

Francyane Rozestolato Basile

Avaliação da Injeção de WAG-CO₂ para a Recuperação de Petróleo e Armazenamento Geológico de Dióxido de Carbono

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio

Orientador: Prof. Marcos Sebastião de Paula Gomes Co-Orientador: Prof. Luís Glauber Rodrigues

Rio de Janeiro Setembro de 2015

Francyane Rozestolato Basile

Avaliação de Injeção de WAG-CO₂ para a Recuperação de Petróleo e Armazenamento Geológico de Dióxido de Carbono

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marcos Sebastião de Paula Gomes

Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Luís Glauber Rodrigues

Co-Orientador Departamento de Engenharia Mecânica – PUC-Rio

Prof. Arthur Martins Barbosa Braga Departamento de Engenharia Mecânica – PUC-Rio

Dr. Arturo Rodrigo Ferreira Pardo

Petróleo Brasileiro

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 23 de setembro de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientado.

Francyane Rozestolato Basile

Graduou-se em Engenharia de Petróleo na Universidade Federal Fluminense (UFF) em 2011.

Ficha Catalográfica

Basile, Francyane Rozestolato

Avaliação da injeção de WAG-CO₂ para a recuperação de petróleo e armazenamento geológico de dióxido de carbono / Francyane Rozestolato Basile ; orientador: Marcos Sebastião de Paula Gomes ; co-orientador: Luís Glauber Rodrigues. – 2015.

139 f. : il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2015.

Inclui bibliografia

 Engenharia mecânica – Teses. 2. WAG-CO2. 3. Fator de recuperação. 4. Sequestro de CO2. 5. Tensão interfacial.
 Histerese. I. Gomes, Marcos Sebastião de Paula. II. Rodrigues, Luís Glauber. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica.

CDD: 621

Agradecimentos

Ao meu orientador Marcos Sebastião pela confiança.

Ao meu co-orientador Luís Glauber pela dedicação e ensinamentos.

Ao Professor Arturo pelo apoio desde a graduação.

À banca pela compreensão e disponibilidade.

À PUC-Rio pela oportunidade e disponibilidade do software.

Ao Departamento de Engenharia Mecânica da PUC-Rio por todo apoio.

A todos os professores e funcionários do Departamento pelos ensinamentos e pela ajuda.

Ao Professor Geraldo de Souza Ferreira grande incentivador para o meu ingresso no mestrado.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Resumo

Basile, Francyane; Gomes, Marcos Sebastião de Paula; Rodrigues, Luís Glauber. **Avaliação da Injeção de WAG-CO₂ para a Recuperação de Petróleo e Armazenamento Geológico de Dióxido de Carbono**. Rio de Janeiro, 2015. 139p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A redução drástica no valor do barril de petróleo em decorrência do crescimento desacelerado das maiores economias do mundo e da queda no consumo está promovendo uma mudança no comportamento da Indústria de Petróleo, uma vez que a redução dos custos de produção associado ao aumento da produtividade é essencial para o setor. Além disso, os aspectos ambientais estão em evidencia devido ao aumento da temperatura global nos últimos anos. Sendo assim, o Método de Recuperação Avançado WAG (Water Alternating Gas) com injeção de dióxido de carbono (CO₂) é capaz de aliar aumento de produção de óleo com redução da emissão de dióxido de carbono na atmosfera. Essa dissertação tem o objetivo de estudar o efeito do WAG-CO₂ sobre o fator de recuperação e sequestro de dióxido de carbono em reservatório arenítico. Para isso, serão realizadas simulações numéricas de fluxo contínuo em modelos blackoil e composicional utilizando as ferramentas WinProp, Builder, IMEX e GEM, do pacote de simuladores da CMG (Computer Modelling Group). Sendo o IMEX usado para modelos *black-oil* e o GEM para composicional. O conhecimento das permeabilidades, fenômenos de histerese e tensão interfacial para a simulação numérica são fundamentais para definir o plano de desenvolvimento e as variáveis do processo, responsáveis pelo acréscimo do fator de recuperação e economicidade. Porém, o IMEX e o GEM não permitem que a tensão interfacial e histerese sejam estudos simultaneamente. O fator de recuperação das simulações considerando tensão interfacial foram, em média, 3% maiores que para os casos com histerese, e 0,6% superiores nas injeções iniciando com o gás. Além disso, o aumento no número de poços produtores e injetores melhorou o varrido do reservatório, porém, aspectos como pressão do reservatório, produção de gás e de água devem ser monitorados.

Palavras-chave

WAG; simulação de reservatório; sequestro de CO₂.

Abstract

Basile, Francyane; Gomes, Marcos Sebastião de Paula (Advisor); Rodrigues, Luís Glauber (Co-Advisor). **Analysis of WAG-CO₂ Injection for Oil Recovery and Geological Storage of Carbon Dioxide**. Rio de Janeiro, 2015. 139p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The drastic reduction in the amount of oil as a result of slowed growth of the world's largest economies and the fall in consumption, is promoting a change in the behavior of the Petroleum Industry, since the reduction in production costs

