

Leonardo Viana de Freitas

Ligantes derivados da isoniazida e sua coordenação aos íons cobre(II) e zinco(II): potenciais Compostos Atenuantes da Interação Metal-Proteína (MPACs) na terapia da Doença de Alzheimer

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Química do Departamento de Química da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Química.

Orientador: Nicolás Adrián Rey Co-orientadora: Ana Lúcia Ramalho Mercê

> Rio de Janeiro Agosto de 2014

Leonardo Viana de Freitas

Ligantes derivados da isoniazida e sua coordenação aos íons cobre(II) e zinco(II): potenciais Compostos Atenuantes da Interação Metal-Proteína (MPACs) na terapia da Doença de Alzheimer

Tese apresentada ao Programa de Pós-Graduação em Química da PUC-Rio como requisito parcial para a obtenção do título de Doutor em Química. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Nicolás Adrián Rey Orientador Departamento de Química – PUC-Rio

Prof^a Maryene Alves Camargo UnB

Prof^a Andréa de Moraes Silva IFRJ

Dra. Rachel Ann Hauser-Davis UNIRIO

Prof. Jiang Kai Departamento de Química – PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 7 de agosto de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Leonardo Viana de Freitas

Graduou-se em Licenciatura Química no Centro Federal de Educação Tecnológica de Química de Nilópolis (atual Instituto Federal do Rio de Janeiro - IFRJ), em fevereiro de 2008. Fez Mestrado em Química na PUC-Rio, tendo defendido sua dissertação em 2010. É professor efetivo de Química Geral e Inorgânica do IFRJ desde 2010.

Ficha Catalográfica

Freitas, Leonardo Viana de

Ligantes derivados da isoniazida e sua coordenação aos íons cobre (II) e zinco (II): potenciais compostos atenuantes da interação metal-proteína (MPACs) na terapia da doença de Alzheimer / Leonardo Viana de Freitas ; orientador: Nicolás Adrián Rey ; coorientadora: Ana Lúcia Ramalho Mercê. – 2014.

164 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2014.

Inclui bibliografia

Química – Teses. 2. Isoniazida. 3. MPACs. 4.
Cobre (II). 5. Doença de Alzheimer. I. Rey, Nicolás Adrián.
II. Mercê, Ana Lúcia Ramalho. III. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Química. IV.
Título.

À minha avó, Maria José (*in memorian*), pelo amor, orações e tantos momentos felizes dispensados a mim ao longo dos 25 anos que convivemos e à professora Judith Felcman (*in memorian*) pelo seu zelo quanto a seus alunos, que ia além do lado profissional, fazendo com que nossa admiração por ela ultrapassasse a relação professor-aluno.

Agradecimentos

A Deus, pelo seu amor por mim, pela renovação de forças e por suas misericórdias, que não têm fim. Sem Ti, nada posso.

Aos meus familiares que tanto me apoiam. Agradeço, em especial, a meus pais, Raimundo e Maria das Graças, pela educação e formação de valores que me deram; à minha avó, Maria José, por tudo que representa para mim e a meus tios, Mário e Sonia, meus segundos pais, que sempre me apoiam.

Ao meu orientador, professor Nicolás Adrián Rey, pelo empenho demonstrado ao longo desse trajeto e pelo conhecimento químico compartilhado comigo, que contribuiu para a minha formação.

À professora Ana Lúcia Ramalho Mercê pela co-orientação dada na pesquisa.

À professora Andréa de Moraes Silva, minha amiga e maior influenciadora a trilhar os caminhos da Química Inorgânica. Desde que fui seu aluno, em 2005, suas aulas, sua postura profissional, seus apontamentos sempre me marcaram. Hoje celebro o fato de não ser apenas um ex-aluno, mas um amigo dela.

À Aline pela amizade, disposição em me ajudar (principalmente naquelas muitas vezes que perguntei sobre o Origin, Ortep, Mercury etc).

À Maria Stella, por sua amizade, estando sempre na torcida por mim, trazendo belos momentos de conversas, troca de ideias e fortificação.

À Rafaela, pela amizade, apoio e dicas que me dá, inclusive sugestões gastronômicas da Zona Sul e de vestuário. Ah ... e pelos momentos engraçados trazidos por ela, principalmente quando começa a reclamar das coisas.

