

Pedro Kaj Kjellerup Nacht

Ferramenta gráfico-interativa de verificação de tensões no estado limite de serviço de vigas protendidas com pós-tração aderente

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio

Orientador: Prof. Luiz Fernando Campos Ramos Martha

Pedro Kaj Kjellerup Nacht

Ferramenta gráfico-interativa de verificação de tensões no estado limite de serviço de vigas protendidas com pós-tração aderente

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luiz Fernando Campos Ramos Martha
Orientador
Departamento de Engenharia Civil — PUC-Rio

Prof. Luiz Cristovão Gomes Coelho Instituto TECGRAF — PUC-Rio

Prof. Túlio Nogueira Bittencourt Universidade de São Paulo

Prof. Júlio Jerônimo Holtz Silva Filho Departamento de Engenharia Civil — PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico — PUC-Rio

Rio de Janeiro, 20 de Março de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pedro Kaj Kjellerup Nacht

Formou-se em Engenharia Civil na Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) em 2012. Apresentou trabalho de pesquisa de cálculo e verificação de vigas de concreto protendido com pós-tração aderente.

Ficha Catalográfica

Nacht, Pedro Kaj Kjellerup

Ferramenta gráfico-interativa de verificação de tensões no estado limite de serviço de vigas protendidas com póstração aderente / Pedro Kaj Kjellerup Nacht; orientador: Luiz Fernando Campos Ramos Martha. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Civil, 2015.

v., 168 f: il.; 29,7 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Tese2. Vigas de concreto protendido. 3. ABNT NBR 6118. 4. Estado limite de serviço (ELS). 5. Autodesk Robot Structural Analysis Professional[®].I. Martha, Luiz Fernando Campos Ramos. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

Agradecimentos

Aos meus pais, que sempre me aturaram e apoiaram.

Ao meu orientador, Luiz Fernando Martha, cuja ajuda e opiniões inspiraram e nortearam a vertente de programação deste trabalho.

Ao Geraldo Filizola, que sempre teve alma de professor e me ensinou tudo que sei de concreto protendido. Todos os livros da minha bibliografia, que lastram este projeto, foram oferecidos de sua extensa biblioteca.

Resumo

Nacht, Pedro Kaj Kjellerup; Martha, Luiz Fernando Campos Ramos. Ferramenta gráfico-interativa de verificação de tensões no estado limite de serviço de vigas protendidas com pós-tração aderente. Rio de Janeiro, 2015. 168p. Dissertação de Mestrado — Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta o desenvolvimento de uma ferramenta computacional gráfico-interativa para a verificação de vigas de concreto protendido com pós-tração aderente ao estado limite de serviço, de acordo com a norma brasileira NBR 6118:2014. A ferramenta é uma extensão (addin) para o Autodesk Robot Structural Analysis Professional[®], que serve como plataforma de modelagem estrutural. A partir de dados fornecidos pelo usuário através de uma interface gráfica, o programa desenvolvido calcula todas as perdas de protensão que ocorrem ao longo da vida-útil da estrutura, assim como os carregamentos equivalentes à protensão durante este período. O trabalho apresenta os métodos de cálculo tradicionais das perdas imediatas e diferidas, obtidos da NBR 6118, e as modificações que tiveram que ser feitas para permitir um cálculo incremental. Exemplos de utilização do programa e dos cálculos necessários também são apresentados e comprovam, pelos bons resultados obtidos, o acerto na escolha da metodologia escolhida. Como resultado, a ferramenta apresenta duas saídas: uma planilha contendo os esforços e as tensões atuantes na viga ao longo de sua vida-útil e verificações destes valores em relação aos limites estabelecidos para o estado limite de serviço; e o modelo estrutural no Robot apresenta os carregamentos equivalentes da protensão. O usuário pode então adotar estes carregamentos em demais cálculos da estrutura, enquanto a planilha pode ser utilizada para verificar com facilidade se a protensão atende às condições de serviço.

Palavras-chave

Vigas de concreto protendido; ABNT NBR 6118; Estado limite de serviço (ELS); Autodesk Robot Structural Analysis Professional[®].

