environment (RTE - Ambiente de Contratação Regulada)

have been successfully created since 2008. Renewable sources such as wind-

power, sugar cane bagasse and small hydro have enjoyed an unprecedented

growth opportunity in such market. However, hurdles to the use of these

sources in the Free Trading Environment (FTE - Ambiente de Contratação

Livre) have yet to be overcome.

For example, if generation companies produce less energy than what was

agreed on their contractual obligations, the remaining de�cit must be paid at

spot price. The Brazilian spot market price is typically low with occasional

peaks. If generation de�cits occur during these price peaks, generation com-

panies run the risk of facing serious losses. This is known as price-quantity

risk.

This generation uncertainty, and the risk of being exposed to price-

quantity risk, are some of the biggest obstacles to the inclusion of renewable
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Chapter 1. Introduction 19

sources in the Free Trading Environment. The intrinsic variability in the

amount of energy generated by renewable sources also hinders the negotiation

of �xed-amount contracts, i.e. supply contracts in which the amount of energy

delivered to the consumer is �xed and guaranteed, also known as forward

contracts. Furthermore, it a�ects contracts' time periods, which typically last

no more than a few years.

Also relevant to generation uncertainty is the fact that wind power

and small hydros' seasonal variations are complementary. Entrepreneurs can

therefore mitigate generation uncertainty by building project portfolios based

on the fact that periods of low wind power output coincide with periods of

increased hydropower output, and vice-versa. This strategy is explored in

(107), minimizing exposure to price-quantity risk.

When generation companies sell supply contracts in the Free Trading

Environment, they are exposed to the spot price market risk. Accurately

modeling the future dynamics of spot prices is therefore an essential step

in investment planning. The Brazilian spot market price is determined by

running the DECOMP model, the centralized short-term planning model of

the Brazilian Electric System National Operator (ONS) (101).

According to estimates provided by the Brazilian Electric Energy Trading

Chamber (CCEE, (99)), Free Trading Environment contracts represent only

28% of the total of generation contracts, despite their potential for reaching

45% of the market. What is more, intermittent renewable contracts in the

RTE auctions have paid lower prices than the FTE, a clear indication that

risk aversion is inhibiting investments in the FTE.

In this way, it is worthwhile to foster the development of renewable

sources investments in the Free Trading Environment. One way of doing this

is by using a valuation methodology which takes into account the speci�cities

of renewable energy investment portfolios in the Brazilian case. Investment

strategies must protect investors from the risks inherent to this market.

Energy spot and forward price and generation uncertainty dynamics have to

be accurately modeled so that investment strategies can adequately mitigate

those risks.

The recent trend of Enterprise Risk Management (ERM) adoption on

companies has been accompanied by increased awareness in risk management.

Still, as seen in (41), companies still struggle to tie their strategy and risk

management planning in a Strategic Risk Management framework. We may

de�ne Strategic Risks as those risk factors that may inhibit a company from

meeting its strategic goals or jeopardize its survival. As we will see, there

are several e�orts in the renewable investment literature to incorporate risk
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management in the investment strategy, but in a somewhat unstructured

approach.

With these relevant challenges in mind, the objective of this Thesis is to

provide a Strategic Risk Management Framework, tailored to assist renewable

generation optimal timing and investment decision, using a multistage dynamic

policy, in the FTE or a similar market. We suppose a marginal investor, with

enough budget to invest in the portfolio under analysis.

We consider managerial �exibilities such as portfolio diversi�cation,

partnerships, postponement options and signing long term forward contracts.

The investment policies are devised by solving the problem of joint investment

in combined renewable power plants taking into account the deferral option,

using multistage stochastic programming, and modeling risk aversion through

the use of AV@R (Average value at risk, also known as CV@R (58)), a coherent

risk measure (3). The uncertainties presented here derive from the spot price,

the energy contract price, and the generation uncertainty inherent to renewable

sources.

In order to apply our framework, we require technical and economic data

from the projects, as well as data from the market itself. Starting from this data

set, we develop the stochastic models for the market and project uncertainties.

The proposed investment model allows creation and evaluation of investment

policies with di�erent risk-return pro�les, allowing the application of a portfolio

selection procedure. Figure 1.1 outlines the proposed framework.

Figure 1.1: Outline of the proposed Strategic risk management framework.

We follow (107) to model the generation of the renewable projects, taking

into account the correlation between generation and water in�ow data of the
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market. This, consequently, also allows for a correlation with the market spot

price, which will be useful in our strategy. Spot price and market in�ows is

derived from Monte Carlo simulations used in the planning models of the

Brazilian integrated system, thus guaranteeing adherence to the market data.

In order to evaluate the contracting strategies, we introduce a Forward contract

pricing model. This tool, derived from the Schwartz-Smith two factor model,

relies on market data that can be obtained from public and third party Forward

Contract Benchmarking processes. This allows us to obtain forecasts of forward

prices aligned with the spot price time-series from o�cial planning scenarios.

We use an algorithm based on Stochastic Dual Dynamic Programming

(SDDP) to generate investment policies. Two features of the problem make it

non-convex, preventing the use of the regular SDDP decomposition technique:

(i) the integrality of the investment decision, and (ii) the time dependence of

uncertainty variables, namely the spot and forward prices.

In the proposed approach the challenge is overcome with (i) the relaxation

of the integrality constraints in the backward step, taking advantage of the fact

that relaxation solutions tend to be very similar to their integer counterparts,

as shown in our results, and (ii) the use of a discretization of the random

space, allowing the use of a known extension to SDDP method, which enables

us to calculate the future cost function for each state. The resulting investment

policy is evaluated on the forward pass and a gap measure is built in order to

assess the quality of the solution. Our discretization is accomplished by Monte

Carlo random sampling from the original time-series. This novel approach

has the advantage that there is no need for assessing the probability of

state transitions, since the transition probabilities are equiprobable by design.

The framework suits the speci�cities of the Brazilian market Free Trading

Environment but it can also be used in other markets.

The purpose of incorporating risk measures in our framework is two-

fold: �rst, we avoid spurious strategies that try to exploit arbitrages in the

forward market. Second, and more important, a strategy to invest in renew-

able generation must take into account the uncertainty of such projects. As

will be motivated in the next chapter, incorporating risk management to one's

strategy is crucial, due to the risks associated to the problem. The risk meas-

ures come into play to deploy risk management policies, used to shape the

investment risk pro�le to the investor's appetite. Finally, we present a sound

overall framework to decide over di�erent investment strategies given the risk

appetite of the investor.

In the next section, we will present a state-of-the-art literature review,

as applied to the Brazilian case or to similar problems from other markets.
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1.2
Literature Review and Contributions

Models for portfolio investment strategies in the Free Trading Envir-

onment and similar markets have been proposed in the past. The allocation

problem for investors who wish to build portfolios using small hydros and sugar

cane bagasse (biomass) in order to back up the sales of �xed-amount contracts

in the Free Trading Environment was studied in (105). While very innovative,

this portfolio strategy is adopted for static decisions and made through two-

stage stochastic optimization, which hinders the evaluation of project deferral

value.

A similar strategy was presented in (107) for small hydros and wind

farms. The authors developed an energy generation time series model through

a VAR (Vector Autoregressive) process. This allowed for a correlation between

generation and water in�ow data and, consequently, also a correlation with the

spot price used in the planning models of the Brazilian integrated system.

The use of derivatives was exploited in (54). Their approach considers

a strategic investor with a portfolio of investment and contract o�erings. The

dynamics of the interactions with other market players is represented using a

equilibrium model. This is an extension of previous work in (53).

Properly incorporating the value of project deferral, a well-known concept

from Real Options Theory, would require the use of a multistage stochastic

programming model. This strategy, as applied to the European market, was

adopted by (5) emphasizing the uncertainty concerning decreasing wind power

investment costs. The framework was later extended in (6) to account for more

uncertainty sources. Despite having a multistage structure, the investment

problem has a property known as block-separable recourse, introduced by

(61). Consequently, the model can be represented as a two-level problem,

and be solved numerically using Bender's method. This numerical approach

is the basis for the solution of the aforementioned articles. Risk aversion is

represented by Average Value at Risk measure.

The disadvantage of the previously proposed models is the exponential

growth in the number of scenarios needed for an accurate representation of the

problem. As (94) pointed out, the number of scenarios needed to approximate

the distribution of a problem through sampling, as in the Sample Average

Approximation (SAA) method (55), in a multistage tree, grows exponentially

with the number of decision stages. This e�ect severely limits the applicability

of the proposed model of (5), especially when dealing with monthly cash

�ows. The lack of detailed monthly uncertainty scenarios is detrimental to

an accurate characterization of price-quantity risk.
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Scenario Reduction (SR) literature presents an alternative to the expo-

nential growth of the SAA approach. The algorithms introduced by (49) allow

scenario trees to be generated with a reduced number of branches by con-

trolling approximation errors. The method was successfully applied to some

two-stage and multistage problems in the energy �eld, as in the work of (32),

(72) and (18).

There are disadvantages to the SR method. First, the criterion for tree

reduction in based on a Lipschitz-type continuity between the scenarios and

the optimal value of a stochastic optimization problem. A metric is then used

to generate a theoretical distance limit between the optimal value and the

optimal solution of the original problem and the approximate problem. In

some instances, the approximate problem can be too di�erent from the original

problem for practical use.

The second disadvantage happens especially when uncertainty sources are

multidimensional and of di�erent measuring units. There is no clear criterion

to de�ne the weights between the dimensions of the random vector. The user

needs to set a method for balancing the weight of each uncertainty source in

the metrics. It is hard to balance in metrics, for example, the weight given to

energy prices (measured in R$/MWh), and the monthly generation (measured

in Average MW). Some heuristics have been used, but there is no general rule

of thumb.

Finally, it is important to highlight that reduced trees are obtained

through heuristic techniques, since scenario reduction is an NP-complete

problem. In the case of multistage problems, it is necessary to perform a

forward (or backward) heuristic in which the scenarios are reduced stage-by-

stage. As a result, SR solutions should be used with care and it is necessary

to evaluate the quality of the solution in relation to the original problem.

Another major contribution to stochastic optimization literature is the

Stochastic Dual Dynamic Programming method introduced by (78) and (77).

This method requires random vectors to be stagewise independent and applies

in particular to multistage linear optimization problems. The great advantage

of this method is that it is very well suited to multistage problems, as long

as the number of state variables is small. Extensions for investment valuation

in an integrated system were proposed by (73). In her thesis, investments'

integrality constraints were relaxed on the backward pass of the algorithm and

recovered on the forward pass. As the process is heuristic, some metrics were

proposed in order to assess the convergence.

The risk management of hiring a �eet of lique�ed natural gas tankers

was analyzed in (13). The authors developed an extension to SDDP through
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the use of a Markov Chain discretization to represent di�erent states at each

stage. The presence of several integer variables is treated with heuristics to

allow for the inclusion of cuts.

Turning our attention to Real Options literature we can �nd, as expec-

ted, the representation of the value of postponing investment problems. Its

limitation is due to the number of uncertainty sources and the capacity to

model details of the problems' dynamics. Real Options problems rapidly fall

under the curse of dimensionality, and their application is usually restricted to

one or two random processes.

Real options methods based on �nancial options literature often apply

only to assets whose values are expressed through simple linear operations.

Analytical solutions, for instance, do not allow for options whose boundary

conditions are expressed through highly complex calculations. Stochastic pro-

gramming methods easily allow for a detailed description of the business rules

of the problem, unlike the Real Options approach.

From a theoretical point of view, the lack of complete markets also

imposes constraints. According to (46), since it is not possible to create

perfect hedges, the use of utility functions is one of the main alternatives

for contract valuation. A good literature review of option valuation may be

seen in (16). As described in the illustrative work of (50), valuation of option-

embedded cash �ows should provide the same results for the three main

alternatives: standard risk neutral valuation, risk-adjusted discounted cash

�ow or discounting certainty-equivalent cash �ows with the riskless discount

rate. Nevertheless, it requires proper handling and in general one should seek

to employ the most appropriate method given the problem and available data

at hand. As described in (104), there is an equivalence on using a risk measure

such as AV@R to discounting certainty-equivalent cash �ows.

An application to the Norwegian case can be found in (39). The authors

use approximations which make it possible to model the real option of investing

in small hydros and wind farms using the Black-Scholes analytical solution. The

only uncertainty source that the authors take into account is the energy price.

A similar application may be found in (12).

On the other hand, (75) approximates a binomial tree over the pricing

dynamics of long-term �xed-amount contracts. The author explores the com-

plementarity between small hydros and wind farms, as in (107), adding the

deferral option value to the strategy. He assumes a main model with a con-

tract pricing dynamics represented by the binomial tree. The clever concept

explored is this work is that generation and spot prices uncertainties are rep-

resented by robust optimization subproblems at each tree node. The spot price
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uncertainty of each subproblem is represented as the solution of a robust op-

timization model proposed by (35), (36) and (37).

Other authors (51) use �nite di�erences methods to solve partial di�eren-

tial equations numerically, but dimensionality remains a limiting factor when

there are three or more uncertainty sources.

The current state of the art of high-dimensional American options valu-

ation is based on the Least Squares Monte Carlo method (LSMC), proposed

by (60). The method is based on the simulation of thousands of paths for the

stock-price process and the use of least squares regression to generate (sub-

optimal) exercise strategies. The performance of the method depends on the

explanatory variables (basis) chosen for the regression. Applications of the

LSMC method to renewable energy investments can be found in (14), and

(20). The same hypotheses presented in (75) are made again in (20), but the

LSMC method is used in the latter instead of the binomial tree of the former.

The explanatory variables adopted were polynomials based on the contract

price.

Almost all of the approaches studied consider the issue of forward

contract pricing exogenous to the framework adopted. In the Brazilian case,

where there is no futures market for energy contracts, a contract pricing

strategy is essential to the investment analysis framework.

The literature on contract pricing is quite extensive. The two most widely

adopted methods are: methods based on equilibrium price that results from

market supply and demand, and time-series methods, which forecast price

behavior as a function of its history.

The energy price forecasting techniques known as equilibrium methods

(or fundamentalist approach) require detailed modeling of the whole energy

system and the power supply and demand nodes, according to (48). Energy

value arises as the energy market's equilibrium price, according to (30).

These models provide close adherence to real prices in systems controlled by

independent system operators because they establish the price in a way similar

to that of the operators when de�ning the centralized dispatch. According

to (30), despite the more realistic pricing, often the computational cost of

equilibrium pricing is prohibitive because of the large number of scenarios

that must be taken into account.

Time-series techniques derive from methods employed in the �nancial

market and in other commodities. In some markets the only observable

price series is the spot price, whereas in others there are forward contracts

but the spot price is not observable. The historical series of the observable

variable is typically used to model a stochastic process, and the remaining
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prices are derived through arbitrage arguments. Simpler models, such as the

Geometric Brownian Motion, or mean reversion, cannot accurately model the

term structure of the forward curve, as stated in (22). In other words, forward

contracts with a long term to maturity are inaccurately priced. In this work

we intend to price long-term contracts, and therefore we need to analyze some

alternatives.

Two-factor models were developed by (43), (81), (89), among others.

These models accurately represent long term forward contracts, as opposed

to one factor models. A three-factor model was also proposed by (88) to

represent varying interest rates. It should be noted that there are two main

di�erences between forward and future contracts. One, is that the former

are usually traded over the counter, while the latter are traded over future

exchanges. Second, forwards are settled in the maturity, while futures have

daily margin adjustments. If interest rates are dynamic, the di�erent cash

settlement dates can make their price diverge. Otherwise, forward contract

prices should be equal to futures contract prices by arbitrage arguments.

Di�erentiating between forward and futures pricing is unnecessary in most

applications (this thesis included) and for that reason the three-factor model

is not widely used.

A recurrent problem with these models, developed for commodities such

as oil price, is that they may not capture the entire dynamics of electricity

prices. There are some stylized facts of energy prices which are common to

most markets, namely:

� relatively low prices as a rule, a feature of mean reversion, with short

periods of very high prices (rare jumps or spikes)

� seasonality

� di�erences between weekdays and weekends in the short run

� intra-day �uctuation: highs and lows, such as price spikes and dips

Modi�ed versions of the two-factor model which include, for example,

seasonality and jumps were studied by (62). The aforementioned work analyzed

the adherence of this extension to energy price in the Nordic market. Recently,

multi-factor term structure models using the Heath, Jarrow & Morton (HJM)

framework such as (24) and (56) have been receiving increasing interest. In

some markets, while two factor models can account for only 70% of the

uncertainty, HJM models may help explaining up to 95% of the term structure

dynamics, as mentioned in (2) and (56).
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Other models that have been proposed include error minimization, as in

(38), (83), Extreme Value Theory models, as in (48), stochastic volatility (33),

and regime-switching models. A good literature review is presented in (29).

As seen in our literature review, the approaches to renewable generation

investment problems in stochastic programming literature lack applicability

in multistage cases, rendering the analysis of the value of the deferral option

infeasible. In special, the investment problem explored by (105), and extended

to the multistage case by (5), needs careful treatment in terms of scenario

generation so that its dimension remains tractable. The results obtained by

(5) cannot usually be generalized to real world problems due to the number of

scenarios involved.

Likewise, despite capturing the value of the deferral option, Real Op-

tions literature lacks methods for solving problems with multiple uncertainty

dimensions while guaranteeing optimality or providing su�cient detailing of

the problem.

Indeed, as described above, the most novel strategy in the literature is

that presented by (75), who proposed an investment strategy which explores

the complementarity of renewable sources and the value of deferral. That work

represents uncertainty over contract pricing through a binomial tree, using

a robust method to model the spot price endogenously. One of the main

di�erences in the numerical approach in this thesis is that we represent the

dynamics of sources of uncertainty through their stochastic processes. Also,

(75) uses the risk neutral measure to model the price dynamics, while for risk

management purposes the natural choice would be the real measure, as done

in our work.

The dynamics of the Brazilian market spot price are obtained through a

mid-term operation optimization model (DECOMP), and can be approximated

by NEWAVE (66),(65), a model used by the Brazilian Electric System National

Operator (ONS) whose results are available to all agents in the market. The

results from NEWAVE simulations can be seen as forecasts of future months'

supply and demand equilibrium. Thus, it is best for investors to use the

fundamentalist approach and develop investment plans that are adherent to the

market scenarios. The spot price scenarios and submarket in�ows used as input

data in our framework derive from Monte Carlo simulations generated by the

NEWAVE model. Further details about NEWAVE scenarios will be presented

in Section 4.1. The relation between generation uncertainty and spot prices will

be represented analogously to (107). Accurately representing the correlation

between generation and spot prices allow us to capture the price-quantity risk.

Forward contract pricing is represented using the Schwartz-Smith two factor

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 1. Introduction 28

commodity pricing model. We are able to recover the forward curve of the

market in order to price long term contracts.

To the best of our knowledge, this Thesis' main contributions to the

literature are:

� A framework for investment under uncertainty in renewable energy

portfolios with risk management techniques. The problem has been

partially addressed in some approaches the literature, but in an non-

systematic fashion. Here, we review such risk management alternatives

and propose a general model to address the investor problem, with a well

motivated use of risk aversion. The model may be applied to markets with

similar structure to the Brazilian FTE. Here, we di�erentiate ourselves

from the most current approach, namely (75) where spot uncertainty

is modeled by robust optimization, by representing the price stochastic

processes, what requires a more involved solution method, using a type

of approximate dynamic programming approach;

� A solution algorithm to the proposed model, which is the generalization

to the multistage case of the problem proposed by (105), solved through

the proposed decomposition methods. Usual decomposition methods

do not apply to our problem because, as we will see, it is a non-

convex stochastic optimization problem. We introduce a reformulation

which linearizes the problem at hand, apart from investment integrality

constraints, which we relax in the forward step. Our method di�ers from

previous approaches in the SDDP literature mainly because, despite

incorporating a Markov Chain discretization similar to (13), we do not

need to provide state transitions probabilities. Policies generated by our

heuristic are evaluated by Monte Carlo simulation over the original data.

The solution algorithm may generate several alternative policies, which

could leave the investor with another decision making problem. We use

an evaluation criteria originated in the banking industry which may prove

valuable to generation portfolio investors;

� In order to apply the contracting strategies of our investment model, we

introduce a Forward contract pricing model. This tool may also be used

in works such as (75) and (20) and by market participants for several

applications, such as contract negotiation or to mark-to-market their

positions.

In the next chapter, we will brie�y describe the Brazilian energy market.

We will then describe the Brazilian Free Trading Environment, to which the

investment models developed in this thesis apply.
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Following, Chapter 3 motivates the necessity of risk management for an

investor in renewable projects. We will also present the most commonly used

project valuation and risk management tools. In Chapter 4, we will discuss the

framework for analyzing renewable energy investments. In the �rst section,

we will provide a description of the uncertainties, and after that a model for

investment under uncertainty. We will also describe an evaluation criterion for

choosing among alternative strategies devised with the aid of the proposed

model. Chapter 5 describes our model for the Brazilian forward curve. In

Chapter 6 we will provide a numerical algorithm to the proposed model of

the previous chapters. The numerical results from this methodology will be

presented in a simpli�ed case study in Chapter 7, along with the approach to

evaluate the risk-return pro�le of the strategies. Finally, conclusions and future

work are presented in Chapter 8.
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The Brazilian Energy Market

The current regulation of the Brazilian electricity market started in

2004. In this model, consumers (distribution companies) should ensure that

their entire energy demand is backed by contracts with generators to increase

system security. These contracts may be celebrated in two environments: the

Regulated Trading Environment (RTE) and the Free Trading Environment

(FTE).

Any di�erence between the contracts and generated amounts are surplus

or de�cits which must be settled in the CCEE1 at the spot price. Figure 2.1

below shows the main characteristics of the market.

Figure 2.1: Main characteristics of the two trading environments in Brazil.

Renewable sources have the advantage of low environmental impact and

the disadvantage of uncertainty in generation, as will be seen in Section 4.1.

1Câmara de Comercialização de Energia Elétrica, www.ccee.org.br
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Since the renewable source availability is unpredictable, production at full ca-

pacity cannot be assured, and its energy contracting availability is limited. The

regulation establishes the physical guarantee as the maximummarketable limit.