À Vanessa, pela amizade e grande companheirismo que temos, ricos em boas histórias e gargalhadas, de apoio mútuo e de muita cumplicidade. Como eu amo essa nossa amizade, Van!

Ao amigo Marcelo Alves, que mesmo à distância, estava sempre na torcida.

Às colegas de laboratório Camila Assis e Thamires Idalino, pelos bons momentos que temos e apoio.

Ao colega de laboratório Wellington Cruz, pela pessoa divertida que é e, mais do que isso, pela paciência para explicar assuntos como farmacologia, anatomia e fisiologia etc. Além de ajudas com as análises *in silico* feitas nesse trabalho.

Aos alunos de iniciação científica Ana Beatriz, Daphne, Júlia e Sérgio, à Dra. Rachel Ann Hauser-Davis, à Dra. Silvia Maissonette e ao professor Jesús Landeira-Fernandez pela dedicação demonstrada nas análises *in vivo*, que contribuíram significativamente para o desfecho dessa pesquisa.

Ao doutorando Marco C. Miotto e a seu orientador, professor Claudio O. Fernández, pela realização das análises *in vi*tro com o peptídeo $A\beta$, que trouxeram grande riqueza aos resultados deste trabalho.

À professora Marciela, pelas análises de RMN de ¹H e por ser sempre muito gentil comigo, estando disposta a me ajudar.

Ao professor Odivaldo Cambraia, pelas análises de RPE e suas explicações.

Aos colegas do laboratório de equilíbrio químico da UFPR Edgar e Jéssica, pela ajuda fornecida a mim em todas as vezes que precisei. Agradeço especialmente à Thieme, que esteve comigo durante as sete vezes que fui a Curitiba, sempre me ensinando o manuseio de programas computacionais, titulador, me dando várias dicas. Meu muito obrigado a você!

À Fátima, secretária da pós-graduação, por sua gentileza, amizade, carinho e atenção. Adoro você!

À Zuleide, sempre tão prestativa e carinhosa. Adoro a Zuzu!

À equipe técnica dos laboratórios 578 e 580, pelas suas análises.

Aos funcionários da biblioteca do CTC Guilherme, Bernadete e Sandra, sempre muito gentis comigo.

Aos professores que participaram da comissão examinadora.

À PUC-Rio, pela oportunidade e suporte para realizar esses estudos.

Ao CNPq pelo apoio financeiro, indispensável para minha manutenção e confecção da pesquisa.

Resumo

Freitas, Leonardo Viana de; Rey, Nicolás Adrián. Ligantes derivados da isoniazida e sua coordenação aos íons cobre(II) e zinco(II): potenciais Compostos Atenuantes da Interação Metal-Proteína (MPACs) na terapia da Doença de Alzheimer. Rio de Janeiro, 2014. 164 p. Tese de Doutorado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

A Doença de Alzheimer (DA) é uma desordem cerebral degenerativa, sendo progressiva e fatal, a qual se caracteriza por disfunções cognitivas e da memória. Uma observação característica na DA é a presença de depósitos fibrilosos insolúveis do polipeptídeo β -amilóide (A β), que ocorre predominantemente em duas formas, A β (1-40) e A β (1-42). Muitas evidências indicam que as interações de A β com os íons Cu(II) e Zn(II) podem estar relacionadas aos processos que levam à agregação deste peptídeo, já que aqueles foram encontrados nessas placas. Além disso, o cobre, por suas características eletroativas, pode contribuir para a geração de radicais livres, aumentando, desta maneira, o estresse oxidativo. Assim, a prevenção da agregação e a diminuição do estresse oxidativo são consideradas estratégias terapêuticas em potencial para a doença. Assim, destacam-se os compostos atenuantes na interação metal-proteína (MPACs, em inglês), que estão relacionados com a normalização da repartição e da distribuição de biometais, interrompendo as interações anômalas entre os íons metálicos e o peptídeo A β . Neste trabalho, foram sintetizados dois potenciais MPACs derivados do agente micobactericida isoniazida: um deles com o fragmento 8hidroxiquinolina (H_2L1) e o outro, HL2, estruturalmente relacionado à melatonina. Disto resultam dois ligantes interessantes, capazes de coordenar íons metálicos de importância biológica através de seus átomos doadores N e O. As interações destes compostos com os biometais cobre e zinco foram estudadas no estado sólido pela síntese e caracterização de quatro novos complexos, dois com o íon Cu(II) (complexos 2 e 4) e dois com o íon Zn(II) (complexos 1 e 3). Estudos potenciométricos em solução (meio água/etanol 30/70% v/v) envolvendo ambos os ligantes foram feitos a fim de se determinar as respectivas constantes de

