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Abstract

Arévalo Garćıa, José Leonel; Sampaio Neto, Raimundo. Interference
Mitigation Schemes for the Uplink of Massive MIMO in 5G
Heterogeneous Cellular Networks. Rio de Janeiro, 2016. 111p. PhD
Thesis — Departamento de Engenharia Elétrica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

In the first part of this thesis, we introduce two list detection schemes

for the uplink scenario of multiuser multiple-input multiple-output (MU-

MIMO) systems. The proposed techniques employ a single lattice reduction

(LR) transformation to modify the channel matrix between the users and

the base station (BS). After the LR transformation, a reliable candidate for

the transmitted signal vector, provided by successive interference cancellation

(SIC) detection is obtained. In the proposed multi-branch lattice reduction

SIC (MB-LR-SIC) detector, a fixed number of different orderings, generates

a list of SIC detection candidates. The best candidate is chosen according to

the maximum likelihood (ML) selection criterion. For the proposed variable

list detection (VLD) scheme, an algorithm to decide if the current candidate

has good quality or if it is necessary to further explore different orderings to

improve the detection performance is employed. Simulation results indicate

that the proposed schemes have a near-optimal performance while keeping its

computational complexity well below that of the ML detector. An iterative

detection and decoding (IDD) scheme based on the VLD algorithm is also

developed, producing an excellent performance that approaches the single user

(SU) scenario. In the second part of this thesis, a decoupled signal detection

(DSD) technique which allows the separation of uplink signals, for each user

class, at the base station (BS) for massive MIMO systems is proposed. The

proposed DSD allows to implement the detection procedures proposed in the

first part of this thesis in massive MIMO scenarios. A mathematical signal

model for massive MIMO systems with centralized and distributed antennas

in the future fifth generation (5G) heterogeneous cellular networks is also

developed. A sum-rate analysis and a study of computational cost for DSD are

also presented. Simulation results show excellent performance of the proposed

DSD algorithm when combined with linear and SIC-based detectors.

Keywords
Multiuser multiple-input multiple-output systems; Multi-branch lat-

tice reduction successive interference cancellation; Variable list detec-

tion; Decoupled signal detection; Fifth generation heterogeneous cellular

networks.
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Resumo
Arévalo Garćıa, José Leonel; Sampaio Neto, Raimundo. Mitigação de
Interferências em Sistemas MIMO Massivo Operando em Redes
Heterogêneas de Quinta Geração (5G). Rio de Janeiro, 2016. 111p.
Tese de Doutorado — Departamento de Engenharia Elétrica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Na primeira parte desta tese, são desenvolvidos dois esquemas de de-

tecção por listas para sistemas MIMO multiusuário. As técnicas propostas

usam uma única transformação de redução de reticulado (LR) para modificar

a matriz de canal entre os usuários e a estação base (BS). Após a transformação

LR, um candidato confiável do sinal transmitido é obtido usando um detector

de cancelamento sucessivo de interferências (SIC). No detector em múltiplos

ramos com redução de reticulado e cancelamento sucessivo de interferências

(MB-LR-SIC) proposto, um número fixo de diferentes ordenamentos para o

detector SIC gera uma lista de posśıveis candidatos para a informação trans-

mitida. O melhor candidato é escolhido usando o critério maximum likelihood

(ML). No detector por listas de tamanho variável (VLD) proposto, um algo-

ritmo que decide se o candidato atual tem uma boa qualidade ou se é necessário

continuar procurando por um candidato melhor nos ordenamentos restantes é

utilizado. Os resultados numéricos mostram que os esquemas propostos têm um

desempenho quase ótimo com uma complexidade computacional bem abaixo

do detector ML. Um esquema de detecção e decodificação iterativa (IDD) ba-

seado no algoritmo VLD é também desenvolvido, produzindo um desempenho

próximo a um sistema mono usuário (SU) livre de interferências. Na segunda

parte desta tese, uma técnica de detecção desacoplada de sinais (DSD) para

sistemas MIMO massivo é proposta. Esta técnica permite que o sinal com-

posto recebido na BS seja separado em sinais independentes, correspondentes

a diferentes classes de usuários, viabilizando assim o uso dos procedimentos de

detecção propostos na primeira parte desta tese em sistemas MIMO massivos.

Um modelo de sinais para sistemas MIMO massivo com antenas centralizadas

e/ou antenas distribúıdas operando em redes heterogêneas de quinta geração é

proposto. Uma análise baseada na soma das taxas e um estudo de custo com-

putacional para DSD são apresentados. Os resultados numéricos ilustram o

excelente compromisso desempenho versus complexidade obtido com a técnica

DSD quando comparada com o esquema de detecção conjunta tradicional.

Palavras–chave
Sistemas MIMO multiusuário; Detecção em múltiplos ramos com

redução de reticulado e cancelamento sucessivo de interferências; Detecção

por lista de tamanho variável; Detecção desacoplada de sinais; Redes

celulares heterogêneas de quinta geração.
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1

Introduction

1.1
Overview

Telecommunications systems play a fundamental role in the current

globalized world in areas such as business, education, economics, science,

healthcare, transportation and in our social and cultural life. Some technologies

have been developed to help us to communicate with each other and to

access information more easily at any time and anywhere. Practical electrical

telecommunications systems started to appear with the telegraph in 1830s. The

electrical telephone was presented in 1870s by Alexander Graham bell. In the

late 1880s, Heinrich Hertz proved the prediction made in 1861 by James Clerk

Maxwell, in the four laws about electromagnetism, by transmitting the first

electromagnetic signal over a short distance, which represent the first antenna

system. However, it was Nikola Tesla in 1892 who had the idea of using that

technology to transmit signals from one place to another. In 1894 Guglielmo

Marconi built the first complete and commercially successful wireless telegraph

system based on airborne electromagnetic waves (radio transmission). The

principle of the modern computer was first described by Alan Turing in 1936.

In 1979 the first automatic analog cellular system was deployed. Practical

implementations of computer networks began in the late 1980s and over 1990s.

In the 1990s, the World Wide Web was introduced. These inventions, among

others, which began less than two hundred years ago, represent the basis of

the technological revolution that we live in nowadays with an explosion of

smart devices invading a big part of our lives and which have changed the

way that we interact with other humans and machines. In that way, wireless

communications systems represent an important part of the communication

universe which is in constant evolution caused by the increasing requirements

in term of data rates, latency and energy efficiency.

Mobile data traffic grew 65 percent between 2014 and 2015. The growth

in data traffic is being driven both by increased mobile subscriptions and

a continued increase in average data volume per subscription. Predictions

published in [1]- [2] shows that the number of mobile broadband subscriptions

is growing globally by around 25 percent per year. Smartphones make up the

majority of mobile broadband devices today and subscriptions are expected to

almost double by 2021. As the number of smart terminals and their emerging
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applications are growing, some research challenges need to be addressed for the

future evolution of communications systems. Under this consideration, higher

peak and user data rates, reduced latency, low energy consumption and low

computational cost requirements for the signal processing will be necessary

for the fifth generation (5G) of wireless communications systems, which are

expected to be deployed commercially around 2020 [3]- [8]. In 5G networks,

enhancements in mobile broadband services will be provided. For 5G peak data

rates of 10 Gbps (Giga bit per second) for low mobility and 1 Gbps for high

mobility are expected that represents an increase of 10 times in the data rates

with respect to 4G [9]- [13].

1.2
Motivation

In recent years, the use of multiple transmit and receive antennas, a

technique know as multiple-input multiple-output (MIMO) systems, are being

considered as one of the most promising technologies. The use of MIMO is

key to combating the fading and increasing the spectral efficiency, and to

providing receive diversity gain and spatial multiplexing [14]- [15]. The channel

capacity of MIMO systems increases with the minimum of transmit and receive

antennas, which makes high data rates transmission possible [16]- [17]. Despite

its advantages, MIMO suffers from interference between multiple antennas and,

in multiuser scenarios, is affected by the multiuser interference.

Large-scale MIMO systems, also known as massive MIMO, are strong

candidates for 5G cellular networks which use a large number of antennas to

serve a high number of user terminals at the same time without requiring extra

bandwidth resources [18]- [26]. This new greater scale version of traditional

MIMO systems, where a restricted number of antenna elements is used, is

designed to exploit the benefits of extra degrees of freedom obtained by the

use of more antennas [27]. Massive MIMO can increase the spectral efficiency

10 times or more when compared with its predecessor [28]. In the Long Term

Evolution (LTE) standard [9], which operates in the frequency-division duplex

(FDD) mode, the users estimate the channel response and feed it back to

the base station. For massive MIMO this might not be feasible, due to the

large number of channel coefficients that each user needs to estimate being

proportional to the number of antenna elements at the BS. In this thesis we

focus on the uplink, the reason is that the most natural transmission mode to

operate in massive MIMO is the time-division duplexing (TDD) mode, where

a reciprocity between the uplink and downlink channels can be obtained, if

we use appropriate calibration techniques to combat the distortions induced
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by hardware imperfections, since the base station can offer more processing

resources aimed at estimating the channels between users’ terminals and the

BS. On the downlink it is possible to use different precoding schemes to

mitigate the interference for the received signals at the mobile users. Such

precoding schemes rely on the channels estimated on the uplink.

One of the main research challenges of massive MIMO is to develop com-

putationally simple ways to process the large number of signals received at

the BS. The interference between antennas and users, propagation effects such

as correlation, path loss and shadowing, thermal noise and signal degradation

due to the hardware imperfections need to be suppressed. In MIMO systems

the maximum likelihood (ML) detector is able to provide optimal perform-

ance and full receive diversity gain. However, the ML detector may not be

used in high dimensional systems due to its exponential computational com-

plexity. Some near optimal ML schemes have been proposed as the generalized

sphere decoding (GSD) [29]- [32], however the computational complexity at low

signal-to-noise ratio (SNR) and large number of antennas is still high. Linear

detection techniques such as maximum ratio combining (MRC), zero forcing

(ZF) and minimum mean square error (MMSE) are good options in terms of

computational complexity [33], however, due to the impact of interference and

noise, linear detectors offer a limited performance, which is not compatible with

the growing demand for high data rates. The performance of linear detectors

can be improved without significant burden in the computational cost, using

some nonlinear sub-optimal detector based on successive interference cancel-

lation (SIC) [34]- [35], e.g., multibranch SIC (MB-SIC) [36]- [37] and multi-

feedback SIC (MF-SIC) [38]. However SIC-based detectors, despite having a

better performance than linear detectors, still suffer from error propagation

and performance degradation [39]- [40]. Recently, lattice reduction (LR) based

detectors have been proposed to improve the performance while their compu-

tational cost does not increase much [41]- [51]. The LR technique introduces

a preprocessing in the channel matrix, generating a nearly orthogonal basis in

the same lattice, i.e., transform the channel matrix into a better conditioned

channel matrix that allows one to mitigate the effects of interference and chan-

nel correlation. To compute the new equivalent channel matrix, the complex

Lenstra, Lenstra and Lovàsz (CLLL) algorithm, which has a low computational

complexity has recently been adopted [52]. In [53]- [54] LR has been shown to

improve the performance of linear detectors. The LR-SIC detector has been

developed in [55] offering a good performance with full receive diversity. In

general, LR-based detectors have a full diversity gain with low computational

complexity when compared with the ML detector, however a key problem with
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these detectors, is that the performance gap to the ML detector increases with

the number of antennas, number of users and the modulation order. Hence,

there is need to develop detection approaches that can obtain a more attractive

trade-off between performance and complexity for high-dimensional systems.

The iterative detection and decoding (IDD) schemes can be used to

improve the performance of coded MIMO systems where the maximum a

posteriori probability (MAP) detection is desirable [56]. The implementation

of the MAP detector is not viable due to its high computational cost. For this

reason detection alternatives for coded systems should be investigated.

In the next generation of wireless communication systems [3], it is ex-

pected that a large number of users with different configurations and re-

quirements is connected to the network. Therefore, it is necessary to design

heterogeneous networks capable of interconnecting the different user types

with each other [57]. The received signals from this large number of connec-

ted devices such as, metering equipment, sensors, environmental monitoring

devices, health care gadgets, security management products, smart grid com-

ponents, smart phones and tablets need to be separated in order to detect the

transmitted information according to their different data requirements. In this

context, distributed antenna systems (DAS) with massive MIMO are a prom-

ising alternative for the 5G cellular architectures [58]- [63], where the BS will

be equipped with a large number of antennas and some remote antenna arrays

or radio heads will be distributed around the cell and connected to the BS via

optical fiber. The signals associated with different remote antenna arrays are

processed at the BS. DAS have low path loss effects, improve the coverage and

the spectral efficiency [64] [65]. The energy consumption of users is reduced

and the transmission quality is improved due to the shorter distances between

users and some remote antenna arrays. For this vision of 5G wireless networks,

which includes a combination of massive MIMO, heterogeneous networks, and

distributed antenna systems, efficient signal processing techniques at the BS

are necessary.

1.3
Contributions

● In the first part of this thesis, we will focus in to propose two advanced

interference mitigation schemes, for the uplink of MU-MIMO for cellular

systems that allows a designer to reduce significantly the performance

gap to the optimal detector.

- The first detector proposed in this work combines LR, SIC and

MB schemes to devise an MB-LR-SIC detector. The main idea
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is to employ an LR transformation on the channel matrix, then

generate a fixed number of branches, where each branch has a

different ordering pattern and produces different symbol estimate

vectors using the LR-SIC structure. An efficient implementation for

the LR-SIC detector is proposed and evaluated. The branch with

the best performance among the list of candidates is selected using

the ML criterion. Despite the good performance presented by MB-

LR-SIC, the high computational complexity caused by the fixed

number of candidates that need to be tested have motivated the

second detection technique proposed in this thesis.

- The variable list detection (VLD) scheme proposed here computes

a variable number of solution candidates for the transmitted signal

vector in the LR domain updating the decision if a better candidate

is found. The VLD scheme employs an LR transformation on

the channel matrix, then generates a reliable candidate for the

transmitted information vector in the LR domain. The ordering

of LR-SIC symbol detections is implemented according to the

MSE values of the estimated symbols in the LR domain. Based

on the quality of the current candidate vector, a number of new

candidates to be tested is determined. VLD adopts a stopping

criterion that considers the ML cost of the best result so far as

well as its first and second order moments for an error free decision.

The numerical results show that the proposed VLD scheme has

excellent performance and approaches the optimal ML detector.

A computational complexity study and the benefits of the MSE

ordering for the LR-SIC in VLD scheme are also examined in this

thesis.

- An IDD algorithm for the VLD scheme is also developed which

computes reliable soft estimates of the transmitted symbols for a

convolutional coded system.

- The performance of the proposed detectors, with practical channel

estimation algorithms is compared with several existing detectors

in long term evolution advanced (LTE-A) and large-scale MIMO

scenarios. We consider a realistic MU-MIMO scenario with path

loss, log-normal shadowing and multiple antennas per user. An

analysis of complexity for the proposed detection algorithms is also

presented.

● The detectors proposed in the first part of this thesis still have a

considerable computational cost for high-dimensional systems. If all
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signals from all active users are coupled in the detection process, the

BS could spend unnecessary processing resources since some types of

users might not require a very high performance. In the second part of

this thesis, we propose an algorithm for the uplink of massive MIMO

systems to separate the combined received signal of all users at the BS,

into independent signals for each user class.

- The proposed decoupled signal detection (DSD) performs a decom-

position into multiple independent single user class signals, where

all users in a class have the same data requirements and a common

complex modulation. Assuming that the channel state information

(CSI) was previously estimated, DSD employs a common channel

inversion and a QR decomposition to decouple the received signal.

Applying the proposed DSD algorithm, the computational cost of

the signal processing is reduced and it is possible to have flexibility

on the detection procedure at the BS.

- A signal model for heterogeneous networks with different classes of

users and an arbitrary configuration of centralized antenna systems

(CAS) and distributed antenna systems (DAS) is also introduced.

- A sum rate analysis and a computational complexity study for the

proposed DSD are presented. The performance of the proposed

scheme is evaluated in a realistic scenario with propagation effects

and compared with existing approaches.

1.4
Thesis Outline

The remainder of this thesis is organized as follows:

● In Chapter 2, the basic concepts for MU-MIMO systems are studied,

starting with the mathematical representation of MU-MIMO systems.

Then, channel capacity aspects and a channel estimation technique for

MIMO channels is described. A number of existing optimal and sub-

optimal MU-MIMO detection techniques are also presented.

● Chapter 3 introduces the lattice reduction concept and some detection

schemes based on the LR transformation. The proposed MB-LR-SIC

detector and the proposed VLD scheme, which obtains a near optimal

performance with low computational complexity, are also introduced.

● In Chapter 4, we propose an IDD receiver scheme which uses the

proposed VLD algorithm to compute a reliable soft estimation of the

transmitted information.
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● In Chapter 5, we propose a signal model for 5G heterogeneous cellular

networks. We also propose the DSD algorithm that allows one to separate

the users per classes and to make the detection procedures independently

of other classes of users at the BS.

● Chapter 6 concludes this thesis by summarizing the benefits of the

proposed detection schemes followed by a discussion of future work in

detection for heterogeneous cellular networks within the 5G context.

1.5
Notation

a Scalar value

a Complex-valued vector

A Complex-valued matrix

Ai,j Entry in i-th row and j-th column of A

ai i-th column of A

A−1 Inverse of A

AT Transpose of A

AH Hermitian of A

T[A] The trace operation of a square matrix A

det(A) Determinant of matrix A

E[⋅] Expected value operator

Re(⋅) Real part of a complex number

Im(⋅) Imaginary part of a complex number

⟨a,b⟩ Inner product of a and b

∥a∥ Norm of a

log(⋅) Natural logarithm

⌈a⌋ The nearest integer to a

∣a∣ Absolute value of a

IN Am N ×N identity matrix

Q Set of complex numbers

Z Set of integer numbers
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1.6
Acronyms

4G Fourth Generation

5G Fifth Generation

APP A posteriori probability

AWGN Additive white Gaussian noise

BER Bit error rate

BPSK Binary phase shift keying

BS Base station

CAS Centralized antennas systems

CLLL Complex-valued LLL

CSI Channel state information

DAS Distributed Antenna System

dB Decibel

DSD Decoupled signal detection

FDD Frequency-division duplex

FLOPs Floating point operation

Gbps Giga bits per second

GSD Generalized sphere decoding

IDD Iterative detection and decoding

ISI Intersymbol interference

LLL Lenstra-Lenstra-LovÃ¡z

LLR Log-likelihood ratio

LR Lattice reduction

LS Least square

LTE Long Term evolution

LTE-A LTE advanced

MAP Maximum a posteriori probability

MB Multiple branch

Mbps Mega bits per second

MF Multiple feedback

MIMO Multiple-input multiple-output

ML Maximum likelihood

MMSE Minimum square error

MRC Maximum radio combining

MS Mobile station

pdf Probability density function

PIC Parallel interference cancellation

QAM Quadrature amplitude modulation
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QPSK Quadrature phase shift keying

SAC Shadow area constraints

SC Soft Cancellation

SD Sphere decoding

SIC Successive interference cancellation

SINR Signal to interference plus noise ratio

SISO Soft-input soft-output

SNR Signal-to-noise ratio

TDD Time-division duplex

VLD Variable list detection

ZF Zero Forcing
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2

Fundamentals of MIMO Systems

2.1
Overview

MIMO systems offer a spatial multiplexing gain, i.e., data streams can be

transmitted in parallel over the same channel [16]. This leads to substantially

higher channel capacity and transmission rates. The use of multiple antennas

offers diversity gain on systems that operate in fading channels [17]. The

diversity order is equal to the number of independently received fading paths,

which corresponds to the slope of the bit-error-rate (BER) curve.