This value is calculated by certi�cation bodies considering the uncertainty pro-

�le of the generation project. The certi�ed physical guarantee is denoted Firm

Energy Certi�cate (FEC). The net contracted power of a generator must be

equal or smaller than his FECs.

2.1
Regulated Trading Environment and Renewable Energy Auctions in
Brazil

Distribution Companies (Discos) must deal all their demand contracts

in the RTE. The goal of this model is to ensure reasonable tari�s to the

consumers and to secure supply, since Discos can charge their customers for

contracts representing up to 105% of the forecasted demand. As described by

the Empresa de Pesquisa Energética (100), the main characteristics of this

market are:

� Energy purchase through lower rate auctions;

� Joint bidding from a group of distributors, achieving economies of scale in

the procurement of new generations projects, sharing risks and bene�ts

and equalizing tari�s (unit costs are the same for all participating

distributors);

� Procurement of existing and new plants is treated di�erently and done

in distinct auctions;

� Reducing the business risks by signing contracts in regulated environ-

ment (Contrato de Comercialização de Energia Elétrica no Ambiente

Regulado, CCEAR) for the (new) enterprises able to win the auctions.

Self-dealing, that is, a generator and a distributor within the same

economic group negotiating contracts, is not allowed.

Auctions can be for the allocation of new consumer demand, to adjust

short-term imbalances or even for power backup for system security. Typically,

energy is procured in auctions for contracts with initial supply in a year (A−1),

three years (A − 3) and �ve years (A − 5). Existing energy auctions fall in

category A − 1 and the duration of the contracts is usually eight years. New

energy auctions typically are traded in A− 3 and A− 5 auctions. This horizon

also helps generators planning, so that they can begin building their plant only

after signing the contract. To participate in an auction, a �nancial guarantee

worth less than the amount of the investment is usually required from the
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bidding generators. The guaranteed pro�t associated with a CCEAR contract

before the start of the construction of the project reduces the uncertainty of

investors, allowing a reduction in the rates of return demanded by generation

projects.

If the distributor underestimates its demand, there is the possibility of

trading up to 1% of its demand in so-called adjustment auctions, held one year

before delivery.

So far, the results of the auctions are characterized by the predominance

of hydroelectric sources (38.7 GW) and Wind (9.6 GW). These sources

also have the lowest rates, with an average of 121.44 R$/MWh and 136.26

R$/MWh, respectively. One reason for the success of renewables in the RTE

is that special auctions with speci�c rules were created for this source. The so-

called Alternative Sources Auctions (Leilões de Fontes Alternativas) guarantee

the purchase of all production at a �xed price, with no penalties for seasonal

variations. In the case of wind turbines, the generators receive the annual

average and there is a four-year process to re-evaluate the contracted amount.

The biomass plants have no obligation to supply in the period between

harvests. The periods of these contracts may vary between ten and thirty

years. Other auctions types also have clauses that bene�t renewable sources,

which they deem as incentivized energy sources.

This regulated environment is characterized by standardized contracts

and high competitiveness in the auctions. For generators willing to participate

in the FTE, there might be better opportunities, since there is greater

contractual �exibility for consumers and generators.

2.2
Free Trading Environment

In the FTE energy is procured by bilateral contracts between generators

and Free Consumers. Free Consumers are commercial and industrial agents

with demand exceeding 3 MW which qualify to purchase energy directly from

market participants. The so-called Special Consumers can even qualify to

participate in the FTE with demand as low as 0.5 kW, but restricted to

purchasing incentivized renewable energy. The main feature of FTE is the

autonomy of participant consumers and generators to bilaterally trade non

standardized contracts.

Renewable sources with installed capacity lower than 30MW receive

transmission tari� incentives of 50% in the FTE, increasing its competitiveness.

The consumer in the FTE can purchase energy contracts from generators or

through a trading agent. Bilateral contracts are non standardized and parties
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may have full �exibility to decide on pricing, duration and quantity clauses.

This allows consumers to develop an appropriate marketing strategy for their

needs.

Contracts in the FTE have shorter durations than the RTE, usually up

to �ve years. The absence of a longer-term contract makes it di�cult to obtain

�nancing for the project from �nancial institutions.

Bilateral contracts are typically divided into two types, described below.

2.2.1
Quantity contracts

In this type of contract the generator assumes the generation risks for a

given energy amount procured by the consumer. The contracted energy amount

may be constant or variable (following seasonal or other such pattern), as

agreed with the consumer. The main feature of this contract type is that the

unit cost of delivered energy is �xed, such as in �nancial forward contracts. It

is common to refer to a contract amount as a forward contract. When selling

a forward contract for a quantity Q (in average-MW)2, the generator locks his

revenue at a �xed price f (in $/ MWh). The generated energy amount Gt (in

MWh) of a given period may be greater or less than the contracted amount.

The di�erence will be settled at the spot price πt (in $ / MWh), as illustrated

in Figure 2.2.

Figure 2.2: Clearing of surplus or de�cit is done at spot price.

Consider a given period t, with a number of hours of operation ht. A

generator holding a forward contract with price f and quantity Q is entitled

to a revenue Rt given by

2Average-MW, or avg-MW, is equivalent to the constant production of one MW during
the (monthly) period.
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Rt = fQht + πt(Gt −Qht). (2-1)

In the right hand side of this equation, the �rst term represents the �xed

income of the contract and the second term represents a variable revenue (or

loss) for di�erences settlement, which can be negative in case of de�cit. The

risk incurred by the generator of su�ering de�cit in a period of high spot

price is denominated price-quantity risk . In Brazil, where hydro generation

represents an important share of the market, it is common for price spikes to

occur during drought periods. Hydraulic power plants, when generating below

average during this period of higher prices, will incur at price-quantity risk.

Please note that the expected e�ect of a contract is to hedge (reduce)

the volatility of the generator's cash �ow. To illustrate this idea with a simple

example, assume that the expected value of the spot price equals the price of

the forward contract (E[πt] = f, ∀t) and the variance of the spot is σ2
π. Then,

ignoring uncertainties in generation, we would have:

E[Rt] = fQht + E[πt](Gt −Qht) = fQht + f(Gt −Qht) = fGt, (2-2)

which equals E[πtGt], i.e., in our simpli�ed example, ceteris paribus, average

revenue of the hedged generator equals the revenue of a generator who sells all

his energy in the spot market, with no contract. Variance, on the other hand,

is

V ar[Rt] = V ar[πt(Gt−Qht)] = σ2
π(Gt−Qht)2 ≤ σ2

π(Gt)
2 = V ar[πtGt], (2-3)

which is smaller than the variance of a generator that has no contracts

(V ar[πtGt]). We see that the cash �ows under a quantity contract present

lower volatility than the spot market.

The contracted amount Q is commonly represented as a percentage of

physical guarantee FEC, since the FEC is the maximum possible contract

amount. The resulting equation is

Rt = fFECxsellht + πt(Gt − FECxsellht), (2-4)

where xsell is the percentage of the FEC sold under the quantity contract.

The cash �ow volatility, which can cause major damage to the generator

in case of exposure to price spikes (price spikes are common in energy markets,

as described in the Introduction), motivates the interest of some generators in

Availability Contracts.
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2.2.2
Availability Contract

In this contract the consumer pays a �xed amount for all the generating

capacity of the plant during the contracted period and may even decide what to

do with the surplus production not consumed. In practice, the consumer rents

equipment availability and assumes the generation risks. It is also possible

that the contract is agreed upon a percentage of plant's capacity , leaving the

remaining available energy to the generator.

The revenue of a generator under this type of contract is given by:

Rt = PhtFECx, (2-5)

where P is the energy price under the availability contract, in R$/MWh and

x is the percentage of the plant capacity under contract.

Since the consumer assumes all generation risks, typically there is a

large risk premium in this kind of contract. Availability contracts usually are

procured at a much lower price than forward contracts.

All contracts in the FTE must be reported to CCEE. (67) makes an

in-depth analysis of the contract mechanisms.
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3

Investment Valuation and Portfolio Risk Management

Despite a thriving expansion of the renewable market over the last decade

in Brazil, the author of this Thesis has no knowledge of any business being

developed without previously signing a forward contract. Not only investors are

unwilling to do it, but also banks are unwilling to lend without some assurance

that their customer will not default the payments. This is evidence that there is

some degree of risk aversion in this market, which should be better understood.

In this chapter, we see the most commonly used investment valuation

tools, then, given potential investment portfolios, why and how should compan-

ies manage strategic risks. We will present how valuation techniques evolved

from Discounted Cash Flow analysis to approaches that account for uncertainty

and managerial �exibilities. Then, we turn to the modern portfolio theory and

the mean variance model of Harry Markowitz and review the subsequent ap-

proaches that were proposed, up to the state of the art. Most of the results in

this chapter follow references in (15) and (27).

3.1
Valuation of Capital Projects under uncertainty

We will begin our discussion of valuation techniques with the traditional

Discounted Cash Flow method.

3.1.1
Discounted Cash Flow

The Discounted Cash Flow (DCF) method requires the evaluation of the

revenues, expenses and investment over the lifetime of the project. Considering

the time value of money, we valuate the Net Present Value (NPV) of the

project. The main idea in the DCF method is that there exists an appropriate

rate that allows the investor to discount future free cash �ows to the present

time. Given a discount rate r for projects with similar characteristics, we

evaluate the NPV of the project considering the sequence of free (either positive

or negative) cash �ows CFt for each period t, by
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NPV =
l∑

t=1

CFt
(1 + r)t−1

, (3-1)

where l is the project lifetime. Usually, a �rm investing in similar projects will

have a cost of capital equivalent to its discount rate. If the NPV is positive, then

the project creates value to the �rm and should be undertaken. More details

in (63). It is often necessary to compare several projects under evaluation. In

those cases, usually one resorts to additional criteria. The Pro�tability Index

(PI) (see (15)) is given by

PI =
E[NPV (X)]

C(X)
, (3-2)

where C(X) is the planned investment cost, discounted as in the NPV.

PI is often used for ranking projects, when one does not resort to a port-

folio management process, since it helps maximizing the value created by unit

of capital expenditures. Despite its appeal, under circumstances such as when

one is faced with mutually exclusive projects or under resource constraints,

decisions based solely on the PI may not lead to the best investment alternat-

ives.

Suppose now that a generator company is willing to invest in a new

venture immediately, and operations begin in the next period. This investor

will spend in the current period t = 1 a capital expenditure v. If the investor

does not sign any contracts, his revenues are given by the spot market during

the whole lifetime l of the project, as illustrated in Figure 3.1.

Figure 3.1: Example of cash �ow of generator in FTE without contract.

If we disregard (very low) operational costs, the NPV of this project is:
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NPV =
l∑

t=1

CFt
(1 + r)t−1

= −v +
π2G2h2

(1 + r)
+
π3G3h3

(1 + r)2
+ . . .+

πlGlhl
(1 + r)l−1

(3-3)

The projects should be pursued if the NPV is positive. Since the spot

prices and generation amounts are uncertain, there may be a positive prob-

ability of a negative cash �ow, i.e., there is risk of losses. This risk may be

diminished by acquiring contracts.

A forward contract may protect the project cash �ows from very low

spot prices. If the investor sells forward contracts, then his revenue is given by

equation (2-1). This results in cash �ows as illustrated in Figure 3.2.

Notice that, despite reduction of cash �ow volatility, as seen in Chapter 2,

if the generation is lower than the contract amount, high spot prices may lead

to negative free cash �ows, incurring in the price-quantity risk. It is then clear

that it may not be optimal to acquire as much forward contracts as possible.

Figure 3.2: Example of cash �ow of generator in FTE with a quantity contract.

We will follow here the convention that all �ows occur at the beginning

of the period.

For monthly revenues in a yearly period, we will discount all �ows at

the beginning of the year. For instance, let annual periods t = 1, . . . , T and

monthly periods be denoted τ . The revenue Rt of a generator, in each yearly

period, is

Rt =
12t∑

τ=12(t−1)+1

fFECxsellhτ + πτ (Gτ − FECxsellhτ ) =

fFECxsell
12t∑

τ=12(t−1)+1

hτ +
12t∑

τ=12(t−1)+1

πτ (Gτ − FECxsellhτ ).
(3-4)
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With a slight approximation, say the number of hours in a year equals

h =
∑12

τ=1 hτ , disregarding leap year di�erences. Then we see that the forward

contract cash �ow is equal every year. This steady cash �ow is denoted

Annuity1 and may be discounted to its present value, as in Figure 3.3. The

annuity factor α is a function of the cash �ow duration (usually equal to lifetime

l), and gives us relation

αfFECxsellh =
fFECxsellh

(1 + r)
+
fFECxsellh

(1 + r)2
+ . . .+

fFECxsellh

(1 + r)l
. (3-5)

Using the relation in equation (3-5) for α and considering the capital

expenditures v, we may represent the �xed part of equation (3-3) by

αfFECxsellh− v (3-6)

Figure 3.3: Equivalence of the Annuity and the net present value of its cash �ows.
The NPV is the same for both displayed cash �ows.

It is worth reminding that, when cash �ows are obtained by simulation

procedures, since we still evaluate the expected free cash �ows of each period,

we must use the proper discounting rate of similar projects. As explained in

1an Annuity paying 1$ for n periods has a present value of 1−(1+r)−n

r $ for a given discount
rate r.
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(27), simulation may help improve the accuracy of the DCF analysis, but it

does not price the risk, so one may not discount the cash �ows using the

risk free rate, we must still use the risk-adjusted rate of the traditional DCF

method.

3.1.2
Decision Trees

In several investment projects we may exploit managerial �exibilities that

occur during the project execution and operation, improving the opportunity's

value. In those cases, the DCF analysis may be augmented with decision trees.

While in DCF analysis we assume a unique expected cash �ow during the

future periods, in practice, conditional on information that reveals through

time, a decision maker will take decisions that will lead to alternative cash

�ow possibilities.

In decision making under uncertainty, there can be more than one

decision stage. In this situation, there is a �rst decision stage, before any

information is revealed. After some information gets revealed, the second

decision stage happens, and so on. This process may repeat for several stages.

A decision tree is a illustrative way to represent this dynamics. In the

tree, there are information nodes (usually represented by a circle), were new

information may be revealed, and decision nodes (usually portrayed as a

square), were decision stages are represented.

In the information nodes there can be as many branches as necessary

to represent di�erent scenarios, and we associate probabilities to them. In the

decision nodes each branch represent a di�erent decision alternative. Its is then

clear that decision trees are usually applied to problems with discrete number

of scenarios and decisions.

In a dynamic decision making environment, information is revealed

through time. In this context, it is usual to de�ne a sequence of σ-algebras,

F1 ⊆ F2 ⊆ . . . ⊆ Fn, where every σ-algebra in the sequence contains the sets of

the previous σ-algebra. We call this sequence a �ltration. The �ltration records

the information available at each moment t, by the σ-algebra Ft, analogous

to information nodes in the decision tree. For more details, please refer to

Appendix A.

Let's take as an example a three period (or stage) decision problem. In

this example, the uncertainty sources are the rain volume (High or Low) and

the amount of available generation energy (High or Low). This uncertainty is

represented by four scenarios:

1. ω1: High rain volume, High generation
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Figure 3.4: Scenario tree.

2. ω2: High rain volume, Low generation

3. ω3: Low rain volume, High generation

4. ω4: Low rain volume, Low generation

In the second period uncertainty about rain is revealed, and generation

uncertainty is revealed in the third period. Figure 3.4 represents the associated

scenario tree. The �ltration composed by σ-algebras F1 := {∅,Ω},F2 :=

{∅,Ω, {ω1, ω2}, {ω3, ω4}} and F3 := 2Ω represents information available at each

moment. In the second period, given probability measure P : F2 → [0, 1], it is

possible to measure the probability of low rain. Given a functional X : Ω→ R

F2-measurable, then X(ω1) = X(ω2) and X(ω3) = X(ω4).

Decision trees allow us to visually represent this formal information

structure. We present in Figure 3.5 a sample renewable investment problem.

In this example, one must decide between investing today or waiting

for better contract prices. If one decides to invest immediately, there is 70%

probability of low spot prices during the project lifetime, with pro�t $2.000,00.

If, on the other hand, high spot prices occur, the investor will incur in a loss

of $1.000,00. By waiting, there is 80% probability of higher contract prices.

In this case, since spot and contract prices are correlated, there is only 60%

of conditional probability of low spot prices during the lifetime of the deferred
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project, with pro�t $1.000,00. In case spot prices turn up high, losses will

be $3.000,00. If, on the other hand, contract prices fall, investment has 80%

probability of pro�ting $4.000,00, from lower spot prices and 20% probability

of $2.000,00 loss by high spot prices. If he waits, the decision maker may decide

to abandon the project with zero costs.

Figure 3.5: Decision tree example.

We solve this by dynamic programming, evaluating terminal nodes in

each alternative. Nodes are valued by their expected value and we choose the

higher valued option in each decision node. We proceed to the nodes in the

previous stages, recursively. An optimal strategy is given by the alternatives

with higher value in each decision node. In Figure 3.6 we present the optimal

strategy in red.

This strategy applies to a risk neutral investor. We will see that we can

incorporate risk aversion to the problem.

Next, we see how to solve large decision under uncertainty problems.
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Figure 3.6: Solution of decision tree example.

3.2
Multistage stochastic problems

Multistage stochastic programming allows us to de�ne and solve larger

decision problems under uncertainty. Following (96) and (1), we de�ne a

(linear) multistage stochastic problem as

Min
A1x1=b1
x1≥0

cT1 x1+Eξ2

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + Eξ3|ξ2
[
· · ·+ EξT |ξT−1

[
min

BT xT−1+AT xT=bT
xT≥0

cTTxT
]]

(3-7)
where vectors ct, bt and matrices At, Bt are random variables from the

stochastic data process ξt = (ct, At, Bt, bt), t = 2, ..., T , with Eξt|ξt−1 denot-

ing expectation operation in stage t conditional to information available up to

stage t − 1 and ξ1 = (c1, A1, b1) deterministic and a usually �nite number of

scenarios.

While small sized problems may be solved by linear programming, in

general this is not the case. There are several methods in the literature to try

to decompose the problem based in its structure (61), (10), (21).

An interesting example of special structure is when multistage problems
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have the block-separable recourse property (61). In (11), this property is

studied in capacity expansion problems where decision to expand capacity

can be made at the beginning and then the future only involves reactions to

these outcomes. This allows representing the model as a two level problem: a

�rst stage with aggregate level decisions with all investment decisions, and a

second stage composed of detailed level decisions with the operations.

In this type of multistage problem, decision vectors xt may be divided

in xat , representing aggregate level (investment) decisions, and detailed level

decisions (operation) xdt . Also, it is required that, for all t:

� cost vectors ct can be partitioned such that cTt xt = caTt x
a
t + cdTt x

d
t .

� matrices At are block diagonal:

At =

[
Aat 0

0 Adt

]
. (3-8)

� Bt and bt can be partitioned such that:

Bt =

[
Ba
t 0

Bd
t 0

]
and bt =

[
bat

bdt

]
.

This bilevel decomposition allows for the usage of several e�cient decom-

position methods, such as bundle methods (74).

Notice that problem 3-7 may be decomposed into the main problem

Min
x1≥0

cT1 x1 + Eξ2 [Q2(x1, ξ2)]

s.t. A1x1 = b1,
(3-9)

where the cost-to-go functions Qt(xt−1, ξt) for stages t = 2, ..., T are de�ned by

Qt(xt−1, ξt) := Min
xt≥0

cTt xt + Eξt+1|ξt [Qt(xt, ξt+1)]

s.t. Atxt = bt −Bt−1xt−1

(3-10)

and QT+1(xt−1, ξt) := 0.

Solutions to problem (3-10) are functions of previous stage solution and

the realized data process. Such solutions xt(xt−1, ξt) are denominated policies.

When the data process is stagewise independent, conditional expectation

in problem (3-10) becomes the usual (unconditional) expectation and may

be solved by the SDDP method, introduced by (78) and (77). The SDDP

is an approximate dynamic programming method. The basic idea of the

SDDP algorithm is to approximate the cost-to-go functions by piecewise linear

functions Qk
t (xt−1, ξt) going backward and forward in each iteration k of the

algorithm. With the improvement of the cost-to-go functions, one should
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expect to obtain better policies with each iteration of the method. More details

in (91).

The forward step performs two functions: creating candidate solutions

for the next backward step iteration and evaluation of the policy value by

statistical sampling.

The backward step evaluates candidate solutions obtained in the forward

step and includes new cuts to the piecewise linear approximation of the cost-to-

go function. Since the problem is stagewise independent, evaluating the policy

for a sample ξnt , n = 1, . . . , Nt allows us to compute new cuts using the dual

solutions Π̃tn.

In the SDDP method, the backward step is responsible for improvement

of the policies quality. The forward step allows us to evaluate the quality of the

policies obtained so far and most stopping criteria are based in in the forward

step results.

In Algorithm 1 we outline the SDDP method, as done in (96) and (1). As

we will see in the following sections, we may use additional criteria to choose

between di�erent policies evaluated in the forward step, particularly in a risk

averse setting, when there should be di�erent policies to choose from.

3.2.1
Discounted Cash Flow with Risk Measure

Increased risk management usage by the industry led to a demand for

better risk measurement and management tools. This necessity has driven the

development of several risk measures by the academy over the past two decades.

