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Robust design optimization with an un-
certain model of a nonlinear percussive
electromechanical system

The objective of this part of the Thesis is to perform an optimization
of a percussive electromechanical system with respect to some chosen design
parameters. The optimization consists in maximizing the impact power under
the constraint that the electric power consumed by the DC motor is lower than
a maximum value. This nonlinear constrained design optimization problem is
formulated in the framework of robust design due to the presence of uncertain-
ties in the computational nonlinear dynamics model of the electromechanical
system [61, 81, 9].

5.1 Dynamics of the vibro-impact electromech-
anical system

As described in the introduction, the system is composed by a cart whose
movement is driven by the DC motor, and by a hammer that is embarked into
the cart. The motor is coupled to the cart through a pin that slides into a slot
machined in an acrylic plate that is attached to the cart, as shown in Fig. 5.1.
The off-center pin is fixed on the disc at distance A of the motor shaft, so that
the motor rotational motion is transformed into a cart horizontal movement.
To model the coupling between the motor and the mechanical system, the

motor shaft is assumed to be rigid. Thus, the available torque vector to the

g cart M, - x(1) /,\’A
- ——= y
)oc(f) ) 7 x
hr) — DCMotor 2

W

Figure 5.1: Motor-cart-hammer coupled system. The nonlinear component
spring is drawn as a linear spring with constant kj; and a nonlinear cubic
spring with constant kj3.


DBD
PUC-Rio - Certificação Digital Nº 1121481/CA


PUC-Rio - Certificacdo Digital N° 1121481/CA

Chapter 5. Robust design optimization with an uncertain model of a
nonlinear percussive electromechanical system 59

coupled mechanical system, 7, can be written as
T(t) = A(t) x f(t), (5.1)

where A = (A cosa(t), A sina(t), 0) is the vector related to the eccentricity
of the pin, and where f is the coupling force between the DC motor and the
cart. Assuming that there is viscous friction between the pin and the slot, the
vector f has two components: the horizontal force that the DC motor exerts
in the cart, f,, and the vertical force, f,, induced by the viscous friction. The

available torque 7 and vertical force f, are written as

7(t) = f,(t) A cosa(t) — fu(t) A sinaf(t), (5.2)

fy(t) = cpin A &(t) cosalt), (5.3)
where ¢, is the viscous friction. The embarked hammer is modeled as a rigid
body of mass my, and its relative displacement is A with respect to the cart. In
the adopted model, the constitutive equation of the spring component between
the hammer and the cart is written as fs(t) = kp1 h(t) + kns h(t)>. The
rate of nonlinearity of the hammer stiffness is defined as r, = kp3/kp1. We
introduce the natural frequency, wy, of the hammer suspended to the linear
spring with constant stiffness kj; such that w, = \/m The horizontal cart
displacement is represented by x. Due to constraints, the cart is not allowed
to move in the vertical direction. The spring-damper element modeling the
medium on which the impacts occur, is constituted of a linear spring with
stiffness coefficient k; and a damper with damping coefficient ¢;. The equations
of the cart-hammer-barrier system were obtained with the Lagrange principle.

They are

F(t) (me+mu) + h(t) mp + Cen #(t) = — frnp(t) + fu(t) (5.4)

E(t) mu + h(t) My, + it b4 Ky h(t) + Eng B2 () = — fimp (t) | (5.5)
where, c.,; is the viscous friction coefficient between the cart and the rail and
Cint = 2/ Mukny is the viscous friction coefficient between the cart and the
hammer (g, is the damping ratio). The term f, is the horizontal coupling force
between the DC motor and the cart, and fin, is the impact force between the

hammer and the barrier, which is written as

Funp(®) = =0(t) (ki (2(0) + 1(0) + 9) + & (b(8) + (1), (56)

where
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1
o(t) =

0, in all other cases,

, if @) +h(t)+g <0 and h(t)+i(t) <0, (5.7)

in which ¢ is defined as the horizontal distance from the hammer (when
a = /2 rad) to the equilibrium position of the barrier. In the model defined
by Eq. (5.7), an impact starts when x(t)+h(t) is negative and equal to —g and,
h(t) — @(t) < 0. During an impact, the action of the barrier on the hammer
stops as soon as the total velocity A(t) + @(t) becomes positive (the return of
the hammer), i.e, the barrier moves irreversibly in one direction, simulating
a penetration. Due to the system geometry, z(t) and «(t) are related by the