coupled with increased productivity is essential for the sector. Moreover, environmental aspects are evident due to the global temperature rise in recent years. Therefore the Advanced Recovery Method WAG (Water Alternating Gas) with carbon dioxide injection (CO₂) is able to combine oil production increase with a reduction in carbon dioxide emissions in the atmosphere. This dissertation is intended to study the effect of WAG-CO₂ on the recovery factor and carbon dioxide sequestration in sandstone reservoir. For this, numerical simulations streaming will be held in black-oil and compositional models using the WinProp tools, Builder, IMEX and GEM, the simulator package CMG (Computer Modelling Group). Being the IMEX used for black-oil models and the GEM to compositional. Knowledge of permeability, hysteresis phenomena and interfacial tension for the numerical simulation are essential to define the development plan and the process variables responsible for the increase in the recovery factor and economy. However, IMEX and GEM not allow the interfacial tension and hysteresis be studied simultaneously. The result of simulations for interfacial tension were, on average, greater than 3% for the cases with hysteresis, and 0.6% higher in injections with starting gas. Furthermore, the increase in number of producing and injection wells improved sweep of the reservoir, however, aspects such as reservoir pressure, gas production and water must be monitored.

Keywords

WAG; reservoir simulation; CO₂ sequestration.

Sumário

 Introdução 1.1.Objetivo 1.2. Justificativa 1.3. Estrutura do Presente Trabalho 	14 17 17 18
 Método de Recuperação Métodos de Recuperação Avançado (EOR) 	19 20
 Dióxido de Carbono (CO₂) 1. Captura, Transporte e Armazenamento de Carbono no Brasil 2. CO₂ no Método de Recuperação Avançado 3.3. CO₂ Supercrítico 3.4. Análise da Corrosão do CO₂ 	40 46 47 49 51
 Fluidos do Reservatório Interações Rocha-Fluido 	53 56
 Simulação Numérica de Fluxo Contínuo WinProp Builder Builder IMEX IMEX GEM Dados de Entrada da Simulação Modelagem de Fluido Utilizando o WinProp Simulações Black-Oil e Composicional Resultado das Simulações Black-Oil e Composicional 	70 70 71 72 72 77 81 124
6. Conclusão da Dissertação	128
7. Recomendações	132
8. Referências Bibliográfica 8.1. Sites Consultados	133 138

Lista de Figuras

Figura 1 - Queda do preço do barril de Petróleo	14
Figura 2 - Métodos de recuperação secundária	15
Figura 3 - Injeção miscível de CO2	23
Figura 4 - Efeito da água móvel na recuperação do; óleo para o	
deslocamento CO2 no reservatório de petróleo bruto (múltiplo contato	
no processo miscível), deslocamento terciário, testemunho molhado	
por água	26
Figura 5 - Efeito da água móvel na recuperação do óleo para o	
deslocamento CO2 no reservatório de petróleo bruto (múltiplo contato	
no processo miscível), deslocamento terciário, testemunho molhado	
por óleo	26
Figura 6 - Função water-blocking utilizada em estudos de simulação	28
Figura 7 - Deslocamento WAG	30
Figura 8 - Processo WAG, cálculo do escoamento fracionário de água	33
Figura 9 - Comparação das taxas de produção de petróleo previsto	
para vários processos de injeção de CO2 nos campos de Dollarhide	34
Figura 10 - Cálculo do acúmulo adicional na recuperação avançada	
pelo tempo	39
Figura 11 - CO2 Atmosférico	41
Figura 12 - Produção de CO2 - bilhões de toneladas, em %	42
Figura 13 - Diagrama de fases do CO2	50
Figura 14 - Diagrama de Fases - pressão x temperatura	54
Figura 15- Diagrama de Fases Black Oil	56
Figura 16 - Curvas de permeabilidade relativa vs saturação da água	58
Figura 17 - Influência do processo de saturação nas curvas de	
permeabilidade relativa	59
Figura 18 - Diagrama ternário de permeabilidades trifásicas ao óleo em	
função de possíveis caminhos de saturações percorridos durante um	
processo WAG	61
Figura 19 - Ascensão capilar em um tubo de vidro	64
Figura 20 - Método da gota	65
Figura 21 Diagrama de permeabilidade relativa bifásico ilustrando a	
histerese para a água	67
Figura 22 - Erro da regressão da pressão de saturação	77
Figura 23 - Gráfico da regressão na liberação diferencial do fator de	
compressibilidade do óleo (Z) e fator volume de formação do óleo	
(FVF) vs pressão	78
Figura 24 - Gráfico da regressão na liberação diferencial da razão	
gás-óleo (GOR) e do volume relativo do óleo (ROV) vs pressão	79
Figura 25 - Gráfico da regressão na liberação diferencial da gravidade	
específica do gás (SG) vs pressão	79
Figura 26 - Gráfico de regressão na expansão da densidade do	
óleo vs pressão	80
Figura 27 - Gratico da regressão na liberação diferencial da	
viscosidade do oleo e da viscosidade do gás vs pressão	80
Figura 28 – Grid do modelo de 2 poços produtores e 2 poços	. ·
injetores WAG	81

