Referências Bibliográficas

- [1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118: Projeto de estruturas de concreto - procedimento. Rio de Janeiro: ABNT, 2014. ISBN 978-85-07-04941-8.
- [2] BORTONE, T. P. Avaliação das tensões no estado limite de servico em seções de concreto protendido. abr. 2014. Dissertação (Mestrado em Engenharia) - Universidade Federal de Minas Gerais, Belo Horizonte, abr. 2014.
- [3] LAZZARI, P. M. Implementação de rotinas computacionais para o projeto automático de peças em concreto com protensão aderente e não-aderente. out. 2011. Dissertação (Mestrado em Engenharia) -Universidade Federal do Rio Grande do Sul, Porto Alegre, out. 2011.
- [4] LAZZARI, P. M.; FILHO, A. C.; GASTAL, F. P. S. L.; BARBIERI, R. A.; SCHWINGEL, R. C. Automatização da verificação de vigas em concreto com protensão aderente e não aderente, segundo as normas brasileira e francesa. Revista Ibracon de Estruturas e Materiais, v. 6, n. 1, p. 13–54, fev. 2013. Disponível em: http://www.revistas.ibracon.org.br/ index.php/riem/article/view/341/337>. Acesso em 9 maio 2015, 12:30.
- [5] CERNE ENGENHARIA E PROJETOS. Projeto executivo do Viaduto de acesso a Santa Isabel, 2013. 15 plantas, 1 memorial de cálculo.
- [6] CERNE ENGENHARIA E PROJETOS. Projeto executivo do Viaduto da Guarita - Pista Norte, 2013. 31 plantas, 1 memorial de cálculo.
- [7] CERNE ENGENHARIA E PROJETOS. Projeto executivo do Viaduto de Jacareí II, 2014. 44 plantas, 1 memorial de cálculo.
- [8] SCHMID, M. R. L. Por que protender uma estrutura de concreto? Revista Concreto & Construções, v. 45, p. 33–36, mar 2007. Disponível em: <http://ibracon.org.br/publicacoes/revistas ibracon/rev construcao/ rev construcao 45.htm>. Acesso em 25 abr. 2015, 16:30.
- [9] LEONHARDT, F. Prestressed concrete design and construction. 2nd. ed. Berlin-Wilmersdorf, Alemanha: Verlag von Wilhelm Ernst & Sohn, 1964. Traduzido por C. van Amerongen.

- [10] LIN, T. Y. Design of prestressed concrete structures. 2nd. ed. Nova lorque, Estados Unidos da América: John Wiley & Sons, Inc., 1981.
- [11] COLLINS, M. P.; MITCHELL, D. Prestressed concrete basics. 2nd. ed. Ontario, Canada: Canadian Prestressed Concrete Institute, 1987. ISBN 0-9691816-6-3.
- [12] SENGUPTA, A. K.; MENON, D. Losses in prestress (part II). Indian Institute of Technology Madras, Chennai, India, 2013.
- [13] GUIMARÃES, G. B. Solicitações em estruturas protendidas. Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2012.
- [14] RAMASWAMY, G. S. Modern prestressed concrete design. Londres, Inglaterra: Pitman Publishing Limited, 1976. ISBN 0-273-00455-7.
- [15] BAŽANT, Z. P.; YU, Q. Relaxation of prestressing steel at varying strain and temperature: Viscoplastic constitutive relation. Journal of Engineering Mechanics, v. 139, n. 7, p. 814–823, July 2013.
- [16] LACROIX, R.; FUENTES, A. Le projet de béton précontraint. 2ème. ed. Paris, França: Éditions Eyrolles, 1978.
- [17] GUYON, Y. Constructions en béton précontraint. 2ème. ed. Paris, França: Éditions Eyrolles, 1978.
- [18] CHAUSSIN, R.; FUENTES, A.; LACROIX, R.; PERCHAT, J. La précontrainte. 1ère. ed. Paris, França: Presses de l'école nationale des ponts et chaussées, 1992. ISBN 2-85978-180-3.
- [19] HEWSON, N. Prestressed concrete bridges: Design and construction. 2nd. ed. Londres, Inglaterra: ICE Publishing, 2012. ISBN 978-0-7277-4113-4.
- [20] ACKER, P.; ULM, F.-J. Creep and shrinkage of concrete: physical origins and practical measurements. Nuclear Engineering and Design, v. 203, n. 2, 2001.
- [21] HARANKI, B. Strength, modulus of elasticity, creep and shrinkage of concrete used in Florida. 2009. Dissertação (Mestrado em Engenharia) - University of Florida, 2009.
- [22] MAGNEL, G. Prestressed concrete. 3rd. ed., Concrete Series. Londres, Inglaterra: Butler & Tanner, Ltd, 1954. Traduzido por C. C. Zollman.