In this chapter, the basic concepts of MIMO systems are studied.

This chapter is organized as follows. It is starting with the mathematical

representation of MU-MIMO systems in Section 2.2. Then, the MIMO channel

capacity and the least squares channel estimation technique for MIMO chan-

nels are described in Section 2.3 and Section 2.4, respectively. In Section 2.5,

we also review some important existing detection techniques in the literature.

Two detection techniques by list generation are then described in Section 2.6.

To conclude, numerical results comparing the performance of the different de-

tection techniques are presented in Section 2.7.

2.2
Multiuser MIMO System Model

To explore the multiuser diversity gain [71] of MU-MIMO systems [72],

we consider the uplink channel scenario of a MU-MIMO system with K active

users, as depicted in Figure 2.1, the k-th mobile station (MS) transmits a data

stream divided into Ntk sub-streams through Ntk antennas. The users send

signals to one base station (BS) equipped with Nr receive antennas, where

Nr ⩾ Nt = ∑K
k=1Ntk and Nt is the total number of transmit antennas. The

received signal vector at the BS is given by

y = H1s1 +H2s2 + . . . +HKsK + n

=
K

∑
k=1

Hksk + n, (2-1)

where sk is the Ntk × 1 transmitted signal vector by the k-th user at one

time slot taken from a common modulation constellation, denoted by A =
{a1, a2, . . . , aO}, each symbol is carrying M bits and O = 2M . Hk is the
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Figure 2.1: Multiuser MIMO system.

Nr × Ntk channel matrix of the k-th user with elements h
(k)
i,j corresponding

to the complex channel gain from the j-th transmit antenna of user k to the

i-th receive antenna. The vector n is an Nr × 1 zero mean complex circular

symmetric Gaussian noise vector with covariance matrix Kn = E[nnH] = σ2
nI.

The expression in (2-1) can be written more conveniently as

y = Hs + n. (2-2)

where H = [H1 H2 . . .HK] and s = [sT1 sT2 . . . s
T
K]T . The symbol vector s of

all K users has zero mean and a covariance matrix Ks = E[ssH] = σ2
sI, where

σ2
s is the signal power of each transmit antenna. We assume that the channel

matrix H was previously estimated at the BS.

2.3
MIMO Channel Capacity

Channel capacity is the upper bound on the rate of information that can

be reliably transmitted over a communications channel. The channel capacity

of MIMO systems can be increased by the factor min(Nt,Nr) when compared

to a conventional single-antenna system, for the same transmit power and

spectral bandwidth [16, 17]. In this section, the MIMO channel capacities

are derived for both deterministic and random channels. The MIMO channel

capacity is defined as
C =max

ps(s)
I(s;y), (2-3)

where ps(s) is the probability density function of the transmitted vector s, and

I(s;y) is the mutual information of the random vectors s and y, given by
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I(s;y) =H(y) −H(y∣s) =H(y) −H(n), (2-4)

where H(y) represents the differential entropy of y and H(y∣s) is the condi-

tional differential entropy of y when s is given. As the vectors s and n are

statistically independent, H(y∣s) = H(n). The differential entropy of the vec-

tor y is defined by

H(y) = −∫
RN

f(y)py(y)dy = −E[f(y)], (2-5)

where py(y) is the probability density function of the vector y and f(y) =
log2(py(y)). The differential entropy H(y) is maximized when y is a complex

circularly-symmetric Gaussian random vector with mean my = 0, which

consequently requires s in (2-2) to be zero-mean circularly-symmetric complex

Gaussian. Under this condition, the probability density function of y is given

by
py(y) =

1

πNrdet(Ky)
e−y

HK−1y y, (2-6)

where Ky is the covariance matrix of y and Nr is the number of elements

in y. Thus, taking the logarithm of (2-6), using Ky = Ry, where Ry is

the autocorrelation matrix of the vector y, and E[yHK−1y y] = E[yHR−1y y] =
T{E[R−1y yyH]} = T{R−1y Ry} = T[INr] = Nr, where T[A] denotes the trace of

the matrix A, we arrive at

−E[f(y)] =H(y) = log2(πNreNrdet(Ry)) = log2(det(πeRy)) bps/Hz, (2-7)

the differential entropy of the vector n is calculated similarly

H(n) = log2(det(πeσ2
nINr)) bps/Hz. (2-8)

In order to obtain expressions for the channel capacity as a function of the

energy Es of the signal vector s, a normalized version of (2-2) is used here

y =
√

Es

Nt

Hs + n, (2-9)

where Es

Nt
is the average energy per transmitted symbol. The autocorrelation

matrix of y in (2-9) is given by

Ry =
Es

Nt

HRsH
H +N0INr , (2-10)

where the matrix Rs with dimension Nt ×Nt is the autocorrelation matrix of

the information vector s normalized (E[∥ s ∥2] = T[Rs] = Nt) and N0 is the

unilateral power spectral density of the noise at the receiver. Considering the

expressions (2-3)-(2-10) the channel capacity of the MIMO channel is expressed

as
C = max

T[Rs]=Nt

log2[ det(INr +
Es

NtN0

HRsH
H)] bps/Hz. (2-11)
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2.3.1
Channel Capacity when Channel State Information is not Available at the
Transmitter Side

It is assumed here that the energy is distributed equally along the trans-

mit antennas and the components of the vector s are statistically independent.

Thus, the autocorrelation matrix of the vector information s is Rs = INt . In

this case the expression for the channel capacity becomes

C = log2[ det(INr +
Es

NtN0

HHH)] bps/Hz. (2-12)

The matrix H has a singular value decomposition (SVD) given byH =UΣVH,

where U, matrix with the left singular vectors, and V, matrix with the right

singular vectors, are square unitary matrices, UUH = INr , with dimensions

Nr and Nt, respectively, Σ is a rectangular matrix with dimension Nr × Nt

and its diagonal elements are the singular values of the matrix H denoted by

σ1, σ2, ..., σNmin
, where Nmin =min(Nt,Nr). Thus we have

HHH =UΣΣHUH =QΛQH, (2-13)

where Q = U and Λ is a diagonal matrix whose diagonal elements are the

eigenvalues {λi = σ2
i } of the matrix HHH. Thus, equation (2-12) can be

expressed as

C = log2[ det(INr +
Es

NtN0

QΛQH)] bps/Hz. (2-14)

However, we have

log2[ det(Q(INr +
Es

NtN0

Λ)QH)] = log2[ det(INr +
Es

NtN0

Λ)det(QQH)],
(2-15)

and Q is a unitary matrix, then QQH = INr and det(INr) = 1, the channel

capacity reduces to

C = log2[ det(INr +
Es

NtN0

Λ)] bps/Hz. (2-16)

Equation (2-16) can be rewritten alternatively as the sum of the capacities of

Nmin SISO channels with power Es/Nmin

C =
Nmin

∑
i=1

log2 (1 +
Es

NtN0

λi) bps/Hz. (2-17)
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2.3.2
Channel Capacity when Channel State Information is Available at the
Transmitter Side

If the channel state information is available at the transmitter side a

pre-processing, using the singular value decomposition (SVD), can be done

in the transmitter as shown in Figure 2.2. The transmitted signal s is the

+

ChannelTransmitter Receiver

V H U
H

n

s y ỹs̃

Figure 2.2: Decomposition of H when CSI is available at the transmitter side.

result of the pre-multiplication of the information vector s̃ by the matrix V,

the received signal vector y is pre-multiplied by UH, where U and V are the

unitary matrices defined in the previous subsection. Thus, the received signal

vector is

ỹ =
√

Es

Nt

UHHVs̃ +UHn

=
√

Es

Nt

Σs̃ + ñ, (2-18)

where ñ is a complex circularly-symmetric Gaussian noise vector with zero

mean, dimension Nr × 1 and autocorrelation matrix Rn = N0INr . Equation (2-

18) can be expressed as Nr SISO signals in parallel

ỹi =
√

Es

Nt

√
λis̃i + ñi, i = 1,2, ...,Nr. (2-19)

Therefore, the mutual entropy of the MIMO channel for this particular case

can be expressed as the sum of Nr SISO channels

I =
Nr

∑
i=1

log2 (1 +
Esγi
NtN0

λi) bps/Hz, (2-20)

where γi = E[∣ s̃i ∣2] is the energy at the i-th SISO channel. Assuming that the

eigenvalues λi are ordered such as λi > λi−1, the MIMO channel capacity can

be expressed as

C = max
∑r

i γi=Nt

r

∑
i=1

log2 (1 +
Esγi
NtN0

λi) bps/Hz, (2-21)
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where r ≤min(Nr,Nt) is the rank of HHH.

2.3.3
Deterministic SIMO Channel Capacity

In SIMO channels, Nt = 1, the channel matrix is a column matrix given

by
H = (h1 h2 . . . hNr)T . (2-22)

Thus, HHH has rank 1 (r = 1) with the only non-zero eigenvalue given by

λ1 =HHH = ∑Nr
i=1 ∣ hi ∣2.

SIMO Channel Capacity When CSI Is Not Available at the Transmitter
Side

The channel capacity of equation (2-17) becomes

C = log2 (1 +
Nr

∑
i=1
∣ hi ∣2

Es

N0

) bps/Hz, (2-23)

if the elements of the channel matrix are normalized as ∣ h1 ∣2=∣ h2 ∣2= ...
∣ hNr ∣2= 1 the capacity in (2-23) when CSI is not available to the transmitted

side is
C = log2 (1 +Nr

Es

N0

) bps/Hz. (2-24)

SIMO Channel Capacity when CSI is Available at the Transmitter Side

As ∑r
i γi = γ1 = Nt = 1 and λ1 = ∑Nr

i=1 ∣ hi ∣2, the channel capacity of

equation (2-21) becomes

C = log2 (1 +
Nr

∑
i=1
∣ hi ∣2

Es

N0

) bps/Hz. (2-25)

Comparing (2-25) and (2-23), it is concluded that the knowledge of the channel

state information does not influence the SIMO channel capacity.

2.3.4
Deterministic MISO Channel Capacity

In MISO channels, Nr = 1 and Nt transmit antennas, the channel is

represented by a row matrix given by

H = (h1 h2 . . . hNt), (2-26)

with HHH = ∑Nt
j=1 ∣ hj ∣2.
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MISO Channel Capacity when CSI is not Available to the Transmitter
Side

From the channel capacity in equation (2-12) we have

C = log2 (1 +
Nt

∑
j=1
∣ hj ∣2

Es

NtN0

) bps/Hz, (2-27)

if the elements of the channel matrix are normalized as ∑Nt
j=1 ∣ hj ∣2= Nt the

channel capacity in (2-27) becomes

C = log2 (1 +
Es

N0

) bps/Hz. (2-28)

We note that channel capacity in (2-28) is the same as that the SISO channel

capacity, that is, the capacity does not increase with the number of transmit

antennas.

MISO Channel Capacity when CSI is Available at the Transmitter Side

Since matrix HHH has only one eigenvalue (r = 1) given by

λ1 =
Nt

∑
i=1
∣ hi ∣2, (2-29)

and as ∑r
i γi = γ1 = Nt, the channel capacity given by (2-21) becomes

C = log2 (1 +
Es

N0

Nt

∑
i=1
∣ hi ∣2 ) bps/Hz. (2-30)

If the elements of the channel matrix are normalized as ∑Nt
i=1 ∣ hi ∣2= Nt, the

channel capacity in (2-30) becomes

C = log2 (1 +Nt
Es

N0

) bps/Hz. (2-31)

Hence, for MISO channels there is a difference between the channel capacity

when the CSI is available or not at the transmitter side.

2.3.5
Channel Capacity of Random MIMO Channels

Now consider the case in which the components of the channel matrix

are modeled as complex random variables. Thus, if the channel is random the

mutual entropy is also random. The ergodic channel capacity is defined as the

expected value of the channel capacity conditioned on the channel matrix H:

C = E{C(H)} = E
⎧⎪⎪⎨⎪⎪⎩

max
T[Rs]=Nt

log2[ det(INr +
Es

NtN0

HRsH
H)]
⎫⎪⎪⎬⎪⎪⎭

bps/Hz.

(2-32)
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for the case in which the CSI is not available at the received side, using (2-17),

the MIMO channel capacity becomes

C = E[
Nmin

∑
i=1

log2 (1 +
Es

NtN0

λi)] bps/Hz, (2-33)

where the eigenvalues λ1, λ2, . . . , λmin are random variables. When the CSI is

available at the transmitter side the ergodic channel capacity is given by the

expected value of the results in (2-21).

2.4
Least Squares MIMO Channel Estimation

In this section the least squares (LS) channel estimation algorithm for

MIMO system proposed in [73] is reviewed. In the LS algorithm the cost

function in the time instant i must be defined based on a weighted average of

error squares as:

J [i] =
i

∑
k=1

λi−k ∥ y[k] − Ĥ[i]s[k] ∥2, (2-34)

where y[k] and s[k] are the received and transmitted symbol vectors in the

time instant k, respectively, λ is the forgetting factor, Ĥ[i] is the channel

matrix estimate in the time instant i. The cost function is minimized by solving

∇Ĥ[i]J [i] = 0Nr,Nt , where 0Nr,Nt denotes the Nr × Nt zero matrix. The LS

estimate of the channel matrix can be obtained by

Ĥ[i] =D[i]P[i], (2-35)

where D[i] can be iteratively calculated by

D[i] = λD[i − 1] + y[i]s[i]H. (2-36)

The matrix P[i] can be calculated iteratively by using the matrix inversion

lemma as

P[i] = λ−1P[i − 1] − λ−2P[i − 1]s[i]s[i]HP[i − 1]
1 + λ−1s[i]HP[i − 1]s[i]

. (2-37)

Initially, we set the parameters D[0] = 0Nr,Nt and P[0] = ε−1I where ε is a

small constant.

2.5
Detection Techniques

The main challenge in communication systems is to obtain an acceptable

estimate of the transmitted information at the receiver side. In this section

we examine the most important existing signal detection techniques for MU-

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



Interference Mitigation Schemes for the Uplink of Massive MIMO in 5G Heterogeneous 30
Cellular Networks

MIMO systems, considering the received signal vector as in (2-2). To detect

the user’s data stream we assume that the channel state information (CSI) at

the BS was previously estimated.

2.5.1
Linear Detection

In linear detectors, the received signal vector from all users, y, is filtered

by a linear filter to reduce the channel effects [33]. The linear detectors have a

lower computational complexity when compared with the non-linear detectors,

however, due to the impact of interference and noise, linear detectors offer a

limited performance.

Zero Forcing Detector

Zero Forcing (ZF) detection assumes that the number of receive antennas,

Nr, is greater or equal to the number of transmitted symbols of all users,Nt, i.e.

Nr ≥ Nt. The ZF receive filter that cancels the interference between antennas

in the received signal is given by

Wzf = (HHH)−1HH. (2-38)

In other words, the ZF receive filter eliminates channel effects on the transmit-

ted signal without concern about noise. The estimated symbol vector is given

by

ŝzf = Wzfy

= (HHH)−1HH(Hs + n)

= s + ñzf , (2-39)

where ñzf = (HHH)−1HHn. The ZF hard decision of s is carried out as follow

ŝ = C(ŝzf), (2-40)

where the function C(x) returns the point of the complex signal constellation

closest to x. When H is nearly singular, the noise term, nzf , in (2-39) is

enhanced and performance degrades.

Minimum Mean Square Error Detector

In order to maximize the signal-to-interference-plus-noise ratio, i.e. re-

duce the effects of the noise and the interference between antennas in the

received signal, the minimum mean square error (MMSE) detector, that takes

into account also the noise component, is obtained by minimizing the mean-
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square error (MSE) as

Wmmse = arg min
W

E[ ∥ s −Wy ∥2 ]

= E[syH](E[yyH])−1

= HH(HHH + σ2I)−1

= (HHH + σ2I)−1HH, (2-41)

where σ2 = σ2
n/σ2

s . The estimated symbol vector is given by

ŝmmse = Wmmsey

= (HHH + σ2I)−1HH(Hs + n). (2-42)

Finally the MMSE hard decision of s is obtained from ŝmmse by

ŝ = C(ŝmmse). (2-43)

2.5.2
Non Linear Detection

In this section different nonlinear detection techniques are reviewed.

First the optimal Maximum Likelihood (ML) detector is studied, then an

approximation of the ML detector known as Sphere Decoder is presented.

Then, a detection scheme that cancels the multi-antenna interference without

changing the noise characteristics, called successive interference cancellation

(SIC) is presented.

Maximum Likelihood Detector

For a given observation y, the decision rule that minimizes the probability

of error
P (e) = P (s ≠ ŝ) (2-44)

is to choose the estimate, ŝMAP, that minimizes the conditional probability

P (s = ŝ ∣ y) =
P (s = ŝ)py∣s(y ∣ s = ŝ)

py(y)
, (2-45)

where py(y) is the probability density function of the observation y and

py∣s(y ∣ s = ŝ) is the probability density function of y when the transmitted

signal is ŝ. Since py(y) does not depend on ŝ, the MAP estimate ŝMAP can be
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obtained by

ŝMAP = arg max
ŝ∈ANt

P (s = ŝ ∣ y)

= arg max
ŝ∈ANt

P (s = ŝ)py∣s(y ∣ s = ŝ), (2-46)

whereA denotes the modulation constellation andNt is the number of transmit

antennas. If the transmitted signals all have the same a priori probability, the

MAP detector is equivalent to the ML detector

ŝml = arg max
ŝ∈ANt

py∣s(y ∣ s = ŝ). (2-47)

Considering expression (2-2), we have that

py∣s(y ∣ s = ŝ) = pn(y −Hŝ), (2-48)

where the probability density function of the white Gaussian noise n is

pn(n) =
1

(πσ2
n)Nr

e
−1
σ2
n
∥n∥2

. (2-49)

Then results from (2-48) and (2-49) that py∣s is maximized with the minim-

ization of ∥ y −Hŝ ∥2, therefore the ML estimate of s, i.e. ŝml is given by

ŝml = arg min
ŝ∈ANt

∥ y −Hŝ ∥2 . (2-50)

Thus, the ML detector selects the message ŝ with the smallest Euclidean

distance between the received signal vector y and the hypothesis message

Hŝ. The ML detector has a computational complexity that increases with the

modulation order and exponentially with the number of transmitting antennas.

Sphere Decoder

The ML detector in (2-50) can be alternatively rewritten using the

decomposition H = QR, where Q is an orthogonal matrix, QQH = I, and

R is an upper triangular matrix

ŝml = arg min
ŝ∈ANt

∥ ŷ −Rŝ ∥2, (2-51)

where ŷ = QHy. The Sphere Decoder (SD), introduced originally in [29],

consider that the real valued transformation [74] was previously applied in

the observation vector y. The real valued transformation converts the channel

matrix, the transmitted signal vector and the noise vector to real values.

Without loss of generality, we consider that the dimensions of the receiver

signal vector after the real valued transformation have the same dimensions

than (2-2) with all its elements are real values. The main idea of the SD [30–32]

is to solve (2-51) considering all the points inside a hyper-sphere with the radius
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d centered in ŷ, i.e., all ŝ that satisfy

∥ ŷ −Rŝ ∥2≤ d2. (2-52)

SD considers only a small set of vectors within a hyper-sphere rather than all

possible transmitted signal vectors. SD adjusts the hyper-sphere radius until

there exists a single vector within a hyper-sphere:

– Increases the radius when there is no vector inside the hyper-sphere.

