

Reynel Martínez Castellanos

Caracterização de Pelotas de Minério de Ferro por Microscopia Multimodal e Análise de Imagens

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia Química e de Materiais da PUC-Rio.

Orientador: Prof. Sidnei Paciornik

Co-orientador: Dr. Julio César Álvarez Iglesias

Rio de Janeiro Março de 2016

Reynel Martínez Castellanos

Caracterização de Pelotas de Minério de Ferro por

Microscopia Multimodal e Análise de Imagens

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia Química e de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sidnei Paciornik Orientador e Presidente Departamento de Engenharia Química e de Materiais – PUC Rio

Dr. Julio César Álvarez Iglesias Co – Orientador Departamento de Engenharia Química e de Materiais – PUC Rio

Dr. Marcos Henrique de Pinho Maurício Departamento de Engenharia Química e de Materiais – PUC Rio

> Dr. Otávio da Fonseca Martins Gomes Centro de Tecnologia Mineral – CETEM

> > Prof. Márcio da Silveira Carvalho

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC- Rio

Rio de Janeiro, 23 de março de 2016

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Reynel Martínez Castellanos

Graduou-se em Engenharia Química pela Universidad Industrial de Santander da Colômbia. Ingressou no curso de mestrado em Engenharia de Materiais no ano 2014.

Ficha Catalográfica

Martínez Castellanos, Reynel

Caracterização de Pelotas de Minério de Ferro por Microscopia Multimodal e Análise de Imagens / Reynel Martínez Castellanos; orientador: Sidnei Paciornik; co-orientador: Julio César Álvarez Iglesias. – 2016.

82 f. : il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Química e de Materiais, 2016.

Inclui bibliografia

1. Engenharia Química – Teses. 2. Engenharia de materiais – Teses. 3. Pelotas de minério de Ferro. 4. Caracterização microestrutural. 5. Microscopia multimodal. 6. Análise de imagens. I. Paciornik, Sidnei. II. Alvarez Iglesias, Julio César. III. Pontifícia Universidade Católica do Rio de Janeiro Janeiro. Departamento de Engenharia Química e de Materiais. IV. Título.

Aos meus pais que se esforçaram cada dia para que eu chegasse onde eu estou hoje.

Agradecimentos

Agradeço primeiramente a meu orientador Sidnei Paciornik quem além de professor e orientador tornou-se meu amigo. Muito obrigado por acreditar em mim e por ter me dado a oportunidade de formar parte do grupo de pesquisa no qual aprendi muito e conheci pessoas incríveis. Obrigado pela paciência, pela confiança e pela ajuda brindada durante esses dois anos.

A meu co-orientador Julio César Álvarez Iglesias pela ótima disposição que sempre tinha para me ensinar, pela paciência, compromisso e parceria.

Ao grupo de pesquisa LPDI e cada um dos seus membros com os quais compartilhei bons momentos. Ao professor Marcos Henrique quem me orientou e ensinou a mexer no microscópio. A Karen Augusto, sempre disposta para me ensinar e ajudar, e quem além de ser uma boa colega foi uma excelente amiga. E o resto das pessoas do grupo. Valeu galera!

A Otávio Gomes pela ajuda e orientação oferecidas no desenvolvimento do meu trabalho. Ao CETEM por ter permitido a realização de certas análises necessárias para a obtenção dos resultados e à VALE pelo fornecimento das amostras analisadas.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo financiamento recebido e à PUC-Rio pela bolsa de isenção outorgada. Auxílios sem os quais não teria sido possível realizar este trabalho.

Aos meus amigos tanto na Colômbia que sempre acreditaram em mim quanto aos novos que fiz aqui no Brasil, especialmente Carolina Thomé e Isabella Jorge, pessoas maravilhosas e que foram um grande apoio durante o mestrado.

E finalmente a cada pessoa que me deu ânimo e força para continuar. Obrigado pelas palavras de apoio e pelas boas energias.