The seminal work of (4) de�ned the axiomatic concept of coherent measures

of risk. Formally, let X denote a linear space of �nancial positions X : Ω→ R.
A function % : X → R ∪

{
∞
}
is called a coherent risk measure when:

a) Subadditivity : %(X + Y ) ≤ %(X) + %(Y )

b) Positive Homogeneity: If λ ≥ 0, then %(λX) = λ%(X)

c) Monotonicity: If X ≤ Y (that is, if X(ω) ≤ Y (ω), ∀ω ∈ Ω), then

%(X) ≥ %(Y )

d) Translation Invariance: If m ∈ R, then %(X +m) = %(X)−m

An example of a coherent risk measure is the Average Value at Risk (or

Conditional Value at Risk2), usually denoted AV@R, de�ned as

2we avoid the Conditional Value at Risk terminology because it can be confusing when
dealing with conditional expectations.
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Algorithm 1 SDDP algorithm
Require: {Q0

t}t=2,...,T+1(initial approximations) and ε > 0

1: Initialize: i← 0, z̄ =∞ (Upper bound), z = −∞ (Lower bound)
2: while z̄ − z > ε do
3: Sample M scenarios:

{
{ctk, Atk, Btk, btk}2≤t≤T

}
1≤k≤M

4: Forward step:
5: for k = 1, . . . ,M do
6: for t = 1, . . . , T do

7: x̄kt ← arg minxt≥0

{
c>tkxt + Qi

t+1(xt) :
Atkxt = btk −Btkxt−1

}
8: end for
9: ϑk ←

∑T
t=1 c

T
tkx̄

k
t

10: end for

11: Upper bound update:
12: Let ϑ̃M = 1

M

∑M
k=1 ϑk and σ̃M = 1

M−1

∑M
k=1(ϑk − ϑ̃M)2

13: z ← ϑ̃M + zα/2
σ̃M√
M

14: Backward step:
15: for k = 1, . . . ,M do
16: for t = T, . . . , 2 do
17: for n = 1, . . . , Nt do

18:

[
Q̃tn(x̄kt−1), Π̃k

tn

]
← minxt≥0

{
c>tnxt + Qi

t+1(xt) :
Atnxt = btn −Btnx̄t−1

}
19: end for
20: Q̃t(x̄kt−1) := 1

Nt

∑Nt
n=1 Q̃t,n(x̄kt−1) ; g̃kt := − 1

Nt

∑Nt
n=1 Π̃k

tnB̃t,n

21: Qi+1
t ← {xt−1 ∈ Qi

t : −g̃kt xt−1 ≥ Q̃t(x̄kt−1)− g̃kt x̄kt−1}
22: end for
23: end for

24: Lower bound update:
25: z ← minx1≥0

{
c>1 x1 + Q2(x1) : A1x1 = b1

}
26: i← i+ 1
27: end while

AV@Rβ(X) =
1

1− β

∫ 1−β

0

V@Rs(X)ds (3-11)

for β ∈ (0, 1), where V@Rβ[X] := inf{t : FX(t) ≥ 1 − β}, with FX(·)
being the cumulative distribution function of the random (pro�t) variable X.

It can be equivalently represented by

AV@Rβ[X] := V@Rβ[X] + β−1E
[
X − V@Rβ[X]

]
−. (3-12)

Here [a]− = min{0, a}. This equivalent formulation holds under mild conditions
as introduced in (86). For a strict treatment of risk measures, see (40).

AV@R has drawn a lot of attention in the literature not only because it is
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a simple and intuitive example of a coherent risk measure but also because it is

easily represented in linear optimization problems. An investor using AV@R in

a discounted cash �ow valuation will be indi�erent between the uncertain cash

�ows and its AV@R certainty equivalent on any period. Recursive valuation

with AV@R will result in a composition of AV@R, what guarantees the time

consistency of the decisions, as seen in (87), (90). Notice that, since we are

evaluating certainty equivalents with the risk measure, we must discount the

cash �ows in the risk neutral measure (50).

Let's consider again the example decision tree in Figure 3.6. Now, we

will solve it as a decision maker that valuates with AV@R at β = 0.9. At

each node, we will value the AV@R conditional to the information revealed so

far. As in the expected value case, we will use the conditional probabilities of

the node to evaluate the conditional AV@R. Notice that, in this instance, a

node will be valuated by the worst scenario whenever it has probability higher

than 0.1. Every subsequent decision node is evaluated by another conditional

AV@R, so in practice we are using a nested AV@R evaluation criterion. The

optimal strategy is displayed in Figure 3.7. Notice that risk aversion induces

the investor to wait for better contract opportunities in this example.

Figure 3.7: Solution of scenario tree example for risk averse decision maker,
considering a AV@R function with β = 0, 9.
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Other valuation methods, such as relative valuation, may be found in

(27).

Next, we will see how portfolio and risk management tools may help

de�ning the company's strategy.

3.3
The Mean Variance Portfolio Model

Modern Portfolio Theory began with the seminal work of Harry Markow-

itz, in (68, 69). So far, there were no asset allocation models to help investors

de�ning a stock portfolio accounting both to expected returns and risk of the

assets.

Markowitz proposed a simple yet insightful improvement over the existing

approaches by assuming that asset (linear) returns followed a multivariate

normal distribution. In this context, the return of any portfolio composed by a

basket of such stocks would also follow a normal distribution. Those portfolios

could be distinguished by two return metrics, mean and variance (or standard

deviation).

Clearly, two portfolios could present the same expected return but

di�erent variance. This dispersion measure was used as a proxy for the portfolio

risk, since larger variance means larger uncertainty (or volatility) of the returns.

In the framework proposed by Markowitz, a decision maker must de�ne

r̂, his desired level of portfolio expected return. Considering M assets with

multivariate normal returns r ∼ N(µ,Σ), the weights w of the assets in the

portfolio are given by the mean-variance portfolio optimization problem

Min
w

wTΣw (3-13)

eTw = 1 (3-14)

µTw = r̂. (3-15)

The portfolios w that solve problem (3-13)-(3-15) have minimum risk

(as measured by variance) for a given expected return. Notice that this

problem allows short-selling (negative wi) for some asset i ∈ M . Alternative

formulations might restrict short-selling, introduce budget constraints, among

others.

One of the great advantages of this simple approach is that this model

can be solved analytically. Taking variance as a function of expected returns,

solutions lie on the boundary of a hyperbolic feasible set.
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By changing the required expected return r̂, we obtain the set of

portfolios known as e�cient frontier. Any feasible portfolio that is not in the

e�cient frontier has more risk than an e�cient portfolio with same expected

return, thus, it is Pareto dominated. A rational decision maker would only

choose a portfolio that lies in the e�cient frontier. The set of feasible portfolios

and the e�cient frontier are presented in Figure 3.8.

Figure 3.8: Mean-variance e�cient frontier

The framework devised by Markowitz has great relevance, since it de�ned

the main notion of modern portfolio theory: a rational decision maker must

balance how much risk he is willing to take in order to have additional return.

That is, in order to have higher return that a given e�cient portfolio, one must

incur in additional risk.

The highest return might be achieved by investing all the resources in

the asset with higher expected return. This would also be the e�cient portfolio

with highest risk. On the other hand, the minimum variance portfolio usually

is composed of several assets, because of the reduced portfolio variance that

can be enjoyed by exploiting the (possibly negative) correlation of the assets.

Thus, we also learn from the mean-variance model that diversi�cation is a key

aspect to reducing risk.

As an example, consider N assets with the same distribution xi ∼
N(µ, σ), i = 1, ...N , having the same covariance cov for every pair of di�erent

assets. If one composes a portfolio P of equally weighted assets, the average of

the return rp of this portfolio is

E[rp] = E

[
N∑
i=1

1

N
ri

]
=

1

N

[
N∑
i=1

E[ri]

]
=
N

N
µ = µ, (3-16)
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with no bene�ts to expected returns. Portfolio variance σ2
p, on the other hand,

is given by

σ2
p =

1

N2

N∑
i=1

σ2 +
N∑
i=1

1

N2

N∑
j=1,j 6=i

cov =
1

N
σ2 +

N − 1

N
cov, (3-17)

leading to a reduction in the portfolio variance as long as the assets are not

perfectly correlated. As the number of assets in the portfolio increase, the

relevance of volatility of the individual assets decreases and portfolio volatility

becomes mostly a function of the assets correlation.The portfolio risk can only

be eliminated if there are negative perfectly correlated assets. The part of

the risk that cannot be eliminated by diversi�cation is called systematic risk.

Figure 3.9 below presents the e�ect of diversi�cation in our example.

Figure 3.9: E�ect of diversi�cation as a function of the number of assets in a portfolio

In practice, Markowitz's model has several drawbacks. First, asset returns

present stylized facts that depart from the normal distribution assumption. Fat

tails exists for most assets and asymmetry is expected, for instance, if dealing

with derivatives. Variance includes both positive and negative risk and would

penalize asset's upsides. Markowitz himself acknowledged that problem and

later proposed an enhancement, using semi-variance (semi-standard deviation)

as the risk proxy.

Estimation of asset expected returns is also one of the major pitfalls of

the Markowitz approach. It turns out that the point estimator of the returns

is very unstable, often failing the null hypothesis of being di�erent from zero

on a test. Lack of appropriate estimates of the expected returns results in over
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concentration in a few assets. Also, when reestimating the model's parameters

in a future period, very di�erent estimates are expected, leading to aggressive

rebalancing of the portfolio. Recently, there has been plenty of research in the

Robust Optimization �eld, with models that circumvent the expected returns

volatility by de�ning a so-called uncertainty region.

The Capital Asset Pricing Model, detailed in Appendix B, manages to

bypass these estimation problems. It introduces the Security Market Line

(SML), a equation that provides a relation of the expected returns E[rA] of

any portfolio or asset A to the systematic risk of the market.

One advantage over the mean-variance framework is that its main results

do not depend on estimating expected returns over historical data, so expected

returns obtained by the SML are more reliable than those obtained using past

data. Also, it makes clear that investors are only rewarded with higher expected

returns by their exposure to systematic (or market) risk. Diversi�able risk is

not rewarded by investors.

An important contribution of this model is that investors may manage

the level of risk in their portfolios, thus deciding the risk exposure they want

to assume by changing the weights of the assets they hold, independently of

any risk management e�orts made by the company itself.

Despite the fact that investors may manage their portfolio risk, there is

still value for risk management e�orts of the �rm. More details in Appendix

C.

Given that we understand the value of risk management, what would

be an appropriate market investment strategy for an investor? First of all,

he would probably try to choose an e�cient portfolio, in order to avoid any

unnecessary risk taking. There is still the question of which portfolio in the

frontier to choose. An investor who is willing to choose a portfolio on the

CML might choose the portfolio with highest expected return that respects his

risk appetite, since by this approach he maximizes his return on a diversi�ed

portfolio while staying solvent given some con�dence level.

Risk appetite is de�ned in (23) as the degree of risk, on a broad-based

level, that a business is willing to accept in pursuit of its objectives3. De�ning

the risk appetite is a non trivial question that encompasses the Enterprise Risk

Management framework, that we discuss in Section 3.5.

For �rms determining their investment portfolios, an e�cient frontier

from market assets might not be available, since several of those investment

opportunities represent unique projects that are particular to this �rm (what

3This should not be confused with a risk seeking investor, i.e., an investor who would
prefer an uncertain cash �ow rather than its expected value, or, equivalently, has a convex
utility function.
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also allows them to exercise real options over those opportunities). In this

context, a usual approach to compare assets or portfolios is the use of

performance measures.

3.4
Risk-Adjusted Performance Measurement

The measures in this section follow (52).

The family of Risk-adjusted performance measures (RAPM) is usually

de�ned as a measure of Pro�t, in monetary unit, divided by a measure of Risk,

usually also denoted in some monetary risk measure,

RAPM =
Profit

Risk
. (3-18)

There are a few exceptions, such as the Jensen's alpha, which we will

not explore. RAPM may be used to evaluate a portfolio, an asset, a company

or its business units. We will, without loss of generality, assume that we are

measuring the performance of a portfolio P with uncertain return Rp.

Figure 3.10 illustrates the bene�ts of using a RAPM. On the left hand side

it is rather straightforward to pick a best portfolio: portfolio A dominates (by

second order stochastic dominance) portfolio B. Nonetheless, on the right hand

side, even tough both distributions are symmetric, there is no clear consensus

over which portfolio should be chosen.

Figure 3.10: In left hand side portfolio A presents stochastic dominance over
portfolio B. In right hand side no such feature is present.

3.4.1
Sharpe Ratio (SR)

The Sharpe ratio (SR) measures the ratio between average return of the

portfolio, in excess of the risk-free rate, and the volatility of the portfolio. It is

de�ned as
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SR =
E[Rp − rf ]
σ(Rp)

, (3-19)

where rf is the risk-free rate of return and σp the portfolio volatility, measured

by standard deviation. It was developed by Sharpe in 1966 (52) to aid in

portfolio evaluation.

In the mean-variance or CAPM framework, the tangent or market

portfolio is the portfolio that presents the maximum Sharpe Ratio.

In 1994 Sharpe reviewed the SR and suggested the generalization

SR =
E[Rp −RX ]

STD(Rp −RX)
, (3-20)

where STD(·) stands for the standard deviation operator and X is some

benchmark portfolio. The SR is unchanged if the benchmark portfolio is the

risk free asset.

3.4.2
Sortino Ratio (SO)

A rather obvious improvement to the SR is to consider only the downside

of volatility. The Sortino Ratio (SO) replaces standard deviation by the semi

standard deviation,

SO =
E[Rp − rf ]
σ−(Rp)

, (3-21)

where σ−(·) denotes the semi standard deviation. It presents a clear advantage
in case of asymmetric returns.

3.4.3
Treynor Ratio (TR)

The previous risk measure accounts only for losses, but still prices diver-

si�able risk. Since the CAPM shows that the market only prices systematic

risk, it is relevant to consider only those risk sources. The Treynor Ratio is

de�ned as

TR =
E[Rp − rf ]

βp
, (3-22)

where βp is the beta of the portfolio. If the CAPM equation holds, then all

portfolios should present the same TR. Then, the TR is a better risk measure

for a well diversi�ed portfolio.
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3.4.4
Risk Adjusted Return on Capital (RAROC)

RAROC was developed in Banker's Trust between late 1970's and early

1980's. The idea was to have an uni�ed measure to evaluate the risks of the

di�erent business units. RAROC is originally de�ned for an asset X as

RAROC =
E[Revenues(X)− Cost(X)− Losses(X)]

EC(X)
, (3-23)

where EC(X) is the Economic Capital, also known as risk capital, associated

with X.

Economic Capital is de�ned by (52) as the largest acceptable loss a

�rm is willing to su�er over a speci�ed period and at a speci�ed con�dence

level. This may be estimated by a V@R or AV@R type measure. The level

should be de�ned by senior management and is directly tied to the risk

appetite of a company. In practice, economic capital is usually inferior to the

equity of the company, but superior to regulatory capital. Regulatory capital

exists especially in the banking industry, where there are enforced regulatory

constraints that demand the company to assure enough capital to unexpected

losses.

The RAROC may be in general interpreted as a risk adjusted version of

Return on Capital (ROC).

One of the key bene�ts of using RAPM such as the RAROC is that

these measures can be used across divisional level in an organization and then

aggregated all the way to a company total. This allows management to:

� measure the risk adjusted pro�tability of di�erent business segments;

� calculate the aggregate employed risk capital and redistribute it, if

necessary; and

� motivate di�erent units to search for in-company natural hedges. Since

their performance is measured by the RAPM, their results can be

enhanced by reducing the risk capital needs of their business. Combined

risk capital of di�erent segments should be smaller than the sum of the

parts if there are natural hedges (in this case, it is recommended to use

a subadditive risk measure).

The focus of the RAROC traditional de�nition is on the banking industry.

An application of RAROC to project capital budgeting may be obtained by

applying the following alternate de�nition: for a given project X, we de�ne

RAROC =
E[NPV (X)]

EC(X)
, (3-24)

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 3. Investment Valuation and Portfolio Risk Management 55

thus, RAROC here is the expected Net present value of the project divided by

its associated Economic Capital (EC). In this case, economic capital is the sum

of the planned investment and the net present Value at Risk (alternatively, a

AV@R measure could be used). Here, Value at Risk is de�ned as the di�erence

between expected value and a quantile associated with a con�dence level.

The ideas presented so far are some of the key aspects of Enterprise

Risk Management (ERM), or Enterprise Wide Risk Management, which has

become very popular in the last decade.

3.5
Enterprise Risk Management

ERM is a holistic approach that focuses not only on strategic risk

management, but in addressing risk management in every process of the �rm.

One of its goals is to avoid risk decisions being treated in business unit silos,

with no central coordination, which might destroy value. ERM may be de�ned

(23) as �a comprehensive and integrated framework for managing company-

wide risk in order to maximize a company's value�. Some of the bene�ts enlisted

by the author are:

� increase the likelihood of a company realizing its objectives;

� Build con�dence in stakeholders and in the investment community;

� Comply with relevant legal and regulatory requirements;

� Align risk appetite and strategy;

� improve organizational resilience;

� enhance corporate governance

� embed the risk process in the organization;

� enhance risk response decisions;

� optimize allocation of resources;

� identify and manage cross-enterprise risks;

� link growth, risk and return.

These statements are similar to the ones in COSO's Integrated Frame-

work (25).

Enterprise Risk Management appeared as response to several risk expos-

ure problems. Numerous examples of troubled companies due to incorrect use

of derivatives, or bad risk and �nancial governance, led to several e�orts to

avoid such cases to repeat. ERM encompasses Strategic Risk Management,
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Credit Risk Management, Operational Risk Management, and others, in order

to implement value creation using some framework.

The most known and applied framework is the COSO ERM Framework,

by the Committee of Sponsoring Organizations of the Treadway Commission

(COSO) (25). In practice there are several other frameworks, and usually

companies will try to handpick some of the practices of more than one of

them, according to their speci�c needs.

A value creating ERM process is Liquidity Risk Management. Funding

Liquidity risk is de�ned by the Committee of European Banking Supervisors

(108) as the current or prospective risk arising from an institution's inability

to meet its liabilities and obligations as they come due without incurring

unacceptable losses and also by the Basel Committee as the risk that the �rm

will not be able to meet e�ciently both expected and unexpected current and

future cash �ow and collateral needs without a�ecting either daily operations

or the �nancial condition of the �rm (7).

An example of such a solution is the Liquidity Risk management frame-

work (42). The authors show that by using standard Cash �ow at risk models,

it is possible to assess and mitigate the liquidity risk of an energy company.

It is beyond the scope of this work to present a complete overview of

ERM, but we would like to focus on a key aspect of ERM: de�ning the

company's risk appetite.

A common approach to support de�ning the risk appetite is measuring

the company's Economic Capital.

Economic Capital is in practice an additional constraint to a company

investment and operation decision. It may be seen as a risk version of the

budget constraints that investors and companies are usually faced with. The

process of distributing the available economic capital in a portfolio of assets is

known as risk budgeting.

The �rm's risk appetite and Economic Capital might be derived from a

Cash �ow at Risk or Liquidity Model (42).

It must be stressed that the �rm should never try to hedge away all

its risks, the excessive hedging would certainly lead to value destruction.

Equivalently, it should know on which risks the company presents some

competitive advantage and keep those risks, since it is the natural owner of

the risk, i.e., other party would charge higher to accept this risk transfer.

According to (52), �rms should use enterprise wide integrated risk

management to take core, strategic risks, and any additional business risks

where it can explore some value creation given di�erential skill possessed by

the company. Remaining risks that steer the company away from its strategic

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 3. Investment Valuation and Portfolio Risk Management 57

objectives may be mitigated by some technique.

3.6
Risk Management tools

We now explain some of the most popular techniques to manage risk.

Each one should be used according to the situation. A risk manager will

probably make use of a mix of some of the options below.

3.6.1
Derivatives

There is a large number of derivative contracts available nowadays. With

the increasing securitization of commodities and other markets, there is avail-

ability of calls, puts, collars, swaps, futures, and many more standardized con-

tracts, as well as banking services that supply customized contract opportun-

ities for a fee. Derivatives are mostly used to hedge short to midterm cash �ow

operations. Most of the derivatives used by regular companies are related to

hedging foreign currency and interest rate risk. The remaining large markets

for derivatives are related to commodities, such as oil, energy, gas and metals,

such as gold. Currency derivatives have a wide interest of companies in gen-

eral because of global markets, the companies do not want to allow volatility in

exchange rates to jeopardize their strategies. Care must be taken with derivat-

ives: larger exposition to derivatives may require substantial deposit margins.

If the derivative price has high volatility, �uctuations might require immediate

margin calls, which can be a severe unexpected cash demand. This has been

the cause of some well-known �nancial disasters such as the Metallgesellschaft

case (52).

3.6.2
(long term) forwards

Forwards are usually non standardized contracts traded Over the

Counter. They are superior to futures for long term purposes because mar-

gin deposits can be avoided and longer periods can be arranged. An owner of

a forward contract still is exposed to counterparty risk, the risk of the contract

not being honored by the other party. Counterparty risk can be mitigated by

diversi�cation, signing several smaller contracts with di�erent counterparties.
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3.6.3
Diversi�cation

Diversi�cation, as mentioned before, is one of the most common and

e�ective ways to hedge. As long as the assets do not have perfect (positive)

correlation, some level of diversi�cation bene�t is possible. Diversi�cation is

also typically cheap, so there are few reasons not to pursue diversi�cation,

unless there is some constraint, such as legal requirements. Diversi�cation can

refer to pursuing di�erent businesses but also geographical regions, dealing

contracts with di�erent counterparts,

3.6.4
Insurance

Insurance is one of the oldest known risk management tools. Typically

a company will try to insure against risks identi�ed with low probability

of occurrence but with a high impact that might severely compromise its

operations. Since an insurance company is able to diversify its portfolio of

contracts, it can o�er a reasonable price for taking this risk. Also, insurance

companies have expertise in preventing losses, so they can provide valuable

guidance on how to prevent loss events. It is worth noticing that large

companies may prefer to practice self-insurance in some cases. If a large

logistics operator decides not to insure is own �eet, he will probably spend

less money with the expected losses in case of an event than the premium

charged by insurers.

3.6.5
Partnerships

Partnerships are usually resorted to as a diversi�cation technique. There

are also some special bene�ts of partnership, for instance, when developing a

project with a partner that has some technical expertise in some critical aspect

of the project. In this case, the partnership will also mitigate a project risk.

3.6.6
Real Options

Real Options have been extensively studied as one of the most important

managerial tools in project valuation over the past few decades, but they also

may be seen as risk management tools. Since a company frequently has a

portfolio of assets, under study and ongoing projects, there are several options

that may be exploited in order to avoid exposition to market risks , such as

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 3. Investment Valuation and Portfolio Risk Management 59

� postpone: most projects under consideration and some ongoing projects

may be postponed to a later date. This may allow some uncertainty to

be revealed, such as a regulatory change or a technological improvement,

but also, in case the project is marginally pro�table and subject to price

uncertainty, may help the company decide whether go on with the project

or abandon it.