Abstract

Nacht, Pedro Kaj Kjellerup; Martha, Luiz Fernando Campos Ramos (Advisor). Interactive Graphics Tool for Serviceability Limit State Stress Check of Prestressed Concrete Beams with Post-Tensioned Bonded Tendons. Rio de Janeiro, 2015. 168p. MSc. Dissertation — Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents the development of an interactive graphics computational tool for the verification of prestressed concrete beams with posttensioned bonded tendons to the serviceability limit state stress check according to the Brazilian code NBR 6118:2014. The tool is an add-in for Autodesk Robot Structural Analysis Professional[®], which serves as a structural modeling platform. With data supplied by the user through a graphics user interface, the program here developed calculates all relevant prestress losses that occur throughout the structure's life-cycle, along with the prestressing's equivalent loads during this period. The traditional calculation methods, obtained in the NBR 6118, are presented along with the modifications which had to be implemented in order to allow for incremental loss calculations. Usage examples and the necessary calculations are presented and, through the results obtained, validate the adopted methodology. As results, the program presents two outputs: a spreadsheet containing the resultant forces and stresses and a check of these values with respect to the permissible stresses in the serviceability limit state; and the Robot model presents the prestress' equivalent loads. The user may then use these loads in additional calculations. The spreadsheet may be used to easily check if the prestress is sufficient with respect to serviceability conditions.

Keywords

Prestressed concrete beams; ABNT NBR 6118; Serviceability limit state stress check; Autodesk Robot Structural Analysis Professional[®].

Sumário

1 Introdução	17
1.1 Objetivos	17
1.2 Protensão	18
1.3 Robot e seu API	18
1.4 Revisão bibliográfica	19
1.5 Organização do texto	21
2 Protensão	23
2.1 Introdução	23
2.2 Esforços oriundos da protensão	25
2.3 Perdas	31
2.3.1 Perdas Imediatas	31
2.3.1.1 Perdas por atrito cabo-bainha	31
2.3.1.2 Encunhamento das ancoragens	36
2.3.1.3 Deformação elástica do concreto	38
2.3.2 Progressivas	42
2.3.2.1 Fluência do concreto	42
2.3.2.2 Retração do concreto	49
2.3.2.3 Relaxação do aço	53
2.3.2.4 Métodos de cálculo das perdas progressivas	56
2.4 Verificações necessárias para uma viga de concreto protendido	60
2.4.1 Verificação à ruptura (ELU)	60
2.4.2 Verificação em serviço (ELS)	65
3 Implementação do programa	69
3 Implementação do programa 3.1 Introdução	69
3.2 Estrutura de dados	72
3.3 Procedimento de cálculo do programa	74
3.4 Instalação e entrada de dados	75
3.5 Método de carregamento adotado pelo programa	83
3.6 Perdas	88
3.6.1 Imediatas	89
3.6.1.1 Atrito	89
3.6.1.2 Encunhamento das ancoragens	91
3.6.2 Progressivas	94
3.6.2.1 Cálculo incremental	94
3.6.2.2 Deformação elástica do concreto	95
3.6.2.3 Fluência do concreto	96
3.6.2.4 Retração do concreto	99

3.6.	2.5 Relaxação do aço	100
3.7	Verificação em serviço	102
4	Passo-a-passo do programa com exemplo	105
5	Demais exemplos	125
5.1	Viaduto da Guarita - Pista Norte	125
5.2	Viaduto de Jacareí II	137
6	Conclusões	145
6.1	Sugestões para trabalhos futuros	146
7	Referências Bibliográficas	150
Α	Cálculo das propriedades geométricas para diferentes seções do Robot	155
B	Dados dos exemplos	159
B.1	Viaduto de acesso a Santa Isabel	159
B.2	Viaduto da Guarita - Pista Norte	162
B.3	Viaduto de Jacareí II	166