Resumo

Martínez Castellanos, Reynel; Paciornik, Sidnei; Álvarez Iglesias, Julio César. **Caracterização de Pelotas de Minério de Ferro por Microscopia Multimodal e Análise de Imagens.** Rio de Janeiro, 2016. 82p. Dissertação de Mestrado – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Pelotas de minério de ferro são formadas a partir da aglomeração de finos de minério e constituem o principal insumo para o processo de redução na indústria siderúrgica. As frações de fases sólidas e de poros afetam propriedades tais como resistência à compressão, permeabilidade a gases durante o processo de redução, e redutibilidade. No presente trabalho desenvolveu-se um método automático para a identificação e a quantificação automáticas das fases sólidas e poros presentes em pelotas de minério de ferro, mediante a correlação de imagens obtidas por duas técnicas diferentes - microscopia ótica (MO) e eletrônica de varredura (MEV). Imagens em mosaico cobrindo completamente uma seção transversal equatorial da pelota foram capturadas em MO e MEV. Utilizando técnicas de processamento de imagens, as fases e os poros foram identificados e quantificados em cada tipo de imagem. No entanto, cada técnica apresenta limitações na discriminação de certas fases, impedindo uma quantificação completa. Por outro lado, a combinação de imagens dos dois tipos permite discriminar todas as fases. Para isso as imagens de MO e MEV foram automaticamente registradas utilizando pontos de referência homólogos obtidos pela técnica SIFT - Scale Invariant Feature Transform. Após o registro, fases e poros foram individualmente identificadas e quantificadas, levando a resultados muito mais precisos do que os obtidos separadamente. Comparou-se também o resultado de porosidade com o obtido por microtomografia de raios-x (MicroCT). Para isso, um procedimento de correlação identificou a camada de uma tomografia 3D mais similar às imagens de MO ou MEV, foi realizado o registro e mediu-se a fração de área de poros. O valor encontrado foi muito menor na imagem de MicroCT, fato atribuído à pior resolução espacial desta técnica.

Palavras-Chave

Pelotas de Minério de Ferro; Caracterização Microestrutural; Microscopia Multimodal; Análise de Imagens; Microtomografia Computadorizada.

Abstract

Martínez Castellanos, Reynel; Paciornik, Sidnei (Advisor); Álvarez Iglesias, Julio César (Co-Advisor). **Characterization of Iron Ore Pellets by Multimodal Microscopy and Image Analysis**. Rio de Janeiro, 2016. 82p. Masters Dissertation – Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Iron ore pellets are formed by an agglomeration process and currently constitute the main source for the reduction process in steel making. The fractions of solid phases and pores directly affect pellets' properties such as compression resistance, gas permeability during the reduction process, and reducibility. In this work a method for the automatic identification and guantification of phases and pores in iron ore pellets was developed, based on the correlation between images obtained with two different techniques - optical microscopy (OM) and scanning electron microscopy (SEM). Mosaic images covering the full equatorial cross section of a pellet were acquired with OM and SEM. Employing digital image processing techniques the phases and pores were identified and quantified in each type of image. However, each imaging technique has limitations in the discrimination of certain phases, preventing a full quantification. On the other hand, the combination of the two types of images allows discriminating all phases. For that, OM and SEM images were automatically registered using homologous reference points obtained with the SIFT - Scale Invariant Feature Transform technique. After registration, phases and pores were individually identified and quantified, leading to much more accurate results than those provided separately by OM or SEM. The porosity was also compared with that provided by x-ray MicroCT. For that, a correlation procedure identified the closest matching MicroCT layer to the OM or SEM images, the image was registered and the pore fraction was measured. The obtained value is much lower for the MicroCT image, what was attributed to the worse spatial resolution of the technique.

Keywords

Microstructure Characterization; Iron Ore Pellets; Multimodal Microscopy; Image Analysis; Microtomography.

Sumário

1 Introdução	15
2 Objetivos	17
3 Revisão Bibliográfica	18
3.1. Minério de Ferro	18
3.2. Pelotas de Minério de Ferro	24
3.2.1. Processo de Pelotização	26
3.3. Porosidade	32
3.3.1. Métodos de Obtenção da Porosidade Superficial	33
3.3.1.1. Adsorção Gasosa	34
3.3.1.2. Porosimetria de Mercúrio	35
3.4. Microscopia Digital	37
3.4.1. Microscopia ótica de Luz Refletida em Campo Claro	37
3.5. Microscopia Eletrônica de Varredura	38
4 Materiais e Métodos	41
4.1. Seleção e Preparação de Amostras	41
4.2. Procedimentos Experimentais	42
4.2.1. Aquisição de Imagens ao Microscópio Ótico	42
4.2.1.1. Campo Estendido (mosaico)	44
4.2.2. Aquisição de Imagens ao MEV	47
4.2.3. Aquisição de imagens no MicroCT	49
4.2.4. Processamento e Análise Digital de Imagens	51
4.2.4.1. Pré-Processamento	52
4.2.4.2. Segmentação	54
4.2.4.3. Pós-Processamento	55
4.2.4.4. Extração de Atributos	60
5 Resultados e Discussões	63
5.1. Alinhamento e registro das imagens MO e MEV	63
5.2. Análise qualitativa da porosidade e as fases presentes na pelota	64