Figura 29 - Grid do modelo de 4 poços produtores e 4 poços injetores WAG	81
Figura 30 - Grid do modelo de 6 poços produtores e 6 poços injetores WAG	82
Figura 31 – Curvas de razão de solubilidade do óleo (Rs) e do fator volume de formação do óleo (Bo) vs pressão	83
Figura 32 – Curva do fator volume de formação do gás vs pressão Figura 33 – Curvas de viscosidade do óleo (Visco) e da viscosidade do	84
gás (Viscg) vs pressão Figura 34 – Curvas de permeabilidade relativa à água (Krw) e ao óleo	85
(krow) vs saturação da água (Sw)	86
Figura 35 – Curva de pressão capitar da agua vs saturação da agua Figura 36 – Gráfico dos fatores de recuperação (%) dos casos de	00 07
Figura 37 - Quantidade em moles de CO2 produzido no óleo e no gás	88
Figura 38 - CO2 produzido em gmole – GEM Figura 39 - Depleção do reservatório - caso base – GEM	89 90
Figura 40 - Fatores de recuperação (%) na injeção de água	91
rigura 41 - Corte de agua (%) na recuperação secundaria com injeção de água	91
Figura 42 - Produção de CO2 do reservatório	93
Figura 44 - Razão gás óleo na injeção de gás - GEM	93 94
Figura 45 - Fatores de recuperação (%) na injeção de gás – IMEX Figura 46 - Razão gás óleo na injeção de gás - IMEX	95 95
Figura 47 - Arquivo de saída .log – 2 poços produtores e injetores	96
Figura 48 – GEM - CO2 produzido x injetado	97
Figura 49 - Armazenamento de CO2 no processo de recuperação	07
Figura 50 - Modelo 3D - Início da injeção com água	99
Figura 51 - Fator de recuperação (%) WAG – Início da injeção com água – IMEX - GEM	100
Figura 52 – Arquivo de saída .log - Razão gás óleo - 4 poços	
produtores e 4 injetores Figura 53 - Arguivo de saída .log - Razão gás óleo - 6 pocos	100
produtores e 6 injetores	101
Figura 54 - Fator de recuperação processo WAG - início gás - GEM Figura 55 - Fator de recuperação processo WAG - início gás – IMEX	101 102
Figura 56 - Fator de recuperação para 2 poços produtores e	400
Figura 57 - Fator de recuperação para 2 poços produtores e	103
2 injetores - GEM	104
4 injetores - IMEX	104
Figura 59 - Fator de recuperação para 4 poços produtores e 4 inietores - GEM	105
Figura 60 - Fator de recuperação para 6 poços produtores e	
o injetores - IMEX	105

Figura 61 - Fator de recuperação para 6 poços produtores e	
6 injetores - GEM	106
Figura 62 - RGO - 6 poços produtores e injetores – início água - 20	
dina/cm – IMEX	106
Figura 63 - Wat. Cut - 6 poços produtores e injetores – início água	
- 50 dina/cm – IMEX	107
Figura 64 - Wat. Cut - 6 poços produtores e injetores – início água	
- 70 dina/cm – IMEX	107
Figura 65 – Wat. Cut - 6 poços produtores e injetores – início água	
- 80 dina/cm – IMEX	107
Figura 66 - Fator de recuperação para 2 poços produtores e	400
2 injetores - IMEX	109
Figura 67 - Fator de recuperação para 2 poços produtores e	440
2 INjetores - GEM	110
Figura 68 - Fator de recuperação para 4 poços produtores e	
4 Injelores - IMEX	111
A inisteres CEM	111
4 Injeloies - GEM Figura 70 - Estor do recuperação para 6 paços produtoros o	111
6 iniotoros - IMEX	112
Figure 71 - Eator de recuperação para 6 poços produtores e	112
6 injetores – GEM	112
Figura 72 RGO - 6 pocos produtores e 6 injetores - início dás	112
-20 dina/cm - IMEX	113
Figura 73 - Wat, Cut - 6 pocos produtores e 6 injetores – início gás	110
- 50 dina/cm – IMEX	113
Figura 74 - Wat. Cut - 6 pocos produtores e 6 inietores – início gás	
- 70 dina/cm – IMEX	113
Figura 75 - Wat. Cut - 6 poços produtores e 6 injetores – início gás	
- 80 dina/cm – IMEX	113
Figura 76 - Saturação de gás - caso com 2 poços produtores e	
injetores- ano 1989 – GEM	116
Figura 77 - Saturação de gás - caso com 4 poços produtores e	
injetores- ano 1989 – GEM	116
Figura 78 - Saturação de gás - caso com 6 poços produtores e	
injetores- ano 1989 – GEM	117
Figura 79 - Fator de recuperação 2 poços produtores e 2 injetores	
 Histerese - início água e início gás – IMEX 	117
Figura 80 - Fator de recuperação 4 poços produtores e 4 injetores	
 Histerese - início água e início gás – IMEX 	118
Figura 81 - Fator de recuperação 6 poços produto res e 6 injetores	
 Histerese - início água e início gás – IMEX 	118
Figura 82 - RGO - 4 poços produtores e 4 injetores - início água	
– histerese 0,05 – IMEX	119
Figura 83 - RGO - 4 poços produtores e 4 injetores - início água	
– histerese 0,1 – IMEX	119
Figura 84 - RGO - 4 poços produtores e 4 injetores - inicio gás	440
- NISTERESE U,U5 - IMEX	119
Figura 85 - KGO - 4 poços produtores e 4 injetores - inicio gas	400
	120

Figura 86 - RGO - 6 poços produtores e 6 injetores - início água –	
histerese 0,05 – IMEX	120
Figura 87 - RGO - 6 poços produtores e 6 injetores - início água –	
histerese 0,1 – IMEX	120
Figura 88 - RGO - 6 poços produtores e 6 injetores - início gás	
– histerese 0,05 – IMEX	121
Figura 89 - RGO - 6 poços produtores e6 injetores - início gás	
– histerese 0,1 – IMEX	121
Figura 90 – Saturação de gás para injeção de gás com 6 poços	
- IMEX	125