following constraint

z(t) = A cos (a(t)). (5.8)
Substituting Egs. (5.2) to (5.8) into Egs. (2.1) and (2.2), we obtain the
initial value problem for the motor-cart-hammer-barrier coupled system that
is written as follows. Given a constant source voltage v, find («, ¢, h) such that,

for all t > 0,
le(t) + re(t) + ke = v (5.9)

a(t) (jm + (me +my)A%sin (a(t))Q) — h(t) (mpA sin (a(t))) — kec(t)
+alt) <bm 4 Q) (me 4+ ma)A2 cos (a(t)) sin (a(t))
ey cos (at))? — copA2sin (a(t»?)

— (k:i(A cos (a(t)) + h + g) + c;(—da(t) sin (a(t)) + h(t))) A sin (a(t)) |
(5.10)

h(t)my, — a(t) (mpA sin (o(t))) — é(t) (maA a(t) cos (a(t)))
() Cine + knih(t) + knsh®(t)  (5.11)
— 6(t) (Kl A cos (a(t)) + h+ g) + ei(—Adt)sin (a(t) + (1)) .

1, if Acosa(t)+h(t)+g<0 and h(t)— Ada(t)cos(a(t)) <0

0, 1in all other cases,

(5.12)
with the initial conditions,
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5.2 Dimensionless vibro-impact electromechan-
ical system

In this section, the initial value problem to the vibro-impact electromech-
anical system is presented in a dimensionless form used for simulations. To get
the dimensionless form, we take ¢ (t) = u (t) and h (t) = 1 (t), and rewrite the
initial value problem defined by Egs. (5.9) to (5.13) as a first order system, as

follows

ilt) = {~[bm + me A%u(t) cos (a(t)) sin (a(t)) + cpm Acos (a(t)?
—Cext A%sin (1)) u(t) my, + ke c(t) my, — cing 1 () My Asin (oo(t))
—(kp1 h(t) + kps h3(t)) my, Asin (a(t))}
/i (i + me Asin (a(t))?)

0t) = {=[bm + cpin A%c0s ((t))? — Coxt A%sin (a(t))?] u(t) my, Asin (a(t))
+ke c(t) my Asin (a(t)) — jm Au?(t) cos (aft))
—¢(t) [ki(A cos (a(t)) + h(t) + g) + ci(=Au(t) sin (a(t)) +1(t))]
[jm + me Asin (a(t))?]
—[ein 1(t) + Kt h(t) + Kng B2(8)] [ + (me +mi) Asin (a(t))*]}
[1mh (jin + me A%sin (1))

o) = %(y o) — re(t))

(5.14)
where
o(t) = L, if Acos(a(t) +h(t)+9<0 and n(t) — Au(t)sin(a(t)) <0,
- 0, in all other cases,
(5.15)
Writing
t:is, a(l—s) =p(s), U(l;) :rql(s)7
(5.16)

(2)-E581 () -an0, 2(3)an0

one gets that s is dimensionless parameter. The functions p(s), ¢ (s), w(s),
a(s) and y (s) are dimensionless functions. By substituting the new functions
into the Eq. (5.14) one obtains
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= {—USQ(S) —U1C]2( ) cos (p(s)) sin (p(s))
~ orsg(s)eos (p(s))? + vng(s)sin (p(s))? + vaw(s)
—vgy(s)sin (p(s)) — [vaa(s) + visa’(s) + vea®(s)] sin (p(s)) }

(
(
(5.17)

{ 1+ vlsiil (p(S))Q}

'(s) = {—vsq(s) sin (p(s)) — vi2g(s)cos (p(s))” sin (p(s)) + vi1q(s )Sln( (5))°
+ vow(s) sin (p(s)) + ¢*(s) cos (p(s)) — [vio + vosin (p(s))*(vs + 1) )] y(s
— [v5 + vasin (p(s))?(vs + 1] a(s) — [vr + vesin (p(s))*(vs + D] a (s)
— &(5) [(v13 + vigvssin (p(s))) (cos (p(s)) + als) + vis)
—(v16 + viroigsin (p(s))*) (q(s) sin (p(s)) — y(s))] }