Lista de figuras

1.1	Barril protendido	18
2.1	Viga com protensão axial	26
2.2	Viga com protensão excêntrica	27
2.3	Viga com protensão parabólica	28
2.4	Viga isostática	32
2.5	Trapézio de forças com atrito	33
2.6	Curvatura indesejada do cabo	34
2.7	Perdas por atrito dos cabos C1 e C2	35
2.8	Perdas do cabo C2 protendido de uma ou ambas as extremidades	35
2.9	Perdas do cabo C1 protendido em ambas as extremidades	37
2.10	Perdas por encunhamento de uma ancoragem onde X ultrapassa o	
	ponto mínimo do perfil de tensões	38
2.11	Deformação elástica da viga protendida	40
2.12	Perdas do cabo C1 da viga-exemplo devido à deformação elástica	
	do concreto	41
2.13	Ábaco de $eta_f(au)$ para diferentes espessuras fictícias	46
2.14	Perdas do cabo C1 da viga-exemplo devido à fluência do concreto	48
2.15	Perdas do cabo C1 da viga-exemplo devido à retração do concreto	53
2.16	Perfil de umidade em uma seção de concreto	53
2.17	Perdas do cabo C1 da viga-exemplo devido à relaxação do aço	56
2.18	Comportamento da seção transversal na ruptura	62
3.1	Seções transversais paramétricas do Robot adotadas pelo Prestress	74
3.1 3.2	Seções transversais paramétricas do Robot adotadas pelo Prestress Procedimento de cálculo do Prestress	74 75
3.2	Procedimento de cálculo do Prestress	75
3.2 3.3	Procedimento de cálculo do Prestress Instalação do Prestress no Robot	75 76
3.2 3.3 3.4	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress . Aba de opções	75 76 77
3.2 3.3 3.4 3.5	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress .	75 76 77 78 80 81
3.2 3.3 3.4 3.5 3.6	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress . Aba de opções	75 76 77 78 80
3.2 3.3 3.4 3.5 3.6 3.7 3.8	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress . Aba de opções Janelas da aba de opções	75 76 77 78 80 81
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress . Aba de opções Janelas da aba de opções Aba de definição dos cabos	75 76 77 78 80 81 82
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress . Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis	75 76 77 78 80 81 82
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade	75 76 77 78 80 81 82 83
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide	75 76 77 78 80 81 82 83
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-	75 76 77 78 80 81 82 83
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante	75 76 77 78 80 81 82 83 84
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta	75 76 77 78 80 81 82 83 84
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta Viga hiperestática sob carregamento uniforme e sob carregamento	75 76 77 78 80 81 82 83 84 85 86
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta Viga hiperestática sob carregamento uniforme e sob carregamento equivalente	75 76 77 78 80 81 82 83 84 85 86
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta Viga hiperestática sob carregamento uniforme e sob carregamento equivalente Comportamento incorreto do Prestress para uma viga de seção	75 76 77 78 80 81 82 83 84 85 86
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta Viga hiperestática sob carregamento uniforme e sob carregamento equivalente Comportamento incorreto do Prestress para uma viga de seção variável com bordo superior descontínuo.	75 76 77 78 80 81 82 83 84 85 86 87
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	Procedimento de cálculo do Prestress Instalação do Prestress no Robot Modelagem de viga de seção variável no Prestress Exemplos permitidos e proibidos de barras para o Prestress. Aba de opções Janelas da aba de opções Aba de definição dos cabos Cabos centrados em diferentes vigas variáveis Viga variável com protensão constante, variando a excentricidade cabo-centroide Viga variável com protensão variável com excentricidade cabo-centroide constante Viga de seção descontínua com protensão reta Viga hiperestática sob carregamento uniforme e sob carregamento equivalente Comportamento incorreto do Prestress para uma viga de seção variável com bordo superior descontínuo. Aproximação de traçado de cabo composto por duas parábolas	75 76 77 78 80 81 82 83 84 85 86 87

3.18	Cálculo das perdas por fluência do concreto para uma fase	97
3.19	Perda incremental por fluência lenta irreversível	99
3.20	Deformação incremental por retração do concreto	100
3.21	Perdas incrementais por relaxação do aço	101
3.22	Exemplo de arquivo de resultados para uma fase.	104
4.1	Modelo do Robot do Viaduto de acesso a Santa Isabel	106
4.2	Aba de opções da viga do Viaduto de acesso a Santa Isabel antes da entrada de dados	107
4.3	Propriedades padrão dos materiais do viaduto de acesso a Santa Isabel	108
4.4	Definição dos cabos do Viaduto de acesso à Santa Isabel	109
4.5	Acréscimo de carga permanente nas fases do Viaduto de acesso à	
	Santa Isabel	110
4.6	Carga acidental selecionada para as fases 2 a 4 do Viaduto de acesso à Santa Isabel	111
4.7	Cabos protendidos em cada fase do Viaduto de acesso à Santa Isabe	el 112
4.8	Aba de opções da viga do Viaduto de acesso a Santa Isabel após	
	entrada de dados	112
4.9	Resultados do Prestress para o Viaduto de acesso a Santa Isabel	119
4.10	Esforços axiais do Viaduto de acesso a Santa Isabel	124
5.1	Modelo do Robo t do Viaduto da Guarita - Pista Norte	128
5.2	Resultados do Prestress para o Viaduto da Guarita - Pista Norte	128
5.3	Modelo do Robot do Viaduto de Jacareí II	139
5.4	Resultados do Prestress para o Viaduto de Jacareí II	140
6.1	Melhoria na definição do traçado de um cabo	149
B.1	Formas e protensão do Viaduto de acesso a Santa Isabel	160
B.2	Formas e protensão do Viaduto da Guarita - Pista Norte	163
B.2	Formas e protensão do Viaduto da Guarita - Pista Norte	164
B.2	Formas e protensão do Viaduto da Guarita - Pista Norte	165
B.3	Formas e protensão do Viaduto de Jacareí II	167
B.3	Formas e protensão do Viaduto de Jacareí II	168