– Decreases the radius when there are multiple vectors inside the hyper-

sphere.

Equation (2-52) can be rewritten as

Nt

∑
i=1
(

Nt

∑
j=1

ŷi − ri,j ŝj)
2

≤ d2, (2-53)

where ri,j is the i-th row and j-th column value of the upper triangular matrix

R. Equation (2-53) can be expanded as follows

(ŷ
Nt
− r

Nt,Nt
ŝ
Nt
)2 + (ŷ

Nt−1
− r

Nt−1,Nt
ŝ
Nt
− r

Nt−1,Nt−1
ŝ
Nt−1
)2 +⋯ ≤ d2, (2-54)

the first term in equation (2-54) depends only on ŝ
Nt
, the second term depends

on ŝ
Nt

and ŝ
Nt−1

, and so on. We can see that a necessary condition for Rŝ to

be inside the hyper-sphere is (ŷ
Nt
− r

Nt,Nt
ŝ
Nt
)2 ≤ d2 which is equivalent to the

following condition for ŝ
Nt
:

ŷ
Nt
− d

r
Nt,Nt

≤ ŝ
Nt
≤
ŷ
Nt
+ d

r
Nt,Nt

. (2-55)

For simplicity, we define

d2
Nt−1
= d2 − (ŷ

Nt
− r

Nt,Nt
ŝ
Nt
)2, (2-56)

and
ŷ1
Nt−1
= ŷ

Nt−1
− r

Nt−1,Nt
ŝ
Nt
, (2-57)

thus, for (ŷ1
Nt−1
− r

Nt−1,Nt−1
ŝ
Nt−1
)2 ≤ d2

Nt−1
the condition for ŝ

Nt−1
turns

ŷ1
Nt−1
− d

Nt−1

r
Nt−1,Nt−1

≤ ŝ
Nt−1
≤
ŷ1
Nt−1
+ d

Nt−1

r
Nt−1,Nt−1

. (2-58)

Using the previous procedure the intervals for ŝ
Nt−2

, ŝ
Nt−3

can be obtained,

until ŝ1 and thus all the points within the hyper-sphere can be determined.

If a candidate does not exist in the intervals determined by the inequalities

in (2-55) and (2-58), it will not be possible to keep searching for the next

symbols. Instead, it is necessary to go back to the upper symbol and choose

another candidate in the previous interval, then calculate the interval of the

next symbol. When there are no values that satisfy all the inequalities it means
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that it is necessary to increase the initial radius of the hyper-sphere and restart

the search. It turns out that there can be more than one possible solution of

the transmitted signal vector inside the hyper-sphere, therefore the Euclidean

distances between the candidates and ŷ must be calculated and the vector

with the smallest distance is selected as the solution.

For a more simple visualization of the SD detector a tree diagram is

shown in Figure 2.3. Looking for a possible solution from the symbol s
Nt

to the

symbol s1 . It is supposed that the symbols between s
Nt

and s
k
have been found

within the hyper-sphere, then for all sk all the possible s
k−1 are searched inside

the hyper-sphere. For the example, in Figure 2.3, with Nt = 3, at the top of the

Start

k = 3

k = 2

k = 1

Candidates for s
Nt−1

Candidates for s
Nt−2

Candidates for s
Nt

Figure 2.3: Tree diagram for Sphere Decoding

tree is necessary to find all possibles s
Nt
, for this case there are three candidates

for s
Nt
. Then for all s

Nt
we find all possibles s

Nt−1
inside the hyper-sphere. Note

that some nodes in the level k = 2 can not lead to potential nodes on the lower

level. Therefore in each node, from the top level to the bottom level, the tree

will assign a value for the corresponding symbol. In Figure 2.3 there are six

possible solutions for the transmitted signal vector in the hyper-sphere.

Successive Interference Cancellation Detector

The performance of MIMO systems with linear detectors can be improved

without significant increase in the computational complexity by using the

successive interference cancellation (SIC) technique. The SIC detector consists

of a bank of linear detectors, each detects a selected component si of s.

The component obtained by the first detector is used to reconstruct the

corresponding signal vector which is then subtracted from the received signal

to further reduce the interference in the input to the next linear receive filter.

The successively canceled received data vector that follows a chosen ordering

in the i-th stage is given by

yi = y −
i−1
∑
j=1

hj ŝj, (2-59)

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



Interference Mitigation Schemes for the Uplink of Massive MIMO in 5G Heterogeneous 35
Cellular Networks

where hj denotes the j-th column of the channel matrix H and ŝj is the

estimated symbol obtained in the output of the j-th linear detector. Figure 2.4

shows the SIC scheme, where ŝi is the estimated symbol obtained in the output

of the i-th linear detector which may not correspond to the estimate of the

symbol transmitted by the i-th antenna, the choice depends on the order that

the symbols are to be detected. Following the diagram we have that

ỹ1 = y − h1ŝ1

= h1(s1 − ŝ1) + h2s2 + ... + hNtsNt + n. (2-60)

Then, a new H̃1 is calculated as described by

H̃1 = [h1 h2 . . .hi−1 hi+1 . . .hNt], (2-61)

where Nt = ∑K
k=1Ntk . The second linear detector uses the matrix H̃1, and the

process is repeated Nt times until all components of the estimated vector ŝ are

found. If ŝi = si the interference is successfully eliminated, if ŝi ≠ si, then error

y

ỹ
Nt−1

= ỹ
Nt−2

− h
Nt−1

ŝ
Nt−1

ỹ
1
= y − h

1
ŝ
1

ỹ
2
= ỹ

1
− h

2
ŝ
2

Detector 1

Detector 2

Detector 3

Detector Nt

.

.

.

.

.

.

.

.

.

ŝ
1

ŝ
2

ŝ
3

ŝ
Nt

Figure 2.4: Successive Interference Cancellation Detector

propagation [39,40] is incurred because the computation of the estimate of s2

assumes that ŝ1 = s1, i.e. that the interference was successfully canceled. The

order of detection has a significant influence on the overall performance of SIC

detection [34]. Different ordering methods are described here:

SINR Based Ordering Signals with higher signal-to-interference-plus-noise-

ratio (SINR) are detected first. If we consider linear MMSE detection, the

estimation of the i-th symbol of the output of the first detector is obtained by
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ŷi =wih1s1 +wihisi + . . . +wihNtsNt +win, (2-62)

where wi is the i-th row of the MMSE detection matrix in (2-41), thus the

SINR in (2-62) is given by

SINRi =
E[ ∣wihisi ∣2 ]

E[
Nt

∑
l=1
l≠i

∣wihlsl +win ∣2 ]
, i = 1,2, . . . ,Nt. (2-63)

where E[.] is the expected value operator. As n and sl are statistically

independent, (2-63) becomes

SINRi =
Esi ∣wihi ∣2

Nt

∑
l=1
l≠i

Esl ∣wihl ∣2 +σ2
n ∣wi ∣2

, i = 1,2, . . . ,Nt. (2-64)

where Esl = E[∣ sl ∣2] is the energy of the transmitted symbols. Nt SINR values

are calculated and the detected symbol that corresponds to the signal with

the highest SINR is selected as ŝ1 in Figure 2.4. Similar procedure is done to

obtain ŝ2 and so on.

SNR Based Ordering If we consider linear ZF detection, the interference

components in (2-63) is suppressed. The estimation of the i-th symbol at the

output of the first detector is then

ŷi = si +win, (2-65)

where wi is the i-th row of the ZF detection matrix in (2-38), thus the SINR

in (2-65) is reduced to

SNRi =
E[∣ si ∣2]
E[∣win ∣2]

= Esi

σ2
n ∥wi ∥2

, i = 1,2, . . . ,Nt. (2-66)

The same procedure described in the previous method is used to determine

the detection ordering.

Column Norm-Based Ordering To reduce the computational complexity of

the SINR and SNR based ordering schemes, a third method was proposed.

The norm of the column vectors in the channel matrix is used. Consider the

following representation of the received signal vector

y =Hs + n = h1s1 + h2s2 + ... + hNtsNt + n, (2-67)

the signal power of the i-th received signal is proportional to the norm of the

i-th column of the channel matrix. Therefore, the signals can be detected in

decreasing order of the norms ∣∣ hi ∣∣.
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2.6
MIMO Detection by List Generation

The linear detection schemes presented in the previous section often have

a low performance due to the multiple access interference (MAI). On the other

hand the non linear detectors such as SIC detector suffer from error propaga-

tion and performance degradation. In this section, we study two sub-optimal

detection scheme for MU-MIMO, Multi-Branch Successive Interference Cancel-

lation (MB-SIC) and Multiple Feedback Successive Interference Cancellation

(MF-SIC). In these detectors, a list of tentative decisions of the transmitted

signal is generated, then the best solution is selected using a selected criterion.

In the MB-SIC detector a small set of reliable candidates for the transmit-

ted signal vector are generated. In MF-SIC detector the selection procedure is

constrained to one selected symbol in each spatial layer.

2.6.1
Multi-Branch Successive Interference Cancellation Detection

This subsection describes the MB-SIC detector [36,37,75] for MU-MIMO

system. In the multi-branch scheme, depicted in Figure 2.5, different orderings

are explored for SIC, each ordering is referred to as a branch, so that a detector

with L branches produces a set of L estimated vectors. Each branch uses a

y

SICL

SIC1

SIC2

PL

P1

P2

ŝ
L

ŝ
1

ŝ
2

H
(1)

= HP1

H
(2)

= HP2

H
(L)

= HPL

.

.

.

.

.

.

Select ŝl

that minimizes J
C(·)

ŝ

x̂
1

x̂
2

x̂
L

Figure 2.5: Block diagram of the MB-SIC detector.

column permutation matrix P. The estimate of the signal vector of branch l,

x̂l, is obtained using a SIC receiver based on a new channel matrix

H(l) =HPl. (2-68)

The order of the estimated symbols is rearranged to the original order by
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ŝl = Plx̂l, l = 1, . . . , L. (2-69)

A higher detection diversity can be obtained by selecting the most likely

candidate symbol vector based on the ML selection rule.

Selection Rule

To select the branch with the best performance the Maximum Likelihood

criterion is used. The cost function for the ML criterion is written as

JML =∥ y −Hsl ∥2 l = 1, . . . , L. (2-70)

Pre-Stored Patterns

For the first branch the column permutation matrix P1 is chosen as the

identity matrix INt to keep the optimal ordering. The remaining branches

used the so called Pre-Stored Patterns (PSP) proposed in [75]. The PSP can

be described mathematically by

Pl =
⎡⎢⎢⎢⎢⎣

Is 0s,Nt−s

0Nt−s,s ϕ[Is]

⎤⎥⎥⎥⎥⎦
, 2 ⩽ l ⩽ Nt, (2-71)

where 0m,n denotes m × n-dimensional matrix full of zeros, the operator ϕ[⋅]
rotates the elements of the argument matrix column-wise such that an identity

matrix becomes a matrix with ones in the reverse diagonal. The PSP algorithm

shifts the ordering of the cancellation according to shifts given by

s = ⌊(l − 2)Nt/L⌋, 2 ⩽ l ⩽ Nt, (2-72)

where L is the number of parallel branches and ⌊.⌋ rounds the argument to the

lowest integer according to the l-th branch.

2.6.2
Multiple Feedback Successive Interference Cancellation Detection

The MF-SIC detector [38], depicted in Figure 2.6, uses a number of

selected constellation points as the candidates when a previous decision is

determined unreliable. The reliability of the previous detected symbol is

determined by the Shadowing Area Constraints (SAC) algorithm, which saves

the computational complexity by avoiding redundant processing with reliable

decisions. The soft estimation of the k-th symbol is obtained by

uk =wk
mmseỹk, (2-73)

where wk
mmse is the Nr × 1 MMSE filter vector given by
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Figure 2.6: Block diagram of the MF-SIC detector.

wk
mmse = (H̃Hk H̃k + σ2

nI)−1hHk , (2-74)

where H̃k denotes the matrix obtained by taking the columns k, k+1, . . . ,Nt of

the channel matrix H and ỹk is the received signal vector after the cancellation

of k−1 previously detected symbols. Then the estimated symbol uk is checked

by the SAC, which decides whether this decision is reliable according to the

metric
dk = min

af ∈A
{ ∣ uk − af ∣ }, (2-75)

where af denotes the constellation point which is the nearest to the soft

estimation symbol uk.

For a predefined threshold dth, if dk > dth we say that uk is dropped into

the shadowed area of the constellation map and this decision is determined

unreliable, as shown in Figure 2.7. If dk ⩽ dth we say that uk is reliable.

Decision Reliable

If the soft estimation uk is considered reliable, the estimated symbol for each

data stream ŝk is obtained in the same way as in the conventional SIC detector

by ŝk = C(uk), where C(.) is signal quantization. The hard decision symbol ŝk

is considered as a reliable decision for the k-th symbol.

Decision Unreliable

If uk is unreliable, a candidate vector is generated

L = [c1, c2, . . . , cm, . . . , cM] ⊆ A, (2-76)
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Figure 2.7: The shaded area is the unreliable region for QPSK constellation

where L contains the M nearest to uk constellation points. The size of L can

be determined by the signal-to-noise ratio (SNR). A higher SNR corresponds

to a smaller M which introduces a trade-off between the complexity and the

performance. The unreliable decision C(uk) is replaced by

ŝk = cmopt , (2-77)

where cmopt is the optimal candidate selected from the list L. The selection

algorithm of the optimal feedback candidate cmopt is described as follows:

A set of selection vectors b1, . . . ,bm, . . . ,bM is defined, the number of these

selection vectors M equals the number of constellation candidates we used for

each unreliable decision. For the k-th layer, a Nt × 1 vector bm consists of the

following elements,

– Previously detected symbols ŝ1, . . . , ŝk−1.

– cm a candidate symbol taken from the constellation for substituting the

unreliable decision C(uk) in the k-th layer.

– The detection of the following layers k+1, . . . , q, . . . ,Nt − th is performed

by the nulling and symbol cancellation which is equivalent to a traditional

SIC algorithm.

Therefore, the vector is formed as follows

bm = [ŝ1, . . . , ŝk−1, cm, bmk+1, . . . , bmq , . . . , bmNt
]T , (2-78)

where bmq is a potential decision that corresponds to the use of cm in the k-th

layer,
bmq = C(wHq ŷm

q ), (2-79)

where q indexes a certain layer from the (k + 1)-th to the Nt-th. Finally
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ŷm
q = ỹk − hkcm −

q−1

∑
p=k+1

hpb
m
p . (2-80)

For each user, the same MMSE filter vector wk is used for all candidates, which

allows the proposed algorithm to have computational simplicity for the SIC

detection. The candidate is selected according to

mopt = arg min
1⩽m⩽M

∥ y −Hbm ∥2 . (2-81)

The cmopt is chosen to be the optimal feedback symbol for the next layer as

well as more reliable decision for the current symbol.

2.7
Numerical Results

The bit error rate (BER) performance of the different MIMO detectors,

which include ZF, MMSE, SIC, MB-SIC, MF-SIC and ML are numerically

compared in this section through computer simulations. We consider the uplink

of a MU-MIMO system with K active users. For all K transmitters, the SNR

per transmitted information bit is defined as

SNR = 10log
10

Ntσ2
s

Mσ2
n

, (2-82)

where σ2
s is the common variance of the received symbols, σ2

n is the noise vari-

ance and M is the number of information bits per transmitted symbol. In this

chapter’s simulations we consider independent and identically distributed ran-

dom fading channel models whose coefficients are complex Gaussian random

variables with zero mean and unit variance. The simulation curves correspond

to an average of 3,000 simulation runs, with 500Nt symbols transmitted per

run.

Figure 2.8 shows the MIMO channel capacity, when CSI is not available

at the transmitter side, versus SNR for different number of antennas obtained

from (2-33). In Figure 2.8 we can see that the MIMO channel capacity improves

when the number of transmit and receive antennas increases. In Figure 2.9 we

compare the performance of the SIC detector for different ordering methods,

SINR based ordering, SNR based ordering and the column norm-based or-

dering. It is observed that the performance with SINR based ordering have

the best performance. In Figs 2.10 - 2.12 we compare the performance of the

existing detectors using QPSK and 16-QAM modulation. It is observed that

the linear detectors, ZF and MMSE, provides the worst performance. We also

note that SIC detector, despite having a better performance that the linear

detectors still suffer from the error propagation. We can see that the sub-
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Figure 2.8: MIMO channel capacity when CSI is not available at the transmit-
ter side.

optimal detectors by list generation, MB-SIC and MF-SIC, provide a trade-off

between the performance and complexity, however, their performance is not

comparable with the optimal performance, especially at high SNR values. It

is necessary to improve the performance of these sub-optimal detectors. The

optimal performance is obtained by the ML detector, with a full diversity gain,

but the exhaustive search of the optimal solution leads to a high computational

complexity which makes its implementation impractical.
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Figure 2.9: BER vs SNR of SIC detectors with different detection ordering,
QPSK modulation, K = 2 users and Nti = 4 transmit antennas per user.
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Figure 2.10: BER vs SNR of existing MU-MIMO detectors with QPSK
modulation, K = 3 users and Nti = 2 transmit antennas per user. All SIC
detectors use column-norm-based ordering.
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Figure 2.11: BER vs SNR of existing MU-MIMO detectors with QPSK
modulation, K = 2 users and Nti = 2 transmit antennas per user. All SIC
detectors use column-norm-based ordering. We also compared the performance
with LS channel estimation (- -) and perfect channel estimation (—); 550Nt

symbols are transmitted, with 50 symbols used for training in the LS scheme.
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Figure 2.12: BER vs SNR of existing MU-MIMO detectors with 16-QAM
modulation, K = 4 users and Nti = 1 transmit antennas per user. All SIC
detectors use column-norm-based ordering.
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Lattice Reduction Detection for MIMO Systems

3.1
Overview

In the future generation of wireless communications systems, there will

be a growing demand to reduce the weight and the power consumption,

this requires reducing MS device sizes and BS equipment and efficient signal

processing algorithms. However, the smaller spacing of antennas increases the

correlation between antennas resulting in inferior detection performance [76].

In this Chapter a detection technique known as Lattice Reduction (LR)

detection is presented. LR introduces a pre-processing in the estimated channel

matrix at the receive side to reduce the effects of channel correlation [41, 42].

The LR transformation finds a new basis for the channel matrix, which is

nearly orthogonal allowing a more effective detection.

In this chapter an efficient implementation for the LR-SIC detector is

proposed and evaluated. In this Chapter we also propose two new detection

schemes for MU-MIMO systems in the uplink scenario. The first scheme

proposed here combines LR, SIC and list detection schemes, that were reviewed

in the previous chapter, to devise an MB-LR-SIC detector which obtains a

good performance. The second proposed scheme, called VLD, tests a variable

number of candidates for the transmitted symbol vector. An algorithm to

decide if the current candidate has good quality or if it is necessary to further

explore different orderings to improve the estimation quality is employed. The

proposed VLD schemes have a near-optimal performance, while keeping under

control the computational cost. We study the performance of the proposed

and existing algorithms using a realistic MU-MIMO scenario with propagation

effects and correlation between antennas.