Lista de Tabelas

Tabela 1 – Resumo da Previsão dos Resultados do Estudo do	
Campo de Dollarhide	35
Tabela 2 - Incremento da Recuperação de Óleo nos Campos	
com Injeção de CO2	37
Tabela 3 - Composição do óleo	73
Tabela 4 - Composição do óleo	74
Tabela 5 - Composição do óleo da fração pesada C30+	75
Tabela 6 - Liberação CCE do óleo	75
Tabela 7 - Liberação diferencial do óleo	76
Tabela 8 - Liberação diferencial do gás	76
Tabela 9 - Dados de Viscosidade	76
Tabela 10 - Resumo da figura 36 – casos base	87
Tabela 11 - Comparação entre GEM e IMEX no mesmo ano	
- casos de depleção	88
Tabela 12 - Produção acumulada de CO2	89
Tabela 13 – Produção acumulada de CO2 com 1096 dias	89
Tabela 14 - Resumo dos fatores de recuperação (%) na injeção de água	92
Tabela 15 - Comparação entre GEM e IMEX	
- mesmo tempo de duração – injeção de água	92
Tabela 16 - Resumo dos fatores de recuperação (%) na injeção de gás	96
Tabela 17 - Comparação entre GEM e IMEX - mesmo período –	
injeção de gás	96
Tabela 18 - Armazenamento de CO2 – gmole	97
Tabela 19 - Resumo do fator de recuperação – WAG	
- Início da injeção com água – IMEX - GEM	100
Tabela 20 - Resumo do fator de recuperação – WAG	
Inicio da injeção com agua - mesmo periodo – IMEX - GEM	100
Tabela 21 - Resumo do fator de recuperação – WAG	400
- INICIO da INJEÇão com gas – IMEX - GEM	102
i abela 22 - Resumo do fator de recuperação – WAG	100
- Inicio da injeção com gas - mesmo periodo – imex – Gem	102
rabela 23 - Analise comparativa entre as diferentes	100
Tensoes interfacials no intex – inicio agua T_{abala} 24 . Applica comparativo entre se diferentes	106
tabela 24 - Analise comparativa entre as unerentes	100
Tabola $25 - Apolico comparativo optro as diferentes$	100
tensões interfaciais no GEM – início água	108
Tabela 26 - Analise comparativa entre as diferentes	100
tensões interfaciais no GEM – mesmo período - início água	109
Tabela 27 - Analise comparativa entre as diferentes	100
tensões interfaciais no IMEX – início dás	113
Tabela 28 - Analise comparativa entre as diferentes	
tensões interfaciais no IMEX – mesmo período - início gás	114
Tabela 29 - Analise comparativa entre as diferentes	
tensões interfaciais no GEM – início gás	114
Tabela 30 - Analise comparativa entre as diferentes	
tensões interfaciais no GEM – mesmo período - início gás	115

Tabela 31 - Analise comparativa entre os diferentes	
valores de histerese no IMEX – início água e início gás	121
Tabela 32 - Analise comparativa entre os diferentes valores	
de histerese no IMEX – início água e início gás	
 para 6 poços produtores e 6 injetores 	122
Tabela 33 - Analise comparativa entre os diferentes	
valores de histerese no GEM – início água e início gás	122
Tabela 34 - Analise comparativa entre os diferentes valores	
de histerese no GEM – início água e início gás	
 – para 2 poços produtores e 2 injetores 	123
Tabela 35 - Analise comparativa entre os diferentes valores	
de histerese no GEM – início água e início gás	
 – para 6 poços produtores e 6 injetores 	123
Tabela 36 – Método convencionais - análise dos resultados	
 – 2 poços produtores e 2 injetores 	124
Tabela 37 - Método convencionais - análise dos resultados	
 4 poços produtores e 4 injetores 	124
Tabela 38 - Método convencionais - análise dos resultados	
 – 6 poços produtores e 6 injetores 	124
Tabela 39 – Método convencionais – resultados do IMEX	
– Injeção de gás	125
Tabela 40 - Método especiais - análise dos resultados IMEX	
 – 2 poços produtores e 2 injetores 	126
Tabela 41 - Método especiais - análise dos resultados IMEX	
 4 poços produtores e 4 injetores 	126
Tabela 42 - Método especiais - análise dos resultados IMEX	
 – 6 poços produtores e 6 injetores 	126
Tabela 43 - Método especiais – resultados do IMEX	
 Injeção de gás – efeito da tensão interfacial 	127

1. Introdução

Utilizado em larga escala desde o século passado, o petróleo está presente não apenas nos combustíveis que usamos, mas em uma infinidade de produtos químicos e petroquímicos fundamentais para a sociedade, além de ser utilizado para gerar energia elétrica em diversos países.

Com a exploração das reservas de xisto nos Estados Unidos, a produção mundial disparou no fim de 2014. Em paralelo, há uma queda na demanda, devido ao crescimento desacelerado das maiores economias mundial, o que fez com que a Agência Internacional de Energia reduzisse as perspectivas para a demanda. Como consequência desses dois fatos ocorreu uma redução drástica no valor do barril de petróleo, ver figura 1. Segundo o economista americano Daniel Yerg a queda acentuada nos preços do barril de petróleo promete ser duradoura, e seus impactos econômicos e geopolíticos ainda são difíceis de estimar.¹

Diante deste cenário, as empresas petrolíferas terão que se adaptar a essa "nova era do petróleo", desenvolvendo inovações tecnológicas de exploração que sejam mais econômicas, eficientes e que minimizem os impactos ambientais.