- [23] ACI COMMITTEE 209. Guide for modeling and calculating shrinkage and creep in hardened concrete. ACI standard. American Concrete Institute, 2008. ISBN 978-0-87031-278-6.
- [24] RANAIVOMANANA, N.; MULTON, S.; TURATSINZE, A. Basic creep of concrete under compression, tension and bending. Construction and Building Materials, v. 38, p. 173–180, Jan. 2013.
- [25] ROSSI, P.; TAILHAN, J.-L.; MAOU, F. L. Comparison of concrete creep in tension and in compression: Influence of concrete age at loading and drying conditions. Cement and Concrete Research, v. 51, p. 78–84, Sep. 2013.
- [26] Comité Européen de Normalisation. EN 1992-1-1 Eurocode 2: Design of concrete structures - part 1-1: General rules and rules for buildings. Bruxelas, Bélgica: Comité Européen de Normalisation, Dec. 2004.
- [27] American Association of State Highway and Transportation Officials. AASHTO LRFD bridge design specifications. 6th. ed. Washington DC, EUA: American Association of State Highway and Transportation Officials, 2012. ISBN 978-1-56051-523-4.
- [28] FÉDÉRATION INTERNATIONALE DU BÉTON. fib model code for concrete structures 2010. Verlag von Wilhelm Ernst & Sohn, 2013.
- [29] DE ARAÚJO, J. M. Sugestões para a revisão da norma brasileira NBR-6118. Rio Grande, nov. 2011.
- [30] WARNER, R. F.; FAULKES, K. A. Prestressed concrete. Victoria, Australia: Pitman Publishing Pty Limited, 1979. ISBN 0-85896-599-2.
- [31] Cement Concrete & Aggregates Australia. Drying shrinkage of cement and concrete. Sydney, Australia, July 2002.
- [32] ZHANG, W.; ZAKARIA, M.; HAMA, Y. Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete. Construction and Building Materials, v. 49, p. 500–510, Dec. 2013.
- [33] RILEM Technical Committee TC-242-MDC. Rilem draft recommendation: Tc-242-mdc multi-decade creep and shrinkage of concrete: material model and structural analysis. Materials and Structures, v. 48, n. 4, p. 753-770, Apr. 2015.
- [34] LI, Z. Construction materials. Hong Kong University of Science and Technology, Hong Kong, 2007.