protonação, bem como as constantes de formação dos complexos envolvendo os íons em estudo. Realizou-se, para os dois ligantes, uma análise farmacológica *in silico*, mostrando que eles são atóxicos e que possuem um elevado 'DrugScore'. Experimentos de RMN realizados com H_2LI , o mais solúvel dos ligantes, demonstraram que, embora o composto não interaja diretamente com $A\beta$, ele compete efetivamente com este peptídeo pelos íons Cu(II) e Zn(II). Em testes efetuados com ratos Wistar machos, o composto mostrou não ser tóxico em doses de até 200 mg kg⁻¹. Os níveis de GSH (um indicador de estresse oxidativo) e de metalotioneínas no cérebro das cobaias tratadas com o composto são estatisticamente os mesmos daqueles observados nos animais controle (não injetados). Comportamento similar foi observado para os biometais cobre, zinco e ferro. Dessa forma, tais estudos para H_2LI , revelaram que ele pode atuar como um potencial MPAC.

Palavras-chave

Isoniazida; MPACs; Cobre(II); Zinco(II); Doença de Alzheimer.

Freitas, Leonardo Viana de; Rey, Nicolás Adrián (Advisor). Isoniazidderived Ligands and their coordination to copper(II) and zinc(II) ions: potential Metal-Protein Attenuating Compounds (MPACs) in Alzheimer Disease Therapy. Rio de Janeiro, 2014. 164 p. D.Sc. Thesis -Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Alzheimer's disease (AD) is a progressive and fatal degenerative brain disorder, characterized by cognitive and memory disorders. A characteristic feature of this disease is the presence of insoluble fibrillary deposits of the β amyloid polypeptide (A β), which occurs predominantly in two forms, A β (1-40) and A β (1-42). Accumulated evidence indicates that A β interactions with Cu(II) and Zn(II) may be related to the processes that lead to the aggregation of this peptide, since these ions have been found in these plaques. In addition, copper, due to its electroactive characteristics, may contribute to the generation of free radicals, increasing oxidative stress. Thus, the prevention of the peptide aggregation and reduction of oxidative stress are considered potential therapeutic strategies for the disease. In this context, metal-protein interaction attenuating compounds (MPACs) are highlighted, which are related to the normalization of the allocation and distribution of biometals, interrupting the anomalous interactions between metal ions and the Aß peptide. In this study, two potential MPACs derived from the mycobactericidal agent isoniazid were synthesized: one with the 8-hydroxyquinoline (H_2L1) fragment and the other, HL2, structurally related to melatonin. This produced two interesting ligands capable of coordinating metal ions of biological importance through their donor atoms N and O. The interactions of these compounds with biometals copper and zinc were studied in solid state by the synthesis and characterization of four new complexes, two with the Cu(II) ion (complexes 2 and 4) and two with the Zn(II) ion (complexes 1 and 3). In-solution potentiometric studies (water/ethanol 30/70% v/v medium) involving both ligands were conducted in order to determine their

protonation constants, in addition to the formation constants of the complexes involving the ions under study. Pharmacological *in silico* analyses were performed for the two ligands and demonstrated that both are non toxic and have a high 'DrugScore'. NMR experiments performed with H_2LI , the most soluble of the ligands, demonstrated that, although the compound does not interact directly with $A\beta$, it competes effectively with this peptide for Cu(II) and Zn(II) ions. In experiments carried out with male Wistar rats, the compound was shown to be non-toxic in doses up to 200 mg kg⁻¹. GSH (an indicator of oxidative stress) and metallothionein levels in the brains of the animals treated with the compound are statistically the same as those observed in control animals (not injected). Similar behavior was observed for biometals copper, zinc and iron. Thus, these studies to H_2LI revealed that it can act as a potential MPAC.

Keywords

Isoniazid; MPACs; Copper(II); Zinc(II); Alzheimer's Disease.