� fast track: if the project is considered deep in the money, with high

returns, it may be worth spending some additional money to hurry the

investment phase and anticipate the delivery, so that early returns can

be cashed in.

� abandon: whenever an asset or project becomes irremediably incapable

of returning positive net cash �ows, it may be best to stop the enterprise

and assume some losses than to stick to the plan and endure years of

negative results.

� hibernate: some assets, such as re�neries, may have volatile margins,

and during some low margin periods it may be wiser to stop operations

until better market conditions present themselves. It must account for

the costs of startup and maintenance during the hibernation period.

� switch: several industrial processes may enjoy from switching options. A

very common option is switching fuels in generators, according to the

fuel prices and e�ciency of the machinery.

� expand: Some business can be expanded if market conditions seem

favorable. A wind power plant can expand its capacity by adding a few

more units to the park, using the existing infrastructure.

there are several other options available, each of them having di�erent

appeal according to the business in question.

In the next chapters, we will show how to use the aforementioned valu-

ation and risk management instruments to build sound long term investment

policies in renewable energy markets, speci�cally in the Brazilian regulatory

context.
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Strategic Risk Management Framework for Renewable

Investment

In this Chapter we will formally de�ne and model the main uncertainty

sources associated to the investment in renewable energy. Then we will outline

the proposed framework, explaining the alternatives that we will pursue in

our investment policies. Finally, we will describe the suggested approach to

compare the alternative policies.

The strategies might contain the possibility to postpone investment

decision, in order to exploit new available information. The solution approach

must incorporate such options in its model. Such multistage feature of the

decision process is incompatible with the available data, provided as a deck

of Monte Carlo simulations. Since the simulations do not include a �ltration

structure (as exempli�ed in Figure 4.1), we will have to try and recover or

reproduce the �ltration information in our solution approach.

4.1
Uncertainties in the Renewable Energy investment planning problem

Renewable energy investment projects have the advantage of not being

subject to risk of market prices for their inputs, as, for example, it would be the

case for a thermoelectric plant. On the other hand, the generator has no control

over the renewable source and is exposed to its availability. A hydroelectric

plant could use is reservoir to adapt its production pro�le to the demand, but

this is not the case of run-of-the-river hydroelectric plants, nor wind generation.

The generator is also subject to sell energy in a market whose price has

great variability. We will now describe in more detail the uncertainty sources

of the problem and de�ne models to the sources of uncertainty.

4.1.1
Spot prices

As mentioned in the introduction, the ONS publishes the results of its

long-term model, NEWAVE (66), to market participants. The model gives
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Figure 4.1: Monte Carlo samples do not re�ect the �ltration information.

a proxy of the energy spot price forecasts by balancing supply and demand

during the planning horizon.

The NEWAVE model is a tool for long-term scenario modeling used by

o�cial Brazilian agencies. In the Brazilian regulatory model, NEWAVE is used

to support long term planning studies, such as network expansion planing,

more details in (65). The great advantage of using scenarios derived from the

NEWAVE model is to incorporate the market dynamics of the future spot

price, taking into consideration the current system structure, demand growth

curves, and planned investment on the generation and transmission network.

As planned investments in this study are considered small in relation to

the market at hand, we will assume that the entry of these investments does

not in�uence the market price, being deemed a marginal generation. Large

scale investments might in�uence the market balance. In this case, it would

be more appropriate to apply a methodology based in equilibrium models or

Game Theory, as discussed in (64).

Uncertainty of water in�ows is represented in NEWAVE model by

aggregating submarkets. Each submarket represents a region of the country

in terms of hydrology and the transmission network. The market is currently

divided into Northeast (NE), North (N), South (S) and Southeast (SE)

submarkets. Spot prices resulting from marginal operating costs are also
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reported for each submarket, informed in monthly periods. The result of a

NEWAVE optimization is accompanied by 2,000 Monte Carlo simulated series.

For each simulated series s, we may obtain the in�ows Ikτ,s and spot prices πkτ,s
of each submarket in k and month τ .

These stochastic processes Ikτ,s and π
k
τ,s are considered in our model and

we will use the time series data from the NEWAVE simulation results.

4.1.2
Forward prices

The forward contract price is another signi�cant uncertainty. Following

(26), future prices can be represented by the expected spot price plus a market

risk premium. Thus, given our deterministic interest rate, the forward price

Ft,T at time t with maturity T may be represented by

Ft,T := Et [πT ] + Λt(T ), (4-1)

where Et[·] denotes conditional expectation given information available in time
t and Λt(T ) is a risk premium associated with the contract Ft,T .

We are not interested in contracts for a given maturity, but rather in

contracts that guarantee a �xed price over the whole period of plant operation.

Following (19), this contract ft, with monthly deliveries from periods T1 to Tn,

may be priced by

ft =

∑n
i=1

Ft,Ti
(1+rf )(Ti−t)∑n

i=1
1

(1+rf )(Ti−t)

, (4-2)

where rf is the risk free interest rate and Ft,T1 , ..., Ft,Tn is a series of contracts

with maturities T1, T2, . . . ., Tn.

The Brazilian energy market lacks a formal future market. Agents may

de�ne a forward curve based on their expectations (possibly using a service

such as forward curve benchmarking by DCIDE1) or with the aid of a trading

platform2. There is currently legislation in study to disclose prices of FTE

contracts.

In Figure 4.2, we present the historic time series of the spot price and

a forward contract in the Nordpool market. As can be seen, the spot price

shows a much higher volatility, with some spikes. This behavior is similar in

the Brazilian Market.

More details on the subject will be given in Chapter 5, where we develop

our model to the forward prices.

1www.dcide.combr
2BRIX at www.brix.com.br, BBCE at http://www.bbce.com.br/
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Figure 4.2: Spot and forward prices in the Nordpool market.

4.1.3
Renewable Generation

Generation of renewable energy sources is another important uncertainty

to be modeled. The energy Gj
τ generated in the month t by a windpower

renewable source j is given by:

Gj
τ := hτ

[
CjW

j
τ

]
+
, (4-3)

where [a]+ = max{a, 0} for a ∈ R, hτ is the number of hours in period τ , Cj
the nominal capacity and W j

τ is the capacity factor of the plant j in period τ ,

a function of wind availability in the plant site. Monthly capacity factor may

be obtained by evaluating the wind pro�le with the turbine power curve.

For a small hydro, Gj
τ is given by:

Gj
τ := hτ

[
min{Cj, κjζjgW j

τ }
]

+
, (4-4)

where κj is the e�ciency factor of the plant, ζj its falling height, g acceleration

of gravity and W j
τ is water in�ow. We assume the small hydro has a small or

no reservoir, so that energy output is directly de�ned by the river's in�ow and

there is no decision on the generation output pro�le.

Equations (4-4) and (4-3) are deterministic functions of the stochastic

process W j
τ . We will represent this process as a Vector Auto Regressive (VAR)

model, where each process depends on itself and the submarket in�ows. Since

prices calculated by the NEWAVE model are also in�ow dependent, any

correlations between generation and spot prices would be represented, as done

in (107).

For p autoregressive lags and q explanatory (in�ow) variable lags, the

model is de�ned for a given plant j as
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W j
τ =

12∑
i=1

γji δiτ +

p∑
i=1

φjiW
j
τ−i +

q∑
i=1

4∑
k=1

ηjikI
k
τ−i + εjτ . (4-5)

where the explanatory variables and its associated model coe�cients are:

� : φji : the autoregressive coe�cient for plant j in period i,

� γji : a seasonal dummy variable for each monthly period i in site j;

� δiτ : a dummy variable that assumes values 1 in the i− th month of the

year and 0 elsewhere, i.e., δiτ = 1 for τ = i+ 12`, ` = 0, 1, ..., and δiτ = 0

otherwise.

� Ikτ : the in�ow of market k at month τ ,

� : ηjik: the regressive coe�cient for in�ow of market k j in period i.

Errors are assumed to be independent and normally distributed,

εjτ N(0, σ2
j ). The model parameters may be easily estimated from historical

data of the plant sites.

This model allows for negative W j
τ , which would make no physical sense.

The truncation in expressions (4-4) and (4-3), by operator [a]+, ensures that

the model will provide nonnegative generation pro�les.

As mentioned in the Introduction, there is evidence of seasonal com-

plementarity in generation. Wind power (WP) sources have complementary

seasonality with Small Hydro (SH) sources. In Figure 4.3 we can see an ex-

ample of this situation, where we display the average, 5% and 95% quantiles

of the monthly generation of a wind and a small hydro generator. Generation

for the WP is presented in percentage values of FEC and for the SH as the

�ow rate (in m3/s). An investor could then compose a portfolio of projects

mitigating the generation uncertainty, exploiting the complementarity of both

plants.

Considering the aforementioned uncertainties, the stochastic process in

our model is given by

ξτ := (Iτ , πτ , fτ , Gτ ), (4-6)

where Iτ := (I1
τ , ..., I

K
τ ), πτ := (π1

τ , ..., π
K
τ ) and fτ := (f 1

τ , ..., f
K
τ ), for the K

submarkets, and Gτ := (G1
τ , ..., G

J
τ ), for the J projects. Correlations between

windpower sites may be modelled following (110).

We use market data provided in the form of 2,000 series simulated

in the NEWAVE model as described above. Generation data is obtained

for the stochastic renewable sources described above. Forward contract data

is obtained following the models proposed in Chapter 5. The data vector

will be considered in the optimization model proposed in Chapter 6 of this
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Figure 4.3: Complementary seasonality of wind power and hydro generators in the
Brazilian market. Average and quantiles (5% e 95%) of monthly generation for small
hydro and windpower projects.

Thesis. We will address as the original data for our problem the set of 2,000

simulated series of the data vector ξτ and quality of the policies proposed in

our investment framework will ultimately be evaluated against this data.

4.2
Investment Framework

As described in the previous section, renewable uncertainty is seasonal

and there is complementarity between sources. An investor or trader may

exploit this behavior to mitigate generation volatility. Since his exposure to the

spot price is reduced, this might allow a generator to sell forward contracts,

instead of the lower priced Availability contracts. Whenever wind energy is at

a low season the hydro energy may compensate, and vice versa.

In summary, we will pursue the following alternatives:

� Diversi�cation: the investor may diversify his investment in several

complementary projects.

� Partnerships: the investor may take a smaller share of the project to

avoid over-concentration in few assets. Since projects are usually highly

pro�table, we assume it is straightforward to �nd a partner.

� Forward Contracts: Forward contracting may be done at market prices

to reduce exposition to spot prices.

� Postponement Options: As mentioned by (27), real options, such as post-

ponement, are available when the investor as exclusive rights or another
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competitive advantage. This is usually the case in renewables investment,

and we shall explore the possibility to postpone the investment, in order

to wait for better market conditions.

In our strategy we will not discuss insurance. Rare, but high impact

losses, such as a breached damn in the case of a hydro project, are usually

avoided with insurance, and will customarily be considered as part of the

project �nancing costs. If necessary, insurance may be accounted for in

operational expenses (Opex), which are usually very low for renewables.

We will also not consider the e�ect of short-term derivatives trading.

As discussed in Chapter 3, simply trading derivative instruments should not

create value to the generator. While it can help smoothen the cash �ows of the

company, it has little impact on long term feasibility of the plant and its results

may be alternatively achieved, for instance, with short-term debt. Intra-year

liquidity will not be accounted for in this work.

Spot clearing is subject to credit risk. Counterparties in the CCEE may

default their debts, which are shared by the credit receiving agents. This risk is

especially high during prolonged price spikes, such as those exhibited in 2015.

We will not consider credit risk in our framework.

Risk sources (such as spot credit and forward counterparty risk) not

accounted for in our framework can be evaluated ex-post. Since policies

originated in this framework are evaluated by Monte Carlo simulation, it is

straightforward to consider the e�ect of additional modeled risk sources in the

obtained policies.

In summary, the investor strategy will depend on de�ning the optimal

investment timing and also the adequate composition of a portfolio, composed

of shares in a few renewable projects where some of their FEC will be

committed to forward contracts with potential customers.

The forward contract is assumed to begin delivery by the time the plants

are built. Forward contract prices �uctuate along time, so there might be value

in postponement of the investment decision to wait for better market prices.

Capital expenditures may also be subject to risk. There are risks associ-

ated with capex overrun, due to larger costs than originally anticipated, and

delay risks, which may not only result in delayed operation but also �nes from

the ISO. Those risks are signi�cant in some projects, but we will refrain from

representing them in our model.

It is also worthwhile to remind that regulatory risks may present them-

selves in most markets. Changes in regulation after the investment decision

has been made may jeopardize the future cash �ows, since the problem nature

relies in the current market structure. Regulatory risks will be more signi�cant
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in immature or severely unbalanced markets, when there is a moral hazard

associated with the market.

In our numerical results, we will consider a simpli�ed case of an investor

who considers a windpower opportunity in the Northeast market and a Small

Hydro in the Southeast market. In order to reduce his volatility, he may sell

forward energy in the FTE. Also, for the sake of simplicity, we will consider

that the forward contract will be sold in the Southeast market, and that spot

energy prices in both markets are equal. This simpli�cation in our numerical

study may not occur in practice.

Figure 4.4 illustrates the proposed strategy for an investor with a

portfolio of shares (xWP ) of a WindPower project, shares (xSH) of a Small

Hydro project, and selling some fraction of his FEC in forward contracting

(xsell).

The geographical risks associated with trading contracts in a di�erent

market from generation is an example of a basis risk. Nevertheless, the proposed

framework is general and we take this risk into account in Chapter 6. One

may take it into consideration if this risk seems relevant in the spot price

simulations.

Figure 4.4: Investment strategy: generator decides for a share of each available
project (xWP e xSH) and sells a fraction xsell of his physical guarantee pool in a
forward contract.
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4.3
Evaluation of alternative policies

In our approach we will evaluate the value of the proposed policies by

a convex combination of the expected cash �ows and its AV@R. This risk

functional can be parametrized with di�erent weights, so that our model

provides alternative policies.

As discussed in Chapter 3, when evaluating portfolio alternatives with

di�erent risk pro�les, it is necessary to establish a criterion for portfolio

comparison.

We considered in our assumptions that the investor has enough capital

to undertake the investments in the portfolio. Nevertheless, usually investors

face a more constraining restriction: the availability of economic capital (or

risk capital). The economic capital of a company's portfolio must adhere to

the company's risk appetite, otherwise the risk of not meeting its obligations

may become unacceptable.

Funding for new projects is basically composed of debt and equity. While

banks require enough evidence of the project's �nancial feasibility to lend

money for capital intensive projects, investors rely on the (uncertain) free cash

�ows of they existing assets to fund their new ventures.

A �rst criterion for choosing among the available policies is straightfor-

ward: one should choose the strategy with the highest Net Present Value that

adheres to both the bank's requirements and that is below the risk appetite of

the �rm.

When the company is faced with several investment opportunities, a

more e�ective way to allocate capital is to do a risk budgeting process that

will provide the portfolio with highest NPV that respects the available risk

capital. This might be posed as a simple Knapsack optimization problem.

In the absence of integrality constraints, the greedy algorithm (picking

the opportunities in a decreasing order of NPV
riskcapital

) obtains the optimal

solution.

With this idea in mind, risk adjusted measures of risk, which have been

used in the banking industry for decades, have been adapted to capital projects

(79) and the electricity market in special in (85). We follow the approach in

(79) to reframe the RAROC de�nition (3-23) to a more appropriate version

for investment projects, as

RAROC =
E[NPV (X)]

PI(X) + EC(X)
, (4-7)

where PI is the Present Value of investment cost, and we may de�ne EC(X) =

E[NPV (X)]− AV@Rβ(X), for a given con�dence level β.
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A interesting parallel may be made with equation (4-7). In deterministic

portfolio evaluation, a very popular criterion is the Pro�tability Index (PI -

given by the Present Value of net operational cash �ows divided by Present

Value of investment cost), de�ned in equation (3-2). The above relation may

be seen as a risk-adjusted version of this �nancial ratio.

We will use this version of RAROC, a risk adjusted return measure,

to compare di�erent investment strategies and choose the most appropriate

strategy, given the investor's appetite.
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5

Energy price model

We will rely on a model for the forward contract dynamics in our

investment framework. We will now devise such a model to estimate the

forward price curve.

We will use the Schwartz-Smith two factor model, coupled with over

the counter contract data to estimate the forward curve of the Free Trading

Environment in the Brazilian market. The absence of an actual futures market

reduces not only the number of managerial tools available to decision makers,

but from a market point of view, also the amount of available information and

also information symmetry to market participants.

There are three di�erent sources of forward contract information in

Brazil. There are two trading platforms, BBCE and BRIX, and also an

information pooling bulletin provided by DCIDE.

5.1
Introduction

Following deregulation in several global energy markets, competitive en-

vironment induced a sudden increase in the relevance of contracting for market

agents. Forward contracting plays several major roles, such as ensuring sup-

ply adequacy (102), (76), inducing adequate economic signaling for investment

and network expansion (37), risk management of cash �ows (8) and marking

to market one's position (59), and also reducing market power of agents (106),

(9).

Modeling forward prices has been under active research in the energy

literature. Forward prices may be necessary, for instance, for contracting and

investment strategies (17), (20), (54), (6), (5), and evaluating risk premium

(109), (8) of the market.

Financial forward contracts are usually priced by arbitrage arguments.

Given a forward contract Ft,T , negotiated in period t, where contract is to be

settled in maturity T , the fair price is

Ft,T = St(1 + rf )
(T−t) (5-1)
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where St is the current spot price of the asset in time t and (1 + rf )
(T−t) is the

return of the risk free asset in the time interval (T − t).
Forward commodities usually can not be priced as �nancial ones. First,

storage, when possible, comes with a cost. Also, there is a competitive

advantage of owning the asset over the �nancial obligation, since short-term

shortages might happen. In this case, the relation between forward and spot

prices is

Ft,T = St(1 + rf + c− y)(T−t), (5-2)

where c is the cost of carry and y represent a convenience yield for the physical

asset. In practice, convenience yields are hardly static (2). In fact, single factor

models (88) in general have been known to be unable to fully capture the

forward term structure.

The literature of two factor models was initiated by this reason, with

the models (43) and (81). The most relevant, Schwartz-Smith (89) model,

displays wide acceptance in the literature due to its ability to model long term

contracts using a simple Kalman Filtering (98) procedure. The model has been

augmented with deterministic seasonal and jump components in (62).

Electric energy is costly or even impossible to store, so pricing by equation

(5-2) may not apply. If it is possible to obtain a risk neutral measure Q, then

the fair forward price is (2)

Ft,T = EQ[ST |Ft]. (5-3)

In this equation the forward price is given by the expected value of the

spot price in the maturity, conditional to information Ftavailable in time t.

The relation may be represented in the real measure P as

Ft,T = EP [ST |Ft] +RPt,T , (5-4)

where RPt,T is the risk premium of the contract. Expression (5-4) may also be

written (83) as

Ft,T = EP [ST |Ft](1 + rf − Λ)(T−t), (5-5)

where Λ is the market price of risk. (84) uses a regression model to estimate

the market price of risk of forward contracts in Nordpool market.

(47), (38) and (82) mention that some authors may accept zero risk

premium, but empirical studies (8) suggest that for shorter maturities the risk

premium is positive and long term contracts have negative premiums.

This result is coherent with market expectations, since consumers might

be willing to avoid seasonal price spikes while generators might pay a premium

to ensure their long term investments will be pro�table, as mentioned by (30).
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Alternatively to factor models, there are some attempts to reproduce the

term structure of energy contracts with �nancial multi-factor term structure

models based on the Heath, Jarrow & Morton (HJM) framework (56), (24).

These models have acquired attention because in some markets, while two

factor models can account for only 70% of the uncertainty, HJM models may

help to explain up to 95% of the variability (2) and (56).

More details of pricing energy derivatives in energy markets may be seen

in (19), (8), (24), (26), (29), (34), (48), (57).

In the Brazilian Market, contracts in the Free Trading Environment are

mostly traded Over The Counter (OTC). This poses a challenge for agents

who wish to develop a forward term structure model.

Our objective is to use the Schwartz-Smith two factor model, coupled

with OTC contract data to estimate the forward curve of the Free Trading

Environment in the Brazilian market. The assumed hypothesis is that the

Schwartz-Smith model is valid for the Brazilian market, which we will justify

in the following sections. We will show three di�erent modeling alternatives

and compare their relative merits.

This works contributes to the literature by creating a model for the

forward curve in the OTC Brazilian market. We also show examples of how to

price new (non traded) contracts with the model.

5.2
The Brazilian Contracting Market

The Brazilian Energy Market is a mixed environment, where companies

are free to trade energy contracts but dispatch is centralized by a national

Integrated System Operator (ISO). In this model, the spot price is given by the

marginal cost of dispatch calculated by the ISO's model, but there is no future

market information available. The absence of an actual futures market reduces

not only the number of managerial tools available to decision makers, but

from a market point of view, also the amount of available information and also

information symmetry to market participants. Nonetheless, regulations require

that the entire demand in this market must be backed by energy contracts,

by supply adequacy security reasons. This creates a thriving bilateral OTC

market with consumers, generators and traders having di�erent strategies.

The clearing of the short-term transactions in the market is done by

CCEE (99), the o�cial clearing house. Such transactions are settled with

the spot price calculated by ONS. The information from all the contracts

between the companies of the market must be submitted to CCEE, but, since

no information about these contracts is disclosed, the market has an Over the
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Counter (OTC) dynamic. There have been attempts to change regulation as

to improve information �ow, by allowing CCEE to disclose overall contract

statistics, but so far no such changes where possible.

There are three di�erent sources of forward contract information in

Brazil. There are two trading platforms, BBCE1 and BRIX2, and also an

information pooling bulletin provided by DCIDE3. Some market participants

rely on a forward curve benchmarking process done by third party company

DCIDE (59). On a weekly basis, the company gathers data from over 40

participants of the market. Each participant is responsible to inform the

most accurate, in their understanding, fair price for several standardized

contracts. The participants then receive access to the consensus curve, which

is generated by a process which encompasses a statistical step, �ltering outliers

and averaging the opinions, and a specialist step, where additional checks might

be performed. Since participants represent generators, traders and consumers,

the resulting curve approximates a market value that may later be used

internally by each participant.

