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4
Electromechanical system with internal
impacts and uncertainties

The system analyzed in this chapter is composed by a cart whose motion
is driven by a DC motor, sketched in Fig. 2.1, and a embarked pendulum into
this cart. The motor is coupled to the cart through a pin that slides into a slot
machined on an acrylic plate that is attached to the cart, as shown in Fig. 4.1.
The off-center pin is fixed on the disc at distance A of the motor shaft, so that
the motor rotational motion is transformed into a cart horizontal movement.
The suspension point of the pendulum is fixed in the cart, so that exists a
relative motion between cart and pendulum induced by the motion of the cart.
The embarked pendulum is modeled as a mathematical pendulum (bar without
mass and particle of mass m,, at the end). The pendulum length is represented
by [, and the pendulum angular displacement by 6. The mass of the mechanical
system, m, is equal the cart mass plus pendulum mass, m.+m,. The horizontal
cart position is represented by x. Due to constraints, the cart is not allowed
to move in the vertical direction. A flexible barrier is attached inside the cart,
constraining the pendulum motion. Due to the relative motion between the cart
and the pendulum, it is possible that occur impacts between the pendulum and

the barrier, as suggested in Fig. 4.1. As the impacts are internal, the energy

Cart M, = x(r)
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Figure 4.1: Coupled motor-cart-pendulum-barrier system.

stored in the pendulum motion it is not transferred outside the system, it
stays within, with a possible dissipation. This system configuration helps to
understand the difference between an internal and an external barrier. The
objective is to analyze the maximal energy stored in the barrier in impacts
as function of some parameters of the electromechanical system. Due to the

presence of uncertainties in the computational nonlinear dynamics model of the
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electromechanical system, the energy analysis is performed from a stochastic
view point for different levels of uncertainties, and also for the deterministic
case.

In the deterministic analysis, these parameters are the horizontal distance
from the suspension point of the pendulum to the equilibrium position of
the barrier and the coupling parameter between motor and the mechanical
system, A. Numerical simulations were performed with different values of these
parameters. The coupling parameter has been varied from zero, an asymptotic
case, (meaning no coupling between motor and the mechanical system) up to
1072 m. Comparing the results obtained with A = 0 and with A > 0, it is
possible to observe the influence of the coupling in the maximal energy stored

in the barrier.

4.1 Dynamics of the motor-cart-pendulum-
barrier system

A continuous contact dynamic model is developed and the impact is
described using the spring-dashpot model. The spring-damper element of the
impact is represented by a spring with stiffness k; and a damper with damping
coefficient ¢;. The equations of the cart-pendulum-barrier system were obtained

with the Lagrange principle. They are

mplie(t) + myl, 3 (t) cos O(t) + mypgal, sin0(t) = fimp(t)l, cosb(t), (4.1)

(my, + me)i(t) + myl,H(t) cos O(t) — myl,0%(t) sinO(t) = f(t), (4.2)
where, g, is the acceleration of gravity, f represents the horizontal coupling
force between the DC motor and the cart and fi,,, the impact force exerted in

the pendulum. This force is written as:

finp(t) = =0(t) | ki (1, sin (1) + gap) + ¢ (A1) cosb®)] . (43)
1, if —l,sinf(t) > gap,
olt) = Sl (4.4)

0, if —l,sinf(t) <gap,
in Eq. (4.4) gap is the horizontal distance from the suspension point to the
equilibrium position of the barrier. Due to the system geometry, x(¢) and «(t)

are related by the following constraint
z(t) = Acosa(t). (4.5)

Substituting Eqgs. (2.6) and (4.1) to (4.5) into Egs. (2.1) and (2.2), we obtain

the initial value problem for the motor-cart-pendulum-barrier system. Given
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a constant source voltage v, find (o, ¢, ) such that, for all ¢ > 0,

le(t) 4+ re(t) + kea(t) = v,

Q(t) [Jm + (me + mp)A2(sina(t))?] + &(t) (b + (me +m,) A26(t) cos a(t) sina(t)]
ke e(t) — O(t) [myl, cos (1) Asin a(t)] + 6(t) {m,, L,O(t) sin 0(1) A sina(t)} —0,

o(t) [my, 2] — c(t) [my, 1, cosO(t)Asina(t)] — &(t) [my, 1, cos O(t) A cos a(t)i(t)]
+ my, gq L, sinb(t) + ¢(t) [ki(lp sin0(t) 4 gap) + ¢ (1[,0(t) cos Q(t))] l,cosf(t) = 0,
(4.6)
where L if —1sinf(t) > ga
o(t) = { | ' o (4.7