5.2.1. Análise qualitativa usando MO	65
5.2.2. Análise qualitativa usando MEV	66
5.2.3. Análise qualitativa usando MO e MEV correlacionadas	68
5.3. Análise quantitativa dos resultados	71
5.4. Análise comparativa da porosidade 2D Vs. 3D	72
6 Conclusões e Trabalhos Futuros	77
6.1. Trabalhos Futuros	78
7 Referências Bibliográficas	79

Lista de Figuras

Figura 3-1 – Estrutura cristalina dos principais minérios de ferro:
(a) Magnetita; b) Hematita; c) Goethita; d) Siderita [3]19
Figura 3-2- Fluxograma do processo de produção do aço a partir de
tecnologias tradicionais
Figura 3-3 – Etapas do processo de beneficiamento do minério [2]23
Figura 3-4 – Minério de ferro (a) Granulado; (b) Sinter Feed;
(c) <i>Pellet Feed</i> [8]23
Figura 3-5 – a) Sínter, b) Pelota de minério de ferro [8]24
Figura 3-6 – Fluxograma do processo de pelotização [8]
Figura 3-7 – Mecanismo de formação das pelotas cruas [11]
Figura 3-8- Disco de pelotamento empregado na fabricação de pelotas [14]30
Figura 3-9 – Diagrama do forno de pelotização tipo grelha móvel [14]30
Figura 3-10 – Micrografia de uma pelota de minério de ferro. As setas em
vermelho indicam os poros: a) MEV; b) MO34
Figura 3-11 – Curva típica de uma análise de porosimetria de mercúrio [19] 36
Figura 3-12 – Fundamento do microscópio ótico de luz refletida em
campo claro [23]
Figura 4-1- Politriz marca Struers Tegramin 2.0
Figura 4-2 – Amostra de três pelotas de minério de ferro embutidas
Figura 4-3 – Microscópio ótico marca Zeiss AxioImager.M2m43
Figura 4-4 – a) Interface do comando MosaiX; b) Procedimento de
varredura para captura das imagens individuais45
Figura 4-5 – Exemplo de captura de um mosaico 2X2 a) Visão ampliada
de uma região mostrando o alinhamento imperfeito (setas em vermelho);
b) Mesma região com alinhamento utilizando a opção Stitching46
Figura 4-6 – Equipamento utilizado para recobrimento com carbono ou
deposição metálica sobre amostras não condutoras47
Figura 4-7 – Amostra após recobrimento com carbono
Figura 4-8 – Microscópio Eletrônico de Varredura Marca FEI Quanta 40049
Figura 4-9 – Microtomografo marca Xradia 510 Versa
Figura 4-10 - Amostra de uma pelota de minério de ferro embutida50