)
)

{ 1+ Ulsiil (p(s))? }

(5.18)
w'(s) = —w(s) — q(s) + vy (5.19)
p'(s) = q(s) (5.20)
a'(s) = y(s) (5.21)
where ' denotes the derivative with respect to s and v;,7 = 0,...,19 are
dimensionless parameters given by
vl A?m, k21 b 1 kpy 12 A?
Vo = 77— v = —; ) V2 = ——, U3 = —, Vg = ——5—
ker Jm ImT Jm T Jm T
khl l2 /{Zh3 l2 A4 ]{Zh3 l2 Az me Cint AQ )
Vg =——>F, Vp=—""7F, Ur=—7F, U= ) Vg = — )
mp, 12 Jm 72 mp, 12 mp, Jm T
Cint ) Cext l A2 Cpin { AQ k’l l2 ]{51 12 A2
V10 = , Uil = ; , Uiz = y V3= ———, V= —""75,
myT mT r mpr Jm T
g Ci l C; l AQ
V15 = V1e = ) 7 = —
A mpT JmT

(5.22)
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5.3 Measure of the system performance

At time t, the electric power introduced by the electrical grid in the motor

is
min(t) = ve(t). (5.23)
Let ti and #/ be the instants of begin and end of the j-th impact, such that

for all ¢ belonging to [t} /], we have @(t) 4+ h(t) < 0. At time ¢, the impact
J

power, m (%), is then written as
Thop(t) = ki (z(t) + h(1)) (2(t) + h(t), ) <t<t. (5.24)
The time average of the impact power during the j-th impact, zijmp, is written
" oo /té m o (t) dt . (5.25)
e gy

The sum, i, of the averages of the impact powers, which is one of the
variable of interest in the design optimization problem, is written as
Nimp
Timp = T » (5.26)
j=1
where Njy, is the total number of impacts that occur during time interval

[0, 7. The time average of the electric power consumed in this time interval is

1 T
Telec — T/O Win(t) dt. (527)

These two variables, Timp and 7eec, are chosen to measure the system perform-
ance. The biggest mim, is and the smaller me. is, better will be the system

performance.

5.4 Sensitivity analysis and choice of the design
parameters

To understand the role played by each system parameter in mj,, and
Telec, @ Sensitivity analysis has been done. The objective was to determine
what were the system parameters that had the biggest influence in 7., and
Telec, iN Order to define those that will be the design parameters for the robust
design optimization problem. The initial value problem defined by Egs. (5.9) to
(5.13) has been rewritten in a dimensionless form for computation and some
dimensionless parameters were defined. However, in the sensitivity analysis,
these dimensionless parameters were not considered as varying parameters
since they do not have an easy physical interpretation. The varying parameters
used for the numerical simulations are related with the design of the cart and

the embarked hammer. They are:
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— m¢/my, relation between the hammer mass and the cart mass;

k1 /my, relation between the linear stiffness of the spring component and

hammer mass (a sort of natural frequency of the hammer);

— ¢, horizontal distance from the hammer (when o = 7/2 rad) to the

equilibrium position of the barrier;
— A, eccentricity of the pin. This parameter determines the length of the
cart path.

The other parameters, related with the motor properties and viscous friction
coefficients, are fixed and the values of these fixed parameters are given in

Table 5.1. The output responses are mimp, and eec. For computation, the

Table 5.1: Values of the system parameters used in simulations.

Parameter Value Parameter Value
Me 0.50 Kg v 24V
rh 0.30 1/m? r 0.307 Q
Cpin 5.00 Ns/m [ 1.88 x 107* H
Cont 5.00 Ns/m Im 1.21 x 107* Kgm?
Sint 0.05 bin 1.5452 x 107* Nm/(rad/s)
k; 106 N/m ke 0.0533 V/(rad/s)
c 103 Ns/m