0, in all other cases,
a0)=0 , a0)=0 , 60 =0 , 6(0)=r/2 . c(O):;. (4.8)

4.2 Dimensionless motor-cart-pendulum-barrier
system
In this section, the initial value problem to the motor-cart-pendulum-

barrier system is presented in a dimensionless form. Taking &(t) = u(t) and

0(t) = n(t), the system can be written as a first order system

Ht) = —keu(t) —lrc(t) +v |

w(t) = {—n(t)*myl,sin 0(t)Asin(a(t)) — u(t)*(m. + m,)A? cos(a(t)) sin(a(t))
—bnu(t) + kec(t) + [cos (0(t)) A sin («(t))] [u(t)*m, cos O(t) A cos a(t)
—mMypgesin (0(t)) — ¢ [ki(l, sin O(t) + gap) + ¢;([,n(t) cos O(t))] cos O(t) | }

1
{jm + AZsin (a(t))*(me + mysin (A(t))?) } ’

n(t) = {mycos (0(t)) Asin (a(t)) [kec(t) — u(t)*(me + my) A% cos(a(t)) sin(a(t))
—bnu(t) — n(t)*myl, sin O(t)Asin(a(t)) | + [jm + (my, + me)A?sin (a(t))z}
[—myga sin (0(t)) + u(t)?m,, cos O(t)A cos a(t) — ¢ [ki(l, sin O(t) + gap)
+ci(ln(t) cosB(t)) | cosO(t) | }

1

myl,, [jm + AZsin (a(t))2(mc + mysin (g(t))z)] } '
(4.9)
Writing
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(4.10)

one gets that s is dimensionless parameter. The functions 7 (s), ¢(s), 5 (s),
y(s) and w (s) are dimensionless functions. By substituting Eq. (4.10) into
Eq. (4.9) one obtains

w'(s) = —w(s)—q(s)+ v,

q(s) = {—vsq(s) = y(s)?vssin (7(s)) sin (B(s)) — ve sin (B(s)) cos (B(s)) sin (v(s))

+vow(s) — q(s)? cos (y(s )) sm( (s)) [Ug — vy cos ([(s ))2}
—p(s) cos (B(s))sin (7(5)) [vr0sin (5(s)) + w11 + v1z cos (5(s))y(s)] }
1
{ 1 +sin (y(s))? [v1 + vysin ( }
(4.11)
y'(s) = {—vsvrq(s) cos (B(s)) sin (v(s)) + q(s)*v7 cos (7(s)) cos (5(s))
—vgy(s)? sin (7(s))”sin (B(s)) cos (B(s)) + vavrw(s) cos (B(s)) sin (v(s))
11— vy sin (v())?] [—vs sin (8(5)) — (5)(vs(sin (8(s)) + v1)
1
+u1sy(s) cos (8(s))) cos (B) ] } I+ sin (7(5))7 [01 + orsin (5(5))2}} ,
(4.12)
where
), if —sinp(s) > ay,
Pls) = { 0, if —sinf(t) <ay, (4.13)
and where ’ denotes the derivative with respect to s and a;, i = 1,--- ,16 are

dimensionless parameters given by

vl A2mc Ik? bl A?m,
,UO - ) v = 3 Vg = — 9 US Vg = . 9
ker JmT? Gl Jm
mpl, A mpAgal A Gol? (me 4+ my,)A?
Vs = ———, U= ——H5—, Ur=T, Vg =T, U=,
Jm ml Ly Lyr Jm
kil AP  kigapAl® _al,Al B k 2 _gap
Vo= —5 > Yu=—""—5 > Vi2= — ;o V13 = —5, V4=
ImT ImT JmT myr Ly
Cil
V15 =
mpr
(4.14)

Comparing the dimensionless parameters of the motor-cart-pendulum-barrier
system with the dimensionless parameters of the motor-cart-pendulum system
given by Eq. 3.9, it can be observed that the internal barrier introduces six

news parameters to the equations: vig to vys.
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4.3 Impact energy

As explained in the introduction, the objective of this chapter is to
analyze the maximum energy stored in the barrier in each impact in function of
some parameters of the electromechanical system. These parameters are gap /1,
and A. The maximum impact energy during the j-th impact, \;, occurs when
the spring k; is compressed to the maximum, that is, when [, sin (¢) achieves its
minimum value during the j-th impact. Noting as 8* the angle of the pendulum
corresponding to this configuration of maximum compression, A; is calculated
by

1
A= 5]{:2 (I, sin(6*) + gap)?, with —1[,sin6* > gap . (4.15)
The average of the maximum impact energy is written as
N4
S,
A== 4.16
Nimp ’ ( )

where Niy,, is the total number of impacts that occur during time interval [0, 7.
T is the duration chosen for analysis. The variable A is chosen to measure the

system performance. The bigger ) is, the better will be the system performance.