Sumário

1. Introdução	25
1.1. Uma visão geral sobre a doença de Alzheimer	25
1.2. Breve histórico	27
1.3. Visão Clínica e bases moleculares da doença de Alzheimer	30
1.3.1.Visão clínica	30
1.3.2 Proteína Precursora Amiloide (APP) e β amiloide	31
1.3.3. Proteína tau e emaranhados neurofibrilares	33
1.3.4. Contribuições genéticas para a doença de Alzheimer	34
1.4. O envolvimentos dos íons metálicos na doença de Alzheimer	35
1.4.1. Aspectos gerais	35
1.4.2. A participação do íon Cu(II) na doença de Alzheimer	35
1.4.3. A participação do íon Zn(II) na doença de Alzheimer	38
1.5. Medidas terapêuticas: terapias atuais e importância	
de novas abordagens	41
1.6. Proposta de trabalho	47

2. Experimental	49
2.1. Solventes e reagentes	49
2.2. Equipamentos e técnicas analíticas	49
2.2.1. Análise Elementar	49
2.2.2.Espectroscopia no Infravermelho (IV)	50
2.2.3.Ressonância Magnética Nuclear (RMN)	50
2.2.4.Ressonância Paramagnética Eletrônica (RPE)	51
2.2.5.Difração de Raios-X em monocristal	51
2.2.6.Ponto de Fusão	52
2.2.7.Potenciometria	52
2.2.8. Análise farmacológica in silico	53
2.2.9. Estudos de interação com os sistemas Cu(II)-A β e Zn(II)-A β	54

2.2.10. Estudos de toxicidade aguda de H_2L1 em	
modelo animal mamífero	54
2.2.10.1. Injeção do composto e pré-preparo das amostras	54
2.2.10.2. Extração e quantificação de metalotioneínas	55
2.2.10.3. Extração e quantificação de glutationa reduzida (GSH)	56
2.2.10.4. Determinações de metais	56
2.2.10. Estudos de toxicidade aguda de H_2L1 em	
modelo animal mamífero	54
2.2.10.1. Injeção do composto e pré-preparo das amostras	54
2.2.10.2. Extração e quantificação de metalotioneínas	55
2.2.10.3. Extração e quantificação de glutationa reduzida (GSH)	56
2.2.10.4. Determinações de metais	56
2.3. Sínteses dos ligantes	57
2.3.1.Síntese da 8-hidroxiquinolina-2-carboxaldeído isonicotinoil	
hidrazona (H ₂ L1)	58
2.3.2. Síntese da 5-bromoindol-3-carboxaldeído isonicotinoil	
hidrazona (H <i>L2</i>)	58
2.4. Sínteses dos complexos	59
2.4.1. Síntese do complexo [ZnCl ₂ (H_2L1)] ⁻ 1/2 H ₂ O, 1	59
2.4.2. Síntese do complexo [CuCl(<i>HL1</i>)] ⁻ 3H ₂ O, 2	59
2.4.3. Síntese do complexo [ZnCl(<i>L2</i>)H ₂ O] [·] 2H ₂ O, 3	60
2.4.4. Síntese do complexo [CuCl ₂ (<i>HL2</i>)] ⁻ 1/2 H ₂ O, 4	60
3 Resultados e Discussão Caracterização dos ligantes	62
3.1. Espectroscopia vibracional	62
3.2. Ressonância magnética nuclear de hidrogênio (RMN de ¹ H)	64
3.3. Análise Cristalográfica	67
4 Resultados e Discussão Caracterização dos complexos	74
4.1. Caracterização do complexo 1 por espectroscopia vibracional	75
4.2. Caracterização do complexo 2	81
4.2.1. Espectroscopia Vibracional	83
4.3. Caracterização do complexo 3 por espectroscopia vibracional	87