Lista de tabelas

2.1 2.2	Carregamentos equivalentes para outros traçados de cabos Propriedades da viga da Figura 2.4	$\frac{29}{32}$
۷.۷	Propriedades da Viga da Figura 2.4	5∠
4.1	Perdas por atrito dos cabos do Viaduto de acesso à Santa Isabel	113
4.2	Perdas por encunhamento das ancoragens dos cabos do Viaduto de acesso à Santa Isabel	114
4.3	Perdas por deformação elástica do concreto devido à primeira fase de protensão dos cabos do Viaduto de acesso à Santa Isabel	115
4.4	Perdas progressivas do cabo C2 entre a fase 1 e 2 ($t \in [5,28)$ dias)	115
4 5	da vida do Viaduto de acesso à Santa Isabel	117
4.5	Perdas progressivas do cabo C2 entre as demais fases da vida do Viaduto de acesso à Santa Isabel	118
5.1	Dados utilizados no Prestress para o Viaduto da Guarita - Pista	
	Norte	127
5.2	Dados utilizados no Prestress para o Viaduto de Jacareí II	138
A.1	Propriedades geométricas para diferentes seções	155
B.1	Propriedades do Viaduto de acesso a Santa Isabel	159
B.2	Propriedades do Viaduto da Guarita - Pista Norte	162
B.3	Propriedades do Viaduto de Jacareí II	166

Lista de símbolos

Romanos

A	Área	bruta	da	secão	transversa

- A_c Área da seção transversal de concreto
- A_i Área bruta da seção transversal no ponto x_i
- A_p Área da seção de aço de protensão
- E_{ci} Módulo de elasticidade tangente do concreto
- E_p Módulo de elasticidade do aço de protensão
- F_{cd} Força de projeto do concreto
- F_{pd} Força de projeto da protensão
 - I Momento de inércia da seção transversal
 - I_i Momento de inércia da seção transversal no ponto x_i
 - L Comprimento da viga
- M Momento fletor
 - Coeficiente de atrito cabo-bainha total
- M_g Momento fletor devido a carga permanente
- M_i Momento fletor na seção i
- M_q Momento fletor devido a carga acidental
- $M_{r,d}$ Momento fletor resistente de projeto
- $M_{s,d}$ Momento fletor solicitante de projeto
 - M_p Momento fletor devido a protensão
 - N Resultante do carregamento equivalente infinitesimal Força normal
 - N_i Força normal na seção i
 - P Força de protensão
 - P_0 Força de protensão após perdas imediatas
 - P_i Força de protensão antes das perdas imediatas
 - Q Carregamento equivalente concentrado de protensão
 - Raio de curvatura do cabo
 - W Módulo elástico da seção
 - X Ponto onde as perdas por encunhamento da ancoragem se encerram
 - a Coeficiente quadrático da parábola de formato $y = a \cdot x^2$
 - a_i Coeficiente quadrático da parábola de formato $y=a\cdot x^2$ obtida na seção i
 - d Altura útil da seção, igual à distância do bordo comprimido pelos esforços solicitantes ao centroide da protensão
 - e Excentricidade máxima do cabo em relação ao centroide da viga
 - e_i Excentricidade do cabo em relação ao centroide da viga na seção i
 - f_{cj} Resistência à compressão do concreto aos j dias
 - f_{ck} Resistência à compressão nominal do concreto, definido aos 28 dias
- $f_{ct,f}$ Resistência à tração do concreto na flexão
- f_{ptk} Resistência à tração nominal do aço de protensão
- f_{pyd} Resistência ao escoamento de projeto do aço de protensão
 - h Espessura fictícia do concreto

- k Coeficiente de atrito linear cabo-bainha
- ℓ Comprimento em arco do cabo
- q Carregamento equivalente distribuído de protensão
- t Idade efetiva do concreto
- t_0 Idade efetiva do concreto no instante da aplicação da carga
- x Ordenada do cabo ao longo do eixo axial da viga Posição da linha neutra da seção em relação ao bordo comprimido
- x_i Ordenada do cabo ao longo do eixo axial da viga na seção i
- y Coordenada vertical na seção transversal
- y_i Ordenada do cabo ao longo do eixo vertical da viga na seção i
- z Braço de alavanca do binário resistente