The BBCE trading platform is very recent, with scarce historic data, but

potential for future studies. The BRIX data is open to the public and there is

a large time frame available, but there is only information from short (current

month) to medium term (two years) maturities. DCIDE data is available for

up to four years ahead and BRIX and DCIDE data is reasonably similar when

they overlap. Since we are mainly interested in long term contracts, we will

rely on DCIDE data only.

5.3
Forward curve modeling with Schwartz-Smith two factor model

It has been shown (22) that at least two factors are necessary to represent

the term structure of forward contracts, otherwise long term maturities are

incorrectly represented.

The Schwartz-Smith (89) model is a very popular model to represent

commodity prices. It is composed of two unobserved components: a long term

tendency, ξt, which follows a Brownian Motion, to represent a moving and

unknown long term equilibrium price; and a short-term deviation χt, to account

for short-term imbalances between supply and demand, represented by a mean

reverting process that reverts towards zero.

Following this approach, the spot price is given by

1www.bbce.com.br
2www.brix.com.br
3www.dcide.com.br
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πt = eξt+χt . (5-6)

The unobserved state variables follow the dynamic

ξt = µξ∆t+ ξt−1 + ωξt (long term tendency) (5-7)

χt = e−κ∆tχt−1 + ωχt (short-term variations) (5-8)

Here, µξ is the long term drift, κ is the mean reverting rate, and random

errors are represented by vector[
ωξt

ωχt

]
∼ N

([
σξ ρ

ρ σχ

])
, (5-9)

where the short and long term errors might be correlated.

Commodity spot prices are often not observable, and all available trade

information refers to forward and future prices. Due to non arbitrage, (89)

show that every contract in {Ft,Ti}ni=1 with di�erent maturities Ti, may be

priced by the logarithm relation

ln (Ft,Ti) = e−κ(Ti−t)χt + ξt + Ψ(Ti − t) + ωTit , (5-10)

where ωTit ∼ N(0, σTi), i = 1, ..., n and there is no correlation in the observation

errors, and Ψ(T − t) is a function of the model parameters given by

Ψ(τ) = µ∗ξτ − (1− e−κτ )λχ
κ

+
1
2

(
(1− e−2κτ )

σ2
χ

2κ
+ σ2

ξτ + 2(1− e−κτ )ρσχσξ
κ

)
.

(5-11)

Here, µ∗ξ is the long term risk neutral drift and λχ is the short-term risk

premium. This model, augmented by deterministic seasonal components, has

been used by (62) to price energy contracts in the Nordic market.

The non arbitrage argument used in such models may be criticized in

some energy markets, since electric energy is hard to be stored. In the Brazilian

market, due to its hydroelectric basis, with large reservoirs, it is reasonable to

assume that some part of the energy might be stored, which allows us to assume

the non arbitrage hypothesis.

As mentioned by Schwartz & Smith, since no expected spot price curve

is provided to the model, there is an impossibility to price correctly the risk

premiums of the market. Errors in the estimates of the log term drift and the

short-term risk premiums may cancel out in the adjustment of the forward

curve, but the expected future prices will not be adjusted correctly by the

model state variables.

As an example, by adding the constants λχ
κ
and −λχ

κ
to the state variables

ξ and χ respectively, no e�ect occurs to the spot and forward prices, but

expected future prices would change. Future work might include using expected
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spot data from the appropriate submarket of the NEWAVE model in the real

measure price process to adjust the remaining parameters and obtain the true

risk premium curve.

The two factor model is linear with normal distributed errors, so it can

be estimated with the Kalman Filter. The model has seven parameters, plus

the standard deviations of measurement error of the contracts σT1 , ..., σTn in

the observation equation.

We will follow the notation of (98) to represent the model in the state

space form. The observational and system equation are

yt = Θtxt + Γut + vt (5-12)

xt = φxt−1 + Υut + wt (5-13)

where dimension of vector yt is n, the number of observable contracts, xt has

dimension two, the number of state variables and ut has dimension n+ 1. The

resulting Kalman �lter equations for the Schwartz-Smith model are:

ut = (Ψ(T1 − t), ...,Ψ(Tn − t), 1)
′
,∀t (5-14)

yt = (log(Ft,1), ..., log(Ft,n)) (5-15)

Θt =


e−κ(T1−t) 1

...
...

e−κ(Tn−t) 1

 ,∀t (5-16)

Γ =


1 0 . . . 0 0

0
. . . . . .

...
...

. . . . . . 0
...

0 . . . 0 1 0

 , (5-17)

φ =

[
e−κdt 0

0 1

]
, (5-18)

Υ =

[
0 . . . 0 0

0 . . . 0 µξdt

]
, (5-19)

vt ∼ N (0, R) and wt ∼ N (0, Q), where

R =

σ
2
1 0

· · ·
0 σ2

n 0

 , (5-20)

Q =

[
(1− e−2κdt)

σ2
χ

2κ
(1− e−κdt)ρσχσξ

κ

(1− e−κdt)ρσχσξ
κ

σ2
χdt

]
, (5-21)

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 5. Energy price model 76

5.4
Market data

The spot data is weekly generated by ONS and is available in the

CCEE website. DCIDE data is made available every Wednesday to the

associated market participants, and a summarized bulletin is simultaneously

made publicly available in their website.

The forward curve generated by DCIDE is composed of one spread

contract, delivering in the current month, three monthly contracts for the

following months, one contract for the current year and four annual contracts

for the following years. Also, contracts may refer to one of the four Brazilian

submarkets (Southeast, South, North and Northeast). An example of the data

may be seen in Figure 5.2.

As described in (59), DCIDE monthly contracts are named M + 0,M +

1,M + 2 and M + 3 for products with monthly delivery in the current month

and 1 to 3 months ahead. The contract Y +0 is a product with delivery staring

from the fourth month ahead up to the remainder of the current year. Contracts

Y + n, n = 1, ..., 4 refer to products with annual delivery and maturity one to

four years ahead respectively. Figure 5.1 illustrates such contracts for the week

between 03/21/2016 and 03/27/2016.

Figure 5.1: DCIDE contracts and their respective maturities on the week beginning
in 03/21/2016.

Since we have weekly data, there is an additional challenge because we

have moving maturities. In the last week of a month, the time to maturity of

a M + 1 contract is one week. In the following week the underlying product

changes and the new M + 1 contract now has maturity of four (or �ve) weeks

from this date. From September to December, in order to avoid overlapping

with the monthly contracts, the underlying product in the Y +n contracts shifts

to the next calendar year. As an example, contract Y +1 in October/2016 refers

to deliveries from January/2018 to December/2018.
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5.5
Numerical Study

Numerical results were obtained using R and RStudio, with package astsa

by (103).

Data provided by DCIDE consists of 146 observations of weekly data,

from January 2012 to October 2014, of conventional energy contracts. Data is

composed of pooled information from the 48 most active agents in the Brazilian

market, which then is cleaned by a statistical procedure for outliers and �nally

analyzed by a committee. Spot prices are provided by ONS (Operador Nacional

do Sistema), the Brazilian ISO. All data refers to the Southeast market in

Brazil.

Figure 5.2: Spot and forward contract prices.

We study two monthly contracts, denoted M + 1 and M + 2 and also

three yearly contracts, Y + 1, Y + 3, Y + 4.

Visual analysis of Figure 5.2 shows that there is a noticeable change of

level in yearly contracts every September, due to the change of underlying

product. Figure 5.3 shows the same data but in a single plot, making evident

that most of the time forward prices are lower for longer maturities, which

means the market has normal backwardation (futures prices lower than spot,

the longer the maturity).

In some European and North American markets, strong seasonal com-

ponents have been observed, in what is usually associated with consumers

willing to pay a premium to secure energy prices. This would imply short-term

forwards with higher prices than the spot. Lack of seasonal patterns in the
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Figure 5.3: Spot and forward contracts.

Brazilian market, as identi�ed by (59), may explain why we hardly see this

behavior.

By performing Principal Component Analysis of the data, we can �nd

out that the �rst component accounts for 91% of data variability and the �rst

two components add up to 97.7% of the market data variance. This is great

evidence in support of two factor models for the Brazilian market. Experience

in the Nordic market by (56), (8) indicates that two factors explain no more

than 75% of price variations in that market and more than ten factors were

needed to account for about 98% of the variations in the empirical covariance

matrix.

As mentioned before, the moving nature of the contracts' maturities,

coupled with the multiple period delivery, might pose an additional modeling

challenge. We provide some alternative approaches:

5.5.1
Average maturity and average delivery

In our �rst approach, which we call Model1, we will assume two sim-

pli�cations: an average time to maturity for the contracts and that contract

delivery happens in an average date in the contract lifespan. In this instance,

the swap contracts are approximated by simple single delivery forward con-

tracts with maturities given by Table 5.1. The coe�cients in equation (5-16)

are time-invariant in this case.

The advantage of this approach lies in its simplicity, since the regular
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Schwartz-Smith model may be applied. There are several available libraries

that implement this model.

We follow (89) suggestion and initialize the state vector with values zero

for the short-term state variable, while the long term variable takes up the (log)

average spot price, which shows to provide good results over a non informative

startup. Estimation by maximum likelihood methods provides us with the

results in Table 5.2. The log-likelihood function is 1692.97.

Spot M+1 M+2 Y+1 Y+3 Y+4

Weeks to
maturity 0 3.35 7.67 69.04 173 237.3

Table 5.1: Weekly time to maturity in the average maturity and average
delivery approach.

estimate SE t-value

κ 0.861 0.036 23.774
σχ 0.973 0.075 12.922
λχ 1.782 0.559 3.187
µξ 0.145 0.071 2.040
σξ 0.119 0.094 1.265
µ∗ξ 0.003 0.004 0.657
ρ 0.145 0.107 1.354

σ0 (Spot) 0.245 0.069 3.570
σ1 (M+1) 0.048 0.423 0.111
σ2 (M+2) 0.127 0.095 1.342
σ3 (Y+1) 0.203 0.062 3.243
σ4 (Y+3) 0.025 0.065 0.390
σ5 (Y+4) 0.003 1.084 0.003

Table 5.2: Model1 estimation results

This model, despite simpli�cations, was able to capture some features

of the market. The relatively high long term drift indicates that the market

expects rising prices, which agrees with the general behavior observed in Figure

5.2. The higher observation errors where found in the Spot and Y +1 contract.

The former is related to the general volatility of the spot price. The latter is

probably due to this model's inability to capture the variability of the contract

maturity. Comparing the time series with the one step ahead forecasts in Figure

5.4 shows again that the model fails to capture the change in the underlying

product for the yearly products, specially in the Y +1 contract, as we presumed

by analysis of the observation error.
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Analysis of residuals shows fatter tails than the normal distribution, as

seen in Figure 5.5, a usual feature found when modeling prices. Nevertheless,

average innovations are close to zero and volatility is approximately constant.

In order to compare the obtained �t, we modeled a GBM to each of the

contracts and compared results. The Root Mean Square Error (RMSE4) is

displayed in Table 5.3. While short-term forecasts present similar error rate,

in longer forecast periods the Model1 show much better results.

weeks ahead

RMSE 1 5 10

Model1 37.14 38.72 42.44
GBM 39.63 90.18 110.51

Table 5.3: Comparison of RMSE of Model1 and GBM for forecasts of 1, 5 and
10 weeks ahead.

Figure 5.4: Model1 forecasted contract prices.

4Square root of the mean square prediction errors.
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Figure 5.5: QQplot diagnostics for Model1.

5.5.2
Moving maturity and average delivery

The second approach, which we call Model2, improves over the previous

one by allowing the model to account exactly for each week's maturity. This is

accomplished by changing the coe�cients of the observation matrix in equation

(5-16) in each period.

We still simplify the model by assuming a single delivery on the average

contract lifespan. Table 5.4 displays the approximate delivery date for each

contract. As an example, for a monthly contract, we assume that delivery

occurs 1.5 weeks after the month has started.

Spot M+1 M+2 Y+1 Y+3 Y+4

delivery
week 0 1.5 1.5 26.5 26.5 26.5

Table 5.4: Average delivery week used in Model2.

In this case, maximum likelihood estimation provides us with an im-

proved log-likelihood of 1771.26. Estimation results are displayed in Table 5.5.

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 5. Energy price model 82

estimate SE t-value

κ 0.815 0.028 29.077
σχ 0.839 0.066 12.651
λχ 1.530 0.049 3.140
µξ 0.150 0.069 2.160
σξ 0.116 0.066 1.743
µ∗ξ 0.005 0.004 1.439
ρ 0.073 0.101 -0.719

σ0 (Spot) 0.279 0.081 3.437
σ1 (M+1) 0.098 0.173 0.569
σ2 (M+2) 0.097 0.146 0.666
σ3 (Y+1) 0.129 0.067 1.901
σ4 (Y+3) 0.001 8.551 0.001
σ5 (Y+4) 0.020 0.065 0.309

Table 5.5: Model2 estimation results

Most parameters agree with the estimates of the previous model. It is

noticeable that in both models the correlation between the short and long term

components was hard to estimate, resulting in somewhat di�erent estimated

values, but both are close to zero. Observation error of yearly contracts Y + 1

and Y + 3 reduced, but there was a small increase for the Y + 4 contract. One

step ahead forecasts shown in Figure 5.6 indicate that this model was able

to better capture the change of underlying contracts, which resulted in the

reduction of the observation error in the aforementioned contracts.

5.5.3
Moving maturity and multiple delivery

The last model, that we will address as Model3, improves over Model2

the modeling of the multiple delivery aspect. Since the Schwartz-Smith model

was designed for a single delivery, we will have to approximate its behavior.

Let's say we have a contract with multiple deliveries at a �xed single price.

We will follow (19) to devise an equivalence price by non arbitrage arguments.

Consider a series of contracts Ft,T1 , ..., Ft,Tn with maturities T1, T2, . . . ., Tn, and

a contract that establishes in time t a single �xed price K with multiple

deliveries in the aforementioned maturities. This contract has a net present

value (NPV) in time t of

NPVt =
n∑
i=1

Ft,Ti −K
(1 + rf )(Ti−t)

, (5-22)

since it is equivalent to a series of single delivery forward contracts. In absence

of arbitrage opportunities this NPV is zero, then the fair price of the contract

is
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Figure 5.6: Model2 forecasted contract prices.

Ft,[T1,Tn] = K =

∑n
i=1

Ft,Ti
(1+rf )(Ti−t)∑n

i=1
1

(1+rf )(Ti−t)

(5-23)

In the Schwartz-Smith model, we �nd the following equivalence:

K =

∑n
i=1

e−κ(Ti−t)χt+ξt+Ψ(Ti−t)
(1+rf )(Ti−t)∑n

i=1
1

(1+rf )(Ti−t)

(5-24)

=

∑n
i=1

e−κ(Ti−t)

(1+rf )(Ti−t)∑n
i=1

1
(1+rf )(Ti−t)

χt + ξt +

∑n
i=1

Ψ(Ti−t)
(1+rf )(Ti−t)∑n

i=1
1

(1+rf )(Ti−t)

, (5-25)

which may also be implemented in the Kalman Filter.

Model3 requires informing an interest rate. In our numerical analysis

best results (those with higher likelihood scores) where achieved with 5% per

year. Maximum log-likelihood obtained was 1770.28, with estimation results

displayed on Table 5.6.

Overall estimation results are similar to Model2. One distinguishing

feature of this model is that it achieved reduction in the observation error
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of the yearly contracts with a low long term contract (Y + 4) error. One step

ahead forecasting displayed in Figure 5.7 con�rm these �ndings.

estimate SE t-value

κ 0.822 0.027 29.822
σχ 0.825 0.069 11.950
λχ 1.573 0.478 3.287
µξ 0.137 0.066 2.060
σξ 0.111 0.095 1.167
µ∗ξ 0.007 0.004 1.936
ρ 0.190 0.104 1.830

σ0 (Spot) 0.280 0.084 3.339
σ1 (M+1) 0.097 0.187 0.521
σ2 (M+2) 0.097 0.157 0.616
σ3 (Y+1) 0.138 0.069 1.986
σ4 (Y+3) 0.019 0.075 0.252
σ5 (Y+4) 0.003 0.924 0.004

Table 5.6: Model3 estimation results

Figure 5.7: Model3 forecasted contract prices.

We show in Table 5.7 that while Model2 shows improvement over

Model1 in the forecasting power for longer horizons, Model3 did not show any
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signi�cant improvements over Model2 as we might expect. Since calculations

of Model3 are more involved, for practical usage Model2 seems to be a more

reasonable choice, unless the improved long term contract adherence is a

priority.

weeks ahead

RMSE 1 5 10 20

Model1 37.14 38.72 42.44 51.21
Model2 39.62 40.46 41.98 48.21
Model3 39.63 40.07 42.05 48.47

Table 5.7: Comparison of forecasting error over the three di�erent approaches.

5.5.4
Comparison with Schwartz One Factor model

The single factor model of (88) assumes that the spot prices follow a

mean reverting process, which is also a very usual assumption for energy

prices. Within this model, there is an equivalent pricing formula for the forward

contracts, given by

ln (Ft,Ti) = e−κ(Ti−t)χt + Ψ∗(Ti − t) + ωTit , (5-26)

where κ is the mean reversion rate, ωTit ∼ N(0, σTi), i = 1, ..., n and there is no

correlation in the observation errors, and Ψ∗(T − t) is a function of the model

parameters given by

Ψ∗(τ) = (1− e−κτ )%∗ + (1− e−2κτ )σ
2

4κ
, (5-27)

where %∗ is the long term price.

This model can be estimated by Kalman �ltering as the previous ones.

By maximum likelihood estimation of the parameters, we are able to reproduce

the one step ahead forecast as done in the previous models. Figure 5.8 shows

that, as mentioned in the literature, one factor models struggle to �t long term

contracts.

5.6
Example application

We provide an example usage for the proposed approach. We will price

a �ve year forward contract with a �xed price over the whole delivery. This

type of contract is also known as a swap. Generators may be interested in

selling this contract to lock a pro�t margin or to use it as collateral to obtain

�nancing for their projects. Industrial consumers might want to buy this
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Figure 5.8: Schwartz 1 model forecasted contract prices.

contract to obtain some competitive advantage by securing predictable (and

possibly lower) energy prices.

We will �rst price the contracts for delivery in years Y +1,...., Y +5, then

we will �nd the equivalent price of the proposed contract. The contract should

deliver energy from January/2016 to December/2020. We assume an interest

rate of 5% and a decision maker evaluating this decision with information

available up to October/2014.

First, using the adjusted Model2, we obtain the contract prices in Table

5.8.

Y+1 Y+2 Y+3 Y+4 Y+5

Forward Price (R$/MWh) 223.34 175.48 158.37 152.3 150.68

Table 5.8: Prices for the yearly contracts.

Then, using the same reasoning of equation (5-23), we can �nd our

equivalent price as 173.70R$/MWh. This price might be used as a reference

for a contract negotiation.
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Modeling the portfolio problem

We will now present the decision support model that will allow us to

devise strategies using the strategic management framework proposd in the

previous chapters. Several portions of this chapter are based on (17). We now

introduce the mathematical formulation of the problem and then discuss the

solution approach.

6.1
Problem formulation and solution approaches

Since this is a long term problem, it is convenient to deal with annual

decision stages, denoted t = 1, . . . , T+1.We will denote the monthly periods by

τ , whenever necessary. We may undertake the investment decision up to period

T , which we will represent by a binary variable yt, for each period t = 1, ..., T .

The investment decision must be undertaken simultaneously with the portfolio

selection. If investment occurs in a given period t (i.e., yt = 1), then the share

xjt of each renewable plant project j = 1, ..., J to be purchased and the amount

of hedging by forward contracts xksellt , for each submarket k = 1, ..., K must

be decided. We will assume all plants have the same build time b (in years).

We will follow the strategy devised in Chapter 4, making use of partnerships,

diversi�cation and forward contracts in our portfolio. Considering multiple

periods to invest allows us to account for the postponing option in our strategy.

With a slight abuse of notation, we will denote FEC as the sum of the

physical guarantees FECj of all the renewable projects j = 1, ..., J under

consideration, and ht the sum of all the operation hours of a given year, that

is:

FEC :=
J∑
j=1

FECj, (6-1)

and

ht :=
12t∑

τ=12(t−1)+1

hτ . (6-2)

For a given market k, the contract amount xksellt is represented as a

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 6. Modeling the portfolio problem 88

fraction of the maximum amount FEC, and all energy sold under this contract

will be priced by the forward energy price fkt , a multi-period swap as in

equation (4-2), agreed in the investment period t.

We assume that the generator will operate the plant in its full capacity,

as long as there is availability of the renewable source. This will lead to absence

of recourse (operational decisions) in our model.

Given the vector of portfolio decisions xt := (x1
t , . . . , x

J
t , x

1sell
t , . . . , xK

sell
t ),

we de�ne the contract limit constraint

Xt :=

{
xt ∈ [0, 1]J+K :

J∑
j=1

FECjxjt ≥ FEC
K∑
k=1

xk
sell

t

}
,∀t, (6-3)

ensuring that investors have physical guarantees for their contracts. As previ-

ously mentioned, one may not sell energy contracts in the Brazilian market if

they are not backed by physical guarantees from existing plants.

Generalizing equation (3-4), pro�t of the investor in period t may be

represented as a function Rt(xt, ξt), given by

Rt(xt, ξt) =

FECht

K∑
k=1

fkt x
ksell

t +
12t∑

τ=12(t−1)+1

J∑
j=1

πmjτ Gj
τx

j
t−

12t∑
τ=12(t−1)+1

FEC
K∑
k=1

πkτhτx
ksell

t ,

(6-4)

where mj ∈ {1, ..., K} is the submarket where plant j belongs and π
mj
τ

the spot price in that market during period τ . The di�erences between the

generated energy and the contract are settled in the spot market at the spot

price πkτ . The settlement revenue is a function of uncertain spot prices and

generation. Basis risk 1 of the di�erent submarkets k = 1, ..., K is accounted

for by considering the (possibly) di�erent prices in the markets. To simplify

notation, we disregard operational expenses. This is a reasonable assumption,

since, in general, renewable sources have very low operational costs.