4.4. Caracterização do complexo 4	90
4.4.1. Espectroscopia Vibracional	90
4.4.2. Ressonância Paramagnética Eletrônica (RPE)	92
5 Resultados e Discussão Estudo Potenciométrico	95
5.1. Aspectos Gerais	95
5.2. 8-hidroxiquinolina-2-carboxaldeído isonicotinoil	
hidrazona (H₂L1)	98
5.3. Zn(II) e 8-hidroxiquinolina-2-carboxaldeído isonicotinoil	
hidrazona (H₂L1)	102
5.4. Cu(II) e 8-hidroxiquinolina-2-carboxaldeído isonicotinoil hidrazon	a
(H ₂ <i>L</i> 1)	109
5.5. 5-bromoindol-3-carboxaldeído isonicotinoil hidrazona (HL2)	115
5.6. Tentativas de titulações potenciométricas de HL2 com os íons	
Cu(II) e Zn(II)	118
6 Resultados e Discussão Investigação, in vitro, das interações com	os
sistemas Cu(II)-Aβ e Zn(II)-Aβ	120
7 Resultados e Discussão Análise farmacológica in silico para os	
ligantes <i>H</i> ₂ <i>L</i> 1 e <i>HL</i> 2	123
7.1. Absorção e permeabilidade celular	124
7.2. Análise de toxicidade	129
7.3. Análise do metabolismo para H₂L1	130
8 Resultados e Discussão Testes de toxicidade aguda, in vivo,	
envolvendo um modelo animal	134
8.1. Parâmetros bioquímicos de interesse no cérebro dos animais	
Glutationa reduzida (GSH)	134
8.2. Parâmetros bioquímicos de interesse no cérebro	
dos animais Metais	135
8.3. Parâmetros bioquímicos de interesse no cérebro dos animais	
Metalotioneínas (MT)	136

9 Considerações Finais	138
10 Perspectivas e Etapas Futuras do Trabalho	143
11 Referências Bibliográficas	143
12 Anexos	150

Lista de Figuras

Figura1-Estrutura do clioquinol	27
Figura 2- Auguste D., paciente de Alois Alzheimer	28
Figura 3 - Emaranhados neurofibrilares encontrados no cérebro	
da paciente Auguste D.	29
Figura 4 - Corte retirado do cérebro de Johann F., outro paciente	
de Alzheimer	29
Figura 5 - Placas senis mostrando agregados do peptídeo β -amilóide	30
Figura 6 - Processamento da proteína precursora amilóide (APP)	
pelas enzimas α secretase ou β secretase e γ secretase	32
Figura 7 - Sequência de aminoácidos para o peptídeo A eta (1-42)	32
Figura 8 - Processo de desintegração microtubular associada à doença	a
de Alzheimer	33
Figura 9 - Proposta estrutural do complexo misto de Cu(II) e Zn(II) com	1
o peptídeo βA	39
Figura 10 - Representação da atividade sináptica corrompida	
devido à doença de Alzheimer	40
Figura 11 - Estrutura da tacrina	41
Figura 12 -Estrutura da rivastigmina	41
Figura 13 - Estrutura do donepezil	41
Figura 14 - Estrutura da galantamina	41
Figura 15 - Estrutura da memantina	42
Figura 16 - Estrutura da DFO	43
Figura 17 - Estrutura da deferiprona	43
Figura18 Estrutura da melatonina	46
Figura 19 - Estrutura do ligante baseado no clioquinol (H ₂ L1)	47
Figura 20 -Estrutura do ligante baseado na melatonina (H<i>L2</i>)	48
Figura 21 - Esquema reacional para a síntese do ligante H_2L1	57
Figura 22-Esquema-reacional-para-a-síntese-do-ligante-HL2	58
Figura 23 - Espectro vibracional do ligante H ₂ L1	
(em pastilha de KBr)	62

Figura 24 - Espectro vibracional do ligante HL2 (em pastilha de KBr)	63
Figura 25- Estrutura de H₂L1 com átomos enumerados	65
Figura 26 - Estrutura de H<i>L2</i> com átomos enumerados	66
Figura 27- ORTEP para o ligante H₂<i>L1</i>	71
Figura 28 - ORTEP para o ligante H<i>L</i>2	70
Figura 29 - Rede de ligações de hidrogênio intermoleculares para H_2L1	71
Figura 30 - Interações π - π stacking e O1-H12 π stacking para H ₂ L1	72
Figura 31 - Empacotamento cristalino em 3D para H_2L1 ao longo do	
eixo cristalográfico a	72
Figura 32 - Rede de ligações de hidrogênio intermoleculares para HL2	73
Figura 33 - Interações π - π stacking para HL2 com o espectro original	73
Figura 34 - Espectro vibracional do complexo 1 (em pastilha de KBr)	75
Figura 35 - Espectro vibracional do complexo 1 (em pastilha	
de polietileno)	76
Figura 36 - Proposta estrutural para o complexo [ZnCl ₂ (H ₂ L1)]	78
Figura 37- Desdobramento dos orbitais d em um ambiente	
bipiramidal trigonal	80
Figura 38 - Espectro vibracional do complexo 2 (em pastilha de KBr)	81
Figura 39 - Espectro vibracional do complexo 2 (em pastilha	
de polietileno)	82
Figura 40 - Espectro de RPE em DMF à temperatura ambiente	83
Figura 41- Espectro de RPE em N ₂ líquido a 77K	84
Figura 42 - Diagrama de desdobramento dos orbitais d	86
Figura 43 Proposta estrutural para [CuCl(H <i>L1</i>)]	86
Figura 44 - Espectro vibracional do complexo 3 (em pastilha de KBr)	87
Figura 45 - Espectro vibracional do complexo 3	
(em pastilha de polietileno)	88
Figura 46 - Proposta estrutural para [ZnCl(<i>L2)</i> H ₂ O]	89
Figura 47 - Espectro vibracional do complexo 4	
(em pastilha de KBr)	90
Figura 48 - Espectro vibracional do complexo 4	
(em pastilha de polietileno)	91
Figura 49-Espectro de RPE em DMF à temperatura ambiente	92