initial value problem defined by Eqgs. (5.9) to (5.13) has been rewritten in
the dimensionless form given by Eqs. (5.17) to (5.22) . The main objective
was to reduce the computation time. Duration is chosen as T = 10.0 s. The
4th-order Runge-Kutta method is used for the time-integration scheme for
which we have implemented a varying time-step. The time-step is adapted
to the state of the dynamical system according to the occurrence or the non
occurrence of impacts. When the hammer is not impacting the barrier, the
time-step used is 10™* s, but when the hammer is approaching the barrier
and when it is impacting it, the time-step is chosen as the value 107° s.
Simulations with different values to the initial conditions, were performed.
As it was verified that they do not have a significant influence in 7y, and
Telec, 1N all simulations the initial conditions were taken as constant, given by
Eq. (5.13). Concerning the sensitivity analysis, 20,000 numerical simulations
have been carried out combining the following values of the parameters: 10
values for m./m;, selected in the interval [0.10,2.00], 10 values for kj;/my
in [657,4410] rad?/s?, 10 values for g in [0,0.02] m, and 20 values for A
in [0.003,0.013] m. Due the high numerical cost of these simulations, some

strategies were adopted to reduce the computation time:
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the varying time-step integration scheme was used for numerical itera-
tions;
— the initial value problem has been rewritten in a dimensionless form, the

computation time of each simulation was reduced from 8 minutes to 5

minutes on average;

— parallelization of the simulations: a cluster in the Laboratoire de Modél-
isation et Simulation Multi-Echelle of Université Paris-Est with 20 com-

puters was used to make the simulations, as shown in Fig 5.4.
With these strategies, the computational time necessary to perform the 20,000

numerical simulations were approximately 3.5 days. The largest value of iy,

Split Server Merge

i E_ih \; (me/my)*  g*

(kn1 /mh ¥ A*
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Figure 5.2: Parallelization of the simulations in the sensitivity analysis.

obtained with such numerical simulations, is 5,690 W, and is reached for the
following values of the parameters: (m./my)* = 0.40, (kpi/mp)* = 1,580
rad?/s?, ¢* = 0.011 m, and A* = 0.013 m. With these values, the average
of the consumed electric power is meee = 3.93 W. For A = A* and m./my, =
(me/myp)*, Fig. 5.3 displays mm, as a function of parameters g and kpy /my,. In
Fig. 5.3(a), g and k1 /my, vary in all its range of values, and in Fig. 5.3(b),
they vary in [0.06,0.02] and [1 250, 1 953] respectively. These figures show that,
the optimal value of the design parameter correspond to a global maximum.
The influence of each parameter in 7y, and 7ee. can be observed through the
graphs plotted in Figs. 5.4 to 5.7. Regarding all the graphs of iy, and Teec
as a function m./my, kp1/mp, g and A, it can be seen that small variations on
g, kni/mp, and A induce large variations for my,, and for mee., but the same
phenomenon does not occur with respect to the parameter m./my. Thus, while
Timp and Teec are not very sensitive to m./my, they are sensitive to ki /ms, g
and A. It is also seen, that two different kinds of sensitivity can be distinguished

among these three parameters. For parameters kj;/mj and g, it can be seen
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Figure 5.3: For the optimal values (m./my)* and A*: (a) graph of m,, as a
function of g and kpi/my, (varying in all its range of values), (b) graph of
Timp as a function of g and kj;/my, (varying in [0.06,0.02] and [1250,1953]

respectively).
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Figure 5.4: (a) Graph of 7y, as a function of m./my, with (kn1/ms)*, g%, and
A*. (b) Graph of 7y, as a function of ki /my, with (m./my)*, ¢*, and A*.
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Figure 5.5: (a) Graph of mjn, as a function of g with (m./ms)*, (kni/ms)*, and
A*. (b) Graph of 7y, as a function of A with (m./mp)*, (kp1/mp)*, and g*.
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Figure 5.6: (a) Graph of e as a function of m./my, with (k1 /my)*, g*, and
A*. (b) Graph of e as a function of kj/my, with (m./my)*, g%, and A*.
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Figure 5.7: (a) Graph of 7. as a function of g with fix (m./my)*, (kp1/mp)*,
and A*. (b) Graph of 7. as a function of A with fix (m./my)*, (kpi/mp)*,
and g*.