4.4 Numerical simulations of the dynamics of the
coupled system

To observe the influence of the coupling between the electrical and mech-
anical parts in the maximum energy stored in the barrier, two configurations
of the vibro-impact system were analyzed separately. In the first one, it is
considered no coupling between the motor and the mechanical system, i.e.,
A = 0 m. In this case, the motor behaves as if it is turned off and, con-
sequently, the cart does not move. In the second configuration, it is considered

coupling, i.e., A > 0 m.

4.4.1 No coupling between the motor and the mechanical
system

When A = 0 m, there is no coupling between the motor and the
mechanical system. Thus the cart does not move. Considering that there is no
energy dissipation in the impact model between the pendulum and the barrier
(¢; = 0 Ns/m), the maximum energy stored in the barrier in each impact can
be calculated as function of the initial potential and kinetic energies of the
pendulum. Calling the initial conditions for the pendulum as 6(0) = 6, and

0(0) = 6y, the initial mechanical energy of the pendulum is
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Xo = my g cos (bp) + %mp[(lpéo cos 00)2 + (1,8 sin (90)2] . (4.17)

When the spring k; is compressed to the maximum during the j-th impact, a
part of \g is stored as potential energy in the pendulum and another part as

potential energy in spring k; (\;). Thus
1
Xo =m, g cos (0) + 51@, (I, sin(60*) + gap)® . (4.18)

Observing Eq. (4.17), it is possible to verify that when A =0 m, A; the j-th
impact will be maximum if gap /I, = 0. With this configuration, the pendulum
begins the impact in the vertical position, exactly when it has its maximum
velocity. Thus, this configuration is taken as reference. The impact energy in
this configuration represented by \"¢f will be used as normalization factor in
the analysis of the impact factor. The value of A"/ is computed considering

; = 10° N/m. The graph of A\/A"/ as function of gap /I, for different values of
k; is shown in Fig. 4.2. As expected, its maximum occurs when gap /[, = 0 and
its minimum at gap/l, = 1 (configuration in which there is no impact between

the pendulum and the barrier).

1 :
L I N\ — — g, = 102
T |V 23
T [ . ki = 10
v — i = 104
1S (]
< 5
el L R | ki = 10°
— k; = 106
e AN — k; =107
% 0.5 1

gap/lp

Figure 4.2: No coupling (A = 0 m): normalized average of the maximum impact
energy as function of the parameter gap /I, for different values of k; N/m.

4.4.2 Coupled system

When A > 0 m, i.e., there is coupling between the motor and the
mechanical system. The bigger is A, the more highlighted will be the non-
linear behavior of system [42|. Small changes in the values of A and gap/I,

can modify a lot the response of the system, as the maximum amplitude
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of the pendulum displacement, maximum velocity of the motor shaft and
therefore, the impact behavior of the system. The form of the graph of the
average of the impact energy changes as shown in Sec. 4.4. Considering just
the coupled motor-cart system, i.e., there is no pendulum embarked in the cart,
the existence and asymptotic stability of a periodic orbit were already obtained
in a mathematically rigorous way in [15, 18]. The influence of the parameters
A and gap/l, in A\, Eq. (4.16), was investigated numerically. For computation,
the initial value problem defined by Eqs. (4.6) to (4.8) has been rewritten in
the dimensionless form given by Eqs. (4.11) to (4.14). Despite of using the
dimensionless initial value problem for numerical simulations, the results are
presented in the dimensional form because we believe that in this way they
have an easier physical interpretation. Duration is chosen as 7' = 20.0 s. The
4th-order Runge-Kutta method is used for the time-integration scheme. The
specifications of the motor parameters used in all simulations were obtained
from the specifications of the DC motor Maxon brushless number 411678
(values could be find at [42](table 1)). The applied voltage was assumed to
be constant in time and equal to 2.4 V. The pendulum length was assumed to
be 0.075 m. The values of the cart and the pendulum masses were m, = 0.0 kg
and m, = 5.0 kg, so that the total mass, m = m, +m, = 5.0 kg, is equal
to the embarked mass, a limit case. The values of the stiffness and damping
coefficient used in the simulations were k; = 10° N/m and ¢; = 0 Ns/m, so
that there is no energy dissipation in the impact model. To investigate the
influence of A and gap/l, in A\/A"/, 700 numerical simulations have been
carried out combining the following values of the parameters: 7 values for A
nonuniformly selected in the interval [0,1073] m, and 100 values for gap/l,
uniformly selected in [0, 1]. Figure 4.3 shows the graph of \/A\"¢/ as function
of gap/l, for different values of A. It is noted that for values of d near zero,
as 107 m and 10~* m, the graph of the impact energy is very similar to
the graph with A = 0 m. The average impact energy presents its maximum at
gap/l, = 0 and its minimum when gap/l, = 1. When A is bigger, as 2x 10~* m,
5% 107* m, 8 x 107* m and 1073 m, the form of the graph of the average of the
impact energy changes completely. The maximum does not occur anymore at
gap/l, = 0. Depending on the value of A, the maximum occurs at a different
value of gap/l,. Among the considered values of A and gap/l,, the maximum
of the average of the impact energy was obtained with A = 107% m and
gap/l, = 0.6263. Considering A = 107 m and varying the value of k;, the
shape of the curve of the average of the maximum impact energy in function
of the parameter gap/l, (shown in Fig. 4.4) changes in an unexpected fashion.