- [35] BAŽANT, Z. P. Prediction of concrete creep and shrinkage: past, present and future. Nuclear Engineering and Design, v. 203, n. 1, p. 27–38, Jan. 2001.
- [36] ACI COMMITTEE 209. Prediction of creep, shrinkage, and temperature effects in concrete structures. ACI standard. American Concrete Institute, 1992.
- [37] PCI COMMITTEE ON PRESTRESS LOSSES. Recommendations for estimating prestress losses. PCI Journal, v. 17, n. 2, p. 17–31, Mar. 1975.
- [38] GUIMARÃES, G. B. Flexão. Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2012.
- [39] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 8681: Ações e segurança nas estruturas - procedimento. Rio de Janeiro: ABNT, 2003.
- [40] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7483: Cordoalhas de aço para concreto protendido - requisitos. Rio de Janeiro: ABNT, 2007.
- [41] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR
 7188: Carga móvel em ponte rodoviária e passarela de pedestre. Rio de Janeiro: ABNT, 2013.
- [42] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7187: Projeto de pontes de concreto armado e de concreto protendido - procedimento. Rio de Janeiro: ABNT, 2004.
- [43] ACI COMMITTEE 318. Building code requirements for structural concrete (ACI 318-08) and commentary. ACI standard. American Concrete Institute, 2008. ISBN 978-0-87031-264-9.
- [44] AUTODESK. Autodesk Robot Structural Analysis Professional 2015: Robot object model, 2014.
- [45] GAWEDA, R. Tapered section properties with API. Disponível em: <http://forums.autodesk.com/t5/Robot-Structural-Analysis/Taperedsection-properties-with-API/m-p/5072842#M24241>. Acesso em 4 jun. 2014, 07:33.
- [46] AALAMI, B. O. Critical milestones in development of post-tensioned buildings. Concrete International, v. 29, n. 10, p. 52 – 56, Oct. 2007.

Disponível em: <http://www.adaptsoft.com/resources/Cl_article_Oct_2007.pdf>. Acesso em 31 out. 2014, 23:00.

- [47] DE RIET, M. Myth buster: Revit & IFC, part 3. Disponível em: <http://www.augi.com/library/myth-buster-revit-ifc-part-3>. Acesso em 2 set. 2014, 15:30.
- [48] GAWEDA, R. Disabling moving loads. Disponível em: <http://forums.autodesk.com/t5/robot-structural-analysis/disablingmoving-loads/m-p/5309661#M26944>. Acesso em 1 out. 2014, 07:30.
- [49] KOSAKOWSKI, A. Properties of RC beam with cuts. Disponível em: <http://forums.autodesk.com/t5/Robot-Structural-Analysis/Properties-of-RC-Beam-with-cuts/m-p/5090476#M24480>. Acesso em 12 jun. 2014, 02:20.
- [50] GAWEDA, R. Surface area of box2. Disponível em: <http://forums.autodesk.com/t5/robot-structural-analysis/surface-area-ofbox2/td-p/5089598>. Acesso em 29 set. 2014, 04:30.
- [51] AUTODESK. Autodesk[®] Robottm Structural Analysis Professional and Autodesk[®] Robottm Structural Analysis 360 2015 Service Pack 3 readme, 2014. Disponível em:
 http://download.autodesk.com/SWDLDDLM/Updates/RSA/v1/RSA2015 SP3 readme.htm>. Acesso em 4 jun. 2014, 07:33.

A Cálculo das propriedades geométricas para diferentes seções do Robot

A Tabela A.1 apresenta as equações utilizadas para obter as propriedades geométricas necessárias para cada seção. Estas funções são necessárias apenas no caso de seções variáveis, onde o **Prestress** adota uma interpolação linear das dimensões entre o ponto inicial e final (de forma semelhante ao **Robot**) e então calcula as propriedades.

No caso de seção constante ao longo da barra, o **Prestress** adota as propriedades calculadas pelo **Robot**. Vale observar que o valor da inércia e perímetro para a seção T (concreto) dado pelo **Robot** é ligeiramente incorreto.⁴⁹ O **Prestress** mesmo assim adota estes valores nos casos de seção constante. O perímetro da seção caixão também era calculado de forma incorreta,⁵⁰ porém a atualização "Service Pack 3" resolveu este erro.⁵¹

Os perímetros das seções vazadas apresentados aqui consideram apenas o perímetro externo, uma vez que o cálculo das perdas lentas pelo item A.2.4.2 da NBR 6118¹ requer apenas "a parte do perímetro externo da seção transversal da peça em contato com o ar". Considera-se que toda a seção externa satisfaz esta condição e desconsidera-se o perímetro interno.