This Chapter is structured as follows. Section 3.2 examines the LR

concept. In Section 3.3 different detection schemes in the Lattice domain

are described. The proposed MB-LR-SIC and VLD schemes are detailed in

Section 3.4 and Section 3.5, respectively. Section 3.6 is dedicated to the

presentation and discussion of the numerical results obtained via computer

simulations.
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3.2
Lattice Reduction Concept

A lattice Λ may viewed as a regular tiling of a space. A lattice can be

generated from an integer linear combination of a basis, i.e.,

Λ = {c ∣ c =
M

∑
m=1

bmzm, zm ∈ Z} (3-1)

where Z denotes the set of integer numbers and bm,m = 1, . . . ,M are real-

valued and linearly independent vectors that form the basis

B = [b1,b2, . . . ,bM]. (3-2)

An important property is that the same lattice Λ can be generated by different

bases. If we ignore the noise vector in (2-2) we can see that it is possible to

describe a MIMO system as a lattice under some considerations; The basis

vectors of H should be real vectors and the elements of s need to be integers.

Then, the system model in (2-2) can be described as a lattice spanned by the

columns of H.

In [52], the authors proposed a lattice where H and s have complex values.

But the real and imaginary components of s still need to belong to a group

of consecutive integers denoted by Q̄ = Z + jZ. When the lattice basis H is

orthogonal, the decision region of linear detectors is the same as the ML.

Clearly, the orthogonality of H has an impact on the performance of MIMO

detectors. To quantify the orthogonality of a matrix, a metric called orthogonal

deficiency (od) is introduced in [77] and defined as

od(H) = 1 − det(HHH)
∏Nt

n=1 ∥ hn ∥2
, (3-3)

where hn is the n-th column of H and 0 ⩽ od(H) ⩽ 1. When od(H) is small,

H is closer to an orthogonal matrix. As the same lattice can be generated by

different bases, i.e., different channel matrices, it is possible to find a new basis

H̃ in the same lattice, which is nearly orthogonal or, at least, more orthogonal

than H. The bases H and H̃ span the same lattice when the column vector of

a basis H̃ is an integer linear combination of the column vectors of the basis

H. Then, we have
H̃ =HT, (3-4)

where T is a uni-modular matrix (det ∣ T ∣=1). The received signal vector

in (2-2) can be rewritten as

y =Hs + n =HTT−1s + n = H̃z + n, (3-5)
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where z = T−1s. The estimation vector z̃ of z can be computed using MIMO

detectors based on the transformed matrix H̃. To improve the performance of

MIMO detection in (3-5) a nearly orthogonal basis H̃ is desired. The matrix H̃,

generated from H, is regarded as the lattice-reduced matrix. There are many

lattice reduction algorithms to find the best basis vectors, the most important

of these algorithms are presented next.

3.2.1
Gaussian Lattice Reduction for a Two-Basis System

In this subsection, a LR reduction for a simple case with a 2 × 2 basis

is presented [43]. The objective is to find an LR matrix H̃ = [h̃1 h̃2] of the
channel matrix H = [h1 h2], under the assumption that

∥ h1 ∥⩽∥ h2 ∥, (3-6)

through the correlation reduction of H. The condition in (3-6) can be guaran-

teed with column swapping. The columns of H̃ are obtained by

h̃1 = h1 (3-7)

h̃2 = h2 − ηh1, (3-8)

where η is chosen such that it minimizes the inner product ⟨h̃1, h̃2⟩ which
represents the correlation between h̃1 and h̃2

η = arg min
η∈Z+jZ

∣⟨h̃1, h̃2⟩∣ = arg min
η∈Z+jZ

∣⟨h1,h2⟩ − η∥h1∥2∣ = ⌊
⟨h1,h2⟩
∥h1∥2

⌉, (3-9)

where ⌊⋅⌉ is the rounding operator, with the real and imaginary components

being rounded separately. The vectors h̃1 and h̃2 may not be orthogonal, the

next step is to find their correlation

⟨h̃1, h̃2⟩ = ⟨h1,(h2 − ⌊
⟨h1,h2⟩
∥h1∥2

⌉h1)⟩

= (⟨h1,h2⟩
∥h1∥2

− ⌊⟨h1,h2⟩
∥h1∥2

⌉)∥h1∥2

= ρ∥h1∥2, (3-10)

where ρ represents the rounding error. Since the real and imaginary rounding

errors will be no more than 1
2 , then we have from (3-10) that

∣⟨h̃1, h̃2⟩∣ ≤
1

2
∥h̃1∥2. (3-11)
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Then, we check if the new vector h̃1 is shorter than h̃2, i.e., the condition in (3-

6) is verified, if not so, swap them and repeat the procedure. The correlation

between two vectors and the length of the vectors are checked in (3-11) and (3-

6), respectively. If both conditions are fulfilled, we have the lattice-reduced

matrix H̃.

3.2.2
Complex Lenstra - Lenstra - Lovasz Algorithm

The Lenstra, Lenstra and LovÃ sz (LLL) lattice reduction algorithm has

been the most popular LR algorithm in MIMO detection because it guarantees

a bounded orthogonality defect [44,52]. LLL is a generalization of the Gaussian

reduction for arbitrary bases dimensions, achieving an orthogonal basis via

iterative size reduction operations, i.e., the lengths of the basis vectors are

reduced, coupled with an appropriate column swapping if they are not in

ascending order [45, 46]. The complex-valued LLL (CLLL) proposed in [52]

takes the QR decomposition of H and iteratively reduces the correlation

between the basis vectors to produces a nearly-orthogonal basis H̃ = Q̃R̃ that

satisfies:
∣Re(R̃l,k)∣, ∣Im(R̃l,k)∣ ⩽

1

2
∣R̃l,l∣ ∀ 1 ≤ l ≤ k ≤ Nt (3-12)

δ∣R̃k−1,k−1∣2 ≤ ∣R̃k−1,k∣2 + ∣R̃k,k∣2 ∀ 2 ≤ k ≤ Nt, (3-13)

where R̃l,k denotes the (k, l)−th entry of R̃ and Re(x) and Im(x) represent
the real and imaginary part of x, respectively. The factor δ ∈ [14 ,1] controls
the tradeoff between the processing time and the quality of the reduced basis.

The common choice that achieves a good balance between speed and quality

is δ = 3
4 . The conditions in (3-12) and (3-13) are known as the size reduction

and the LovÃ¡sz basis swapping condition, respectively. The CLLL reduction

is summarized in Algorithm 1. The basis reduction operations to reduce the

size of the k-th column of R̃ against its previous 1 ∶ k−1 columns are performed

in lines 4-8. The rounding operator in line 5 refers to rounding to the nearest

integer. After the size reduction, the LovÃ¡sz condition is checked for the k-th

and (k − 1)-th columns of R̃, if it passes the two columns are swapped and

Givens rotations are applied to maintain the upper-triangular nature of R̃,

otherwise the algorithm proceeds to the next column pair according to lines

9-14.

The orthogonality deficiency of H̃, obtained by applying CLLL algorithm

in H with rank Nt for a given parameter δ, satisfies the next condition

√
1 − od(H̃) ⩾ 2

Nt
2 ( 2

2δ − 1
)
−Nt(Nt+1)

4 ∶= cδ. (3-14)
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Algorithm 1 : THE CLLL ALGORITHM

[Q̃, R̃, T]= CLLL(Q, R, δ)
1 Q̃ =Q; R̃ =R; T = INt ;
2 k = 2;
3 While k ≤ Nt

4 Do for l = k − 1 ∶ −1 ∶ 1
5 µ = ⌊R̃l,k/R̃l,l⌉;
6 R̃(1 ∶ l, k) = R̃(1 ∶ l, k) − µR̃(1 ∶ l, l);
7 T(∶, k) = T(∶, k) − µT(∶, l);
8 End
9 Do if δ∣R̃k−1,k−1∣2 > ∣R̃k−1,k∣2 + ∣R̃k,k∣2
10 Swap (k − 1)-th and k-th columns in R̃ and T;

11 Θ = [α
∗ β
−β α

] where α = R̃k−1,k−1
∥R̃(k−1∶k,k−1)∥ and β = R̃k,k−1

∥R̃(k−1∶k,k−1)∥

12 R̃(k − 1 ∶ k, k − 1 ∶ Nt) =ΘR̃(k − 1 ∶ k, k − 1 ∶ Nt);
13 Q̃(∶, k − 1 ∶ k) = Q̃(∶ k − 1 ∶ k)ΘH
14 k =max(k − 1,2);
15 Else
16 k = k + 1;
17 End
18 End

For any integer Nt ≥ 1, cδ is always less than 1. Therefore, the orthogonality

deficiency is bounded by
od(H̃) < 1 − c2δ . (3-15)

From (3-14) and (3-15) we can see that although not guaranteeing to reduce

the orthogonal deficiency for every realization of H, the CLLL algorithm yields

a new basis H̃ whose orthogonal deficiency has an upper bound which is

strictly less than one [54]. In previous works, the CLLL algorithm has shown

an excellent trade-off between the orthogonal deficiency and the computational

complexity.

3.3
Lattice Reduction Detection

In this section, some MIMO detection techniques in the lattice domain

are studied, starting with the linear detectors such as LR Zero Forcing (LR-

ZF) and LR Minimum Mean Square Error (LR-MMSE). We also review an

important detection scheme, namely, the complex Lattice Reduction Successive

Interference Cancellation (LR-SIC). An efficient implementation for LR-SIC is

also proposed and evaluated in this section.
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3.3.1
Lattice Reduction Linear Detection

Linear detectors such as Zero Forcing (ZF) or minimum mean square

error (MMSE) can be developed based on the lattice-reduced channel matrix

H̃ [53, 54]. The linear detectors in the lattice domain are given by

W̃χ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(H̃HH̃)−1H̃H, χ = LR-ZF

(H̃HH̃ + σ2THT)−1H̃H, χ = LR-MMSE
(3-16)

the LR linear estimation of vector z is obtained by

z̃ = W̃χy. (3-17)

Considering the MMSE case, an excellent alternative is to perform the LR

transformation taking into account the noise amplification in the equalization

procedure by applying the CLLL algorithm to the extended channel matrix:

H̄ =
⎡⎢⎢⎢⎢⎣

H

σINt

⎤⎥⎥⎥⎥⎦
, (3-18)

rather than to H. This solution improves the performance gain and reduces

the computational complexity [53]. Along this thesis, we consider that the uni-

modular matrix T in (3-4) is calculated performing the LR transformation on

the extended matrix H̄.

In practice, the components of the transmitted signal vector s are taken

from a complex modulation, for that, the shifting and scaling operations should

be used in the detected vector z̃ [78]. The hard decision of z is found by

ẑ = 1

α
(⌊αz̃ + βT−11⌉ − βT−11), (3-19)

where ⌊⋅⌉ denotes the rounding operator, α and β denote the scaling and

shifting coefficients, respectively, and 1 is a vector of ones. Note that the

shifting and scaling operations of ẑ would be unnecessary in the hypothetical

case that s ∈ Q̄. Finally, the hard decision of s is obtained by

ŝ = C(Tẑ). (3-20)

Satisfactory results have been obtained with LR linear detectors due to the

reduced noise enhancement.

3.3.2
Lattice Reduction Successive Interference Cancellation

Even with a nearly orthogonal matrix H̃, mutual interference between the

components of the transformed signal z in (3-5) is still present. For this reason
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LR-SIC techniques result in additional improvements. The LR-SIC receiver

consists of a bank of linear detectors based on the matrix H̃, where each

detects a selected component zi of z. The component obtained by the first

detector is used to reconstruct the corresponding signal vector, which is then

subtracted from the received signal to further reduce the interference in the

input to the next linear receive filter. The successively canceled data vector in

the i-th stage is given by

yi = y −
i−1
∑
j=1

h̃j ẑj. (3-21)

The estimate ẑi of zi is obtained after shifting and scaling operations in the

output, z̃i, of the i-th linear detector:

ẑi =
1

α
⌊αz̃i + βt−1i 1⌉ − βt−1i 1, i = 1, . . . ,Nt, (3-22)

where t−1i is the i-th row of T−1. The index of z depends on the selected

cancellation ordering, i.e., the order in which the interference vectors are

subtracted. Then a new LR channel matrix is calculated removing the column

vectors from the original H̃ that corresponds to the symbols detected in the

previous i layers. The i + 1 linear detector uses this new channel matrix. The

process is repeated Nt times until all components of the estimated vector ẑ are

found. At the end of the detection procedure, the estimated transmit signal

vector in the constellation domain can then be obtained by (3-20).

Since, due to the LR transformation, the components of z are correlated,

the specific value of the detected symbols affects the variance of the symbols

to be detected. The covariance of the LR symbols need to be updated at each

stage. In [55], it is shown that the SIC with MMSE detection that considers the

update of the symbols’ covariance at each detection layer can be interpreted

as applying the SIC algorithm above to an extended received signal given by

ye =
⎡⎢⎢⎢⎢⎣

y

0Nt

⎤⎥⎥⎥⎥⎦
, (3-23)

in conjunction with the extended channel matrix

H̃e =
⎡⎢⎢⎢⎢⎣

H̃

σnC

⎤⎥⎥⎥⎥⎦
, (3-24)

where 0Nt denoted an all-zero vector of dimension Nt×1 and C =
√
R−1, where

R is the covariance matrix of vector z, i.e.,R = E[zzH] = σ2
sT
−1T−H. The linear

filter at the first LR-SIC layer is given by the Moore-Penrose pseudo-inverse

of H̃e defined as H̃†
e = (H̃He H̃e)−1H̃He .

In this thesis, we employ an equivalent version of the LR-SIC detector

described in (3-21)-(3-22) applied to the extended version in (3-23)-(3-24) that
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avoids the computational effort of calculating the matrix C =
√
R−1. In our

version, we replace the matrix C in (3-24) with the matrix T/σs. Then, we

assume for simplicity of notation that the LR symbols are estimated according

to the increasing order of their indexes, the estimated symbol in the n-th LR-

SIC layer is given by

z̃n =
⎡⎢⎢⎢⎢⎣

H̃[n]

σT[n]

⎤⎥⎥⎥⎥⎦

†

n

⎡⎢⎢⎢⎢⎣

y − H̃[nr]ẑ[nr]
−σT[nr]ẑ[nr]

⎤⎥⎥⎥⎥⎦
, n = 1, . . . ,Nt, (3-25)

where σ = σn/σs, [A]†n represents the n-th row of the Moore-Penrose pseudo-

inverse of A, ẑ[nr] is a vector formed by the already detected symbols at the

n-th SIC stage and A[n] and A[nr] denote, respectively, matrices with the first

(n − 1) and with the last (Nt − n + 1) columns of the matrix A removed. The

equivalence between the two versions is demonstrated in Appendix A.

3.4
Multi-Branch Lattice Reduction Successive Interference Cancellation De-
tection

This section describes the proposed Multi-Branch Lattice Reduction Suc-

cessive Interference Cancellation (MB-LR-SIC) detection scheme that com-

bines the concepts previously presented. The main idea is to employ an LR

transformation on the channel matrix, then generate multiple branches, where

each branch has a different ordering pattern and produce different symbol

estimate vectors using the LR-SIC structure. In particular, the first branch

ŝ

C(·)
J

l

Figure 3.1: Proposed multi-branch lattice reduction successive interference
cancellation detection block diagram.

employs a column-norm based ordering in the LR domain and the remaining
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branches use shifted versions of the ordered first branch. The branch with the

best performance among the list of candidates is selected using the ML cri-

terion. A schematic of the detector is shown in Figure 3.1. The MB-LR-SIC

detector employs an LR transformation in the channel matrix as in (3-5). Let

Pl be a column permutation matrix. Then the signal term in (3-5) can be

expressed as
H̃z = H̃PlP

T
l z = H̃(l)zl, (3-26)

where H̃(l) = H̃Pl =H(TPl) is a column permuted version of H̃ and

zl = PT
l z = (PT

l T
−1)s. (3-27)

In the proposed scheme, the l-th branch (l = 1, . . . , L) of the receiver employs

an LR-SIC detector, as described in Section 3.3, based on the permuted matrix

H̃(l) = H̃Pl to generate an estimate ẑl of zl. Then, the lth branch transmitted

signal candidate is obtained by

ŝl = (PT
l T

−1)−1ẑl = (TPl)ẑl, l = 1, . . . , L. (3-28)

The best candidate out of the L estimated data signal vectors is selected using

the ML criterion, that is

ŝ = arg min ∥ y −Hŝl ∥2, l = 1, . . . , L. (3-29)

In order to guarantee that a good candidate is always present in the set of

Algorithm 2 : THE MB-LR-SIC ALGORITHM

[H̃,T] = CLLL(H) % CLLL in [52], input H, output H̃ and T
1 Initialization: L = Nt;
2 Do for l = 1 to L % Multi-branch loop
3 Do if l = 1
4 Pl = CNBO(H̃); % column-norm based ordering in H̃
5 Else
6 Pl = PSP(Nt, l); % Pre-stored patterns
7 End if
8 H̃(l) = H̃Pl;
9 Do for n = 1 to Nt

10 Wl,n =MMSE(H̃(l)); % MMSE linear equalizer
11 z̃l,n =WH

l,nyl,n;
12 ẑl,n = SS(z̃l,1); % Shifting and scaling operations [78]

13 yl,n = yl,n − h̃(l)1 ẑl,n;

14 H̃(l) = [h̃(l)2 , h̃
(l)
3 , . . . , h̃

(l)
Nt
];

15 End
16 sl = TPlẑl;
17 End
18 lopt = argmin1≤l≤L ∥ y −Hsl ∥2;
19 ŝ = slopt ;
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the L candidates generated, one of the branches (e.g. l = 1) should implement

a performance effective ordering (e.g. column-norm based ordering) in the LR

domain. Here, the remaining branches used the so called Pre-Stored Patterns

(PSP) proposed in [75]. The description of the proposed MB-LR-SIC detection

structure is depicted in Algorithm 2.

The proposed scheme increases the chances of obtaining more reliable

candidates for the transmitted data symbol vector. The MB-LR-SIC scheme

shows a high diversity gain and can deliver a performance which, in some cases,

is very close to the optimal ML detector. However, due to the fixed number of

candidates generated for the MB-LR-SIC, in systems with a large number of

antennas, its computational cost could be high.

3.5
Variable List Detection

Some sub-optimal detectors have been reported in the last few years

based on list generation, where a list of candidates for each detected symbol is

generated [38]. However, for high values of SNR their performances increasingly

depart from the ML detector. On the other hand, it is very difficult to generate

a list of candidates for a specific symbol in the LR domain due to the fact that

the components of the vector z = T−1s in (3-5) are not mutually independent.