Figura 4-11 – Sequência de PADI [7, 21]
Figura 4-12- Aplicação do filtro delineate. a) Região ampliada de uma
imagem MO e seu respectivo histograma; b) Imagem MO delineada
e seu respectivo histograma
Figura 4-13 – a) Imagem MEV; b) Imagem binária resultado da segmentação
das partículas de quartzo na imagem MEV54
Figura 4-14- Exemplo de limiarização das fases e os diferentes tons de corte
no histograma com o eixo vertical em escala logarítmica da imagem MEV 55
Figura 4-15- Exemplo de aplicação da operação "or": a) Imagem binária dos
poros segmentados a partir da imagem MEV; b) Imagem binária dos
poros segmentados a partir de uma imagem MO; c) Imagem binária resultante
da união das imagens dos poros segmentados MEV e MO57
Figura 4-16 – Exemplo de aplicação da operação <i>close</i> : a) Imagem MO da
pelota começando a aplicação da operação close; b) Imagem da pelota MO
no final da operação <i>close</i> + <i>fill holes</i> (máscara binária)58
Figura 4-17 – Ampliação de uma região da pelota: a) Imagem MEV
b) Imagem interceptada com a máscara binária (fundo limpo)59
Figura 4-18 – Eliminação de objetos por área (analyze particles): a) Imagem
com as partículas de quartzo segmentadas; b) Imagem sem objetos menores
que 650 pixels
Figura 4-19 – Fluxograma da metodologia utilizada na quantificação das
fases da pelota de minério de ferro empregando MO61
Figura 4-20 - Fluxograma da metodologia utilizada na quantificação das
fases da pelota de minério de ferro empregando MEV61
Figura 4-21 - Fluxograma da metodologia utilizada na quantificação das
fases da pelota de minério de ferro empregando MO + MEV62
Figura 4-22- Fluxograma da metodologia utilizada na comparação da
porosidade da pelota entre as técnicas MO, MEV e MicroCT
Figura 5-1- Registro das imagens obtidas: a) Imagem MEV original;
b) Imagem MO original (ciano); c) Imagens desalinhadas antes da
aplicação da função de registro; d) Imagens registradas após o uso da função
LSA-SIFT64
Figura 5-2 - Segmentação das fases presentes na pelota: a) Imagem da pelota
obtida no MO; b) Segmentação das fases; c) Imagem ampliada de uma

região da pelota; d) Imagem ampliada da região segmentada: ciano = poros, verde = quartzo, azul = silicatos e vermelho = hematita. As setas indicam a segmentação errada dos poros com resina confundidos com quartzo.65 Figura 5-3- Segmentação das fases presentes na pelota: a) Imagem da pelota obtida no MEV; b) Segmentação das fases; c) Imagem ampliada de uma região da pelota; d) Imagem ampliada da região segmentada: ciano = poros, verde = quartzo, azul = silicatos e vermelho = hematita. As setas indicam os Figura 5-4 – Correlação MEV+MO: a) Imagem MEV; b) Imagem MO; c) Correlação das fases segmentadas: ciano = poros, verde = quartzo, azul = silicatos e vermelho = hematita......69 Figura 5-5 Regiões da figura anterior ampliadas: a) Região ampliada de MEV; b) Região da pelota no MO; c) Região ampliada e segmentada MEV; d) Região ampliada e segmentada MO; e) Região ampliada, correlacionada e segmentada......70 Figura 5-6 - Frações de fase (%) nas 3 pelotas de minério de ferro analisadas a partir das diferentes técnicas (MO e MEV) e sua correlação (MO+MEV)......71 Figura 5-7 – Comparação das técnicas diferentes: a) Imagem MEV; b) Imagem MO; c) Imagem MicroCT identificada pela correlação; d) Imagem MicroCT após registrada; e) Efeito do registro na imagem Figura 5-8 – Analise qualitativa da porosidade: a) Poros MEV segmentados; b) Poros MO segmentados; c) Poros MO + MEV segmentados; d) Poros segmentados em uma das projeções microCT.74

Lista de Tabelas

Tabela 3-1 - Principais minérios de ferro e suas classes [3]	. 19
Tabela 3-2- Reservas mundiais de minério de ferro em 2014 [10 ⁶ t] [1]	. 20
Tabela 3-3 – Produção de minério de ferro estimada no Brasil [10 ³ t] [4]	.21
Tabela 3-4- Composição química das pelotas produzidas pela Vale [7]	.26
Tabela 3-5 – Principais informações obtidas com a técnica MEV [15]	.40
Tabela 4-1 – Limiares empregados na segmentação de cada técnica	. 55
Tabela 5-1 - Frações de área dos poros para cada uma das técnicas	
empregadas (MEV, MO, MO+MEV e microCT)	.75

Lista de Abreviaturas

ADI	Análise Digital de Imagens
AF	Pelotas de Alto Forno
BSE	Elétrons Retroespalhados
CETEM	Centro de Tecnologia Mineral
DEQM	Departamento de Engenharia Química e de Materiais
LMD	Laboratório de Microscopia Digital
LSA	Linear Stack Alignment
MEV	Microscopia Eletrônica de Varredura
MicroCT	Micro Tomografia Computadorizada
МО	Microscopia Ótica
PADI	Processamento e Análise Digital de Imagens
PDI	Processamento Digital de Imagens
RD	Pelotas de redução Direta

- SCT Setor de Caracterização Tecnológica
- UNCTAD Conferência das Nações Unidas para o Comércio e o Desenvolvimento