We present the optimal investment problem as

1In our case, geographical risks associated with trading contracts in a di�erent market
from generation.
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Max
xt,yt

E
[
T∑
t=1

gt(xt, ξt)yt(1 + r)1−t
]

(6-5)

s.t. xt ∈ Xt, (6-6)
T∑
t=1

yt ≤ 1, (6-7)

yt ∈ {0, 1}, (6-8)

where
gt(xt, ξt) :=

t+b+l−1∑
t′=t+b

Rt′(xt, ξt)
(
1 + r

)t−t′ − J∑
j=1

vjxjt . (6-9)

where b is the build time, r is the proper discount rate and vj is the

present value of investment in the renewable source j.

The projects revenues begin b years after the investment decision in time

t, extending up to the end of the project lifetime, up to period t+ b+ l − 1.

The decision variables xt (portfolio) and yt (decision to invest) are

adapted to the respective �ltration Ft (the nonanticipativity constraint), and

the expectation in (6-5) is taken with respect to the random data process

de�ned in Chapters 4 and 5. We will assume ξt (the yearly data process) to be

Markovian henceforth and that, at time t = 1, ξ1 is known (deterministic).

Here, we maximize the expected net present value over the horizon,

considering a project lifetime l. In the period when the investment decision

occurs, the investor must decide his portfolio mix, without knowledge of future

price and generation. In the following operations years, after a build time

b, cash �ows due to the pro�t and losses from the spot market clearing are

incurred during the project lifetime.

The above formulation assumes a risk neutral investor. We will use a

coherent risk measure to represent risk aversion in our problem, as described

in Chapters 3 and 4. Additional constraints could be imposed on variables xt
and yt to account for other business rules. In both cases, the problem at hand

is a nonlinear multistage stochastic problem. This class of problems normally

can't be solved to optimality and in practice heuristics are usually employed.

The presented problem is an instance of the optimal stopping problem

(31) and can be represented as a mixed integer multistage stochastic optimiz-

ation model.

Multistage optimization problems with integer variables may be solved

by the dual decomposition method of (21). There are two major di�culties

related to the generation of scenarios and the resolution method. Scenario

generation is usually accomplished by Sample Average Approximation (55),

which entails approximating continuous distributions of the problems by Monte
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Carlo discretization. In the multistage case it was demonstrated by (94), (95)

that, in order to properly approximate the original continuous distributions by

Monte Carlo discretization, it is necessary to generate more scenarios in the

sampling process, and that this number of scenarios grows exponentially with

the number of stages. This may lead to a extremely large number of scenarios

with even a few number of stages, thus rendering it unsolvable with reasonable

computational e�orts.

The problem at hand has the block-separable recourse property, as seen

in Chapter 3. Exploiting block separability would lead to a mixed integer

�rst stage and a linear second stage. Still, this requires solving a di�cult

decomposition problem. We will rather rely on dynamic programming methods,

such as used in American options problems, which enable e�cient problem

resolution.

In the next section we will propose a solution method to the investment

problem.

6.2
Stochastic Dual Dynamic Programming heuristic

The Stochastic Dual Dynamic Programming (SDDP) method can be ap-

plied to multistage linear optimization problems with stagewise independence.

The method was originated in (78) and (77) and its convergence properties

were analyzed in (80) and (91). The main advantage of this method is the

ability to solve stochastic optimization problems with a large number of stages

and scenarios, thus allowing the use of the SAA method for a multistage prob-

lem. We will now show the steps to formulate our problem in order to apply a

SDDP approach.

Since the problem (6-5)-(6-8) is nonlinear, we will introduce an approx-

imate formulation. The main simpli�cation is that we will allow the project

lifetime to extend up until period T + l, regardless of which period the in-

vestment decision was made. This allows us to avoid extra state variables to

account for the end of project lifetime. In practice, this will increase the plant

operation period for investments undertaken before stage T , which could bias

the model to favor early investment. To prevent this bias, we suggest adjusting

capital expenditures. This should be done as to roughly maintain the internal

rate of return or the pro�tability index unchanged.

In order to present our reformulation, we will make an additional assump-

tion: we will consider build time b = 1. This simpli�cation may be avoided with

a more involved modeling process.

To help rewriting the problem, we will introduce a binary variable zt,
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which indicates that the investment has been decided in the current or a

previous period. Constraint (6-7) may be replaced by balance (or inventory)

equations zt = yt + zt−1, where z0 = 0.

In order to perform our reformulation, equation (6-9) must be broken into

two parts: �xed cash �ows (gFt (xt, ξt)) and operational clearing (gOPERt (xt, ξt)).

As we will see, gFt (xt, ξt) will be multiplied by yt and (gOPERt (xt, ξt)) will be

multiplied by zt, allowing the linearization of the objective function.

The forward contract is a multi-delivery contract with continuous delivery

from the beginning of the plants' operation up to the end of the lifetime. The

revenue from the contract in year t̃ is FECht̃f
k
t x

ksell
t . Assuming all years have

the same number of operating hours and considering an annuity factor α with

duration equivalent to the contract, revenue present value from the contract is

αFEChtf
k
t x

ksell
t , as seen in Section 3.1.

Once the investment decision is made in a given period t, the associated

net present value of the cash �ow related to the capital expenditures (capex)

and the net present value at time t under the forward contracts is

gFt (xt, ξt) = (1 + r)−bαFECht

K∑
k=1

fkt x
ksell

t −
J∑
j=1

vjxjt , (6-10)

where α is the aforementioned annuity factor and K is the set of submarkets.

Note that (6-10) is a linear expression composed of �xed income and expenses

that in practice will occur in several years, but can be valued in period t by

proper discounting.

During operation phase, di�erences between energy generated by the

project portfolio and sold in the contracts are settled in the spot market. The

cash �ows from such settlements during an operation year t̃ is

gOPERt̃ (xt, ξt) =
12t̃∑

τ=12(t̃−1)+1

J∑
j=1

πmjτ Gj
τx

j
t −

12t̃∑
τ=12(t̃−1)+1

FEC
K∑
k=1

πkτhτx
ksell

t ,

(6-11)
where mj ∈ 1, ..., K is the submarket to which the plant belongs.

This results in equation (6-9) been rewritten as

gt(xt, ξt) := gFt (xt, ξt) +
t+l∑

t′=t+1

gOPERt′ (xt, ξt)
(
1 + r

)t−t′
. (6-12)

The new variable zt also simpli�es the objective function formulation.

Since the portfolio may not be changed after the investment decision, the cash

�ow in the investment period (when yt = 1) is gFt (xt, ξt) and in the following

periods (during operations, after build time, when zt−1 = 1) is gOPERt (xt, ξt).

Then we obtain the equivalent formulation:
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Max
xt,yt,zt

E

[
T∑
t=1

(
gFt (xt, ξt)yt + gOPERt (xt, ξt)zt−1

)(
1 + r

)1−t
+

T+l∑
t=T+1

gOPERt (xT , ξt)
(
1 + r

)1−t
]

(6-13)

s.t. xt ∈ Xt, t = 1, ..., T + 1 (6-14)

zt = yt + zt−1, t = 1, ..., T (6-15)

xt ≤ zt, t = 1, ..., T (6-16)

xt ≥ xt−1, t = 1, ..., T + 1 (6-17)

xt ≤ xt−1 + 1− zt−1, t = 1, ..., T + 1 (6-18)

yt, zt ∈ {0, 1}, t = 1, ..., T, (6-19)

with initial conditions z0 = 0, x0 = 0.

The �rst summation in the objective function is the present value

associated with investment or operation in that period. In the last stage (T+1)

there is no investment decision, just settlement cash �ows according to the

pre-de�ned portfolio, up to the last operation period T + l, represented by the

second summation. The inequalities (6-16), (6-17) and (6-18) ensure that xt
will be de�ned in the investment period (when yt = 1) and will stay �xed

thereafter. After investment decision is made, we have xt = xt−1, i.e. the

decision of portfolio of projects and contracts can not be changed.

(xt − xt−1) gFt (xt, ξt)yt gFt (xt − xt−1, ξt)

yt = 0 0 0 0
yt = 1 xt gFt (xt, ξt) gFt (xt, ξt)

Table 6.1: Expression gFt (xt, ξt)yt has linear counterpart gFt (xt − xt−1, ξt).

The objective function (6-13) can also be linearized: as mentioned above,

equations (6-16), (6-17) and (6-18) will not allow xt to di�er from xt−1 unless

it is the investment period (yt = 1). This allows us to replace expression

gFt (xt, ξt)yt with gFt (xt−xt−1, ξt)yt, since, as illustrated in Table 6.1, whenever

yt equals zero both expressions equal zero and also, when yt = 1, both

expressions evaluate to gFt (xt, ξt). Likewise, by constraint (6-16) we have

zt−1 = 0→ xt−1 = 0, (6-20)

while equations (6-17) and (6-18) allows us to derive

zt−1 = 1→ xt = xt−1. (6-21)
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xt−1 xt gOPERt (xt, ξt)zt−1 gOPERt (xt−1, ξt)

zt−1 = 0 0 xt 0 0
zt−1 = 1 xt−1 xt−1 gOPERt (xt−1, ξt) gOPERt (xt−1, ξt)

Table 6.2: Expression gOPERt (xt, ξt)zt−1 has linear counterpart gOPERt (xt−1, ξt).

Following the previous linearization, we provide Table 6.2 with a sum-

mary of the equivalences. This way, expression gOPERt (xt, ξt)zt−1 may be re-

placed by the linear counterpart gOPERt (xt−1, ξt).

We may now present the following equivalent formulation:

Max
xt,yt,zt

E

[
T∑
t=1

gFt (xt − xt−1, ξt) + gOPERt (xt−1, ξt)(
1 + r

)t−1 +
T+l∑

t=T+1

gOPERt (xT , ξt)(
1 + r

)t−1

]
s.t. xt ∈ Xt, t = 1, ..., T

zt = yt + zt−1, t = 1, ..., T

xt ≤ zt, t = 1, ..., T

xt ≥ xt−1, t = 1, ..., T

xt ≤ xt−1 + 1− zt−1, t = 1, ..., T

yt, zt ∈ {0, 1}, t = 1, ..., T.

(6-22)
The model (6-22) is linear, if we disregard the integrality constraints.

These simpli�cations will allow a dynamic programming reformulation of the

problem. In fact, the last stage is T + 1, when there is no recourse decision.

In this case, considering the state variables (xt, zT ) and a realization

of the random vector ξT+1, there is no portfolio decision, only settlement of

cash�ows in the spot market, to which there is no associated decision. The

trivial optimal value is
∑T+l

t=T+1 g
OPER
t (xT , ξt)

(
1+r

)1−t
, the net present value of

the spot market clearance. We will denote this subproblem QT+1(xT , zT , ξT+1).

The remaining periods t = 2, ..., T are represented by Qt(xt−1, zt−1, ξt),

given by

Max
xt,yt,zt

gFt (xt − xt−1, ξt) + gOPERt (xt−1, ξt) +Qt+1(xt, zt, ξt)
(
1 + r

)−1

s.t. xt ∈ Xt,

zt = yt + zt−1,

xt ≤ zt,

xt ≥ xt−1,

xt ≤ xt−1 + 1− zt−1,

yt, zt ∈ {0, 1},
(6-23)

where
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Qt+1(xt, zt, ξt) := E
[
Qt+1(xt, zt, ξt+1)

∣∣ξt] , (6-24)

and E[·|ξt] denotes the corresponding conditional expectation. At the �rst stage
we solve the problem (recall that z0 = 0, x0 = 0)

Max
x1,y1,z1

gF1 (x1, ξ1) + E [Q2(x1, z1, ξ2)]
(
1 + r

)−1

s.t. x1 ∈ X1,

z1 = y1,

x1 ≤ z1,

y1 ∈ {0, 1}.

(6-25)

In order to represent a general build time b, we would need to include

additional state variables in our model. While this might be e�ciently ac-

complished with the aid of McCormick inequalities (70), we will leave this

generalization to future work.

Notice that the problem presents relatively complete recourse. It is easy

to see that there is no constraint enforcing investment and, after an investment

decision is made, the de�ned portfolio remains feasible in the remaining stages.

This allows us to avoid the inclusion of feasibility cuts into the decomposition

method.

It is worthwhile to stress the importance of keeping the number of state

variables as low as possible. The overall computational complexity of the SDDP

method is determined by the number of the state variables, and typically grows

linearly with respect to the number of stages (93), (96), (17).

The SDDP method requires stagewise independent problems. If this

hypothesis would hold true, the conditional expectation in the previous cost-

to-go functions might be replaced by the (unconditional) expectation, so that

E[Qt+1(xt, zt, ξt+1)] may be approximated by cutting planes. Also, building

a scenario tree from the 2,000 samples of our original data is simple under

this hypothesis: independence allow us to sample paths from the vector ξt
independently for each (yearly) stage t. We may create a SAA problem as in

(91) based on a random sample ξnt , n = 1, ..., Nt, where Nt ≤ 2, 000. With

N = Nt,∀t, this synthetic tree has NT branches, but in practice the SDDP

algorithm only samples random paths from the tree and converges in quite

few iterations. As we will see in the next section, the independence hypothesis

rarely holds true for most data processes, which usually require the usage of

some SDDP method variant to adequately model dependency.

The SDDP method converges within a con�dence interval to its optimal

policies by improving the approximation of the cost-to-go functions through

the inclusion of new cutting planes at each iteration. Computational cost is

low, since each backward pass of the algorithm demands solving N × T linear
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subproblems per iteration.

6.2.1
Modeling dependency

As will be seen in the numerical results, the necessary independence

hypothesis does not apply to our case. Even if we consider that yearly renewable

generation is relatively independent (from the previous year), the same cannot

be said from the market prices.

If dependency on a linear stochastic problem is on the right hand side

(RHS) of the problem's constraints, then it is easy to augment the state vector

to represent autoregressive processes and apply the SDDP method, without

losing convexity. Unfortunately, in our case, dependency occurs in the cost

vector, and convexity is lost.

In this case, we may follow previous work of (13) and (44), who apply

a Markov Chain variant of the SDDP method, creating a cost-to-go function

for each discrete state. More details about the Markov Chain SDDP may be

obtained in (93), (92). The Markovian property of the data process is held by

approximating the process by a discrete Markov Chain.

The Markov Chain introduces two di�culties: First, we have to establish

transition probabilities for the states. Several approaches are proposed in (45)

for �nancial option problems. In general, numerical solution requires estimating

transition probabilities empirically, by Monte Carlo simulation. The second

di�culty is that computational cost increases, since we have to build a cutting

plane approximation to the cost-to-go function of each state, demanding the

evaluation of N2 × T linear subproblems per iteration.

We will avoid calculating the transition probabilities by making two

assumptions: �rst, we will consider (yearly) stagewise independence for the

in�ows and renewable sources. We also obtain each state ξkt , k = 1, ..., Nt of the

Markov Chain by Monte Carlo sampling over the original data. Then, due to

Monte Carlo sampling, each discrete state has the same probability 1
N
, and the

sample {ξkt }Ntn=1 approximates the original distribution, as exempli�ed in Figure

6.1. Since stages are independent, transition probabilities are equiprobable, i.e.,

the conditional probability of arriving at state ξnt+1 from ξkt is
1
N
,∀n, k.

Second, in our approximate dynamic programming approach, we will

represent energy spot prices as a function of in�ows. We approximate (log)

spot price πsτ of period τ and submarket s by a linear model dependent on the

in�ows Ikm of every market k in current and past periods m, following

log πsτ =
τ−12∑
m=τ

4∑
k=1

ψkτmI
k
m + εsτ (6-26)
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Figure 6.1: Monte Carlo sampling of the in�ows approximates the original distribu-
tion. On the left, a histogram of the sample in�ows of period t is displayed. On the
right, sampled in�ows of period t and t+ 1 are displayed in the same scale. All data
refers to the Southeast market in January.

where ψkτm is the regression coe�cient of the in�ows of market k and Ikm is

the in�ow of the market k, for the current and previous monthly periods

m = {τ, ..., τ − 12}. This choice of regressors allows exploiting the relationship
between prices and in�ows but respects the Markovian assumption on ξt.

The estimation of the coe�cients is accomplished by Ordinary Least Squares

method, using data from the available 2,000 NEWAVE simulations. The

forward prices fkt are calculated as a function of the spot price as in equations

(5-4) and (5-23).

This couple of assumptions (independence hypothesis over (It, Gt) and

approximate spot prices by the in�ows) allows us to introduce dependence

between the stages. We will now illustrate the proposed approach considering

a simpli�ed problem where the uncertainty vector is represented only by in�ows

It and the dependency occurs in the cost vector ct (following notation in Section
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3.2), i.e., spot price is a function of in�ows.

If spot price depends only of in�ows of the current stage such that ct(It),

then we might represent the subproblems as

Vt(xt−1, It) := maxxt ct(It)xt + Vt+1(xt)

xt ∈ Xt(xt−1)
, (6-27)

where Vt+1(xt) = E [Vt+1(xt, It+1)]. The cost vector is a (deterministic) function

of in�ows in the current stage, then the problem may be solved with the regular

SDDP method.

Figure 6.2: Example of an equiprobable Markov chain. In this case, the cost vector
is a Markovian function of in�ows and each state has its own future cost function.

Consider now that spot prices follow a Markovian function of the in�ows

of both the current and last periods. In this case, ct(It, It−1) and we will assume

stagewise independence for the in�ows. The subproblem may be formulated as

Vt(xt−1, It, It−1) := maxxt ct(It, It−1)xt + Vt+1(xt, It)

xt ∈ Xt(xt−1)
, (6-28)

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 6. Modeling the portfolio problem 98

where Vt+1(xt, It) = E [Vt+1(xt, It+1, It)].

Here, there is no convex reformulation to the problem, but we may apply

the Markov Chain variant of the SDDP method to problem (6-28) in order to

(approximately) solve it.

In this case, in the forward step we sample I it , i ∈ Nt for each stage,

assuming transition probabilities between states Int−1 and I it equal to 1
Nt
,

because of our independence hypothesis. For each stage, we solve problem

Ṽt(xt−1, I
i
t , I

n
t−1), given by

Ṽt(xt−1, I
i
t , I

n
t−1) := maxxt ct(I

i
t , I

n
t−1)xt + Ṽt+1(xt, I

i
t)

xt ∈ Xt(xt−1)
, (6-29)

where Ṽt+1(xt, I
i
t) is a piecewise linear approximation of the cost-to-go function

for the discrete state I it .

For a sample Nt of discrete in�ow states on each stage t, we need to store

#Nt cost-to-go functions for each stage. Figure 6.2 illustrates the problem.

Consider now the backward step of such procedure. For each stage

t ∈ T − 1, . . . , 1 and a given candidate solution xt provided by the forward

step, we would like to improve the approximation Ṽt+1(xt, I
i
t) for each state

I it , i ∈ Nt. This requires solving, for each Int , n ∈ Nt+1, problem

Ṽt+1(xt, I
n
t+1, I

i
t) := maxxt+1 ct+1(Int+1, I

i
t)xt+1 + Ṽt+2(xt+1, I

n
t+1)

xt+1 ∈ Xt+1(xt)
. (6-30)

This allows including a new cut to the piecewise approximation Ṽt+1(xt, I
i
t),

remembering that each state Int+1 is equally probable in the constructed cut.

There is a �nal limitation to our approach, namely, the integrality

constraints. We will relax integrality in the backward step and enforce it in

the forward pass. Numerical results provide evidence that this is a successful

approach.

Policies obtained by a SAA approach are typically evaluated to assess

their performance for the true problem. Here, we will consider our original

data 2,000 samples as the data set for this evaluation. The true value of the

policies (disregarding any approximations assumed in our heuristic) may be

obtained in this fashion.

The presented formulation assumes risk neutrality and we use the proper

discount rate r given the risk pro�le of the market. When considering risk

aversion, we will use a weighted average of the expectation and AV@R at the

objective function. This approach, performed as in (96), won't directly increase

computational cost, but might require an increased amount of samplesN in the
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backward pass, increasing the computational e�ort. Also, we must apply the

risk free rate rf to discount the cash �ows, otherwise risk would be accounted

twice, as mentioned in (27) and (50).
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Numerical Results

We now present a numerical assessment of the proposed framework. We

will introduce a small portfolio problem and analyze it in two steps. First, we

will show the risk neutral formulation and how the numerical results provide

policies that are inconsistent with risk management strategies. Then, we will

introduce a convex combination of the expectation and AV@R, illustrating

how di�erent policies may be obtained by changing the relative weights of

the measures. We will provide some arguments to justify why the heuristic

approach is considered e�cient, obtaining good investment policies, and then

will use the RAROC criteria to help evaluating di�erent investment strategies.

Our numerical study was implemented in AIMMS 3.13 and optimized in

GUROBI 5.6, on a personal computer with Intel Core i-7 4500U @ 1.8 Ghz,

8GB RAM memory, under Windows 8 64-bit. We did not use parallel pro-

cessing, but SDDP based methods o�er plenty of opportunities for enhance-

ment. There is also literature on the subject of speeding up the SDDP method

(28).

In our example, we consider a portfolio with one Wind Power project

(WP) and one Small Hydro plant (SH). For simplicity, we assume that both are

in the southeast market, where we will also sell forward contracts, if necessary.

In practical cases there are often two or more markets, and one should account

for basis risk, as mentioned in Chapter 4. In Brazil, energy prices will di�er

in the submarkets whenever transmission network congestion occurs, and our

general framework is able to handle those risks.

The projects share common characteristics of typical renewable plants.

We will denote the currency, Brazilian Reais, by the �$� symbol. The determ-

inistic data of the numerical example is:

� T : 4 years

� r: 10%

� rf : 4%

� CSH=30 MW

� CWP=30 MW
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� FECSH=17,6 avg-MW

� FECWP=12,0 avg-MW

� vSH : $ 134,9 million

� vWP : $ 91,6 million

� l: 20 years

� b: 1 year

� Λt(τ) = 0, ∀t, ∀τ 1

Note that, in this numerical study, equation (4-1) applies with zero

risk premium and forward price calculations are simpli�ed. Expectations of

spot prices were taken in accordance with the evaluated method. We will

also present in Section 7.4 the case were forward prices are obtained fro the

Schwartz-Smith model studied in Chapter 5.