Also since T is channel dependent, the set Ã = T−1A of possible values of z

will change for each realization of the channel matrix H and its size could be

very large if the system has many antennas. In this section, we describe the

proposed VLD scheme which allows one to reduce the high SNR performance

gap between the LR based detector and the ML detector. The proposed scheme

forms a list of candidates as potential solutions for the transmitted symbol

vector in the LR domain, using different ordering patterns for the LR-SIC

structure. Since the performance of the LR-SIC detector depends strongly on

the ordering of the symbols being detected, VLD makes a multistage search for

a good ordering pattern that can offer the minimum ML cost, using a starting

stage with an ordering based on the MSE values of the estimated symbols in

the LR domain. Different from other detection schemes like the MB-LR-SIC

detector [69], proposed in Section 3.4, where a fixed number of candidates are

tested, the proposed scheme tests a variable size list of candidates, whose length

depends on the estimation quality, seeking to find an efficient solution without

having to test an unnecessarily large number of candidates. VLD searches

among the Nt! − 1 possible patterns, an ordering pattern that offers a better

performance than the actual ordering, based on an update rule that considers

the ML cost of the current candidate as well as its first and second-order
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moments for an error free decision. The decision vector and the number of

candidates to be tested are updated in each stage. Before the multistage search

for an efficient ordering, VLD computes the starting candidate vector z0. To

reduce the number of candidates, a good starting point is convenient. The

error covariance matrix between the symbol vector z and its estimate before

the shifting and scaling operation z̃ is given by Φ ≜ E[(z− z̃)(z− z̃)H]. For the
LR-SIC detector in (3-25), it can be shown [50] [55] that the error covariance

matrix Φn at the n-th detection layer can be calculated as

1

σ2
n

Φn = Φ̄n = (
⎡⎢⎢⎢⎢⎣

H̃[n]

σT[n]

⎤⎥⎥⎥⎥⎦

H ⎡⎢⎢⎢⎢⎣

H̃[n]

σT[n]

⎤⎥⎥⎥⎥⎦
)
−1

. (3-30)

Then the optimal, in the MSE sense, symbol detection ordering for the LR-

SIC is implemented by choosing at each detection layer the symbol index

corresponding to the smallest diagonal value of the matrix Φ̄n. The MSE based

ordering is used to define a column permutation matrix P0, then the signal

term in (3-5) can be expressed as

H̃z = H̃P0(P0)Tz = H̃0z0, (3-31)

where H̃0 = H̃P0 is a column permuted version of H̃ using the MSE based

ordering and
z0 = (P0)Tz = (P0)T (T−1s). (3-32)

To compute an estimate ẑ0 of z0, the receiver employs an LR-SIC detector,

as described in (3-25), based on the permuted matrix H̃0 = H̃eP0 followed by

the quantization procedure (3-22). The order of the elements of the estimated

vector is rearranged to the original order, yielding the final estimate:

z0 = P0ẑ0. (3-33)

After computing the starting candidate vector z0, VLD makes a measure of the

estimation quality of z0 and, based on it, estimates the number of candidates

that are needed to find a better solution. We can equivalently obtain the ML

estimate of the information vector s in (2-2) as:

ŝml = arg min
s∈ANt

∥ y −Hs ∥2

= arg min
s∈ANt

∥ y −HTT−1s ∥2

= T arg min
z∈ÃNt

∥ y − H̃z ∥2 . (3-34)

As we known, it is not practical to compute the alphabet Ã, however, if we
have a number of candidates as potential solutions for the transmitted signal

vector in the LR domain, we can use the minimization in (3-34) before the
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pre-multiplication by the uni-modular matrix T. Then, the quality metric can

be evaluated in the LR domain through the ML cost:

ML-LR(z0) =∥ y − H̃z0 ∥2, (3-35)

and the ML cost of an error-free decision, scaled by its standard deviation,

named standardized ML cost. Note that, using (3-35) it is not necessary to

transform the estimate z0 from the LR domain to the constellation domain

which reduces the algorithm’s computational complexity. The ML cost of an

error-free detection corresponds to ∥ n ∥2, which is Chi-squared distributed

with 2Nr degrees of freedom with mean Nrσ2
n and variance Nrσ4

n. The stand-

ardized ML cost of the current candidate is given by

ϕ(z0) = ML-LR(z0) −Nrσ2
n√

Nrσ2
n

. (3-36)

Then, the number of candidates L needed to stop the algorithm is determined

by an increasing function of ϕ(z0) and a lower-bound hard limit Lmin, where

Lmin is the minimum number of candidates to be tested after each stage. Here

the length of the candidate list is calculated by [79] [80]

L = ⌈max(c1ϕ(z0), Lmin)⌉, (3-37)

where c1 is a metric parameter and ⌈⋅⌉ stands for the smallest integer greater

than the argument. To avoid the generation of an excessive number of stages,

VLD uses the quality measure ϕ(z0) to determine the number of candidates,

L, that needs to be tested in the search for an ordering pattern better than

the initial MSE ordering. With that, a stopping condition is guaranteed. The

algorithm searches for a new solution z1, using the LR-SIC detector, with a

randomly chosen cancellation ordering taken from the remainingNt!−2 possible
orderings, to construct the column permutation matrix P1. To compute the

new estimate vector z1, the procedure in (3-31)-(3-33) is repeated, now with

the permutation matrix P1. If the ML-LR cost function of z1 is less than

the ML-LR cost function of z0, the current estimate is updated to z1 and the

process is repeated with a new number of candidates L, calculated based on the

new current estimation vector, and so on. If, at any given stage, the required

L candidates are tested without finding a new solution, the algorithm sets the

current decision as the final one and stops. With the proposed algorithm, the

number of candidates in each stage will never increase when compared with the

previous stage because the value of ϕ(⋅) is reduced when a better solution is

found. Therefore, VLD prevents an unnecessary number of candidates, among

all N ! possible, to be tested.

The description of the proposed VLD structure is depicted in Al-
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Algorithm 3 : THE VLD ALGORITHM

Initialization: Lmin, c1, l = 1
1 [H̃,T] = CLLL(H̄) % CLLL in [52].
2 H̃e = [H̃T σnTT ]T ,ye = [yT 0T

Nt
]T % extended version

3 P0 =MSE(H̃e) % mean square error based ordering in H̃e

4 H̃0 = H̃eP0,y0 = ye

5 Do for n = 1 to Nt %LR-SIC Detector
6 W0 = (H̃0)† % LR receive filter
7 z̃0 =W0y0

8 ẑ0,n = SS(z̃0,1) % shifting and scaling operations [78]
9 y0 = y0 − h̃0

1ẑ0,n
10 H̃0 = [h̃0

2, h̃
0
3, . . . , h̃

0
Nt
]

11 End
12 z0 = P0ẑ0
13 ML-LR (z0)= ∥ y − H̃z0 ∥2 % ML in the LR domain

14 ϕ(z0) = ML-LR(z0) −Nrσ2
n√

Nrσ2
n

% standardized ML cost

15 L = ⌈max(c1ϕ(z0), Lmin)⌉ % number of candidates
16 z = z0 % starting point candidate vector
17 Do while L > 1 % multi stage search
18 Pl = RAN(H̃e) % random based ordering in H̃e

19 H̃l = H̃ePl,yl = ye

20 ẑl = LR-SIC(yl, H̃l) % LR-SIC detector
21 zl = Plẑl
22 ML-LR(zl) =∥ y − H̃zl ∥2 % ML in the LR domain
23 if ML-LR(zl) <ML-LR(z)
24 z = zl % updating the estimation

25 ϕ(z) = ML-LR(z) −Nrσ2
n√

Nrσ2
n

26 L = ⌈max(c1ϕ(z), Lmin)⌉ % updating L
27 else
28 L = L − 1
29 end if
30 l = l + 1 % number of candidates tested
31 End
32 ŝ = Tz % final decision in the constellation domain
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gorithm 3. It is worth noting that the MB-LR-SIC detector and the proposed

VLD schemes both reach full diversity gain (Appendix B). However, the per-

formance results obtained by computer simulation, presented in Section 3.6,

show that the VLD scheme increases the probability of computing a reliable

estimate for the data symbol vector, reducing substantially the performance

gap to the ML detector in the high SNR region.

3.6
Numerical Results

In this section, we compare the computational complexity and the BER

performance of the proposed MB-LR-SIC and VLD schemes with previously

proposed detection algorithms, which include SIC, LR-SIC, MB-SIC, and ML.

The SIC detector of [34] uses a norm-based cancellation ordering, the MB-SIC

of [37] and the MB-LR-SIC [69] employ a fixed number of branches, equal to

the total number of transmit antennas Nt = ∑K
k=1Ntk , and norm-based ordering

in its first branch. MSE-based ordering is used in the LR-SIC and in the first

branch of VLD. All SIC-based detectors use MMSE linear receive filters. A MU-

MIMO system with K active users is considered. The SNR per transmitted

information bit is defined as in (2-82). Two scenarios for the channels associated

with each active user are considered. In the first scenario (scenario A),

we consider independent and identically distributed random fading channel

models whose coefficients are complex Gaussian random variables with zero

mean and unit variance. In the second scenario (scenario B) we consider a

more realistic channel described by

Hk = αkβkGk, k = 1, . . . ,K. (3-38)

where αk represents the distance based path-loss between the k-th transmitter

and the receiver, and βk is a log-normal variable, representing the shadowing

between the transmitter and the receiver. The parameters αk and βk are

respectively calculated by

αk =

¿
ÁÁÀL

(k)
p

dτk
, (3-39)

and
βk = 10

µkϑk
10 , (3-40)

where L
(k)
p is the base power path loss of the link associated with the k-

th user, dk is the relative distance between the user and the BS, τ is the

path loss exponent chosen between 2 and 4 depending on the environment,

ϑk represents a Gaussian distribution with zero mean and unit variance and

µk is the shadowing spread in dB. The matrix Gk in (3-38) is modeled as the

Kronecker channel model [81], expressed by
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Gk =R1/2
rx G0kR

1/2
txk

, (3-41)

where G0k is the MIMO channel matrix for scenario A and Rrx and Rtxk

denote the receive and transmit correlation matrices, respectively. We assume

that L
(k)
p = Lp, µk = µ and the same correlation matrix R

1/2
txk
= R1/2

tx for all K

transmitters. The components of the correlation matrices Rrx and Rtxk
are of

the form:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ4 . . . ρ(Na−1)2

ρ 1 ρ . . . ⋮
ρ4 ρ 1 ⋮ ρ4

⋮ ⋮ ⋮ ⋮ ⋮
ρ(Na−1)2 . . . ρ4 ρ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3-42)

where Na is the number of antennas and ρ is the correlation index of neigh-

boring antennas (ρ = ρtx for the transmit antennas and ρ = ρrx for the receive

antennas). Note that ρ = 0 represents an uncorrelated scenario and ρ = 1 im-

plies a fully correlated scenario.

3.6.1
Computational Complexity

In this subsection, the computational complexity of the proposed MB-

LR-SIC and VLD algorithms is evaluated. The LR transformation has a

variable complexity, and for this reason it is important to know its average

cost by counting the number of floating points (FLOPs). In [82] a reduced

and fixed complexity LR algorithm was proposed. The LR transformation

is not the main focus in this thesis, for this reason we use the conventional

CLLL algorithm. To compute the number of FLOPs (average number in the

VLD case) per received vector y we use the Lightspeed Matlab toolbox [83].

Figure 3.2 shows the computational complexity for the different detection

algorithms focused in this work. Note that the computational cost of the VLD

scheme tends to grow with increasing SNR. This is so because the quality of

the initial candidate improves with an increasing SNR, and the better is the

initial candidate larger is the number of candidates that have to be tested

to find a better one. The results in Figure 3.2 are for SNR values of 10 dB

and 14 dB. The complexity of the other detectors, is independent of SNR. For

the ML detector, we have illustrated both QPSK and 16-QAM modulation,

whereas for the other detectors we have considered only QPSK modulation

since the computational cost in these detectors does not change significantly

with the order of the QAM modulation. The figure compares the required

number of FLOPs (average number in the VLD case) versus the number

of antennas for Nt = Nr. The proposed MB-LR-SIC has a significant lower

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



Interference Mitigation Schemes for the Uplink of Massive MIMO in 5G Heterogeneous 60
Cellular Networks

5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

Number of Antennas  N
t
=N

r

N
um

be
r 

of
 F

lo
ps

Computational Complexity for MU−MIMO System, L
min

=2

 

 
ML−16QAM
ML−QPSK
MB−LR−SIC 
MB−SIC
VLD−(14 dB)
VLD−(10 dB)
LR−SIC
SIC
MMSE−Linear

Figure 3.2: Computational complexity of detection algorithms.

complexity when compared with the ML detector and, as will be shown in the

next subsection, in some specific scenarios, delivers a performance very close to

that of the ML detector. The proposed VLD algorithm has a significantly lower

complexity when compared with the MB-LR-SIC and MB-SIC schemes and

the ML detector and a performance close to that of the ML detector, as will

be shown in the sequence. The computational cost of VLD algorithm, depends

on the computation of the reduced basis of the channel matrix and the search

for an efficient ordering for the LR-SIC detector. In quasi static channels the

cost of the LR transformation is not a major concern, because the lattice is

fixed during a long period of time and the basis is stored for subsequent use.

VLD offers a flexible control of complexity by varying the parameters c1 and

Lmin.

3.6.2
Performance Results

In this subsection the BER performances of the MB-LR-SIC and VLD

schemes are tested. The numerical results correspond to an average of 3,000

simulations runs, with 500Nt symbols transmitted per run.

In Figure 3.3 and Figure 3.4, we consider scenario A and compare

the performance of the proposed MB-LR-SIC detector with that of existing

detectors, with QPSK and 16-QAM modulation, respectively. In both cases
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Figure 3.3: BER vs SNR performance for the proposed MB-LR-SIC and
existing algorithms in a MU-MIMO scenario. All SIC detectors use a column-
norm-based ordering and QPSK modulation.
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Figure 3.4: BER vs SNR performance for the proposed MB-LR- SIC and
existing algorithms in a MU-MIMO scenario. All SIC detectors use a column-
norm-based ordering and 16-QAM modulation.
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Figure 3.5: BER vs SNR performance for the proposed VLD (Lmin = 2, c1 = 2.5)
and existing algorithms with QPSK modulation in scenario A.

we consider Nti = 2 antenna elements at the user devices. We also consider

K = 2 and K = 3 active users, Nr = 4 and Nr = 6 receive antennas at the BS,

respectively. We consider perfectly known channel state information. Note that

the MB-LR-SIC detector, besides being conceptually simple, has been shown

through simulations that the performance, in these low number of antennas

scenario, approaches the optimal ML detector with much lower computational

complexity. However, as it will be shown in the subsequent experiments, the

performance of the MB-LR-SIC detector is considerably reduced when the

number of antennas increase.

In Figure 3.5, we consider scenario A with K = 4 active users, Nti = 2

antenna elements at the user devices and Nr = 8 receive antennas at the

BS. We also consider QPSK modulation and perfect channel estimation. For

the VLD scheme, we use Lmin = 2 and c1 = 2.5. Note that the performance

of the proposed VLD algorithm is close that of the ML detector and the

difference between their performances decreases significantly for high values

of SNR. For the curves in Figure 3.6, the same system parameters of the

previous experiment are used, however, a high correlated channel scenario

where the transmit and receive correlation coefficients are equal to ρ = 0.75,
Lp = 0.7 and τ = 2 is considered. The relative distance dk to the BS is

obtained from a uniform discrete random variable between 0.1 and 0.95 and
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Figure 3.6: BER vs SNR performance for the proposed VLD (Lmin = 2, c1 = 2.5)
and existing algorithms with QPSK modulation in scenario B (Lp = 0.7, µ =
3 dB, ρtx = ρrx = 0.75).
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Figure 3.7: BER vs SNR performance for the proposed VLD (Lmin = 2, c1 = 5)
and existing algorithms with QPSK modulation in scenario A, LS channel
estimation (- -) and perfect channel estimation (—).
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Figure 3.8: (a) BER vs SNR performance for the proposed VLD (Lmin = 3, c1 =
5) and existing algorithms with 16-QAMmodulation in scenario A. (b) Average
number of candidates tested by VLD vs SNR (Nt = Nr = 12).

the shadowing spread is µ = 3 dB. Due to the propagation and correlation

effects, the curves in Figure 3.6 illustrates a loss of performance in all detectors.

However, the proposed VLD scheme for this realistic conditions presents a

better performance than the other detection schemes and is close to the optimal

ML detector.

In the next example, scenario A, QPSK modulation and the least square

(LS) channel estimation for different detectors are considered, 600Nt symbols

are transmitted, where 100 symbols are used for training which are known at

the receiver. We employ a forgetting factor equal to 0.998, consider a system

with K = 8 active users with Nti = 2 antennas per user and Nr = 16 antennas at

BS. The parameters for VLD are Lmin = 2 and c1 = 5. The results in Figure 3.7

evidence that the loss of performance caused by the use of estimated channels

is not significant and that the performance of the VLD scheme with imperfect
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Figure 3.9: (a) BER vs SNR performance for the proposed VLD (Lmin =
3, c1 = 40) and existing algorithms with 16-QAM modulation in scenario A.
(b) Average number of candidates tested by VLD vs SNR (Nt = Nr = 128).

channel estimation (dotted lines) offer a superior BER performance to the

MB-LR-SIC and the LR-SIC detectors.

For the experiments in Figure 3.8 and Figure 3.9, we consider scenario

A with K = 12 and K = 128 user devices, respectively, where each user is

equipped with Nti = 1 transmit antenna. Nr = 12 and Nr = 128 antennas at the

BS are also considered, respectively. The systems employ perfect channel state

information and 16-QAM modulation. For the VLD algorithm, the parameter

chosen are Lmin = 3, in both cases with c1 = 5 and c1 = 40, respectively. Due
to the low performance shown by the norm-based ordering for systems with

large number of antennas, MSE-based ordering was implemented in the first

branch of the MB-LR-SIC detector in Figure 3.9-(a). The results in Figure 3.8-

(a) and Figure 3.9-(a) indicate a remarkable superiority in performance of

the VLD scheme over the others sub-optimal detectors considered in the
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experiments. For high values of SNR and magnitude of the systems, the

difference in performance of VLD and MB-LR-SIC increases. In Figure 3.8-

(b) and Figure 3.9-(b) the average number of candidates tested by VLD along

the SNR values is presented. We can see that the number of candidates tested

by the proposed scheme is much lower than the MB-LR-SIC which considers a

fixed number of candidates for the transmitted symbol vector. It is worth

noting that the average number of candidates tested by the VLD scheme

tends to grow with increasing SNR, and that makes sense; the quality of the

initial candidate improves with a increasing SNR, and the better is the initial

candidate, larger is, in the average, the number of candidates that have to be

tested before finding a better one, and so being able to improve the detector

performance in the high SNR region.

Due to the higher detection diversity and low computational complexity,

compared with the optimal detector, the VLD structure is presented as a viable

detection alternative for future MIMO communications systems.

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



4

Iterative Detection and Decoding for the Uplink of Multiuser
MIMO Systems

4.1
Overview

The iterative detection and decoding (IDD) receiver, based on the turbo

principle [84], can improve the performance of MIMO systems [56]. Similarly

to uncoded system, where the ML detector is not a viable solution, for coded

systems the maximum a posteriori probability (MAP) detector is desirable

but the complexity grows with the number of transmit antennas and the

constellation size. For this reason, computational efficient detectors for coded

systems are necessary.

In this chapter, we propose a detection scheme for the uplink of MU-

MIMO systems which combines a IDD receiver with convolutional codes and

the previously proposed VLD algorithm.

The chapter is organized as follows. Section 4.2 examines the system

model for Point-to-Point MIMO system with IDD detection. In Section 4.3

the proposed iterative VLD and decoding scheme for MU-MIMO system is

presented. Simulation results are presented and discussed in Section 4.4

4.2
Iterative Detection and Decoding for Point-to-Point MIMO Systems

In Figure. 4.2, we show the block diagram of a IDD transmission system

for point-to-point MIMO environments. In the transmitter side the information

binary sequence C is encoded by a channel encoded with an Rc code rate. The

encoder data is reordered by an interleaver to reduce the effect of burst errors.