Figura 1 - Queda do preço do barril de Petróleo²

A vida produtiva de um reservatório de petróleo era dividida em etapas cronológicas e os métodos de recuperação utilizados eram chamados de primário, secundário e terciário. Sendo a recuperação primária a produção

¹ Fonte: <http://veja.abril.com.br/noticia/economia/a-nova-era-do-petroleo-comecou>, acesso em 24/02/2015.

² Fonte: < http://www.iea.org/topics/oil/>, acesso em 24/02/2015.

resultante da energia natural do reservatório, a secundária ocorria mediante suplementação da energia natural por injeção de água ou gás, conforme mostrado na figura 2, e a terciária era a produção assistida através de outras fontes de energia e/ou efeitos físicos, químicos e biológicos.

Figura 2 - Métodos de recuperação secundária³

Porém, essas terminologias entraram em desuso. Atualmente, as nomenclaturas utilizadas para recuperação são Métodos Convencionais, correspondente aos primário e secundário, e Métodos Especiais ou Métodos Avançados (em inglês Enhanced Oil Recovery - EOR) que é equivalente ao terciário.4

Dentre os Métodos de Recuperação Avançado (EOR), destacam-se os processos de deslocamento miscível, que são caracterizados pela redução das forças capilares e interfaciais entre os fluidos deslocante e o deslocado, sendo a miscibilidade a propriedade que torna esse mecanismo tão importante, e que

<http://www.nupeg.ufrn.br/downloads/deq0376/iep.01e.recuperacao.suplementar.pdf>, Fonte: acesso em 20/04/2011. ⁴ THOMAS, op. cit., p. 201.

depende das semelhanças químicas e das condições de temperatura e pressão entre os dois fluidos.⁵

A boa prática de engenharia recomenda que, a recuperação seja iniciada antes do declínio da produção de petróleo, o ideal é quando o reservatório atinge uma pressão pouco acima à de saturação. A "manutenção de pressão" é uma atividade que consiste na injeção de água ou gás no reservatório, mantendo assim, os níveis de pressão elevados o que promove a preservação das características dos fluidos e do fluxo no campo.⁶

Observa-se o crescimento na utilização dos Métodos EOR para aumentar a recuperação dos campos de petróleo. Dentre esses, encontra-se o WAG (*Water Alternating Gas*), aplicado mundialmente, principalmente, em campos terrestres nos EUA e no Mar do Norte.

Em 2010, 47% dos projetos no Mar do Norte eram WAG⁷, sendo que, 48% eram com injeção de CO₂, 42% com o próprio gás hidrocarboneto produzido no campo e apenas 10% com outros gases como nitrogênio.⁸

O processo WAG consiste em um banco (região do reservatório com elevada saturação de um fluido) de gás injetado alternadamente com um banco de água em um mesmo poço injetor. A vantagem do WAG é controlar com a água a mobilidade do gás injetado, melhorando a eficiência de varrido, ao passo que o gás proporciona maior eficiência de deslocamento, desde que injetado em condições de miscibilidade, o que exige elevadas pressões.

Dessa forma, enquanto a injeção de gás reduz a saturação residual de óleo, podendo chegar, dependendo do caso, próximo a 0% nas regiões contatadas, os bancos de água, além de melhor manter a pressão do reservatório, promovem a estabilização da frente de avanço da injeção.

⁵ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, **Engenharia de Reservatórios de Petróleo**, Rio de Janeiro, Interciência, 2007, p.683.

⁶ THOMAS J. E. **Fundamentos de Engenharia de Petróleo**, 2º ed., Rio de Janeiro, Interciência, 2001, p. 201.

 ⁷ AWAN, A. R.; TEIGLAND, R.; KLEPPE, J. A Survey of North Sea Enhanced-Oil-Recovery Projects Initiated During the Years 1975 to 2005. SPE Reservoir Evaluation & Engineering, v. 11, n. 3, p. 497-512, Junho 2008.
 ⁸ ROSA. M. B., Desafios da Simulação Numérica do Processo de Injeção Alternada de Água e

[°] ROSA. M. B., **Desafios da Simulação Numérica do Processo de Injeção Alternada de Água e Gás (WAG) para Reservatórios Heterogêneos**, Rio Oil & Gas 2010, IBP2502_10.

1.1. Objetivo

O objetivo do presente trabalho é estudar os efeitos teor do CO₂ injetado, da tensão interfacial e da histerese na permeabilidade relativa sobre, o fator de recuperação, vazão de óleo, razão gás-óleo e razão água-óleo produzidos em reservatório sintético submetido ao processo de recuperação especial WAG. Além disso, será analisado o saldo de CO₂ que ficou estocado no reservatório após a injeção do mesmo junto ao gás.

Para isso, será utilizado como ferramenta computacional os simuladores WinProp, Builder, GEM e IMEX da CMG (*Computer Modelling Group*). Esse pacote de simuladores possibilita a integração entre modelagens de fluido e numérico usando diferentes *softwares*.