	D 11		1.6	~
Tabola A L	 Propriodados 	a moomotrices.	nara ditorontos	600006
Tabula A.L.	, i iunicuauca	s ecomentas	Data uncientes	BELUEB
	Г	0	ľ	3

	$A = b \cdot h$
Retangula h	P = 2(b+h)
Sólida	$y = \frac{n}{2}$
	$I_y = \frac{1}{12}b \cdot h^3$
D	$A = b \cdot h - (b - t)(h - t)$
Retangular	P = 2(b+h)
vazada <u>t</u> h	h
$(\operatorname{con-} \square \square$	$y = \frac{1}{2}$
creto) **	$I_y = \frac{1}{12} \left(b \cdot h^3 - (b - t)(h - t)^3 \right)$
creto)	$I_y = \frac{1}{12} \left(b \cdot h^3 - (b - t)(h - t)^3 \right)$

Continua...

	Tabela A.1 (cont.)	
Circular Sólida	$A = \frac{\pi}{4}d^{2}$ $P = \pi \cdot d$ $y = \frac{d}{2}$ $I_{y} = \frac{\pi}{64}d^{4}$	
Circular vazada	$A = \frac{\pi}{4} \left(d^2 - (d - 2t)^2 \right)$ $P = \pi \cdot d$ $y = \frac{d}{2}$ $I_y = \frac{\pi}{64} \left(d^4 - (d - 2t)^4 \right)$	
Retangula vazada tw tw hw (aço) b	$A = b (h_w + 2t_f) - h_w (b - 2t_w)$ $P = 2 (b + h_w + 2t_f)$ $y = \frac{h_w + 2t_f}{2}$ $I_y = \frac{1}{12} (b (h_w + 2t_f)^3 - (b - 2t_w) h_w^3)$	
Caixão tw b1 tw hw	$A = b(h_w + 2t_f) - h_w (b - 2t_w)$ $P = 2 (2 (b + t_f - t_w) + h_w - b_1)$ $y = \frac{h_w + 2t_f}{2}$ $I_y = \frac{1}{12} (b (h_w + 2t_f)^3 - (b - 2t_w) h_w^3)$	
I simé- trico trico ↓ b ↓	$A = 2b \cdot t_f + h_w \cdot t_w$ $P = 2 \left(2 \left(b + t_f \right) + h_w - t_w \right)$ $y = \frac{h_w + 2t_f}{2}$ $I_y = \frac{1}{12} \left(b \left(h_w + 2t_f \right)^3 - \left(b - t_w \right) h_w^3 \right)$	Continue
		Continua

Apêndice A. Cálculo das propriedades geométricas para diferentes seções do Robot 157

Continua...

Apêndice A. Cálculo das propriedades geométricas para diferentes seções do Robot 158

B Dados dos exemplos

B.1 Viaduto de acesso a Santa Isabel

Todos os dados aqui apresentados são obtidos e adaptados do projeto executivo do Viaduto de acesso a Santa Isabel. 5

$\operatorname{Propriedades}$		Protensão limitada	
$Area (m^2)$	0,8570	Aço	CP-190 RB
Perímetro (m)	$7,\!053$	$f_{ptk}~({ m kN/cm^2})$	190
$I_y (m^4)$	$0,\!4661$	$f_{pyk}~({ m kN/cm^2})$	170
y_i (m)	$1,\!045$	$\sigma_{pi}~({ m kN/cm^2})$	$140,\! 6$
y_s (m)	$1,\!055$	$E_p~({ m kN/mm^2})$	195
Tipo cimento	CPV-ARI	$A_p (mm^2)$	$1680,\!0$
f_{ck} (MPa)	40	μ	0,28
$E_c (MPa)$	$35417,\!5$	k	$0,\!0028$
$\gamma_c~({ m kN/m^3})$	25	$\delta~({ m mm})$	7
abatimento (cm)	5 - 9		
Vida útil (anos)	50		
CAA	III		
Temperatura (°C)	20		
Umidade (%)	75		