After the interleaver, the coded bits are modulated using a 2M -ary complex

constellation to generate the transmitted signal vector s which consists of

NtM coded bits. The n-th symbol of s, transmitted by the n-th antenna,

is sn = {bn,1, bn,2, . . . , bn,M} where bn,l ∈ {±1} denotes the l-th bit of sn. It is

possible to assume that the coded bits of each symbol in s are independent

due to the bit interleaver. The IDD receiver consists of two stages separated

by interleavers and deinterleavers. The MIMO detector provides the soft

decisions of the coded bits to the soft-input soft-output (SISO) channel decoder

and the SISO channel decoder provides the MIMO detector with extrinsic

bit information which is then used by the MIMO detector in subsequent
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Figure 4.1: Block diagram of a IDD transmission system over a Point-to-Point
MIMO channel.

iterations. The IDD receiver improves the performance using the soft bit

extrinsic information exchanged between the detector and decoder through

iterations.

In the maximum a posteriori probability (MAP) detector, the output soft

bit information is computed as the a posteriori log-likelihood ratio (LLR) of

bn,l, defined as

Λ1[bn,l] = log
P (bn,l = +1 ∣ y)
P (bn,l = −1 ∣ y)

. (4-1)

If we use the SIC detection technique, we set the vector u = s + veff , where

veff is the effective noise factor after the MMSE detection in each layer.

This assumption provides an efficient accurate way to compute the extrinsic

information [85–87]. Considering (4-1) and that the symbol un = sn + veff is

statistically independent from the other symbols [88], we have

Λ1[bn,l] = log
P (bn,l = +1 ∣ u)
P (bn,l = −1 ∣ u)

≈ log
P (bn,l = +1 ∣ un)
P (bn,l = −1 ∣ un)

. (4-2)

Using Bayes’s rule, equation (4-2) can be rewritten as

Λ1[bn,l] = log
p(un ∣ bn,l = +1)
p(un ∣ bn,l = −1)

+ log
P (bn,l = +1)
P (bn,l = −1)

= λ1[bn,l] + λp
2[bn,l], (4-3)

the term λp
2[bn,l] represents the a priori information for the coded bit bn,l which
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is provided by the SISO decoder in the previous iteration. The superscript p

denotes the value obtained from the previous iteration. For the first iteration

we assume λp
2[bn,l] = 0 for all bits. The term λ1[bn,l] denotes the extrinsic

information which is computed based on the received signal vector y and a

priori information of the coded bits except the l-th bit, i.e., λp
2[bn,j], where

j ≠ l. For the detector, the coded bit extrinsic LLR for the n-th symbol is

obtained as

λ1[bn,l] = log
∑ac∈A+n,l

p(un ∣ sn = ac) exp(La(ac))

∑ac∈A−n,l
p(un ∣ sn = ac) exp(La(ac))

, (4-4)

where A±n,j denotes the sub sets of ANt whose l-th bit of sn is ±1. La(ac)
denotes the a priori symbol probability for symbol ac. As the vector veff in

u = s + veff is assumed as a Gaussian vector we have

p(un ∣ sn) =
1

πσ2
eff

exp (− ∣ un − sn ∣2
σ2
eff

), (4-5)

where σ2
eff represents the variance of the effective noise of un. Then, we can

rewrite equation (4-4) as

λ1[bn,l] = log
∑ac∈A+n,j

exp(−∣un−ac∣2
σ2
eff
)∏j≠l P (bn,j)

∑ac∈A−n,j
exp(−∣un−ac∣2

σ2
eff
)∏j≠l P (bn,j)

(4-6)

where P (bn,j) is a priori probability of a bit bn,j and obtained by its a priori

LLR [87] as
P (bn,j) =

1

2
[1 + bn,j tanh (

1

2
λp
2[bn,j])]. (4-7)

The λ1[bn,l] is deinterleaved and fed to the SISO decoder as the a priori

information. The decoder calculates a posteriori LLR for each coded bit using

prior information about all posible symbols and the knowledge about the trellis

structure of the code [36] as

Λ2[b′n,l] = λ2[b′n,l] + λ
p
1[b′n,l], (4-8)

where the extrinsic information λ2[b′n,l] is the information about the code bit

b′n,l obtained from the prior information about the other code bits λp
1[b′n,j], j ≠ l.

The a posteriori LLR of every information bit is also collected by the decoder

which is used to make the decision of the message bit at the last iteration.

The extrinsic information obtained by the decoder is fed back to the detector

as the a priori information. At the first iteration, λ1 and λp
2 are statistically

independent and as the iterations are performed they become more correlated

until the improvement diminishes.
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Figure 4.2: IDD receiver for MU-MIMO system.

4.3
Iterative Variable List detection and Decoding

In this section, we present the iterative variable list detection and

decoding (IVLDD) scheme for the uplink MU-MIMO system. As depicted

in Figure 4.2, we consider K active users, where the k-th user, equipped

with Ntk transmit antennas, employs convolutional codes, with an Rc code

rate, to encode the information binary sequence Ck. The encoded data bit

is reordered by an interleaver. After the interleaver, the coded bits are

modulated using a 2M -ary complex constellation to generate the transmitted

signal vector sk which consists of NtkM coded bits. The i-th symbol of sk is

si = {bi,1, bi,2, . . . , bi,M} where bi,l ∈ {±1} denotes the l-th bit of si. Each user’s

message is coded separately. It is possible to assume that the coded bits of

each symbol in sk are independent due to the bit interleaver.

The IVLDD receiver consists of a VLD detector and a bank of soft-input

soft-output (SISO) decoders for the corresponding users. The SISO decoders

generate a posteriori probabilities (APPs) for each user’s encoded bits, and

therefore the soft estimates of the transmitted symbol. The multiuser detector

jointly detects the signals transmitted by all the K users.

For MU-MIMO coded systems the maximum a posteriori probability

(MAP) detector is also desirable, however, its complexity grows with the
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number of transmit antennas, the constellation size and the number of active

users. The MAP detector computes the a posteriori log-likelihood ratio (LLR)

of a transmitted symbol for every code bit of each user as given by

Λ1[bk,l] = log
P (bk,l = +1 ∣ y)
P (bk,l = −1 ∣ y)

, (4-9)

k = 1, . . . ,K; l = 1, . . . ,M.

IVLDD employs an VLD detector to compute the soft estimate u = Tẑ of the

transmitted signal vector s after the LR-MMSE filtering, shifting and scaling

operations and the transformation to the constellation domain. Then we set

u = As + ve, where A is a diagonal matrix whose diagonal entries represent

the users’ amplitude and ve is the effective noise, assumed Gaussian. This

assumption provides an efficient way to compute the extrinsic information [85]-

[87]. The soft output of the VLD detector for the k-th user is written as [36]-

[37] [89]
uk = Aksk + vek , (4-10)

where Ak is a scalar variable which is equal to the amplitude of the k-th user

and vek is a complex Gaussian random variable with variance σ2
ek
. By assuming

that the symbol uk is statistically independent from the other symbols we have

Λ1[bk,l] ≈ log
P (bk,l = +1 ∣ uk)
P (bk,l = −1 ∣ uk)

. (4-11)

Using Bayes’s rule, Λ1[bk,l] can be rewritten as

Λ1[bk,l] = log
p(uk ∣ bk,l = +1)
p(uk ∣ bk,l = −1)

+ log
P (bk,l = +1)
P (bk,l = −1)

= λ1[bk,l] + λp
2[bk,l], k = 1, . . . ,K. (4-12)

where λp
2[bk,l] represents the a priori information for the coded bit bk,l , which

is obtained by the SISO decoder in the previous iteration. For the first iteration

we assume λp
2[bk,l] = 0 for all users. The term λ1[bk,l] represents the coded bit

extrinsic LLR for the k-th user which is obtained as

λ1[bk,l] = log
∑ac∈A+k,l

p(uk ∣ sk = ac)P (sk = ac ∣ bk,l = +1)

∑ac∈A−k,l
p(uk ∣ sk = ac)P (sk = ac ∣ bk,l = −1)

, (4-13)

where A±k,l denotes the sub sets of A whose l-th bit of sk is ±1. Since

p(uk ∣ sk) =
1

πσ2
ek

exp(− ∣ uk −Aksk ∣2
σ2
ek

), (4-14)

where σ2
ek
represents the variance of the effective noise of uk. We can rewrite (4-

13) as
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λ1[bk,l] = log
∑ac∈A+k,l

exp(−∣uk−Akac∣2
σ2
ek

)∏j≠l P (bk,j)

∑ac∈A−k,l
exp(−∣uk−Akac∣2

σ2
ek

)∏j≠l P (bk,j)
, (4-15)

where P (bk,j) is a priori probability of a bit bk,j obtained its a priori LLR as

P (bk,j) =
1

2
[1 + bk,j tanh(

1

2
λp
2[bk,j])]. (4-16)

The λ1[bk,l] is de-interleaved and fed to the corresponding SISO decoder of

the k-th user as the a priori information. The SISO decoders calculate the a

posteriori LLR of each code bit by using the trellis diagram which yields

Λ2[b′k,l] = λ2[b′k,l] + λ
p
1[b′k,l]. (4-17)

The output of the SISO decoder is obtained by the a priori information λp
1[b′k,l]

and the extrinsic information provided by the decoder. The a posteriori LLR

of every information bit is also collected by the SISO decoder which is used

to make the decision of the message bit after the last iteration. The extrinsic

information obtained by each SISO decoder is fed back to the detector as a

priori information of all users. At the first iteration, λ1 and λp
2 are statistically

independent and as the iterations are performed they become more correlated

until the improvement through iterations diminishes. The VLD is used in the

first iteration to calculate the extrinsic information and then feeds it to the

SISO decoders for all the users. The soft estimates uk are used to calculate the

LLRs of their constituent bits.

Since
Ak = E[s∗kuk] (4-18)

and
σ2
ek
= E[∣ uk −Aksk ∣2]. (4-19)

The estimates Âk and σ̂ek required in (4-15) can be obtained by time averages

of the corresponding samples over the transmitted packet which contain pilots.

After the pilots, the detected symbols in previous time instants are used.

After the first iteration, the soft cancellation MMSE performs PIC by

subtracting the soft replica of interference components from the received vector

as
y̌ = y −Hǔ, (4-20)

where ǔ = [u1, u2, . . . , uk−1,0, uk+1, . . . , uK] and a linear MMSE filter is em-

ployed to reduce the remaining interference as

wk = argmin
wk

E[∣ sk −wHk y̌ ∣2] (4-21)

where the soft output of the filter is also Gaussian.
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4.4
Numerical Results

In this section, we evaluate the performance of the proposed IVLDD

scheme for MU-MIMO scenario. We employ a convolutional code with Rc = 0.5.
For each user, a packet with 998 message bits are encoded with g = (7,5)oct
and 2000 coded bits are interleaved. These bits are modulated to 1000 QPSK

symbols. We compared the IVLDD with other detectors using the same IDD

receiver scheme. The two scenarios for the channels, associated with each active

user, presented in Section 3.6 are used here. For the first scenario (scenario A)

we consider a Gassian channel. For the second scenario (scenario B) we consider

a more realistic channel with path loss, shadowing and correlation between

receive and transmit antennas. The column norm based cancellation is used

in the first branch of MB-LR-SIC and MB-SIC. The SNR per transmitted

information bit is defined as

SNR = 10 log10
Ntσ2

s

RcMσ2
n

, (4-22)

where σ2
s is the common variance of the received symbols, σ2

n is the noise

variance and RcM is the number of information bits per transmitted symbol.

In Fig. 4.3 and Fig. 4.4 we evaluate the performance of the IVLDD

scheme with Lmin = 2, c1 = 5 and QPSK modulation. We consider K = 5

users with Nti = 2 antennas per user, Nr = 10 antennas at the BS and

perfect channel estimation. The performance of different detectors with an

interference free scenario, i.e., Single User with Nt = 1 is compared. In Fig. 4.3,

we consider scenario A for the users’ channel. We can see from the plot that the

performance of the iterative scheme with VLD and MB-LR-SIC schemes, after

three iterations, remains close to the interference-free single-user performance.

In Fig. 4.4, we show the performance of different detectors assuming perfect

channel estimation with realistic conditions, scenario B, with Lp = 0.7, µ = 3 dB
and τ = 2. The curves in Fig. 4.4 illustrate that despite the loss of performance

in all detectors due to the propagation and correlation effects, the performance

of the IVLDD scheme is close to the single-user scenario which is free from

interference. The proposed IVLDD and iterative MB-LR-SIC schemes needs

only three turbo iterations to obtain a very good BER performance due to the

fact that the VLD and MB-LR-SIC receivers are able to provide a reliable

estimate of the transmitted information bits since the first iteration. It is

noteworthy that the IVLDD has a much lower computational cost than the

iterative MB-LR-SIC scheme.
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Figure 4.3: BER vs SNR performance for MU-MIMO with IDD receiver, QPSK
modulation and convolutional codes with Rc=0.5 in scenario A.
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5

Decoupled Signal Detection for the Uplink of Massive MIMO
in Heterogeneous Cellular Networks

5.1
Overview

Massive multiple-input multiple-output (MIMO) systems are strong can-

didates for future fifth generation (5G) heterogeneous cellular networks. For

5G, a network densification with a high number of different classes of users

and data service requirements is expected. Such a large number of connected

devices needs to be separated in order to allow the detection of the transmitted

signals according to different data requirements.

In this chapter, an algorithm to separate the received signal vector

at the BS into independent signals for each user class is proposed. The

proposed decoupled signal detection (DSD), allows the possibility of using

more sophisticated detection schemes, as those proposed in Chapter 4, that for

its high computational complexity are not recommended for massive MIMO.

A signal model for massive MIMO systems with centralized and distributed

antennas in heterogeneous cellular networks is also developed in this chapter.

A sum rate analysis, a computational cost study and a BER performance

evaluation of the proposed DSD algorithm is presented and compared with

existing detection schemes in a realistic scenario with distributed antennas.

The remainder of this chapter is organized as follows. In Section 5.2

the proposed massive MIMO signal model is presented. The proposed DSD

scheme is presented in Section 5.3. The sum rate analysis for the DSD scheme

is described in Section 5.4. Finally, Section 5.5 presents simulations results.

5.2
Proposed Massive MIMO Signal Model

In this section, a signal model for heterogeneous networks with different

classes of users and an arbitrary configuration of CAS and DAS is presented.

We consider the uplink channel scenario of a massive MIMO system with N

different classes of active users transmitting simultaneously signals to one base

station (BS) equipped with D remote antenna arrays distributed around the

cell and NB receive antennas at the BS. Each remote array of antennas has

Q antennas linked to the BS via wired links. Therefore, the total number of

receive antennas is Nr = NB +DQ. The choice of NB, D and Q is made based

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



Interference Mitigation Schemes for the Uplink of Massive MIMO in 5G Heterogeneous 76
Cellular Networks

BS

RRH

RRH

RRH

WSN

Figure 5.1: Heterogeneous Wireless Network.

on the features of the network and type of application scenario. For example,

suppose that we have a city with a high density of users or devices in the centre

of a cell and sparsely distributed users or devices in the remaining part of the

cell. In this case, we could use a number of centralized antennas to deal with the

high density of users and distributed antennas to serve the remaining devices.

The cardinality of the n-th user class ∣ Cn ∣, represents the number of users of

the class n. The total number of active users is given by K = ∑N
n=1 ∣ Cn ∣. The

k-th user in the n-th user class transmits data divided into Ntk,n sub-streams

through Ntk,n antennas, where Nr ⩾ Nt = ∑N
n=1∑

∣Cn∣
k=1 Ntk,n and Nt is the total

number of transmit antennas. The received signal vector at the BS from all

active users in all user classes is given by

y =
N

∑
n=1

∣Cn∣

∑
k=1

Υk,nH̄k,nsk,n + n, (5-1)

where sk,n is the Ntk,n × 1 transmitted signal vector, by the k-th user of

the n-th user class, at one time slot taken from a complex constellation,

denoted by A = {a1, a2, . . . , aO}. Each symbol has M bits and O = 2M .

The vector n is an Nr × 1 zero mean complex circular symmetric Gaussian

noise vector with covariance matrix Kn = E[nnH] = σ2
nI. Moreover, H̄k,n is

the Nr × Ntk,n channel matrix of the k-th user in the class n with elements

h̄
(k,n)
i,j corresponding to the complex channel gain from the j-th transmit

antenna of the k-th user to the i-th receive antenna. For the antenna elements

located at the BS and at each remote radio head, the D + 1 sub-matrices of

H̄k,n = [(H̄(1)k,n)T , (H̄
(2)
k,n)T , . . . , (H̄

(D+1)
k,n )T ]T can be modeled using the Kronecker

channel model, expressed by
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H̄
(j)
k,n = (R

(j)
r )1/2G(j)k,n(Rtk,n)1/2 (5-2)

whereG
(j)
k,n has complex channel gains between the k-th user and the j-th radio

head, obtained from an independent and identically distributed random fading

model whose coefficients are complex Gaussian random variables with zero

mean and unit variance. R
(j)
r and Rtk,n denote the receive correlation matrix

of the j-th radio head and the transmit correlation matrix, respectively. The

components of the correlation matrices R
(j)
r and Rtk,n are of the form:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ4 . . . ρ(Na−1)2

ρ 1 ρ . . . ⋮
ρ4 ρ 1 ⋮ ρ4

⋮ ⋮ ⋮ ⋮ ⋮
ρ(Na−1)2 . . . ρ4 ρ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5-3)

where Na is the number of antennas and ρ is the correlation coefficient of

neighboring antennas (ρ = ρtx for the transmit antennas and ρ = ρrx for the

receive antennas). Note that ρ = 0 represents an uncorrelated scenario and

ρ = 1 implies a fully correlated scenario. The Nr × Nr diagonal matrix Υk,n

represents the large-scale propagation effects for the user k of the user class n,

such as path loss and shadowing, given by

Υk,n = diag(γ1
k,n . . . γ

1
k,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NB

γ2
k,n . . . γ

2
k,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

. . . γD+1
k,n . . . γD+1

k,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

), (5-4)

where the parameters γj
k,n denote the large-scale propagation effects from the

k-th user to the j-th radio head described by

γj
k,n = α

j
k,nβ

j
k,n, j = 1, . . . ,D + 1. (5-5)

Here αj
k,n is the distance based path-loss between each user and the radio heads

which is calculated by

αj
k,n =

¿
ÁÁÁÀ

Lj
k,n

(djk,n)τ
, (5-6)

where Lj
k,n is the power path loss of the link associated with the user and the

j-th radio head, djk,n is the relative distance between this user and the j-th

radio head, τ is the path loss exponent chosen between 2 and 4 depending on

the environment. The log normal random variable βj
k,n which represents the

shadowing between user k and the receiver is given by

βj
k,n = 10

µk,sϑ
j
k,s

10 , (5-7)
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where µk,s is the shadowing spread in dB and ϑj
k,s corresponds to a real-

valued Gaussian random variable with zero mean and unit variance. Since

the Nr × Ntk,n composite channel matrix includes large-scale and small-scale

fading effects it can be denoted as Hk,n =Υk,nH̄k,n, and the expression in (5-1)

can be written as

y =
N

∑
n=1

Hnsn + n, (5-8)

where Hn = [H1,n H2,n . . .H∣Cn∣,n] and sn = [sT1,n sT2,n . . . s
T
∣Cn∣,n]

T represent the

channel matrix and the transmitted symbol vector of all users in the class n,

respectively. The received signal vector can be expressed more conveniently as

y = Hs + n, (5-9)

where H = [H1 H2 . . .HN] and s = [sT1 sT2 . . . s
T
N]T . The symbol vector s of all

N user classes has zero mean and a covariance matrix Ks = E[ssH] = diag(p),
where the elements of the vector p are the signal power of each transmit

antenna. To maintain a notational simplicity in the subsequent analysis, we

assume that all antenna elements at the users transmit with the same average

transmitted power σ2
s , i.e., Ks = σ2

sI. We assume that the channel matrix H

was previously estimated at the BS. From (5-9) we can see that the signals

arrive coupled at the BS. If we want to use different detection procedures for

each user class according to its data requirements, we have to separate the

received signal vector y into independent received signals for each user class.