A proposta é trabalhar com um reservatório heterogêneo, que considere o efeito gravitacional, molhabilidade, histerese, tensão interfacial e pressão capilar. Diferentes tensões interfaciais, fatores de histerese, composições de CO₂ na corrente do gás e permeabilidade vertical serão utilizadas. A temperatura será considerada constante.

1.2. Justificativa

A justificativa desse trabalho está no fato de os reservatórios do pré-sal brasileiro apresentarem um teor de CO_2 que pode variar de 8 a $12\%^9$, o que estimulou o interesse por estudos da utilização desse gás como método de recuperação suplementar, além dos aspectos ambientais que restringem a emissão deste gás.

Em 2013, uma estação climática localizada no vulcão Mauna Loa, no estado norte-americano do Havaí, registrou uma concentração de dióxido de carbono acima de 400.03 partes por milhão (PPM), um pico histórico, segundo a Agência Nacional Oceânica e Atmosférica dos EUA (NOOA, sigla em inglês).¹⁰ O

⁹ Fonte: <http://inovacao.scielo.br/scielo.php?script=sci_arttext&pid=S1984-439520100001000 10&Ing=pt&nrm=is>. Acesso em 25/05/2014⁻

¹⁰ Fonte: http://ecycle.com.br/component/content/article/38-no-mundo/1540-concentracao-de-co2-na-atmosfera-deve-exceder-400-partes-por-milhao-ate-2015.html- Acesso em 25/05/2014.

consenso entre climatologistas é que, a maior concentração de CO_2 é a principal causa do aumento na temperatura global.¹¹

Com objetivo de reduzir a emissão do dióxido de carbono na atmosfera foi criado um processo chamado CCS, do inglês *carbon capture and storage*, que é a captura e armazenamento do CO₂ em reservatórios geológicos, que pode ser feito em campos de petróleo em produção para EOR ou em campos maduros abandonados.

1.3. Estrutura do Presente Trabalho

A presente dissertação está estruturada em oito capítulos, sendo o primeiro, uma breve introdução, o segundo uma revisão bibliográfica sobre os principais métodos de recuperação avançado (EOR) e suas eficiências. Nesse capítulo também será exposto o funcionamento do mecanismo WAG e as razões pelas quais ele deve ser aplicado, além de exemplos de sucesso de campos de petróleo onde essa técnica é aplicada.

Já no capítulo três serão abordadas questões envolvendo o dióxido de carbono, como meio ambiente, CCS, pré-sal, EOR, propriedades termológicas e corrosivas. No quarto capítulo serão expostos fatores inerentes da interação rocha-fluido nos Métodos Avançados que utilizam fluidos que não são totalmente miscíveis ao óleo ou à água presentes nos reservatórios.

No capítulo cinco serão apresentados os resultados obtidos com os simuladores comerciais WinProp, Builder, GEM e IMEX, os quais foram usados para fazer simulações de injeções de gás com CO₂, água e WAG-CO₂, controlando a pressão do reservatório e dos poços. No sexto as conclusões da dissertação, sobressaltando os pontos relevantes, no sétimo as recomendações para futuros trabalhos e o oitavo, as referências bibliográficas e fontes de pesquisa.

¹¹ Fonte: <http:// www.ffv. org. br / perguntas- e-resposras- sobre-o- aquecimentoglobal.html>. Acesso em 31/05/2011.

2. Métodos de Recuperação

Os Métodos de Recuperação Avançado (EOR) são usados quando os processos convencionais não são eficientes para extrair mais óleo do reservatório, ou para a extração de óleo pesado, ou seja, quando a injeção adicional de água ou de gás não resulta em acréscimo do fator de recuperação.

O objetivo da aplicação dos métodos EOR é melhorar os fatores de eficiência e recuperar parte adicional do óleo remanescente, podendo atingir uma parcela de até 70% do óleo original provado, que é o volume percentual médio restante nos reservatórios após a recuperação convencional.

A aplicação adequada de um método de recuperação avançada favorece que seja extraído, em média, de 5 a 10% a mais do óleo original que existia na jazida na época da sua descoberta¹². Esse percentual é avaliado através dos seguintes parâmetros: eficiência de varrido horizontal e de deslocamento e do fator de contato.

A eficiência de varrido horizontal é a área do reservatório que foi invadida pelo fluido injetado até um determinado instante de tempo. Maiores eficiências de varrido são obtidas com razões de mobilidades baixas, assim, são utilizados os termos razão de mobilidade favorável (menor ou igual a 1) e razão de mobilidade desfavorável (maior que 1).¹³

A mobilidade de um fluido é dada pela razão entre a permeabilidade efetiva desse fluido e sua viscosidade. No caso da EOR, um dos objetivos é diminuir a razão de mobilidade para obter o aumento do fator de recuperação.

$$M = \frac{(k_w/\mu_w)}{k_o/\mu_o} = \frac{k_w}{\mu_w} \frac{\mu_o}{k_o} \qquad (1)$$

A eficiência de deslocamento é definida como a fração da saturação de óleo original deslocado dos poros da rocha pelo fluido injetado.

$$E_D = \frac{S_{oi} - S_{or}}{S_{oi}} \quad (2)$$

 ¹² ROCHA, P. S., SACRAMENTO, V. S., COSTA, G. M. N. Uma Abordagem do Ajuste de Dados PVT e Cálculo da PMM no Simulador WINPROP. In: 3º Congresso Brasileiro de P&D em Petróleo e Gás, 2005, Salvador.
 ¹³ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo,

¹³ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo, Rio de Janeiro, Interciência, 2007, p 679.