Comparing it with Fig. 4.3, it is possible to observe that for small values of
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Figure 4.3: Coupled system (A > 0): normalized average of the impact energy
as function of the parameter gap /[, for different values of A (units in meters).

ki, as 10> N/m and 10® N/m, both graphs are similar. But, when £; is bigger,
the form of the graph of the average of the impact energy changes completely.
Among the considered values of k; and gap/l,, the maximum of the average of
the impact energy was obtained with k; = 10* N/m and gap/l, = 0.293. Thus
the maximum of the average of the impact energy does not occur anymore with
the bigger k; as happens in the A = 0 m configuration. To construct the graph
of Fig. 4.4, for each value of k; selected, 100 values of gap/l, equally spaced
between 0 and 1 were considered. Thus, in total, 600 numerical simulations

have been carried out.

4.5 Probabilistic model

The system parameter considered uncertain is k;, which is modeled by
the random variable K. The probability distribution of this random variable is
constructed using the Maximum Entropy Principle [34, 88, 89, 91, 85, 94, 95].
This Principle allows the probability distribution of a random variable to
be constructed using only the available information, avoiding the use of
any additional information that introduces a bias on the estimation of the
probability distribution. The Maximum Entropy Principle states: out of all
probability distributions consistent with a given set of available information
choose the one that has maximum uncertainty (the Shannon measure of

entropy). The available information of the random variable is defined as

1. K, is a positive-valued random variable,
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Figure 4.4: Coupled system (A > 0): normalized average of the impact
energy as function of the parameter gap /I, for different values of k; N/m with
A =1073 m.

2. the mean value is known: E{K;} = p,

3. in order that the response of the dynamical system be a second-order

stochastic process, we impose the following condition: ||E{log K;}| < oo.

Therefore, the Maximum Entropy Principle using Shannon entropy measure of
the probability density function, p, of K; yields the Gamma probability density

function, given by

where T ;o) (ki) is an indicator function that is equal to 1 for k; € [0, +00)

and 0 otherwise, and

— I' is the Gamma function: I'(a) = / t* Lexp(—t)dt;
0

— 0 = 7 is the coefficient variation (o is the standard deviation).

4.6 Numerical simulations of the stochastic
vibro-impact electromechanical system
As it was assumed that the stiffness of the spring, k;, in the barrier model

is a random variable, the output variables of the stochastic coupled system are

random processes [91, 11] and, consequently, the average of the impact energy,
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Figure 4.5: Mean and 90% confidence interval of A/\"/ as function of gap/I,
with 6 = 0.15 for(a) E{K;} = 10* N/m and (b)EF{K,} = 10° N/m .