For the system model presented in this thesis, when the number of remote

radio heads is set to zero, i.e., D = 0, the DAS architecture is reduced to the

CAS scheme with Nr = NB.

5.3
Decoupled Signal Detection

As presented in Section 5.2, in heterogeneous networks different classes

of users send parallel data streams, through the massive MIMO channel

operating with distributed antennas, which arrive superposed at the BS. In

this 5G context, we need to separate the data streams for each category of

users efficiently. In this section, we describe the proposed decoupled signal

detection (DSD) which allows us to separate the received signal of the n-

th user class from the others. To this end, we consider that the process of

authentication, identification and channel estimation was already made, i.e, the

BS is able to identify the users by classes according to their data requirements.
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Similar approaches to the proposed DSD algorithm have been proposed for

the downlink, such as block diagonalization (BD) based techniques [90]- [93].

However, unlike prior work in which downlink BD is used, for the proposed

DSD scheme it is not necessary to use any precoding at the transmit side. The

receiver only needs to know the channels between users and receive antennas.

Moreover, the concept of separating the users with respect to the classes in

heterogeneous networks according to its requirements is a new approach. The

first steps to construct the concept proposed in this thesis were presented

in [66] [94]. The received signal vector (5-8) can be written as:

y = Hnsn +
N

∑
m=1,m≠n

Hmsm + n, (5-10)

where Hn and sn are the channel matrix and the transmitted symbol vector

for the n-th user class, respectively. From (5-10), we can see that the n-th user

class has inter-user class interference.

5.3.1
Proposed Decoupling Strategy

To remove the presence of the other classes of users in the detection

procedure for the n-th user class, we can employ a linear operation to project

the received signal vector y onto the subspace orthogonal or almost orthogonal

to the subspace generated by the signals of the interfering classes. In DSD,

a matrix An is calculated employing a channel inversion method and a QR

decomposition [95] [96], in order to decouple the n-th user’s class received

signal from other user’s class signals. To compute An, we construct the matrix

H̃n excluding the channel matrix of the n-th user class in the following form:

H̃n = [H1 . . .Hn−1 Hn+1 . . .HN], (5-11)

where H̃n ∈ QNr×(Nt−Ntn) and Ntn = ∑
∣Cn∣
k=1 Ntk,n is the number of transmit

antennas in the n-th user class. After that, the objective is to obtain a matrix

An that satisfies the following condition:

AnH̃n = 0, ∀n ∈ (1 . . .N). (5-12)

To compute An, DSD first computes the MMSE channel inversion of the

combined channel matrix H given by

H† = HH(HHH + σ2I)−1

= [ḦT
1 ḦT

2 . . . ḦT
N]T (5-13)
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where σ2 = σ2
n/σ2

s , H
† ∈ QNt×Nr and Ḧn ∈ QNtn×Nr . Then, the matrix Ḧn is

approximately in the null space of H̃n, that is

ḦnH̃n ≈ 0, ∀n ∈ (1 . . .N). (5-14)

To decouple the n-th user group from the other user groups we employ a QR

decomposition as described by

Ḧn =RnQn, ∀n ∈ (1 . . .N), (5-15)

where Rn ∈ QNtn×Ntn is an upper triangular matrix and Qn ∈ QNtn×Nr is a

matrix with orthogonal rows and composed by approximately orthonormal

basis vectors of the left null space of H̃n. Then we have

QnH̃n ≈ 0. (5-16)

From (5-16), we can see that Qn is a good approximation for An in (5-12).

Using An = Qn as a linear combination with the received signal vector in (5-

10), we have

yn = Any

= QnHnsn +Qn

N

∑
m=1
m≠n

Hmsm +Qnn, (5-17)

where yn ∈ QNtn×1 is the equivalent received signal vector for the user class

n and the term Qn∑N
m=1

m≠n

Hmsm ≈ 0 represents the residual inter-user class

interference. Then, we can transform the received signal vector into parallel

single-user class signals as described by

yn = Ȟnsn + nn, ∀n ∈ (1 . . .N), (5-18)

where Ȟn =QnHn ∈ QNtn×Ntn is the equivalent channel matrix of the n-th user

class after DSD and nn =Qn∑N
m=1

m≠n

Hmsm +Qnn ∈ QNtn×1 is the equivalent noise

vector.

Another option to compute a basis for the left null space of H̃n is

performing the SVD transformation H̃n = ŨnΣ̃nṼHn , where Σ̃n ∈ QNr×(Nt−Ntn)

is a rectangular diagonal matrix with the singular values of H̃n on the diagonal,

Ũn ∈ QNr×Nr and ṼHn ∈ Q(Nt−Ntn)×(Nt−Ntn) are unitary matrices. If rn is the

rank of H̃n, that corresponds to the number of non-zero singular values, i.e.,

rn = rank(H̃n) ≤ Nt −Ntn , the SVD can be expressed equivalently as:

H̃n = [Ũ1,n Ũ0,n] Σ̃n [Ṽ1,n Ṽ0,n]H, (5-19)

where Ũ0,n ∈ QNr×(Nr−rn) and ṼH0,n ∈ Q(Nt−Ntn−rn)×(Nt−Ntn) form an orthogonal
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basis for the left null space and the null space of H̃n, respectively. Then, the

alternative solution for (5-12) could be:

An = ŨH0,n. (5-20)

Although the matrix ŨH0,n eliminates the inter-user class interference effectively,

i.e., ŨH0,n∑
N
m=1

m≠n

Hmsm = 0, the linear combination yn = ŨH0,ny presents a noise

enhancement in the detection procedures which reduces the performance. In

the first approach, when we use yn = Qny, the noise enhancement in the

detection procedures is mitigated due to the fact that the equivalent noise

vector has a lower dimension when compared with the other option. Thus, the

noise enhancement is reduced which improves the performance, even in the

presence of residual interference. In addition, the equivalent channel matrix

Ȟ1
n = ŨH0,nHn has dimensions (Nr − r) × Nt against the matrix Ȟ2

n = QnHn

which has dimensions Ntn ×Ntn . For this reason the computational complexity

of the detector is lower if we use the matrix Qn to decouple the received signal

vector.

The fact that we obtain a square equivalent channel matrix also allows

the possibility of using lattice reduction (LR) based detectors which have a

better performance for square channel matrices [69]. Further, the computa-

tional complexity to compute the channel inversion (5-13) and N QR decom-

positions (5-15) of matrices with dimensions Ntn ×Nr is much lower than the

computational cost of computing N SVD transformations (5-19) of matrices

with dimensions Nr × (Nt −Ntn). For these reasons, in this thesis we will focus

on the first alternative.

As it will be presented in next section, the equivalent received signal vec-

tor in (5-18) shows that the process in (5-11)-(5-17) is an effective algorithm to

separate the user classes at the BS and we can consider the data stream of the

n-th user class as independent of the received signals of the other user classes.

In practice, this allows the possibility of using different transmission and re-

ception schemes for each user class. We can now implement the traditional

detectors for each class of users separately which also allows the possibility of

using more complex detection schemes due to the reduction of the dimensions

of the matrices that need to be processed. The description of the proposed

DSD algorithm is presented in Algorithm 4.

5.3.2
Detection Algorithms

In this subsection, we examine signal detection algorithms for massive

MIMO in heterogeneous networks. To detect the data stream for each class
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Algorithm 4 : THE DSD ALGORITHM

Channel and noise variance estimated with training sequence
1 Initialization: H, σ

Get the received signal
2 y = ∑N

n=1Hnsn + n
=Hs + n

Compute the combined channel inversion
3 H† =HH(HHH + σ2I)−1

= [Ḧ1 Ḧ2 . . . Ḧ†
N]

4 Do for n = 1 to N
Applying the QR decomposition

5 [Rn Qn] = RQ(Ḧn)
6 An =Qn

Compute the equivalent received signal vector
7 yn =Any

= Ȟnsn + nn

Applying the detection procedures
8 ŝn = Detector(yn, Ȟn =AnHn)
9 End

Compute the overall estimated signal vector
10 ŝ = [ŝT1 ŝT2 . . . ŝTN]T

of users independently, we assume that the DSD algorithm described in Al-

gorithm 4 was previously employed.

Linear Detectors

In linear detectors, the equivalent received signal vector for the n-th

user class yn ∈ QNtn×1 is processed by a linear filter to eliminate the channel

effects [33]. The two linear detectors considered here are given by

Wχ
n =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ȞHn Ȟn)−1ȞHn , χ = Zero Forcing

(ȞHn Ȟn + σ2I)−1ȞHn , χ =MMSE
(5-21)

where σ2 = σ2
n/σ2

s and Ȟn ∈ QNtn×Ntn is the equivalent channel matrix of

the n-th user class. Note that for the MMSE detector, we consider the

autocorrelation matrix of the equivalent noise vector as Knn ≈ σ2
nI. As the

residual interference is very small, an excellent performance can be obtained

with this approximation. The linear hard decision of sn is carried out as follows:

ŝn = C(Wχ
nyn), (5-22)

where the function C(x) returns the point of the complex signal constellation

closest to x.
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Successive Interference Cancellation (SIC)

The SIC detector for the n-th user class in (5-18) consists of a bank of

linear detectors, each detects a selected component sn,i of sn. The component

obtained by the first detector is used to reconstruct the corresponding signal

vector which is then subtracted from the equivalent received signal to further

reduce the interference in the input to the next linear receive filter. The

successively canceled received data vector that follows a chosen ordering in

the i-th stage is given by

yn,i = yn −
i−1
∑
j=1

ȟn,j ŝn,j, (5-23)

where ȟn,j correspond to the columns of the channel matrix Ȟn and ŝn,j is the

estimated symbol obtained at the output of the j-th linear detector.

Multiple-Branch SIC Detection

In the multi-branch scheme [37] for the n-th user class, different orderings

are explored for SIC, each ordering is referred to as a branch, so that a

detector with L branches produces a set of L estimated vectors. Each branch

uses a column permutation matrix Pn. The estimate of the signal vector of

branch l, x̂
(l)
n , is obtained using a SIC receiver based on a new channel matrix

Ȟ
(l)
n = ȞnP

(l)
n . The order of the estimated symbols is rearranged to the original

order by
ŝ
(l)
n = P(l)n x̂

(l)
n , l = 1, . . . , L. (5-24)

A higher detection diversity can be obtained by selecting the most likely symbol

vector based on the ML selection rule, that is

ŝn = arg min ∥ yn − Ȟnŝ
l
n ∥2, l = 1, . . . , L. (5-25)

Other detectors as the proposed MB-LR-SIC and VLD in chapter 4,

could be used with the proposed DSD technique and this is up to the designer

to choose the detector.

5.4
Sum-Rate Analysis

In this section, a performance analysis for the proposed DSD scheme

is presented in terms of the sum rate. We consider that the channel matrix

H was previously estimated at the BS, assume Gaussian signalling and that

the received signal vector was decoupled for each user class. Considering the

received signal vector as presented in (5-18), the sum rate [97] that DSD can

offer is defined as
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R =
N

∑
n=1

log2
det(Kyn)
det(Knn)

, (5-26)

where Kyn and Knn are the autocorrelation matrix of the equivalent received

signal vector and the equivalent noise vector of the n-th user class, respectively.

It is easy to show that (5-26), can be expressed as

R =
N

∑
n=1

log2 det(I +BnB
H
n ), (5-27)

where Bn = K
−1/2
nn ȞsK

1/2
sn ∈ QNtn×Ntn . As BnBHn is a Hermitian symmetric

positive-definite square matrix, we have

BnB
H
n = Q̄nΛnQ̄

H
n , (5-28)

where Q̄n is a square unitary matrix, Q̄nQ̄Hn = I, and Λn is a diagonal matrix

whose diagonal elements are the eigenvalues of the matrix BnBHn . Then, the

reliable sum rate that the system can offer is

R =
N

∑
n=1

Ntn

∑
i=1

log2(1 + λi,n). (5-29)

Note that the eigenvalues λi,n in (5-29) can be obtained computing the

eigenvalues of BHn Bn. As mentioned before, for notational simplicity we assume

thatKsn = σ2
sI. When the DSD algorithm is applied, the equivalent noise vector

for the n-th user class nn = Qn∑N
m=1

m≠n

Hmsm +Qnn ∈ QNtn×1 is not white due to

the residual inter-user class interference. Then its autocorrelation matrix is

given by

Knn = E[nnn
H
n ] = σ2

sQn(
N

∑
m=1
m≠n

HmH
H
m)QHn + σ2

nI. (5-30)

Finally, the eigenvalues λi,n in (5-29) are obtained from the eigenvalues of

matrix BHn Bn given by

BHn Bn =
σ2
s

σ2
n

ȞHn [
σ2
s

σ2
n

Qn(
N

∑
m=1
m≠n

HmH
H
m)QHn + I]

−1
Ȟn. (5-31)

To compute the sum rate for the received signal vector in (5-9) when the

detection is perform for all user classes together, we suppress the index n from

the above analysis and considering that Ks = σ2
sI and Kn = σ2

nI, we get the

well-known expression:

R̄ =
Nt

∑
i=1

log2(1 + λi), (5-32)

where the values λi are the eigenvalues of the matrix BHB = σ2
s

σ2
n
HHH [97]. In

Appendix C, we show that, as well as the sum rate in (5-32) when all user

classes are detected together, the sum rate in (5-29) for the proposed DSD

algorithm is independent of the detection procedure. However, the lower bound
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on the achievable uplink sum rate obtained by using linear detectors is different

for each detector [98]. In order to analyze the behavior of the lower bound on

the sum rate for the proposed DSD scheme we consider that a linear detector

according to (5-21) is applied to the equivalent received signal vector (5-18) to

detect the transmitted symbol vector of the user class n, then we have

ỹn =Wnyn =WnȞnsn +Wnnn. (5-33)

Taking the k-th element of ỹn we have

ỹk,n =wk,nȟk,nsk,n +
∣Cn∣

∑
j=1
j≠k

wk,nȟj,nsj,n +wk,nnn, (5-34)

where wk,n is the k-th row of Wn. Modeling the noise interference, the inter-

user class interference and the inter-user interference in the user class n in (5-

34) as additive Gaussian noise independent of sk,n, considering (5-30) and that

the channel is ergodic so that each codeword spans over a large number of

realizations, we obtain the lower bound on the achievable rate for the DSD

algorithm with linear detectors as

Rk,n = E
⎡⎢⎢⎢⎢⎣
log2
⎛
⎝
1 + ...

σ2
s ∣wk,nȟk,n ∣2

σ2
s ∑

∣Cn∣
j=1
j≠k
∣wk,nȟj,n ∣2 + ∣wk,n[σ2

sQn(∑N
m=1
m≠n

HmHHm)QHn + σ2
nI]wHk,n ∣

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(5-35)

Then, the lower bound on the achievable rate for the entire system is given by

R =
N

∑
n=1

∣Cn∣

∑
k=1

Rk,n. (5-36)

For the SIC receiver, each stream is filtered by a linear detector and

then, its contribution is subtracted from the received signal to improve the

subsequent detection. For each layer the linear filter is recalculated. The

performance of SIC detectors can be improved if we choose the cancellation

order as a function of the SINR at the output of the linear detector in each

layer. The lower bound for the sum rate of the proposed DSD algorithm when

a SIC detector is used for each user class, could be calculated updating the

expression (5-35) in each layer, i.e., the values of wk,n are recalculated for each

detected stream.
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5.5
Numerical Results

In this section, we evaluate the performance of the proposed DSD

algorithm with different detectors in terms of the sum rate and the BER

via simulations. Moreover, the computational complexity of the proposed and

existing algorithms is also evaluated.

5.5.1
Sum Rate

To evaluate the analytic results obtained in Section 5.4, the sum rate

and the lower bounds for the proposed DSD algorithm with different detection

schemes will be evaluated considering CAS and DAS configuration assuming

perfect CSI. For the CAS configuration, we employ Lk = 0.7, τ = 2, the distance
dk to the BS is obtained from a uniform discrete random variable distributed

between 0.1 and 0.99, the shadowing spread is σk = 3 dB and the transmit

and receive correlation coefficients are ρrx = 0.2 and ρtx = 0.4 (when Ntk,n > 1),
respectively. For DAS configurations, we consider a densely populated cell,

where a fraction of the active users are in the centre of the cell and the

remaining users are in other locations of the cell. We explore different particular

values for the fraction of users in the centre and around the cell. Based on that,

we choose specific values for NB, D and Q. For the DAS configuration, we

also consider Lk,j taken from a uniform random variable distributed between

0.7 and 1, τ = 2, the distance dk,j for each link to an antenna is obtained

from a uniform discrete random variable distributed between 0.1 and 0.5,

the shadowing spread is σk,j = 3 dB and the transmit and receive correlation

coefficients are ρrx = 0.2 and ρtx = 0.4 , respectively.

In Fig. 5.2 we evaluate the sum rate in two different scenarios for the users

requirements. In both cases, we fix the SNR=10 dB and increase the number of

receive antennas. For the DAS configuration, we consider NB = 1/2Nr antennas

at the BS. We also consider D = 4 arrays of antennas distributed around the

cell, each equipped with Q = 1/8Nr antennas. For Fig. 5.2 (a) we consider

N = 4 classes of users with ∣ Cn ∣= 8 users each and Ntk,n = 1 antennas per

user. We can see that the sum rate of the proposed DSD algorithm is close to

the sum rate of the traditional MIMO system and with a low computational

complexity on the detection procedures as will be shown in the next subsection.

For Fig. 5.2 (b), we consider 16 active users in the system and that we need

to detect each user independently, i.e., N = 16 classes of users with ∣ Cn ∣= 1
users at each class and Ntk,n = 2 antennas per user. Under these conditions,

the sum rate of the proposed scheme reaches the sum rate of the traditional
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Figure 5.2: (a) Sum Rate vs Number of Receive antennas. N = 4, ∣ Cn ∣= 8 users
per class, Ntk,n = 1 antennas per user. (b) Sum Rate vs Number of Receive
antennas. N = 16, ∣ Cn ∣= 1 users per class, Ntk,n = 2 antennas per user.

MIMO system, especially for a large number of receive antennas. As expected,

from the plot in Fig. 5.2, we can see that the sum rate for DAS is higher than

that of the CAS configuration.

In Fig. 5.3, we compare the lower bound on the sum rate for different

detectors such as, ZF, MMSE and SIC. We consider the DAS configuration

under the same conditions as in the previous experiment. For Fig. 5.3 (a) we

consider N = 3 classes of users with ∣ Cn ∣= 10 users at each class and Ntk,n = 1
antennas per user. We can see from the plot, that similarly to the traditional

MIMO systems, the lower bound on the sum rate for ZF and MMSE achieves

the sum rate when Nr grows. For Fig. 5.3 (b) we consider N = 2 classes of

users with ∣ Cn ∣= 16 users at each class and Ntk,n = 1 antennas per user. We

can see that the SIC-MMSE achieves the sum rate and it could be considered

optimal in terms of sum rate.