A eficiência de deslocamento depende das tensões interfaciais, existentes entre o fluido injetado, a rocha e os fluidos do reservatório, e do volume injetado. Boas recuperações requerem eficiência de deslocamento alto.

Em um poço injetor, a pressão capilar é a pressão que será exercida sobre o fluido não molhante para que ele penetre em um capilar (poro), deslocando assim, o fluido molhante que ocupava o capilar. Pode ser calculada pela equação de Laplace.

$$p_c = \frac{2\sigma |\cos \theta|}{r_c} \quad (3)$$

Sendo a pressão capilar função da tensão interfacial, raio do capilar e do ângulo de contato entre o fluido não molhante e o sólido (molhabilidade).

Molhabilidade é o termo utilizado para descrever a atração relativa de um fluido por um sólido. É o principal fator responsável pela distribuição dos fluidos no meio poroso e influência na capacidade de uma fase fluir e nas saturações residuais. As rochas do reservatório podem ser classificadas como molháveis a água, ao óleo ou intermediárias, dependendo do ângulo de contato entre a rocha e o fluido mais denso.¹⁴

O fator de contado é a fração de volume do reservatório que, foi atingida pelo fluido injetado dividido pelo volume total do reservatório. Quanto maior a região atingida pelo fluido injetado melhor será o volume de óleo recuperado.

Para obtenção de melhores recuperações de óleo será necessário que as eficiências de varrido e de deslocamento sejam altas. Quando o varrido é baixo, o fluido injetado simplesmente encontra caminhos preferenciais e se dirige rapidamente para os poços de produção, deixando grandes porções de óleo no reservatório. E se o deslocamento for baixo, mesmo que o varrido seja alto, o fluido injetado não desloca apropriadamente o óleo para fora da região invadida.

2.1.

Métodos de Recuperação Avançado (EOR)

As baixas recuperações resultantes de um processo convencional de injeção de fluidos, isto é, água e gás com baixas viscosidades, podem ser

¹⁴ MACHADO C. G. **Histerese nas Curvas de Permeabilidade Relativa Trifásica**, Dissertação de Mestrado, UNICAMP, Campinas, 2013.

creditadas, dentre outros fatores, à alta viscosidade do óleo contido no reservatório e às elevadas tensões interfaciais entre o fluido injetado e esse óleo.

Quando a viscosidade do fluido injetado é muito menor que a do fluido a ser deslocado, o primeiro se move facilmente no meio poroso, encontrando caminhos preferenciais e se dirigindo rapidamente para os poços de produção. O óleo fica retido porque o fluido injetado não se propaga adequadamente no reservatório, deixando de atingir grandes volumes de rocha contendo óleo, nos quais o deslocamento não se processou.

No caso de altas tensões interfaciais, a capacidade do fluido injetado de desalojar o óleo do reservatório para fora dos poros é bastante reduzida, deixando saturações residuais elevadas de óleo nas regiões já contatadas pelo fluido injetado.

Para redução da saturação residual de óleo é necessário um aumento acentuado do número capilar (Nc), grupo adimensional que representa a razão entre as forças viscosas e capilares.

$$N_c = \frac{\nu \mu_d}{\sigma} \qquad (4)$$

Sendo "v" a velocidade do fluido deslocante, " μ_d " a viscosidade do fluido deslocante e " σ " a tensão interfacial.

A viscosidade e a tensão interfacial definem a forma de atuação dos métodos de recuperação avançado, que são divididos em três categorias: Métodos Térmicos, Químicos e Miscíveis.

2.1.1. Métodos Térmicos

Os métodos térmicos tendem a reduzir a viscosidade e consequentemente aumentar a eficiência de varrido do óleo através do seu aquecimento aumentando assim a recuperação do petróleo. Isso pode ser feito através de injeção de fluidos aquecidos (vapor) ou por combustão *in situ*.

2.1.2. Métodos Químicos

Os métodos químicos são aplicados quando existe a possibilidade de interação entre o fluido injetado e o fluido do reservatório e pode ser através de

injeção de polímeros, de solução de tensoativos, de micro emulsão, de solução alcalina, entre outros.

2.1.3. Métodos Miscíveis

O processo de deslocamento miscível envolve a injeção de um fluido deslocante, que é miscível ao óleo do reservatório, com objetivo de formar uma fase homogênea independente das proporções da mistura. As condições de miscibilidade vão se desenvolvendo no reservatório por meio da alteração na composição do fluido injetado ou do óleo bruto à medida que o fluido se move no reservatório. Nesse método podem ser injetados hidrocarbonetos ou CO₂.¹⁵

2.1.3.1. Injeção de Hidrocarbonetos

Pode ser dividido em: injeção de banco miscível de GLP, de gás enriquecido e de gás pobre a alta pressão.

2.1.3.2. Injeção de CO₂

O dióxido de carbono apresenta forte atração e se dissolve no óleo do reservatório causando inchamento, vaporização e consequente deslocamento do mesmo, ou seja, uma frente miscível se forma.