A, become a random variable A. To make the stochastic analysis, Monte Carlo
simulations were employed to compute statistics of A, as mean and intervals of
confidence, using 100 independent realizations of K;. To observe the influence
of gap/l, in the statistics of the impact energy for different values of E{K;}
and hyperparameter § (which controls the level of uncertainties for K;), the
Monte Carlo simulations have been carried out combining the following values
of the parameters: 3 values for F{K;} (10*, 10°, and 10° N/m), 3 values for
9 (0.15, 0.25, and 0.35) and 100 values for gap/l, uniformly selected in the
interval [0, 1.0]. Thus, 90,000 numerical simulations have been carried out in
the stochastic analysis. The graphs of E{A}/\"/ and 90% confidence interval
as function of gap/l, for F{K;} = 10, 10° and 10° N/m with 6 = 0.15 are
displayed in Figs. 4.5 and 4.6(a). Comparing these statistics with the results
of deterministic simulations shown in Fig. 4.4, it is verified that in relation to
the impact energy, deterministic and stochastic systems have similar behavior.
However, the 90% confidence interval gets narrower as E{K;} increases. For
E{K;} = 10° N/m and § = 0.15, the maximum of E{A}/\"¢/ occurs at gap/I,
= 0.63 m. The normalized histogram of A/\"¢/ with this configuration is shown
in Fig. 4.6(b). Figures 4.7 to 4.9 show the graphs of E{A}/\"¢/ and 90%
confidence interval as function of gap/l, for F{K;} = 10*, 10° and 10° N/m
and for 6 = 0.25 and 0.35. These figures show that the bigger 0 is, the larger
is the confidence interval of A/\"/.
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Figure 4.6: (a) Mean and 90% confidence interval of A as function of gap/l,
with 6 = 0.15 and E{K;} = 10° N/m and (b) normalized histogram of A/\"¢/
for gap/l, = 0.63 m, E{K;} = 10° N/m and ¢ = 0.15.
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Figure 4.7: Mean and 90% confidence interval of A/\"/ as function of gap/,
with F{K;} = 10* N/m for(a) § = 0.25 and (b) ¢ = 0.35.
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Figure 4.8: Mean and 90% confidence interval of A/A"/ as function of gap/l,
with F{K;} = 10° N/m for(a) § = 0.25 and (b) ¢ = 0.35.
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Figure 4.9: Mean and 90% confidence interval of A/\"/ as function of gap/,
with E{K,} = 105 N/m for(a) § = 0.25 and (b) & = 0.35.


DBD
PUC-Rio - Certificação Digital Nº 1121481/CA


PUC-Rio - Certificacdo Digital N° 1121481/CA

Chapter 4. FElectromechanical system with internal impacts and
uncertainties 56

4.7 Summary of the Chapter

The purpose of this chapter was to analyze the impact energy of an
embarked pendulum in a vibro-impact electromechanical system. A flexible
barrier, attached to the cart, constrains the pendulum motion and causes
impacts. Since this nonlinear electromechanical system is devoted to the
vibro-impact, the time responses exhibit numerous shocks that have to be
identified with accuracy and, consequently, a very small time-step is required.
To reduce the computation time, the initial-value problem, Eqs. (4.6) to (4.8),
was rewritten in the dimensionless form, Eqs. (4.11) to (4.13). While each
numerical simulation of Egs. (4.6) to (4.8) takes approximately 30 seconds to be
computed, each numerical simulation of Eqgs. (4.6) to (4.8) takes approximately
half of this time. In the deterministic analysis, the influence of the parameter
gap/l, in the impact behavior was numerically investigated for different values
of the nominal eccentricity of the pin, A, the parameter that governs the
coupling and the nonlinearity of the system. As A increases the nonlinearity
also increases. It was verified that for values of A near zero, the graph of the
impact energy is very similar to the graph with A = 0 m. This result can be
nicely predicted from conservation of energy. However, as A increases the form
of the graph changes completely and in an unexpected fashion. This peculiar
behavior is due to the energy taken by the pendulum from the motor. The
energy of the mechanical systems varies a lot and the pumping of energy,
from the motor to the mechanical system, increases with A. The systems
analyzed show a self-oscillation behavior, in the sense that the generation
and maintenance of the motion comes from the motor but the oscillations
somehow control the energy taken from the motor. It varies with A, that
is a measure of the nonlinearity of the system. It is worth mentioning that
the energy intake is at frequency zero, the constant voltage, but this energy is
distributed to all frequencies due to the impacts. The influence of the parameter
gap/l, in the impact behavior was also investigated for different values of the
stiffness, k;, with the fixed value A = 1072 m. Similar to what happens with
the parameter d, it was verified that for small values of k;, the graph of the
impact energy is very similar to the graph of impact energy with the same
k; and A = 0 m. However, as k; increases the form of the graph changes
completely if compared to the graph of impact energy with the same k; and
A = 0 m. It was also observed that the maximum of the impact energy do not
occur anymore with the bigger k; as happens in the A = 0 m configuration.
In the stochastic analysis, the stiffness of the spring k;, in the barrier was

modeled as a random variable and the propagation of uncertainties in the
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coupled motor-cart-pendulum-barrier system was computed through Monte
Carlo simulations. Thus statistics of the impact energy, as mean and 90%
confidence interval, were computed for different values of gap/l,, E{K;} and
0. Comparing these statistics with the results of deterministic simulations,
it is verified that in relation to the mean of impact energy, deterministic and
stochastic systems have similar behavior. However, the 90% confidence interval

decreases as E{K;} increases and expands as ¢ increases.
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