In our tests, we �rst evaluate convergence of the algorithm and then

its out-of-sample performance. In order to assess the quality of our solutions,

we must point out that there are three approximation levels in our method.

First, we realize that our �true� model is only an approximation of reality.

Furthermore, while we solve the discretized SAA problem, we are really

interested in the true problem with continuous distributions. The �nite sample

size and the stagewise independence assumption lead to an approximation

of the true problem. Next, the SDDP method approximates the cost-to-go

functions by piecewise linear functions and its convergence is only attained

after a large number of iterations.

We will evaluate the policies of the SAA problem on the original 2,000

series, in order to estimate the out-of-sample optimal value of the true problem.

An additional approximation is due to the integrality constraint. Our approach

requires the relaxation of integrality of the investment decision variable in the

backward step. We present numerical evidence that this heuristic is adequate

for the problem at hand.

We will compare the results of our heuristic considering stagewise inde-

pendence and also using the Markov Chain approximation. We will refer to

the latter as the dependent method, as opposed to the former, stagewise inde-

pendent, SDDP, which we will denote as the independent method. Next, we

present the numerical results for the independent and the dependent methods

in the risk neutral setting.

1Λt(τ) is the risk premium, introduced in equation (4-1)
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7.1
Risk neutral results

In all numerical tests, we perform only one sample per forward step

iteration. This strategy proved to be computationally e�cient and is consistent

with the results of the literature (80), where problems requiring few iterations

to achieve convergence were accelerated by applying one sample per iteration.

The disadvantage here is that con�dence intervals for the forward step can

no longer be calculated. We use as stop criterion a maximum of one hundred

iterations, which proved enough for all tests. In Section 7.3 we present the

numerical experiments that motivated our parameter choices. More details on

acceleration of the SDDP method available in (28).

After convergence, it is possible to evaluate in-sample the forward step

to a large number of samples, thus obtaining a con�dence interval for the lower

limit of the method.

As mentioned in Section 6.2, scenarios will be generated by yearly

independent samples of the 2,000 Monte Carlo series of process ξt, in a SAA

fashion.

For comparison purposes, we show in Figure 7.1 the histograms of the

NPV obtained if one invests immediately in any of the candidate projects

without signing any forward contracts. Despite positive expected value ( $8.9

million for WP and $19.1 million for SH), skewness of the returns imply in very

risky ventures. There is 43.4% risk of negative results in the WP investment

and 38.2% for SH. If one acquires 100% of both projects, some diversi�cation

allows for a 40.3% combined probability of negative free cash �ows. On the

other side, large pro�ts are attained if spot prices rise for long periods of

time. This characteristic supports the empirical evidence that contracts are

fundamental to allow funding renewable projects.

7.1.1
Independent model for risk neutral setting

We generate M = 10 instances of the SAA problem considering Nt = 30

samples per stage at the backward step (more details in Section 7.3). The

Nt parameter also equals the number of states in the Markov chain for the

dependent case.

Table 7.1 summarizes the independent method main results for each of

the instances. The Upper Bound refers to the last upper bound obtained by the

�rst stage problem. The Forward Average and Standard Deviations for the in-

sample evaluation of the forward step are presented next. The last two columns
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Figure 7.1: Net Present Value Histogram of investment in both sources
immediately, with no forward contracting.

refer to out-of-sample evaluation, as will be explained next. All monetary units

are displayed in millions of $.

We �rst con�rm that the SDDP algorithm terminated adequately in our

problem for most of the instances. Using data from the three �rst columns of

Table 7.1, we obtain the corresponding 95% con�dence intervals displayed in

Table 7.2. Note that the standard deviations displayed in the following tables

are given for the values rather than their averages. For the respective averages

these standard deviations should be adjusted by dividing by the square root

of the employed sample size, i.e., by dividing these standard deviations by√
2000 = 44.7. Convergence is veri�ed in all instances.

Next, we address the relaxation of the integrality constraint in the

backward step of our method.

We obtain an upper bound to the independent problem by analyzing

its convex relaxation. Evaluating the relaxation policies in the same fashion

as done in the integer problem, we built a comparison in Table 7.3. One

might believe that the integer policies would be far inferior, but, as our

numerical results show, practically there is no gap. This is due to the bang-

bang characteristic of the solutions to our problem. This feature is common in

other cases in the Real Options literature (see, for instance, (31)).

Recall that the obtained bounds refer to the approximated problem, built

by assuming stagewise independence of randomly sampled scenarios. We are

actually interested in the performance of the policies over the true problem. It

is worth to remind that in the SDDP method all the information regarding the

policy is available in the cost-to-go functions. Fortunately, we may evaluate

the policies of each SAA problem over the original 2,000 series of the `true'

problem. We then can choose the best out-of-sample policy, as usually done in
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Table 7.1: Main results for independent model considering M = 10 di�erent
SAA instances. First three columns refer to the bounds obtained in the last
iteration of the algorithm. Last two columns refer to policy evaluation over the
original 2,000 series.

In-sample Out-of-sample

M Upper Forward Forward Forward Forward
Bound Average Standard Deviation Average Standard Deviation

1 40.24 40.02 52.85 45.72 49.01
2 53.2 51.19 56.98 45.53 54.85
3 61.59 61.87 66.99 45.53 54.85
4 46.44 46.14 52.65 45.53 54.85
5 62.85 62.41 54.95 45.72 49.01
6 36.86 36.45 39.53 45.72 49.01
7 39.05 37.99 42.62 45.72 49.01
8 37.93 38.82 56.11 45.72 49.01
9 40.43 39.92 45.96 45.72 49.01
10 39.11 38.96 49.55 45.72 49.01

Table 7.2: Analysis of convergence of independent problem instances. Con�d-
ence interval for the lower bound is built considering the average and standard
deviation of the forward step.

In-sample Con�dence Interval

M Upper Forward Forward Lower Upper
Bound Average Standard Deviation

1 40.24 40.02 52.85 37.7 42.33
2 53.2 51.19 56.98 48.7 53.69
3 61.59 61.87 66.99 58.94 64.81
4 46.44 46.14 52.65 43.84 48.45
5 62.85 62.41 54.95 60 64.81
6 36.86 36.45 39.53 34.72 38.19
7 39.05 37.99 42.62 36.12 39.85
8 37.93 38.82 56.11 36.36 41.28
9 40.43 39.92 45.96 37.91 41.94
10 39.11 38.96 49.55 36.79 41.13
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a SAA approach (93). The last couple columns of Table 7.1 show that most

policies have expected result inferior to $46 million. The best obtained policy

consists of the deferral of investments, acquiring 100% in both projects in the

third period, selling no forward contract. The second best available strategy

(in instances 2, 3 and 4) delays investment only one year.

The point estimations of the out-of-sample policy values should be used

carefully. As mentioned before, standard deviations of the averages may be

retrieved by dividing the standard deviations of the last columns of Table 7.1

by
√

2000 = 44.7. One might notice that in the independent case the obtained

con�dence intervals would overlap, thus it is unclear what would be the best

policy.

Table 7.3: Comparison of integer versus convex relaxation for independent
problem instances. Forward Average di�erence between integer and convex
relaxation is measured by their Gap.

In-sample integer In-sample relaxation Gap

M Forward Forward Forward Forward
Average Standard Deviation Average Standard Deviation

1 45.72 49.01 45.72 49.01 0%
2 45.53 54.85 45.53 54.85 0%
3 45.53 54.85 45.53 54.85 0%
4 45.53 54.85 45.53 54.85 0%
5 45.72 49.01 45.72 49.01 0%
6 45.72 49.01 45.72 49.01 0%
7 45.72 49.01 45.72 49.01 0%
8 45.72 49.01 45.72 49.01 0%
9 45.72 49.01 45.72 49.01 0%
10 45.72 49.01 45.72 49.01 0%

7.1.2
Dependent model for risk neutral setting

We will now evaluate the dependent method. Similar to the previous case,

Table 7.4 contains a summary of the main results of the dependent method for

each of the instances. The di�erence in this case is that there is a cost-to-go

function for each state of the Markov chain. In order to evaluate the out-of-

sample solutions of the original set of 2,000 scenarios, it is not clear which

cost-to-go function to use in each stage, since the scenario will not habitually

correspond to a state. We opt to project the out-of-sample scenarios onto the

discrete states using an Euclidean distance criterion, i.e. we apply the cost to

go function of the state with the smallest distance to the scenario at hand.
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In order to represent spot price dependency, we proceed as described in

Section 6.2. The regression equation (6-26) is adjusted to the (log) spot price

of each monthly period considering the linear model with respect to in�ows.

The model has a good �t, with high adjusted−R2. For instance, the January

2016 model has adjusted−R2 = 0.8436.

The termination criterion is again adequate for all cases evaluated in

Table 7.5. The analysis of the convex relaxation in Table 7.6 also shows good

results.

Regarding the out-of-sample quality of the policies, it is possible to see

now in Tables 7.4 and 7.7 that most policies agree with the aforementioned de-

ferral strategy, but with an overall improvement the longer we wait. Instances

3, 6 and 9 present out-of-sample results over $50 million, all of them delaying

investment but eventually investing 100% in both projects in any scenario.

For Instance 9, the policy value has a 95% con�dence interval of [51.84, 54.22].

Since the lower end of this con�dence interval is not greater than the higher end

of the con�dence interval of the other two aforementioned policies, we should

further evaluate them, possibly sampling more scenarios, in order to make our

decision. Figure 7.3 summarizes the portfolio decisions of all instances.

In Instance 9, valued at $ 53.26 million, we see that investment was

postponed to the last period in all scenarios. In this last period both projects

are integrally acquired for all scenarios and on average 32% of the available

contract capacity is acquired. Careful analysis shows that the model is actually

searching for arbitrage opportunities, since it opts for no or maximum (29.53

avg-MW) forwarding contracting depending on high or low observed forward

prices. This behavior is expected in a risk-neutral approach. Figure 7.2 shows

the NPV histogram comparison of the dependent and independent approaches.

Despite the improvement over the previous approach, there is still risk of high

losses.

7.2
Risk averse results

We will consider the following risk measure

R[Z] := (1− λ)E[Z] + λAV@Rβ[Z], (7-1)

where AV@Rβ, β ∈ (0, 1), is the Average Value-at-Risk risk measure, de�ned

in Section 3.2.1.

The dynamic programming equations associated with risk measure (7-1)

are obtained from equations (6-23) � (6-25) by replacing equation (6-24) with
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Table 7.4: Main results for dependent model considering M = 10 di�erent
SAA instances. First three columns refer to the bounds obtained in the last
iteration of the algorithm. Last two columns refer to policy evaluation over the
original 2,000 series.

In-sample Out-of-sample

M Upper Forward Forward Forward Forward
Bound Average Standard Deviation Average Standard Deviation

1 52.41 52.54 30.41 48.33 43.43
2 46.65 46.32 32.82 45.42 40.77
3 58.98 58.47 30.08 50.14 43.38
4 46.37 46.97 28.39 44.51 38.67
5 54.41 54.89 34.63 49.84 44.53
6 53.3 53.36 29.47 50.96 43.63
7 32.33 32.72 20.06 39.43 41.18
8 44.22 44.18 27.1 46.18 44.31
9 64.86 65.85 32.6 53.26 43.69
10 48.89 48.97 27.96 46.88 43.84

Table 7.5: Analysis of convergence of dependent problem instances. Con�dence
interval for the lower bound is built considering the average and standard
deviation of the forward step.

In-sample Con�dence Interval

M Upper Forward Forward Lower Upper
Bound Average Standard Deviation

1 52.41 52.54 30.41 51.21 53.88
2 46.65 46.32 32.82 44.88 47.75
3 58.98 58.47 30.08 57.15 59.79
4 46.37 46.97 28.39 45.73 48.22
5 54.41 54.89 34.63 53.37 56.41
6 53.3 53.36 29.47 52.07 54.65
7 32.33 32.72 20.06 31.84 33.6
8 44.22 44.18 27.1 42.99 45.37
9 64.86 65.85 32.6 64.42 67.28
10 48.89 48.97 27.96 47.75 50.2
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Table 7.6: Comparison of integer versus convex relaxation for independent
problem instances. Forward Average di�erence between integer and convex
relaxation is measured by their Gap.

In-sample integer In-sample relaxation Gap

M Forward Forward Forward Forward
Average Standard Deviation Average Standard Deviation

1 52.54 30.41 52.54 30.41 0.00%
2 46.32 32.82 46.32 32.82 0.00%
3 58.47 30.08 58.47 30.08 0.00%
4 46.97 28.39 46.97 28.39 0.00%
5 54.89 34.63 54.89 34.63 0.00%
6 53.36 29.47 53.36 29.47 0.00%
7 32.72 20.06 32.72 20.06 0.00%
8 44.18 27.1 44.18 27.1 0.00%
9 65.85 32.6 65.85 32.6 0.00%
10 48.97 27.96 48.97 27.96 0.00%

Table 7.7: Average investment ( xWP and xSH ) and contracts (xsell) forM = 10
instances of the risk neutral dependent model. There is zero probability of
investment in the �rst period in all policies. Investment in the second period
only occurs in few scenarios of policies 2 and 7. Most policies present some
chance of investment in the third period, but policy 9, with best out-of-sample
performance, postpones investment up to the fourth period.

t 1 1 1 2 2 2 3 3 3 4 4 4

xWP xSH xsell xWP xSH xsell xWP xSH xsell xWP xSH xsell

M
1 0.02 0.02 0.02 1 1 0.27
2 0.01 0.01 0.01 0.01 0.01 0.01 1 1 0.32
3 0.04 0.04 0.04 1 1 0.29
4 0.01 0.01 0.01 1 1 0.43
5 1 1 0.26
6 0.09 0.09 0.09 1 1 0.33
7 0.03 0.03 0.03 0.15 0.15 0.09 1 1 0.38
8 0.03 0.03 0.03 1 1 0.24
9 0 0 0 1 1 0.32
10 0.05 0.05 0.03 1 1 0.27
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Figure 7.2: Net Present Value Histogram of risk neutral policies obtained by
the independent and dependent approaches.

Qt+1(yt, zt, ξt) := R|ξt [Qt+1(yt, zt, ξt+1)] , (7-2)

where
R|ξt [ · ] := (1− λ)E[ · |ξt] + λAV@Rβ[ · |ξt] (7-3)

is the conditional analogue of the risk measure R.
While in the risk neutral approach we discounted the cash �ows in the

real measure, using the appropriate discounting by r, here a small adjustment

is necessary. Since we are using a coherent measure of risk, R[Z] corresponds

to a certainty equivalent, thus we must use the risk free rate rf , as would be

done in a real option pricing framework to avoid double counting the risk (see

(27), (50) for more details).

7.2.1
Independent model for risk averse setting

As in the risk neutral case, we present Table 7.8 to summarize our

�ndings. Here we consider Nt = 50 samples per stage, for all t, β = 0.9

and λ = 0.4. We can no longer use the forward pass in-sample simulation to

obtain a con�dence interval to the lower bound of the problem. Here, we would

expect that an increase in the risk aversion (given by λ) would correspond to

a reduction in the uncertainty of the policy. In Figure 7.4 we plot the out-of-

sample expected return versus expected return minus AV@R of the di�erent
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Figure 7.3: Average investment in WindPower( WP ) and Small Hydro (SH)
and sold contracts (xsell) for M = 10 instances of the risk neutral dependent
model.
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samples for several di�erent risk aversion levels. It is possible to notice that

the anticipated relation between risk aversion and policy uncertainty did not

occur.

Figure 7.4: Risk and return of instances of the independent problem for
di�erent λ values

7.2.2
Dependent model for risk averse setting

We repeat the tests considering the dependent approach. As before, in-

sample and out-of-sample results are displayed in Table 7.9, for λ = 0.4. Again,

we cannot evaluate the convergence using the forward simulation since it is not

the lower bound to the method in the risk averse case.

We repeat the previous experiment and sample some problems with

di�erent values for λ. In Figure 7.5 it is possible to see that an risk-reward

frontier was built by sampling di�erent problems. One would select a policy

that best suits the risk management requirements from this set of Pareto

optimal solutions.

Analysis of the solutions show that risk averse policies in general agree

with postponement of the investment and acquisition of close to 100% shares

on both projects, as in the risk-neutral case. Here, the main di�erence is that,

the higher the risk aversion level, the bigger the amount of forward contracts

is signed. This means, the proposed policies reduce the cash �ow uncertainty

by acquiring some amount of forward contracts.

As an example, one obtained policy 2 with out-of-sample expected payo�

of $ 36.65 million is displayed in Figure 7.6, compared to the risk neutral

23rd instance of risk averse setting with λ = 0.8
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Table 7.8: Main results for independent risk averse model considering λ = 0.4
and 10 di�erent SAA instances. First three columns refer to the bounds
obtained in the last iteration of the algorithm. Last two columns refer to policy
evaluation over the original 2,000 series.

In-sample Out-of-sample

M Upper Forward Forward Forward Forward
Bound Average Standard Deviation Average Standard Deviation

1 23.09 24.51 9.26 23.5 11.22
2 22.33 46.43 53.87 45.72 49.01
3 29.24 59.3 64.41 45.72 49.01
4 21.95 45.95 51.65 45.72 49.01
5 35.83 62.41 54.95 45.72 49.01
6 21.09 36.45 39.53 45.72 49.01
7 21.22 22 10.44 24.89 12.79
8 20.97 22.4 12.53 24.32 12.07
9 22.55 23.99 10.06 24.66 12.49
10 22.35 38.96 49.55 45.72 49.01

alternative. There is a noticeable reduction in risk of this policy. There is

only 0.05% probability of negative net cash �ows, with positive AV@R of $

17.48 million. This policy consists in delaying investment for two years in most

scenarios. The SH project was integrally acquired in every scenario, while the

WP project share stayed between 95% and 100% in all scenarios. Forward

contracting was done in every scenario, ranging from 60% to 75%, with an

average of 68% of maximum FEC (20.1 avg-MW).

Figure 7.5: Risk-reward frontier for the dependent problem
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Table 7.9: Main results for dependent risk averse model considering λ = 0.4 and
10 di�erent SAA instances. First three columns refer to the bounds obtained in
the last iteration of the algorithm. Last two columns refer to policy evaluation
over the original 2,000 series.

In-sample Out-of-sample

M Upper Forward Forward Forward Forward
Bound Average Standard Deviation Average Standard Deviation

1 35.38 50.34 26.05 41.98 31.79
2 30.4 44.79 28.38 42.21 35.67
3 39.56 56.14 27.02 49.03 37.36
4 27.51 43.85 23.91 40.03 29.64
5 34.98 52.91 30.01 49.1 38.99
6 35.48 52.41 26.49 49.73 38.11
7 18.07 30.12 15.72 35.03 29.93
8 0.17 42.58 23.74 44.26 38.84
9 45.08 64.08 29.18 51.61 36.75
10 31.83 46.72 23.24 42.22 33.88

Figure 7.6: Comparison of Net Present Value Histogram of risk neutral and
risk averse policy considering λ = 0.8

7.3
Sensitivity Analysis

We perform now some additional tests to access the e�ect of the model's

chosen parameters and the quality of the obtained solutions.

DBD
PUC-Rio - Certificação Digital Nº 1113691/CA



Chapter 7. Numerical Results 114

7.3.1
Bound Analysis

Since the devised policies are obtained in a heuristic fashion, it is

worthwhile to try to estimate the quality of our solution by analysis of bounds

to the optimal solution of the problem. We will use a rolling horizon approach

to provides us with a lower bound to the optimal solution and wait-and-see

analysis to obtain upper bounds.

In the wait-and-see approach (11), we evaluate the optimal solution for

each scenario independently (disregarding nonanticipativity constraints). The

value of the wait-and-see solution is obtained by averaging the optimal value

of such problems. Despite reliance on clairvoyance, such solutions, due to

relaxation of nonanticipativity, present themselves as an upper bound to our

problem.

The computed wait-and-see solution for the risk neutral case is valued

at $ 104.23 million. This solution, similarly to the policy evaluated in Section

7.1.2, relies heavily in forward contract arbitrages. In practice risk premiums

are non-positive and one should not expect to pro�t from such arbitrages. It is

thus valuable to evaluate the wait-and-see solution when forward contracting

is not possible. In this case, the value of the wait-and-see solution is $ 59.67

million. This poses as a much closer value to the policy values obtained in

Section 7.1.2.

A rolling horizon approach allows us to compute suboptimal policies for

the problem at hand. Here, we may use a two stage problem formulation to

evaluate such decisions. For each stage t, we solve a two stage problem, where

nonanticipativity in the portfolio is enforced throughout the 2,000 scenarios.

The policy with higher optimal value among the stages is selected as the

candidate solution.

The best policy provided by the rolling horizon approach to the risk

neutral case is to invest in the last stage in 100% of both projects, without ac-

quiring any contracts. This policy yields a value of $ 45.72 million. Comparison

of this value with the policies obtained in the risk neutral independent case

show us that the policies obtained then are no better than this bound. Policies

generated in Section 7.1.2, which incorporate dependency, present signi�cant

improvements over this bound.

7.3.2
Number of scenarios in backward step

As mentioned in the previous chapter, the computational e�ort is pro-

portional to the number of scenarios Nt used in the backward step of the
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algorithm. While it may be advantageous to use as few as possible scenarios, a

minimum number is deemed necessary so that sampling of the cutting planes

can be accurate, thus creating valuable policies.

A larger number of scenarios is necessary in the risk averse case, since

the AV@R functional requires evaluating the new cuts using the (1 − β)%

worst valued scenarios. Even for reasonable valued, say β = 0.1, and for

instance Nt = 100, it means computing the cuts using information from only

ten scenarios.