Gregos

- $\Delta \ell$ Alongamento do cabo no ato da protensão
- - α Ângulo de inclinação do cabo Coeficiente da idade fictícia do concreto

 $\alpha_p \quad \frac{E_p}{E_c}$

- γ Coeficiente para o cálculo da espessura fictícia do concreto
- γ_c Coeficiente de ponderação da resistência do concreto
- γ_g Coeficiente de ponderação das ações permanentes
- γ_p Coeficiente de ponderação das ações de protensão
- γ_q Coeficiente de ponderação das ações acidentais
- γ_s Coeficiente de ponderação da resistência do aço de protensão
- δ Profundidade do encunhamento da ancoragem
- ϵ_{cc} Deformação do concreto por fluência
- ϵ_{cca} Deformação do concreto por fluência rápida e irreversível
- ϵ_{ccd} Deformação do concreto por fluência lenta e reversível
- ϵ_{ccf} Deformação do concreto por fluência lenta e irreversível
- ϵ_{cs} Deformação do concreto por retração
- ϵ_{cu} Deformação última do concreto
- ϵ_p Deformação do aço
- ϵ_{p0} Deformação inicial do aço no momento da protensão
- ϵ_{yd} Deformação de escoamento do aço de projeto
 - λ Parcela da protensão atuante
- $\lambda_{i.f}$ Parcela da protensão atuante na seção i da fase f
 - μ Coeficiente de atrito angular cabo-bainha
 - ρ_p Taxa geométrica de armadura ativa
 - σ Tensão
 - σ_c Tensão no concreto
- $\sigma_{c,p0g}$ Tensão no concreto sob protensão e carga permanente
 - σ_p Tensão no aço de protensão
 - $\sigma_{p,i}$ Tensão no aço de protensão na seção i
 - σ_{p0} Tensão inicial de protensão
 - σ_{pd} Tensão de projeto no aço de protensão
 - au Idade fictícia do concreto
 - ϕ Coeficiente de fluência do concreto

Coeficiente de fluência rápida do concreto ϕ_a Assintota da fluência lenta irreversível do concreto $\phi_{f\infty}$ Assintota da fluência lenta reversível do concreto $\phi_{d\infty}$ Coeficiente de fluência do aço χ Coeficiente de carga acidental frequente ψ_1 Coeficiente de carga acidental quase-permanente ψ_2 Relaxação do aço após mil horas ψ_{1000} Relaxação do aço após mil horas na seção i na fase f $\psi_{1000,i,f}$ Incremento de relaxação do aço na seção i na fase f $\psi_{i,f}$

 ω_k Abertura nominal de fissuras

XML

 $Extensible\ Markup\ Language$

Lista de abreviaturas

AASHTO	American Association of State Highway and Transportation Offi				
	cials				
ABNT	ABNT Associação Brasileira de Normas Técnicas				
ACI	ACI American Concrete Institute				
API	Application Programming Interface				
$_{ m BIM}$	Building Information Modeling				
CAA	Categoria de agressividade ambiental				
CBUQ	Concreto betuminoso usinado a quente				
COM					
CP	Concreto protendido				
CP(X)	Concreto Portland tipo X				
ELS	Estado limite de serviço				
$\mathrm{ELS} ext{-}\mathrm{D}$	Estado limite de descompressão				
ELS-F					
$\mathrm{ELS}\text{-}\mathrm{W}$	Estado limite de abertura de fissuras				
ELU	Estado limite último				
fib	fédération internationale du béton, antigo CEB-FIP (Comité Euro-				
	International du Béton e Fédération International de la Précon-				
	trainte)				
IFC	Industry Foundation Classes				
PCI	Prestressed Concrete Institute				
POO	Programação orientada a objetos				
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro				
R(B/N)	Relaxação (baixa/normal)				
${f Revit}$	Autodesk Revit®				
${f Robot}$	Autodesk Robot Structural Analysis Professional®				
TB-45	Trem-tipo brasileiro classe 45				
WPF	Windows Presentation Foundation				

To engineers who, rather than blindly following the codes of practice, seek to apply the laws of nature.

T. Y. Lin, Design of Prestressed Concrete Structures.

The responsibility associated with the design and construction of prestressed concrete requires that only engineers and contracting firms who have gained sufficient knowledge and experience in this specialized field and who can guarantee accurate and careful execution of the work should be allowed to undertake such design and construction.

Fritz Leonhardt, Prestressed Concrete.

Se um construtor construir uma casa para outrem, e não a fizer bem feita, e se a casa cair e matar seu dono, então o construtor deverá ser condenado à morte.

Código de Hamurabi.