that 7, and Teee reach their maxima when kj,; /my, and g are equal to 1, 580
rad?/s? and 0.011 m respectively. For parameter A varying in its range of
values, Figs. 5.5(b) and 5.7(b) show that the highest is A, the highest are
Timp and Teec. It has been considered as not necessarily to verify the behavior
of Timp and mee. for a larger range of A because the value A = 0.013 m is
already sufficiently large when compared with the system dimensions and the
motor properties. It should be noted that if parameter A is increased, then,
the nonlinearities would increase also, but that is not the objective of the
analysis. Considering that m./m;, does not have a significant influence in 7,
and meee, and considering that the sensitivity of the parameter A is easily
predictable, these two parameters will not be considered as design parameters
in the robust design optimization problem. Only parameters g and kj /m;, will

thus be considered as design parameters.


DBD
PUC-Rio - Certificação Digital Nº 1121481/CA


PUC-Rio - Certificacdo Digital N° 1121481/CA

Chapter 5. Robust design optimization with an uncertain model of a
nonlinear percussive electromechanical system 68

5.5 Construction of the probability model

As explained in the introduction, this chapter deals with the robust
design of the electromechanical system in presence of uncertainties in the
computational model. The three parameters that are assumed to be uncertain
are kp1, k; and ¢;, which are modeled by the independent random variables
K1, K; and C;. The probability distribution of each one is constructed using
the Maximum Entropy Principle [34, 88, 89, 91, 85, 94, 95]. This Principle
allows the probability distribution of a random variable to be constructed using
only the available information, avoiding the use of any additional information
that introduces a bias on the estimation of the probability distribution. If
a large amount of experimental data are available, then the nonparametric
statistics can be used. If there are no available experimental data, or if there are
only a few experimental data, then the Maximum Entropy from Information
Theory is the most efficient tool for constructing a prior probability model.
The Maximum Entropy Principle states: out of all probability distributions
consistent with a given set of available information, choose the one that
has maximum uncertainty (the Shannon measure of entropy). The available

information of the random variables is defined as

1. Kp1, K; and C; are positive-valued independent random variables,

2. the mean values are known: E{K,;} = K,, E{C;} = C, and E{K;} =
Khla

3. in order that the response of the dynamical system be a second-order
stochastic process, we impose the following conditions: ||E{log K;}| <
00, |[E{log C;}|| < oo and ||E{log K }| < oo.

Thus, the Maximum Entropy Principle for each random variable K;, C;, and

K}y, yields a Gamma distribution (see [90]),

where 1}y ;) (a) is an indicator function that is equal to 1 for a € [0, +00) and

0 otherwise, and where

— I' is the Gamma function: I'(b) = / " exp(—t)dt;
0

-0 = % is the coefficient variation of the random variable, p is its mean

value representing K, C;, or K,,, and o is its standard deviation.
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5.6 Robust design optimization problem

In order to formulate the robust design problem, the set of all the
system parameters is divided into three subsets. The first subset is the
family of the fixed parameters that is represented by the vector pg, = { v,
L7y Jms ke by Cpiny Ceats Sints Thy Mey, My, A }. The second one is the family of
the design parameters that is represented by the vector paes = {K,;/mn, g}
The third one is the family of the uncertain parameters that is represented by
the random vector Py, = {K;, C;, Kp1}. Since Py, is a random vector,
the outputs of the electromechanical system are stochastic processes and,
consequently, Timp(Pdes; Punc) and Telee(Pdes, Punc); become random variables

Himp(pdes> - 7Timp(pdes, Punc) and Hele(:(pdes) - 7Telec(pdesa Punc)- The cost
function of the robust design optimization problem is defined by

J(pdes> = E{Himp<pdes)} . (529)

The robust design optimization problem is written as

Pies = arg max J (Paes) , (5.30)

Pdes€Cad

in which Cug = {Pdes € Pies; E{Iletiec(Pdes)} < Celec }, Where Pyeq is the admiss-

ible set of the values of pges, and where cqec is an upper bound.