In Figure 7.7, we present policies obtained in the dependent model for

the risk averse setting with di�erent values for Nt. We make Nt = N, ∀t, as
in the remaining numerical experiments. All instances were generated with

risk aversion parameter λ = 0.8. Comparison with the risk-reward frontier in

Figure 7.5 shows that higher values of N leads to policies that consistently

present a risk averse pro�le. In the other hand, as we reduce the number of

backward step scenarios, some policies begin to resemble the risk-reward pro�le

of instances with a smaller risk averse coe�cient λ. With N ≤ 30, it is possible

to notice that, despite the high risk aversion coe�cient λ = 0.8, some policies

may even present risk-reward pro�le similar to the risk neutral instances.

Figure 7.7: Sensitivity to the number of samples N in backward step.

This sensitivity analysis may help us evaluate the minimum number of

backward step scenarios to consider in the algorithm. This allowed us determine

that, while Nt = 30,∀t is su�cient in the risk neutral case, more samples are

needed in the risk averse setting.
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7.3.3
Stopping criterion

As mentioned in Section 7.1, we only evaluate a single sample for each

forward step of the SDDP algorithm. While this greatly reduces the compu-

tational e�ort, calculation of bounds for the traditional stopping criteria of

the SDDP method is not possible. Alternatively, we monitor the improvement

of the policy values, as displayed in Figure 7.8. Lowerbound is obtained from

a sample of the last 30 forward iterations (hence no values before iteration

30). As consistently veri�ed in our numerical tests, in the risk neutral setting

upperbounds converge in very few iterations, and after 100 or less iterations

policy values stop improving. In the example depicted in Figure 7.8, while a

traditional convergence criteria might lead to stopping in iteration 186, policy

values have stopped improving signi�cantly since iteration 65. If we stop up-

dating the cost to go functions after iteration 65, a traditional stopping criteria

would still lead us to stop before 200 iterations. Complementary analysis done

in the previous section con�rms policy convergence in all instances. Likewise, in

the risk averse setting 40 iterations where deemed su�cient for our termination

criteria.

Figure 7.8: Bounds of the SDDP method for the dependent model for each
iteration of the algorithm.
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7.4
Forward prices by Schwartz-Smith model

We now price forward contracts by the Schwartz-Smith model, using the

approach introduced in Section 5.6. Di�erently from the previous results, the

market risk premium will be positive or negative, according to price dynamics.

In Figure 7.9 we present average spot and forward prices for the 2,000 sample

series. As can be seen, on average forward prices are lower than spot prices.

This negative premium for long term contracts may be understood as evidence

that generators may be willing to accept lower income in order to make their

investments possible.

Figure 7.9: Comparison of average spot and forward prices using the Schwartz-
Smith model.

For each of the available 2,000 data scenarios, forward prices fτ are

obtained by Kalman smoothing techniques using the relations of equation 5-

23 and using observable spot prices πt. In the backward step of the algorithm

forward prices are determined using relation 6-26.

Reproducing the exercise of the previous section, we obtain in Figure

7.10 the risk-reward frontier when considering forward prices by the Schwartz-

Smith model. In the �gure there is a noticeable di�erence between contracts

clustered in two ranges: the �rst group has the highest expected return, close

to $ 50 million, and also higher risk3. The second group has expected return

3Remember that we are denoting as risk the di�erence between the expected value and
the AV@R of the policies)
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always lower than $ 40 million, with risk ranging from as low as $ 20 million

up to $ 65 million.

Figure 7.10: Risk-reward frontier when considering forward prices by Schwartz-
Smith model

A closer look into the policies reveals that the �rst group is composed

of policies where investment occurs from the second stage onwards, never

investing in the �rst period. Those policies are associated with low amounts

of forward contracting (at most 20% of available FEC). On the other hand,

all the policies in the second group refer to investment strategies with no

postponement, i.e., investment always occurs in the �rst period. In this policy

group, forward contracting increases as the level of risk aversion (de�ned by

the weight λ) increases. A sample risk averse policy, with λ = 0.8, may yield

average return of $ 20 million and consists of investment in the �rst period,

acquiring 100% of the WP project and 95% of the SH, while selling 70% of

maximum FEC (20.7 avg-MW) in forward contracts.

The lower risk-reward ratio may be attributed to the negative risk

premium on the forward contracts, as well as di�culties in devising good

policies by the model. Future work may include studying di�erent strategies

to represent the forward price model.

As seen from this exercise, the policies obtained under the zero market

risk premium model may be far too optimistic if real market risk premiums

are negative. For instance, consider the risk averse policy studied in Section

7.2.2 and displayed in Figure 7.6. Under the forward prices obtained by the

Schwartz-Smith model, the AV@R is $ -2.93 million, as opposed to the $ 17.48

million in the zero premium instance. The probability of negative cash �ows
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is 5.90%, while in the previous section we found it to be only 0.05%. If the

risk premiums are not correctly accounted for, the investor may incur in model

risk, leading to inadequate investment decisions.

7.5
Choosing a strategy

As mentioned in Chapter 4, after obtaining the risk-return frontier, we

must de�ne which policy to follow. In order to add maximum value, the chosen

strategy should be the one with the highest NPV that meets both the regular

capital expenditures and risk capital budgets of the investor. The risk capital

budget is de�ned by his risk appetite, as de�ned in Chapter 3.

If the investor has opportunities to allocate his capital to other markets,

he might use the RAROC criterion (4-7) to choose the portfolio with best

risk/return pro�le. Any remaining capital can then be allocated to other

ventures. This would hold true for a company that has investments in non

renewable sources, transmission, distribution, or other industries.

In this case, an optimal strategy would be to choose high RAROC policies

and allocate his remaining capital to those other ventures, trying to obtain the

overall portfolio with highest NPV inside his risk budget.

λ
M 0 0.2 0.4 0.6 0.7 0.8

1 0.202 0.196 0.189 0.174 0.157 0.137
2 0.211 0.197 0.189 0.177 0.149 0.129
3 0.218 0.217 0.214 0.200 0.184 0.177
4 0.202 0.193 0.184 0.126 0.125 0.124
5 0.209 0.220 0.217 0.192 0.154 0.146
6 0.227 0.223 0.216 0.205 0.185 0.150
7 0.188 0.171 0.163 0.143 0.112 0.111
8 0.201 0.200 0.196 0.187 0.178 0.150
9 0.221 0.226 0.223 0.206 0.197 0.174
10 0.197 0.197 0.188 0.173 0.156 0.142

Table 7.10: RAROC of the di�erent policies, according to risk aversion para-
meter λ. Values in bold lie in the risk-return frontier.

Table 7.10 summarizes our �ndings for all the evaluated policies in the

dependent approach. We highlight in bold type those policies that lie in the

risk-return frontier. Risk neutral solutions are included here in the set of

policies with λ = 0. RAROC of the best risk neutral solution (λ = 0) may

be high, but in practice arbitrage of forward contracts is not possible. For

comparison purposes, a implementable policy would be to invest without any

contracts, as we saw in Section 7.1.1. Despite a potential for upside during price
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spikes, there is still the unaccounted credit risk of defaulting counterparties in

the CCEE.

This distinction of unfeasible portfolios allows us to raise an important

issue. What might sound as value destruction (by applying risk management

e�orts) in fact should be reframed: if risk mitigation allows undertaking an oth-

erwise unfeasible portfolio, then this strategy creates value proportional to the

additional net present value. As seen in the beginning of this chapter, it would

be unfeasible for most investors to execute the immediate investment strategy.

This would result in project abandonment, with zero value. Policies devised

here reduce the probability and intensity of losses, making the investment a

feasible venture.

In our numerical results, policies for λ = 0.4 and λ = 0.6 still provide a

relatively high RAROC ratio. One should avoid as much as possible resorting

to policies with higher λ, since there are diminishing bene�ts from the risk

management e�orts. The reduction of expected pro�t occurs at a higher rate

than the reduction in risk capital for the instance at hand. Risk averse policy

depicted in Figure 7.6 may have very low risk, but we also loose valuable upside

potential of pro�ting from some sales in the spot market in high price periods.
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Conclusions and Future Work

In this Thesis, we presented an integrated framework to devise multistage

optimal investment strategies in renewable energy portfolios. Such framework

allows employing commonly used risk management tools. We were able to ap-

ply the most important managerial �exibilities, namely diversi�cation, part-

nerships, postponement options and use of forward contracts. The approach is

suited for the FTE or similar markets.

Our data process includes not only the main risk factors, renewable

generation and spot and forward energy prices, but also the market in�ows,

which proved invaluable to assess the investment policies. We introduced a

forward contract model using the Schwartz-Smith two factor approach, coupled

with spot and OTC data.

The available data is provided in the form of Monte Carlo simulated

time-series. Since there is no �ltration available, an approximate dynamic

programming solution, such as the Lest Squares Monte Carlo, is more suited

than a scenario tree approach.

We followed a SAA approach, generating sample paths by drawing

scenarios randomly from simulated time-series. Our approximate dynamic

programming approach to generate investment policies is based on Stochastic

Dual Dynamic Programming. Non linearity was overcome with the use of

a Markov Chain, to represent the future cost function for each state, and

relaxation of integrality constraints in the backward step, taking advantage

of the fact that relaxation solutions tend to be very similar to their integer

counterparts. In order to de�ne the portfolio, we evaluate all the candidate

policies over the original 2,000 simulated time series and select one that best

adheres to our risk-return pro�le.

Incorporation of risk averse by means of an AV@R measure allowed us

to build a risk-return frontier, from which to choose candidate solutions from.

Representing interstage dependency of energy prices proved to be funda-

mental in obtaining good policies in our numerical examples. We obtained good

results with our price regression, but there is no general case approximation.

Valuation of such portfolios under high uncertainty is hard to accomplish
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and is under active research investigation. In the energy industry, proper

valuation plays a major role due to the high volatilities associated with the

sources of uncertainty of this business.

It is common for positive NPV renewable projects to su�er from �nancing

issues due to high revenue uncertainty. Since it is possible to obtain a set of

Pareto e�cient strategies, one might choose the one that most adheres to the

investor �nancing needs. This allows the investor to better shape his capital

budgeting and �nancing decisions.

This framework may be valuable for an investor deciding his optimal

strategy to join the market or to support an energy trader in his pricing

strategy.

The proposed approach, despite its heuristic nature, in practical instances

may present near optimal solutions, due to the bang-bang feature of the

problem. This may encourage its application to other classes of problems.

The policies provided by the model are evaluated by Monte Carlo

simulation, and can be compared to any strategy otherwise devised by a

decision maker by introducing some additional constraints to the presented

solution approach. It is thus very easy to gain insight in solution quality.

The main disadvantage of the method is that it may become computa-

tionally infeasible for a large number of state variables, i.e., for a portfolio with

a large number of plants and contracts under evaluation.

In future work, the Markov Chain approach could be reassessed. By

devising a strategy to calculate transition probabilities, for instance, using

information from the NEWAVE model, improvements to the policies could be

found.

A Least Square Monte Carlo approach such as (20) might bene�t from

two outcomes of this Thesis: �rst, the forward contract model proposed here

might be used to price energy contacts. Second, experience from our price

regression might provide valuable information in building the basis1 of such

LSMC procedure.

From the stochastic modeling standpoint, we might pursue improvements

in the stochastic model of the generated power. Renewable energy models for

monthly generation using the LASSO method such as (102) show improve-

ments over the VAR model that is generally used and applied in this work.

The proposed contract model allows modeling the term structure of

forward contracts, which may be used in our valuation model, but also for

several other applications.

1Explanatory variables of the regression are called the basis of the LSMC method.
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One limitation of our approach is that we can not calculate the risk

premium over the expected spot prices. Future work includes using the spot

price forecasts of the NEWAVE model to obtain an expected spot price curve.

By augmenting the Schwartz-Smith model with the real measure price process

of the expected price curve, we could be able to estimate the risk premiums in

the Brazilian market.

Extension of the Schwartz-Smith model with seasonal components was

done in (62). We suggest another extension, tailored to the Brazilian market,

by adding in�ows as explanatory variables to the forward curve model. This

might further improve the model �t, since in�ows are able to explain price

behavior.

For applications of midterm contract pricing, BRIX data might aid

improving results, since there are several contract maturities available on this

time-frame. In future work, one might use BBCE transaction information to

improve the forward curve modeling, as more data becomes available in this

platform.
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A

Probability background

Let's de�ne a discrete set of scenarios ω ∈ Ω. We will also de�ne a

collection F of Ω subsets. This collection is denoted a σ-algebra if it follows:

� Ω ∈ F,

� If A ∈ F, then its complement Ac ∈ F,

� If A1, A2, A3, . . . ∈ F, then
⋃∞
i=1 Ai ∈ F.

The σ-algebra created by open subsets of Rn is named a Borel σ-algebra

and is represented by B.
The set Ω equipped with F is called a measurable space and denoted by

(Ω,F).

A probability measure P : F → [0, 1] is a function that associates a

measure to an element of a σ-algebra, having the following properties:

� P (Ω) = 1,

� If A1, A2, A3, . . . ∈ F are disjoint, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

The measurable space (Ω,F) equipped with P is denoted (Ω,F, P ) and

is called a probability space. Notice that we can only measure the probability

of elements in the σ-algebra. Following (97), we can say that the σ-algebra

represents a record of the available information.

A function g : Ω → Rn is measurable if its inverse image is in σ-algebra

F, i.e., g−1(A) := {ω ∈ Ω|g(ω) ∈ A} ∈ F,∀A ∈ B.
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B

The Capital Asset Pricing Model

The Mean-Variance framework was soon extended by several contribu-

tions. One of main improvements one might consider is the inclusion of a risk

free asset in the portfolio. Capital allocated to the new risk free asset is rewar-

ded by a known return rf . The modi�ed model may be represented by

Max
w

wTΣw (B-1)

µTw + rf (1− eTw) ≥ r̂. (B-2)

The new e�cient solutions of this problem lie on the Capital Market

Line (CML), with performance superior to the previous e�cient frontier. The

linear equation of the CML has intercept rf and there is only one portfolio in

common with the previous e�cient frontier, the tangency portfolio. Figure B.1

illustrates the CML and the solutions to Markowitz's problem. The expected

return of an e�cient portfolio P is given by the relation

E[rp] = rf +
E[rt]− rf

σt
σp, (B-3)

where rt and σt represent return and variance of the tangency portfolio and

σp is the variance of the portfolio P . Notice that this only applies to e�cient

portfolios. All e�cient portfolios are composed of a weighted combination of

the risk free asset and the tangency portfolio.

The Capital Asset Pricing Model (CAPM), independently proposed by

Lintner and Sharpe, is a theorem that provides a relation to the expected

returns of any asset or portfolio.

Considering that the market is on equilibrium, where every investor has

access to the same information and all necessary transactions were undertaken,

then all investors should agree on the same tangency portfolio. In this case,

this portfolio is known as the market portfolio. In this way, it is possible to

determine the market portfolio as the value-weighted average of all market

traded assets, given their current prices and number of available shares. The

results of the CAPM are valid for a two period investment problem and

assuming relatively fair hypothesis, such as normality of returns or quadratic
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Figure B.1: The Capital Market Line touches the previous e�cient frontier in the
tangency portfolio

utility functions (there are several versions of the CAPM, leading to similar

results). The main result of the CAPM is an equation to price (value) an asset,

known as the Security Market Line (SML):

E[rA] = rf + (E[rM ]− rf )βA (B-4)

The SML equation provides a relation of the expected returns E[rA] of

any portfolio or asset A to the risk measure beta. Here E[rM ] is the market

expected return. The coe�cient βA of an asset A is given by βA =
σM,A
σ2
M
. It

represents the amount of nondiversi�able (systematic) risk that the portfolio

(or asset) holds.

The slope of the SML is given by (E[rM ] − rf ) and represents a market

risk premium. The beta represents the market risk exposure.
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C

Modigliani-Miller and the Value of Risk Management

This section follows (15) and (52).

In 1958, Modigliani and Miller (MM) wrote a proposition over the capital

structure of companies that remains one of the most important results in

�nancial management. MM's Proposition 1 states that, in a perfect market, in

the absence of taxes and other ine�ciencies, the level of leverage of a company

does not a�ect its value. The basic idea is that cash �ows are additive, then,

splitting the cash �ows between equity and debt holders does not generate

additional value.

MM theorem states that under these conditions, there is no di�erence

in the capital structure for adding value, so the risk of highly leveraged �rms

should not matter.

This result implies that there is no di�erence between a company solely

funded by the investor's equity or highly leveraged with debt. Despite obvious

increase in the expected return on equity, due to additional �rm's risk, value of

a leveraged �rm stays the same, since it may not be able to ful�ll its obligations

to their debt holders.

In other words, in perfect markets, value of a company is de�ne by the

left hand side of the balance sheet - it's Assets. The Liabilities, that lie on

the right hand side, have no place in adding value to the company. Funding

decision such as deciding to lease or invest in new equipment, or how to issue

debt, should make no di�erence to the company.

What might sound as a controversial result, should be really interpreted

backwards: Since markets are not perfect, one should search how to exploit

those imperfections to add value. The right hand side of the balance sheet can

not directly add value to the �rm, but proper management of the liabilities

might add indirect value by enabling the company's strategy, allowing it to

add value to the assets.

The �rst and easiest to understand imperfection is taxes. Since debt

payments are tax deductible in most countries, there is an incentive to acquire

debt, known as tax shield. Tax shield exists and adds value because the

government's take in the company's cash �ows is reduced. This alone would
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create an incentive to arbitrarily large leverage ratios, but this is not noticed

in practice.

What counterbalances the tax shield e�ect is the cost of �nancial distress.

As the company increases the amount of liabilities it is subject to, the risk of

not being able to ful�ll it increases equivalently. The costs associated with

those risks are generally called cost of �nancial distress.

The �rst source of those costs is the bankruptcy costs. Once a company

goes bankrupt, there are several costs associated with the process, such as

court and legal fees. The expected cost of bankruptcy then is accounted for

by the debt holders, that required increasing interest rates when they notice

higher probability of default in a company.

There are also indirect costs associated with bankruptcy, such as repu-

tation and managerial costs. For instance, it is harder to a bankrupt company

to be found trustworthy in commercial agreements and to maintain its market

share. Those indirect costs are also priced by debt holders.

Financial distress may present to a company much sooner than in a

bankrupt state. When a company is in bad �nancial shape, third parties might

engage in some value destructing behavior, due to the fear for unavailability

of inventories and fear of not being paid for goods supplied. Also, debt or

derivative positions may have covenants (or trigger clauses) that allow an early

liquidation of the debt or require additional collateral.

The resulting balance may be seen in Figure C.1. The tax shield and

�nancial distress costs create a break even point that might be seen as an

optimal debt ratio. Firms that base their �nancing decisions using this rationale

are said to follow the Trade-o� Theory1.

We can extend the rationale behind MM framework to understand the

value of risk management. As stated in MM proposition, �nancing decisions

should not a�ect the value of the �rms, since the added cash �ows are not

changed. Risk management may be seen equivalently, since in a hedging

activity the net result of both sides of a contract (such as a derivative) is

zero.

Also, as mentioned before in the CAPM section, risk management might

be performed by investors, by diversi�cation or hedging of their risks away, to

the exact degree they fell right. Those questions pose as an argument in favor

of the idea that companies should not practice any risk management policies.

1In practice, there is better empirical support for the Pecking Order Theory, that in
essence states that companies, due to information asymmetry, follow a speci�c order of
�nancing sources when they need funding. Also, since reputation is easier to lose than to
build, most �rms (like Disney (27)) choose to keep their leverage below the optimal ratio.
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Figure C.1: The optimal debt ratio by the Trade-o� theory.

Again, there are some indirect e�ects that bring value to risk manage-

ment. The �rst one, as seem in the trade-o� theory case, is to reduce the cost of

�nancial distress. By creating some hedging structures that reduce the chance

of �nancial distress a company might shift its �nancial distress costs and allow

it to obtain an higher debt optimal ratio, thus safely increasing leverage.

It is worth remembering that value of the risk management e�ect of

reducing �nancial distress is indirect. A reduction of the volatility of the cash

�ows might save a company from abandoning a pro�table operation due to

lack of �nancial resources, or increased leverage might allow the company to

expedite growth plans. In either case, value is added because of increase in the

asset value enabled by risk management. Figure C.2 illustrates the e�ects of

risk management to the optimal debt ratio.

This allows us to point out an imperative objective in risk management

or hedging: we are not interested in obtaining low cost of capital sources

to fund the assets or to pro�t from derivatives trading. A company should

not expect to make money with trading unless it its its core business, after

all we expect derivatives to be fairly priced. It would be incorrect for a

company to try to maximize its pro�ts with a portfolio of investment and

contracts. Any anticipated gain from trading in reality is probably due to

lack of proper information or to risk mispricing. The company should only

engage in hedge contracts to help shape the company cash �ows to its needs.

Ideally, uncertainty of the liabilities should be designed to (at least partially)

match the uncertainty of the assets. This notion motivates the discipline of
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Figure C.2: E�ect of risk management e�orts to the debt structure.

Asset-Liability Management. If the balance sheet uncertainty pro�le displays

an imbalance larger than some risk tolerance de�ned by the company, then

management has to review its strategy.

Proper risk management might allow shaping the cash �ows of the

company so that it does not have to access external capital in bad years.

Allowing it to use internal funding to �nance it project portfolio might avoid

a rise in the cost of capital. A higher cost of capital might reduce the Net

present value (NPV) of projects, or even make them negative. This is known

as the underinvestment problem. Again hedging might avoid the value loss of

the �rm.

Another positive side e�ect of hedging is the reduction of so-called

agency costs. Agency costs are those associated with money spent to monitor

management and costs incurred by mismanagement, mainly because managers

may try to maximize their value, instead of the company's. By using derivative

contracts to lock some prices, it is easier to known which business units are

running pro�table operations or are simply gambling with shareholders money.

Reduction of cash �ow volatility also may have a positive e�ect on tax

payments. Most countries constrain the amount of tax reduction that can be

achieved by declaring losses in previous years. Reducing the volatility of the

cash �ows might lead to a reduction in tax payments over a longer period.

Finally, there are investors that are heavily invested in a company, such

as the owner of a startup or the government with a state owned company. In

this case, risk aversion makes sense, since the owner may be unable to diversify

and may have big plans to the company's future cash �ows.
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Ultimately, strategic risk management is a key enabler of the company's

strategy.
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