Tabela B.1: Propriedades do Viaduto de acesso a Santa Isabel. Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 5

(a) Planta e seção transversal do viaduto

Figura B.1: Formas e protensão do Viaduto de acesso a Santa Isabel. Fonte: Adaptadas do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 5

Figura B.1: Formas e protensão do Viaduto de acesso a Santa Isabel (cont.). Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia⁵

B.2 Viaduto da Gua

Viaduto da Guarita - Pista Norte

Todos os dados aqui apresentados são obtidos e adaptados do projeto executivo do Viaduto da Guarita - Pista Norte. 6

$\operatorname{Propriedades}$		Protensão	Protensão limitada	
$Area (m^2)$	1,5722	Aço	CP-190 RB	
Perímetro (m)	10, 13	$f_{ptk}~({ m kN/cm^2})$	190	
$I_y (m^4)$	1,2313	$f_{pyk}~({ m kN/cm^2})$	170	
y_i (m)	$1,\!011$	$\sigma_{pi}~({ m kN/cm^2})$	$140,\! 6$	
y_s (m)	1,757	$E_p~({ m kN/mm^2})$	195	
Tipo cimento	CPV-ARI	$A_p (mm^2)$	$1184,\!0$	
f_{ck} (MPa)	40	μ	0,28	
$E_c (MPa)$	$35417,\!5$	k	$0,\!0028$	
$\gamma_c~({ m kN/m^3})$	25	$\delta~({ m mm})$	7	
abatimento (cm)	5 - 9			
Vida útil (anos)	50			
CAA	III			
Temperatura (°C)	25			
Umidade (%)	75			

Tabela B.2: Propriedades do Viaduto da Guarita - Pista Norte. Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 6

(a) Planta e elevação do viaduto

Figura B.2: Formas e protensão do Viaduto da Guarita - Pista Norte. Fonte: Adaptadas do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 6

(b) Seção transversal e dados da protensão das vigas

Figura B.2: Formas e protensão do Viaduto da Guarita - Pista Norte. Fonte: Adaptadas do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 6

(c) Traçado da protensão das vigas

Figura B.2: Formas e protensão do Viaduto da Guarita - Pista Norte. Fonte: Adaptadas do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 6

B.3 Viaduto de Jacareí II

Todos os dados aqui apresentados são obtidos e adaptados do projeto executivo do Viaduto de Jacareí II. 7

Propriedades (meio do vão)		Protensão	Protensão limitada	
$Area (m^2)$	0,7855	Aço	CP-190 RB	
Perímetro (m)	$6,\!15$	$f_{ptk}~({ m kN/cm^2})$	190	
$I_y (m^4)$	0,2092	$f_{pyk}~({ m kN/cm^2})$	170	
y_i (m)	0,716	$\sigma_{pi}~({ m kN/cm^2})$	$140,\! 6$	
y_s (m)	0,734	$E_p~({ m kN/mm^2})$	195	
Tipo cimento	CPV-ARI	$A_p (mm^2)$	$1260,\!0$	
f_{ck} (MPa)	40	μ	0,28	
$E_c (MPa)$	$35417,\!5$	k	$0,\!0028$	
$\gamma_c~({ m kN/m^3})$	25	$\delta~({ m mm})$	7	
abatimento (cm)	5 - 9			
Vida útil (anos)	50			
CAA	III			
Temperatura (°C)	20			
Umidade (%)	75			

Tabela B.3: Propriedades do Viaduto de Jacareí II. Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 7

130

(a) Planta e elevação do viaduto

Figura B.3: Formas e protensão do Viaduto de Jacareí II. Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia 7

Figura B.3: Formas e protensão do Viaduto de Jacareí II. Fonte: Adaptada do projeto executivo do mesmo desenvolvido pela Cerne Engenharia⁷