5.7 Results of the robust optimization problem

The hyperparameters dg, and d¢,, which control the level of uncertainties
for K; and C; are fixed to 0.1. The robust design optimization problem is then
solved for three levels of uncertainties for K, defined by the following values of
the hyperparameters dg,, = 0, dx,, = 0.1, and dg,, = 0.4. The optimization
problem is also considered whitout uncertainties in the systems parameters,
that is, the deterministic case (0k,, = Jdx, = 0¢; = 0). For paes € Cud:
the cost function is estimated by the Monte Carlo simulation method using
100 independent realizations of random vector P,,. following its probability
distribution. The optimization problem (defined by Eq. (5.30)) is solved using
the trial method for which the admissible set (C,; is meshed as follows: for
K, /mp, 13 values are nonuniformly selected in the interval [703, 3 830], and for
g, 20 nonuniform values in [0, 0.038]. Thus, 26, 000 numerical simulations have
been carried out to solve optimization problem for each level of uncertainties.
Due the high numerical cost of these simulations, the same strategies used in
the sensitivity analysis were adopted to reduce the computation time. They

were:
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a varying time-step integration scheme was used for numerical iterations
(described in Section 5.4 with duration 7" = 10.0 s),

— the initial value problem has been rewritten in a dimensionless form, the
computation time of each simulation was reduced from 8 minutes to 5

minutes on average;

— parallelization of the simulations: a cluster in the Laboratoire de Modél-
isation et Simulation Multi-Echelle of Université Paris-Est with 20 com-

puters was used to make the simulations.

These strategies allowed us to solve the optimization problem (defined by
Eq. (5.30)) with the trial method. With the reduction of computation time,
different kind of algorithms, as evolutionary algorithms or random search
algorithm were not necessary. The computational time necessary to perform
the 26,000 numerical simulations were approximately 4.5 days for each level

of uncertainties. The values of the fixed parameters are m,. = 0.3 Kg, m;, =

me/my = 0.6
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Figure 5.8: Parallelization of the simulations performed to solve the robust
optimization problem.

0.5 Kg, A = 0.01 m, and the others are given in Table 5.1. Upper bound cejec
is fixed to the value 6.00 W. For the deterministic case, the components of the
optimal solution p3r are (K, /ms)°"" = 1,580 rad?/s? and g°*" = 0.011 m. For
case with uncertainties, for which g, is fixed to 0.1, and J¢, to 0.1, we obtain,
for 0k, = 0, (K,;/mp)°" = 957 rad?/s? and ¢°P* = 0.018 m, for dg,, = 0.1,
(K /mp)™ = 1,950 rad?/s? and ¢°®* = 0.008 m, and for dg,, = 0.4,
(K, /mp)°" = 2,360 rad?/s? and ¢°"* = 0.008 m. Figures 5.9 and 5.10 display
the graphs of the cost function defined by Eq. (5.29) as a function of the
design parameter for these four cases. These figures show that, for each case,
the optimal value of the design parameter correspond to a global maximum

in C,g. The role played by uncertainties on the optimal values of the design
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Figure 5.9: (a) Cost function as function of the design parameters for the
deterministic case. (b) Cost function as function of the design parameters for
the case in which 0k, = d¢;, = 0.1 and 0g,, = 0.

parameters can be analyzed through Figs. 5.11 and 5.12, which display the
graphs g — E{ILimp (K /mn)™" 9)} Ky /= E{Mimp (K /5 g°™)
g = E{lac((Kp/mn)™ )b, and Ky /mi = E{llaee(Ky /mn, g%}
These figures show that the optimal design point strongly depends on the
level of uncertainties. In particular, it can be deduced that the mean value
of the electric power increases with the increase of the gap. The robustness
of the optimal design point, pﬁ;g;, can be analyzed in studying the evolution
of the coefficient variation, dr,, (pgh), of random variable Iy, (Poa) as a
function of the uncertainty level. However, in order to better analyze the
sensitivity of the responses with respect to the uncertainty level, we have
constructed Fig. 5.13 that displays the graphs g — dm, ((£,/mn)°™", g)
and K, /my = Oy, (I, /ma , g°P'). For each level of uncertainties, it can be
seen that the value o, (Pgh) occurs in a region for which the two following
functions g — O, (K /mn)™ , g) and Ky /my = 0wy, (Kyy /11, g°7)
are minima. This means the optimal design point is robust with respect to

uncertainties.