Figura 50 - Espectro de RPE em N ₂ líquido a 77K	93
Figura 51 - Proposta estrutural para [CuCl ₂ H <i>L2</i>]	94
Figura 52 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o ligante H_2L1 em meio ácido	98
Figura 53 - Curva de distribuição de espécies em função do pH	
para ligante H₂<i>L1</i> em meio ácido	99
Figura 54 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o ligante H_2L1 quando puro	99
Figura 55 - Curva de distribuição de espécies em função do pH para	
o ligante H ₂ <i>L1</i> .	100
Figura 56: Mecanismo de hidrólise ácida de uma imina	100
Figura 57 - Estrutura do ligante H₂<i>L1</i>	101
Figura 58 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o sistema Zn(II): H₂<i>L1</i> na proporção 1:1	103
Figura 59 - Curva de distribuição de espécies em função do pH	
para o sistema Zn(II): H₂L1 na proporção 1:1	104
Figura 60 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o sistema Zn(II): H₂L1 na proporção 1:2	104
Figura 61 - Curva de distribuição de espécies em função do pH para o sistema Zn(II): H ₂ L1 na proporção 1:2	105
Figura 62 - Proposta estrutural para a espécie MHL	106
Figura 63 - Proposta estrutural para a espécie ML	107
Figura 64 - Proposta estrutural para a espécie ML_2H	108
Figura 65 - Proposta estrutural para a espécie ML ₂	108
Figura 66 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o sistema Cu(II): H₂<i>L1</i> na proporção 1:2	110
Figura 67 - Curva de distribuição de espécies em função do pH	
para o sistema Cu(II): H ₂ L1 na proporção 1:2	111
Figura 68 - Proposta estrutural para a espécie MLH	112
Figura 69 - Proposta estrutural para a espécie ML	112
Figura 70 - Proposta estrutural para a espécie MLOH	113
Figura 71 - Proposta estrutural para a espécie ML ₂	113
Figura 72 - Curva de titulação experimental (em azul) e simulada (em vermelho) para o ligante HL2 em meio ácido	115

Figura 73 - Curva de distribuição de espécies em função do pH	
para o ligante H<i>L2</i> em meio ácido	115
Figura 74 - Curva de titulação experimental (em azul) e simulada	
(em vermelho) para o ligante HL2 quando-puro	116
Figura 75 - Curva de distribuição de espécies em função do pH	
para o ligante H<i>L2</i> quando puro	116
Figura 76- Estrutura do ligante H<i>L</i>2	117
Figura 77 - Curvas de titulação do ligante H<i>L2</i> comparadas às	
curvas envolvendo o íon Cu(II) nas proporções 1:1 e 1:2	119
Figura 78 - Curvas de titulação do ligante H <i>L2</i> comparadas às	
curvas envolvendo o íon Zn(II) nas proporções 1:1 e 1:2	120
Figura 79a -Efeito do composto MPAC sobre o complexo A β -Cu(II)	121
Figura 79b - Efeito do composto MPAC sobre o complexo A β -Zn(II)	121
Figura 80 - Espectro de RMN de 1H do peptídeo A β em	
presença (vermelho) e ausência (preto) do ligante H ₂ L1	122
Figura 81 - Sítios suscetíveis a interações e dissociações protônicas	
para H₂<i>L1</i>	127
Figura 82 - Sítios suscetíveis a interações e dissociações protônicas	
para HL2	127
Figura 83-Estrutura da quinolina,fragmento considerado tóxico	129
Figura 84 - Resultados da análise de metabolismo com base	
na CYP3A4	131
Figura 85 - Resultados da análise de metabolismo com base na CYP2C	132
Figura 86 - Resultados da análise de metabolismo com base na CYP2D6	132
Figura 87 - Descrição numérica dos átomos de H_2L1 para relacionar	
ao metabolismo apresentado pela molécula	133
Figura 88 - Níveis de GSH no cérebro dos animais injetados	135
Figura 89 - Níveis dos metais ferro, cobre e zinco no cérebro dos	
animais injetados	136
Figura 90 - Níveis de MT no cérebro dos animais injetados	137
Figura 91 - Estrutura do ligante H ₂ <i>L3</i>	141
Figura 92 - Estrutura do ligante HL4	141