In Fig. 5.4, we compare the lower bound sum rate versus SNR. We

consider N = 8 classes of users with ∣ Cn ∣= 1 user in each class and Ntk,n = 8
antennas per user transmitting with high correlation between antennas ρtx =
0.85. We consider the DAS configuration with NB = 96, D = 4 and Q = 8. We

DBD
PUC-Rio - Certificação Digital Nº 1221697/CA



Interference Mitigation Schemes for the Uplink of Massive MIMO in 5G Heterogeneous 88
Cellular Networks

50 100 150 200 250 300 350 400 450 500
4

6

8

10

12

Number of Receive Antennas 
(b)

A
ve

ra
ge

 s
um

 r
at

e 
[b

ps
/H

z]

 

 

Sum Rate
Sum Rate DSD
Lower Bound SIC−MMSE
Lower Bound SIC−MMSE DSD

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

Number of Receive Antennas 
(a)

A
ve

ra
ge

 s
um

 r
at

e 
[b

ps
/H

z]

 

 

Sum Rate
Sum Rate DSD
Lower Bound MMSE
Lower Bound Rate ZF
Lower Bound ZF DSD
Lower Bound MMSE DSD

Figure 5.3: (a) Sum Rate vs Number of Receive antennas. N = 3, ∣ Cn ∣= 10
users per class, Ntk,n = 1 antennas per user. (b) Sum Rate vs Number of Receive
antennas. N = 2, ∣ Cn ∣= 16 users per class, Ntk,n = 1 antennas per user.

can see from the plot that the lower bounds for the proposed DSD algorithms

are very close to the lower bounds when the detection procedure is carried out

together for all users.

5.5.2
Computational Complexity Analysis

In this subsection, the computational complexity of the proposed DSD

algorithm is evaluated and compared with the traditional coupled detection

schemes, when all user classes are detected together, by counting the number

of floating point operations (FLOPs) per received vector y. Different detection

schemes are considered such as MMSE, SIC and MB-SIC. We consider the

MB-SIC detector because it has a high computational complexity, and with

this we can analyze the behavior of the proposed DSD scheme when it is

combined with detectors that require high computational cost. The SIC based

receivers all use MMSE detection. Furthermore, the single-branch SIC and

the first branch of the MB-SIC employ norm-based ordering. We consider

QPSK modulation, however the computational cost in these detectors does
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Figure 5.4: Sum Rate vs SNR. N=8, ∣ Cn ∣= 1 users per class, Ntk,n = 8 antennas
per user. We consider DAS configuration with NB = 96, D = 4 and Q = 8.

not change significantly with the modulation order. The number of FLOPs

for the complex QR decomposition of an Ntn ×Nr matrix is given in [99] as

16(N2
rNtn −N2

tnNr + 1/3N3
tn). To compute the number of FLOPs required for

the remaining operations, we use the Light-speed Matlab toolbox [83].

Fig. 5.5 shows the computational complexity versus the number of user

classes for different detection algorithms. We consider K = 100 active users,

Ntk,n = 2 transmit antennas per user and Nr = 200 receive antennas distributed

around the cell. We consider an increasing number of classes of users, when

K is not divisible by the number of classes, the number of active users is

set to a smaller value so as to allow the division in N classes. We can see

from the figure that the complexity of the SIC and the MB-SIC detectors

with the DSD algorithm is lower than the SIC and the MB-SIC coupled

detectors, respectively. Furthermore, for receivers with DSD the computational

complexity is reduced as the number of user classes is increased. This fact

represents an important advantage for receivers with DSD, due to the fact

that it allows to use of more complex detectors for each user class according

to its data requirements.

In Fig. 5.6 and Fig. 5.7 we plot the required number of FLOPs versus

the number of active users and versus the number of antennas per user,

respectively. For Fig. 5.6 we consider N = 5 classes of users, Ntk,n = 2 transmit
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Figure 5.5: Computational complexity versus number of user class, K = 100
active users, Ntk,n = 2 antennas per user, Nr = 200 receive antennas.
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Figure 5.6: Computational complexity versus number of active user, N = 5
classes of user, Ntk,n = 2 antennas per user, Nt =KNtk,n transmit antennas and
Nr = 3Nt receive antennas.
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Figure 5.7: Computational complexity versus number of antennas per user,
K = 10 active user, N = 10 classes of users, Nt =KNtk,n transmit antennas and
Nr = 2Nt receive antennas.

antennas per user and Nr = 3KNtk,n receive antennas. The MB-SIC and SIC

detectors with DSD has a lower computational cost than the coupled SIC

detector. For this 5G context, with a high number of antennas, efficient coupled

detectors are not feasible to be implemented, however, if a specific user class

requires the benefits of complex detectors, the DSD algorithm reduces the cost

so that more complex detectors could be applied as illustrated with MB-SIC

in Fig. 5.6. For the results in Fig. 5.7 we consider that we have K = 10 active

users and that we need to detect each user independently, i.e., N = 10. The

number of transmit antennas per user Ntk,n is increased. We also consider

that the number of receive antennas distributed around the cell is given by

Nr = 2KNtk,n . The MB-SIC and SIC detectors with DSD have a significantly

lower complexity when compared with the SIC detector where all users are

coupled.

It is worth noting that the curves displayed in Fig. 5.5, Fig. 5.6 and

Fig. 5.7 will have a substantial decrease if the channel does not change over a

time period due to quasi static channels. In this case, the equivalent channel

matrices for each user class are stored for subsequent use. It would increase

the gap, in terms of the computational cost, for the detection schemes using

the DSD algorithm.
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5.5.3
BER Performance

In this subsection, the BER performance of the proposed DSD algorithm

is evaluated using different detectors which includes linear, SIC and MB-SIC

with linear MMSE receive filters. The SIC detector of [34] uses a norm-based

cancellation ordering, the MB-SIC of [37] employs a fixed number of branches,

equal to the total number of transmit antennas per user class Ntn for the DSD

schemes, and norm-based ordering in its first branch. A massive MIMO system

operating in heterogeneous networks withK active users is considered. We also

consider the DAS configuration where the Nr = NB +DQ receive antennas are

distributed around the cell in D radio heads with Q antennas each and the

remaining NB antennas are located at the BS. We consider QPSK modulation.

The SNR per transmitted information bit is defined as

SNR = 10 log10
Ntσ2

s

Mσ2
n

, (5-37)

where σ2
s is the common variance of the transmitted symbols, σ2

n is the noise

variance at the receiver and M is the number of transmitted bits per symbol.

The numerical results correspond to an average of 3,000 simulations runs,

with 500Nt symbols transmitted per run. For the NB antennas at the BS, we

employ Lk = 0.3, τ = 2, the distance to the users is obtained from a uniform

discrete random variable distributed between 0.4 and 0.7, the shadowing spread

is σk = 1 dB and the transmit and receive correlation coefficients are equal to

ρrx = 0.4. For theD remote arrays of antennas, we use Lk,j taken from a uniform

random variable distributed between 0.3 and 0.5, the shadowing spread σk,j = 1
dB and the receive correlation coefficients are equal to ρrx = 0.5. When the

number of transmit antennas at the users is Ntk,n > 1, the transmit correlation

coefficient is equal to ρtx = 0.55.
For the experiment in Fig. 5.8, we consider K = 12 user devices, where

each user is equipped with Ntk,n = 3 transmit antennas and N = 3 classes

of users. The system employs perfect channel state information and QPSK

modulation. For the DAS configuration, we consider NB = 8 receive antennas at
the BS, D = 4 remote radio heads and Q = 7 receive antennas per remote radio

head. We can see from the figure that the decoupled SIC detection presents a

performance close to the coupled SIC detector with a difference around 2 dB

in the high SNR region. In addition the decoupled SIC detector has a drastic

reduction in the computational cost when compared with its coupled version.

The result also indicates a remarkable superiority in the performance for the

MB-SIC receiver with the DSD scheme over the coupled SIC detector which

also has a lower computational complexity than the coupled SIC detector.
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Figure 5.8: BER versus SNR with K = 12 active users, N = 3 classes of users,
Ntk,n = 3 transmit antennas per user and Nr = 36 receive antennas.
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Figure 5.9: BER versus SNR with K = 8 active users, Ntk,n = 8 transmit
antennas per user, N = 8 classes of users and Nr = 128 receive antennas.
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Figure 5.10: BER versus SNR with K = 64 active users, Ntk,n = 1 transmit
antennas per user, N = 4 classes of users, NB = 34, D remote antennas arrays
with Q = 7 receive antennas per array.

In the next example, we evaluate the performance of the proposed DSD

scheme considering K = 8 active users, each user transmitting with Ntk,n = 8
antennas. We also consider that we need to detect each user independently of

each other, i.e., N = 8 classes of users with ∣ Cn ∣= 1 users per class. For the

DAS configuration, we consider NB = 64 receive antennas at the BS, D = 8

remote radio heads and Q = 8 receive antennas per remote radio head. The

Fig. 5.9 indicate that the performance of the SIC detector with DSD is close to

the SIC detector with a lower computational complexity. Note that the results

for MB-SIC with DSD show a very good performance with a computational

complexity much lower than the SIC detector without DSD.

In Fig. 5.10 we evaluate the performance of the proposed DSD scheme

with MMSE, SIC and MB-SIC detection. We consider K = 64 active users,

N = 4 classes of users, ∣ Cn ∣= 16 users per class and Ntk,n = 1 transmit antennas

per user. For the DAS configuration, we consider NB = 34 receive antennas at

the BS and Q = 7 receive antennas per remote radio head. To show the behavior

of the BER performance with different numbers of distributed antennas we

consider two configurations of remote radios heads, D = 8 and D = 6. As

expected, the results shows that when the number of RRHs is increased, the

BER performance is improved due to the low propagation effects caused by
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the short distances between users and some remote antenna arrays. We also

can see from the figure that the SIC and the MB-SIC detector with DSD offers

an excellent BER performance with a low computational cost.
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6

Conclusions and Future Works

6.1
Conclusions

This thesis focused on aspects of design and implementation of effi-

cient detection schemes for wireless communications systems with multiple

antennas and users. Some detection techniques such as the multiple-branch

lattice reduction successive interference cancellation (Chapter 3), variable list

detection (Chapter 3) and iterative list detection and decoding (Chapter 4)

have been proposed. A mathematical signal model and a decoupled signal

detection scheme for heterogeneous networks (Chapter 5), have also been

proposed and evaluated. The main outcomes of this thesis are techniques to

achieve higher spectral efficiency using advanced interference cancellation for

5G environments.

In the following, we summarize the work in this thesis in terms of the

content of the chapters.

General principles for multiuser MIMO systems have been studied in

Chapter 2. Initially, we have reviewed and explained the capacity of MIMO

systems in both deterministic and random channels. It was shown that the

capacity can be increased by the factor min(Nt,Nr) when compared to a

conventional single-antenna system. Channel estimation aspects and the most

important detection techniques in the literature such as linear detectors (ZF,

MMSE), successive interference cancellation based detectors (SIC, MB-SIC,

MF-SIC) and the optimal ML detector have been presented.

In order to design efficient detectors in terms of BER performance and

computational complexity for cellular networks operating with MU-MIMO

systems, Lattice Reduction (LR) detection techniques have been presented

in Chapter 3. Initially, the LR concept and some detection techniques in the

LR domain have been studied. An efficient implementation for the LR-SIC

detector was proposed as well as two detection schemes by list generation.

The proposed MB-LR-SIC detector employs an LR transformation technique

on the channel matrix, which was previously estimated, and generates a fixed

number of multiple ordering patterns and estimates of symbol vectors, each
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of these ordering patterns uses SIC detection in the LR domain. This makes

it possible to generate a set of candidate estimates of the transmitted vector.

Finally the best candidate is selected using the ML criterion. The MB-LR-SIC

detector has shown, through simulations, a good performance, however, due to

the its relatively high computational complexity caused by the fixed number

of candidates tested, MB-LR-SIC detector is not viable for high number of

antennas scenarios. In Chapter 3, we have also proposed the VLD signal detec-

tion algorithm. The proposed VLD employs an LR transformation and makes

a multistage search for a reliable estimation of the transmitted signal vector

in the LR domain. In each stage, the proposed algorithm consider different

ordering patterns for the LR-SIC detection. For the fist stage, an ordering that

minimize the MSE between the transmitted symbol and the detected symbol

is used as a starting point. Based on a quality metric of the current solution,

a number of candidates necessary to find a better estimation is calculated

using a random ordering pattern after the fist stage. The entire multistage

search process is performed in the LR domain. Numerical results show that

the proposed VLD performance results in a near optimal performance with

much lower computational complexity than the ML detector. VLD offers a

higher detection diversity and low computation complexity, compared with

the optimal detector, the MB-LR-SIC algorithm and other existing schemes.

In Chapter 4, an iterative detection and decoding structure for Point-

to-Point MIMO systems has been described. Moreover, we have developed an

iterative version of the proposed VLD algorithm for MU-MIMO coded system.

IVLDD uses the soft bit extrinsic information exchanged between the detector

and the decoder through iterations. In the first iteration, reliable values of

LLRs are computed using VLD which produces a good performance since the

first iteration that reduces the required number of iterations. After the first

iteration, the SC-MMSE is used to eliminate the remaining interference. For

coded systems, IVLDD has shown that only three turbo iterations are needed

to get close to the interference-free single-user performance.

In Chapter 5, a mathematical signal model and the DSD algorithm for the

uplink of massive MIMO systems operating in heterogeneous cellular networks

with different classes of users using CAS and DAS configurations has been

proposed. The proposed DSD allows one to separate the received signals for

each category of users efficiently into independent parallel single user class

signals at the receiver side, applying a common channel inversion and QR

decomposition and assuming that the channel matrix was previously estimated.
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With the proposed DSD scheme, it is possible to handle different classes

of users in heterogeneous networks and to use different modulation and/or

detection schemes for each class according to its data service requirements.

The main advantage of DSD is the reduction in the computational cost of

efficient detection schemes that, for its high computational complexity, are not

viable to be implemented when the signals received from all active users are

coupled.

6.2
Future Work

The techniques described in this thesis have considered a single cell scen-

ario, however, some extra challenges could appear in multicell environments

due to the inter-cell interference. The proposed schemes may be generalized to

a multicell scenario. On the other hand, the receiver proposed in Chapters 3-5

could be extended to transmission using orthogonal frequency division multi-

plexing techniques.

Some suggestions for possible future works based on this thesis are given

bellow:

● To consider multicell MIMO systems.

● To analyze the synchronization problem in the communications networks

studied here.

● To develop an iterative detection and decoding technique for heterogen-

eous networks.

● To improve the error control coding. Stronger codes such as turbo codes

and LDPC can be used instead of convolutional codes used in this thesis.

● To consider cooperative signal relaying for massive MIMO systems in

heterogeneous networks.

● Hardware implementation of the receiver structures proposed in

Chapters 3-5.
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Appendix A

Let us consider the estimated symbol vector in the n-th LR-SIC layer

given by (3-25) with σT is replaced by a Nt ×Nt matrix σnM (matrix M can

be either M =C =
√
R−1 or M = T/σs). Then

z̃n =
⎡⎢⎢⎢⎢⎣

H̃[n]

σnM[n]

⎤⎥⎥⎥⎥⎦

† ⎡⎢⎢⎢⎢⎣

y − H̃[nr]ẑ[nr]
−σnM[nr]ẑ[nr]

⎤⎥⎥⎥⎥⎦
, (A-1)

or
z̃[n] = B[n][H̃H[n](y − H̃[nr]ẑ[nr]) − σ2

nM
H
[n]M[nr]ẑ[nr]], (A-2)

where
B[n] = (H̃H[n]H̃[n] + σ2

nM
H
[n]M[n])−1. (A-3)

Now let Dn and Dnr be matrices that remove the first (n − 1) and the

last (Nt − n + 1) columns of M, respectively, such that M[n] = MDn and

M[nr] =MDnr. Then the matrix products in (A-2) and (A-3) can be expressed

as
MH
[n]M[nr] =DHn (MHM)Dnr (A-4)

and
MH
[n]M[n] =DHn (MHM)Dn. (A-5)

Now, sinceCHC =R−1 = THT/σ2
s , then from (A-4) and (A-5) we conclude that

the use of M = T/σs or M =C in (A-1) will yield the same result in (A-2).
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Appendix B

Let z be the transmitted symbol vector in the LR domain and L =
{z1,z2, . . . ,zL} a list of candidates generated by different detections in the

LR domain (branch detectors). The final decision is made through the ML

cost:
ẑ = arg min

zi∈L
∥ y − H̃zi ∥2 . (B-1)

Let e be the error event. The error probability of the list-based detector is

given by

P (e) = P (e,z ∉ L) + P (e,z ∈ L)

= P (e ∣ z ∉ L)P (z ∉ L) + P (e,z ∈ L)

= P (z ∉ L) + P (e,z ∈ L). (B-2)

Now, since the events {z ∉ L} and {z ≠ z1,z ≠ z2, . . . ,z ≠ zL}, are equal, then

for all i = 1,2, . . . , L,
P (z ∉ L) ⩽ P (z ≠ zi) = P i

e , (B-3)

where P i
e is the detection error probability of branch i detector. Furthermore,

if z ∈ L and since L ⊂ Ã, we have that

P (e,z ∈ L) ⩽ PML
e , (B-4)

where PML
e denotes the error probability of the ML detector. It then results

from (B-2), (B-3) and (B-4) that

P (e) ⩽ PML
e + P i

e . (B-5)

Now, since the ML detector reaches full diversity gain Nr, then if any

of the branch detectors also reaches full diversity, so does the list-based

detector. Furthermore, since LR-SIC detection was shown to have full diversity

gain [100], any list-based detector that includes a LR-SIC detection reaches

full diversity. An additional coding gain might be observed by obtained better

candidates as verified with VLD.
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Appendix C

Let us consider that a linear detector according to (5-21) is applied to

the equivalent received signal vector (5-18) to detect the transmitted symbol

vector of the n-th user class as in (5-33). If we define the matrix Ān =WnȞn

and the vector n̄n =Wnnn we can rewrite (5-33) as

ỹn = Ānsn + n̄n, (C-1)

then, in analogy with the analysis in Section IV, the sum rate for the n-th user

class after the detection is given by

Rn =
Ntn

∑
i=1

log2(1 + λ̄i), (C-2)

where the values λ̄i are the eigenvalues of the matrix B̄Hn B̄n with B̄n =
K
−1/2
n̄n

ĀnK
1/2
sn . Then

B̄Hn B̄n =K1/2
sn ĀHn K

−1
n̄n
ĀnK

1/2
sn , (C-3)

where Ksn = σ2
sI and Kn̄n =WnKnnW

H
n . Assuming that Kn̄n has an inverse,

we finally obtain

B̄Hn B̄n = σ2
sĀ
H
n (WnKnnW

H
n )−1Ān

= σ2
sȞ
H
n W

H
n (WnKnnW

H
n )−1WnȞn

= σ2
sȞ
H
n K

−1
nn
Ȟn. (C-4)

Note that (C-4) and (5-31) will yield the same result which proves that the sum

rate for the DSD algorithm is independent of the linear detection procedure.
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