5.8 Summary of the Chapter

In this chapter of the Thesis, the formulation and the solution of a robust
design optimization problem have been presented for a nonlinear electromech-
anical vibro-impact system in presence of uncertainties in the computational
model. Since this nonlinear electromechanical system is devoted to the vibro-
impact optimization, the time responses exhibit numerous shocks that have

to be identified with accuracy, and consequently, a very small time-step is re-


DBD
PUC-Rio - Certificação Digital Nº 1121481/CA


Chapter 5. Robust design optimization with an uncertain model of a
nonlinear percussive electromechanical system

72

E{Himp}w E{Himp} W
4000 3500
™ N
5= 3000 - 3000 3000
2 3000 % —
= = 2500
= S 2000
S 2000 S
;:T ;:T 2000 —_—
1000 1500 1000
1000 500
0

0 0.01 0.02 0.03
g m

5.10(a):

0

0.01 0.02 0.03
g m

5.10(b):

Figure 5.10: (a) Cost function as function of the design parameters for the case
in which g, = d¢, = dk,, = 0.1. (b) Cost function as function of the design
parameters for the case in which dx, = ¢, = 0.1 and dg,, = 0.4.
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Figure 5.11: (a) Cost function as function of g with (K,;/m;)°". (b) Cost
function as function of K, /m; with g°°*. In both graphs, the E{ITiu,(po)}
is highlighted for each level of uncertainties with markers.
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Figure 5.12: (a) Mean value of the time average of electric power as function
of g with (K, /my)°P. (b) Mean value of the time average of electric power as
function of K, /my, with g°?*. In both graphs, the E{Ile.(p3r)} is highlighted
for each level of uncertainties with markers.
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Figure 5.13: (a) Coefficient variation of Il;y, as function of g with (K, /mj)°P".
(b) Coefficient variation of Iliy,, as function of K,;/my with ¢°°*. In both

opt

graphs, the dm,, (Pge) is highlighted for each level of uncertainties with

markers.
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quired. We have thus chosen an explicit time-integration scheme and not an
implicit one. Nevertheless, due to the presence of low-frequency contributions
in the time responses, a long time duration is required, which will imply a huge
number of integration time-step if the time-step was chosen constant. This is
the reason why we have implemented an adaptive integration time-step. It
was one of the difficulties encountered for the solver implementation. The use
a varying time-step integration scheme was not the only strategy adopted to
reduce the computation time. The initial value problem has been rewritten
in a dimensionless form, which reduced the computation time of each simula-
tion from 8 minutes to 5 minutes on average. Furthermore, a cluster with 20
computers has been used to to parallelize the simulations carried out in the
sensitivity analysis and in the optimization problem. Observing the results of
numerical integration, as time histories and phase diagrams, some interesting
phenomena were verified, as for example bifurcation. Bifurcation is a typical
nonlinear phenomena, and it is frequently discussed in many works (see for in-
stance [73]). In the analyzed vibro-impact electromechanical system, it appears
because depending on the values of the system parameters, the system response
will have the occurrence or the non occurrence of impacts. But this topic is
an ongoing research that will be object of a future work. The construction of
the solution for the design optimization problem, has been prepared by carry-
ing out a sensitivity analysis with respect all the possible design parameters.
This pre-analysis has allowed for reducing the number of design parameters
to two parameters. Consequently, a random search algorithm or a genetic al-
gorithm was not necessary, and we have thus used a trail method. It should
be noted that in the framework of a robust analysis formulated in the context
of the probability theory, and taking into account the types of nonlinearities
in the dynamical system, the Monte Carlo numerical simulation method has
been used, and this introduces a significant increase of the numerical cost. The
design optimization problem of the dynamical system without uncertainties
yields an optimal design point that differs from the nominal values, and which
can not be determined, a priori, without solving the design optimization prob-
lem. In addition, the robust analysis that has been presented demonstrates the
interest that there is to take into account the uncertainties in the computa-
tional model. The optimal design point that has been identified in the robust
design framework significantly differs from design point obtained with the com-
putational model without uncertainties. For this electromechanical system, it
has been seen that, the minimum value of the dispersion of the random output
occurs in the region of the optimal design parameters, which means that the

optimal design point is robust with respect to uncertainties.
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