Figura 93 - Espectro vibracional do ligante H₂L1 (em pastilha	
de polietileno)	150
Figura 94 - Espectro vibracional do ligante HL2 (em pastilha	
de polietileno)	151
Figura-95- Espectro de RMN de ¹H para H₂<i>L1</i> .	152
Figura 96 - Espectro de RMN de ¹ H para H<i>L2</i>.	153

Lista de Tabelas

Tabela 1 - Deslocamentos químicos ¹ H (200 MHz) para os ligantes H_2L1 e $HL2$,-obtidos-em-DMSO-d ₆	65
Tabela 2 - Dados cristalinos e de refinamento estrutural para H₂L1 e HL2	67
Tabela 3 - Parâmetros geométricos selecionados para o ligante H_2L1	69
Tabela 4 - Parâmetros geométricos selecionados para o ligante HL2	69
Tabela 5 - Parâmetros experimentais e calculados obtidos do espectro de RPE para o composto 2	о 84
Tabela 6 - Parâmetros experimentais e calculados obtidos do espectro de RPE para o composto 4	о 93
Tabela 7-Constantes de protonação do ligante H_2L1	101
Tabela 8 - Constantes de formação das espécies hidrolisadas de Zn(II)	103
Tabela 9 - Constantes de estabilidade condicional obtidas para o sistema Zn(II): H₂L1 considerando a força iônica do meio de 0,100 mol L ⁻¹ e temperatura de 25 °C	105
Tabela 10 - Constantes de formação das espécies hidrolisadas de Cu(II)	110
Tabela 11 - Constantes de estabilidade condicional obtidas para o sistema Cu(II): H ₂ <i>L1</i> considerando a força iônica do meio de 0,100 mol L ⁻¹ e temperatura de 25 °C	111
Tabela 12 - Comparação entre as constantes de estabilidade condicional obtidas para o sistema Cu(II):H ₂ L1 e Zn(II):H ₂ L1	114
Tabela 13 - Constante de protonação do ligante H<i>L</i>2	117
Tabela 14 - Comparação entre os valores de log K_{ML} para a interação metal: H_2L1 com aqueles para interação metal: $A\beta$	123
Tabela 15 - Parâmetros físico-químicos calculados para predição na absorção e permeabilidade celular de acordo com as regras de Lipinski	125

Tabela 16 - Valores obtidos para os parâmetros *druglikeness* e *drug-score*

128

Lista de abreviaturas

- Ala Alanina
- APP Proteína precursora amiloide
- Asp Asparagina
- BHE Barreira hematoencefálica
- DA Doença de Alzheimer
- DFO Desferroxiamina
- DMF Dimetilformamida
- DMSO Dimetilsulfóxido
- DNA Ácido desoxirribonucleico
- Glu Glutamina
- **GSH** Glutationa
- His Histidina
- IV Infravermelho
- MT Metalotioneína
- RMN Ressonância magnética nuclear
- RNA Ácido ribonucleico
- RPE Ressonância paramagnética eletrônica
- Tir Tirosina

"E toda vez que eu chorar ou quiser desanimar, o Teu Espírito me consolará. Se é na fraqueza do meu ser que manifestas Teu poder, eis-me aqui, dependo de Ti, preciso de Ti. Toda glória, toda vitória, eu sei, pertencem a Ti. Toda honra, todo louvor entrego a Ti porque sem Ti não estaria aqui."

Diante do Trono, Eis-me aqui.