Assim como no método de deslocamento com gás seco a alta pressão, na injeção miscível de CO₂ uma zona miscível é formada pela transferência de componentes do óleo para o dióxido de carbono, que só é possível devido à frente entre CO₂ e o óleo do reservatório ser MMC (miscível a múltiplos contatos).¹⁶

A vantagem em relação ao gás seco é que o dióxido de carbono apresenta um intervalo de vaporização ou extração de hidrocarbonetos do petróleo maior, podendo extrair componentes mais pesados, o que aumenta a possibilidade de aplicação desse método. Além disso, a pressão necessária para o CO₂ obter deslocamento miscível em determinando óleo é muito menor do que o gás seco.¹⁷

¹⁵ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo, Rio de Janeiro, Interciência, 2007, p 679. ¹⁶ Ibid., p. 679 ¹⁷ Ibid., p. 699.

O dióxido de carbono pode ser aplicado de várias maneiras, seja através da injeção contínua do início ao fim do projeto ou por bancos que podem ser deslocados por água, hidrocarbonetos, injeção alternada de água e CO₂ ou água alternada com gás de hidrocarboneto.

Em reservatórios de baixa permeabilidade a injeção alternada do CO₂ e água pode ter a vazão reduzida em virtude da interação líquido-líquido e líquido-rocha, o que irá depender da porosidade e da permeabilidade do reservatório. A configuração que representa as melhores condições de aplicação é de um banco de CO₂ seguido por injeção alternada de água (WAG-CO₂).¹⁸

O processo ocorre com injeção inicial de 5% do volume poroso de CO_2 , após isso, se insere água e CO_2 até atingir de 15 a 20% de volume injetado acumulado de dióxido de carbono, a partir de então, utiliza-se somente água.¹⁹

A água avança no meio poroso aprisionando CO₂ como saturação residual, que agora ocupa os poros que eram preenchidos pelo óleo residual, ver figura 3.

Figura 3 - Injeção miscível de CO₂²⁰

As condições de reservatório necessárias para aplicação desse método são grau *API* acima de 25, intervalo de pressão entre 1500 e 6000 psia e profundidade suficiente para poder operar a uma pressão acima da necessária,

¹⁸ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, **Engenharia de Reservatórios de Petróleo**, Rio de Janeiro, Interciência, 2007, p 679.

¹⁹ Ibid., p. 679.

²⁰ Fonte: <https://www.planetseed.com/pt-br/node/15884>, acesso em 27/04/2011.

de modo que o deslocamento seja miscível, mas, sem fraturamento da formação.21

2.2. Método WAG

A razão de mobilidade entre o gás injetado e o óleo deslocado pelo banco de CO₂, e outros processos de deslocamento por gases miscíveis são tipicamente muito desfavoráveis, devido à baixa viscosidade relativa da fase injetada que, resultam em canalizações viscosas e redução da eficiência de varrido volumétrica. No oeste do Texas, a fim de mitigar esse efeito no processo de injeção foi especificada uma razão de viscosidade, μ_0/μ_{CO2} , entre 8 e 50.²²

Uma técnica desenvolvida para superar esse problema é injetar volumes específicos, ou golfadas, de água alternada com gás. A mobilidade da combinação das duas fases é menor do que na alternativa de se utilizar somente o gás. Esse processo é chamado de water-alternating-gas (WAG).²³

Na injeção WAG, a razão de injeção água/gás varia de 0,5 a 4,0 volumes de água por volume de gás em condições de reservatório. O tamanho da golfada de CO₂ varia entre 0,1% e 2,0% do volume poroso. O total ou acumulado do tamanho das golfadas de dióxido de carbono, em relatos típicos de projetos de campo, foram de 15% a 30% volume poroso contendo hidrocarboneto (HCPV), embora, golfadas grandes e pequenas tenham sido usadas.²⁴

Um problema no processo WAG é o contato entre as zonas de injeção de água e gás e o óleo residual, que reduz a eficiência de deslocamento na escala do poro, resultando em maior saturação de óleo residual. Este efeito ocorre em função da molhabilidade da rocha sendo mais prejudicial na rocha molhada por água.25

Isso ocorre porque a água, que é o fluido molhante, é atraída pela rocha formando um filme em sua superfície, ocupando os menores poros acarretando

²¹ ROSA; CARVALHO; XAVIER, op. cit., p.699.

²² GREEN D. W.; WILLHITE G. P.: Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 168. ²³ Ibid., p. 168.

²⁴ Ibid., p. 168

²⁵ STALKUP Jr., F. I.: "Displacement of Oil by Solvent at High Water Saturation", SPEJ, Dec 1970

em uma maior dificuldade de escoamento pela rocha, aprisionando assim o óleo.²⁶

2.2.1. Efeito da Água Móvel

Pesquisadores demonstraram que a presença da fase de água móvel pode afetar de forma negativa o deslocamento do óleo pelo solvente. Como exemplo, Tiffin e Yellig²⁷ conduziram experimentos de deslocamento linear em testemunhos do Berea (Ohio USA), onde estes foram fortemente inundados por água. Em vários casos, tiveram que ser tratados quimicamente para torná-los molháveis ao óleo.

O procedimento experimental consistiu basicamente em criar primeiro a água imóvel, ou saturação de água conata pela injeção de um óleo no testemunho, que foi 100% saturado com água para reduzir a saturação de água em torno de 31%.

A saturação no testemunho foi reduzida para próximo da saturação de óleo residual por injeção de água. Em seguida, água e CO₂ foram injetados simultameamente a uma razão água/gás específica. As condições eram tais que a fase de CO₂ desenvolveria miscibilidade com a fase de óleo.

A recuperação do óleo foi determinada pelo balanço de materiais. O processo utilizado foi o método de recuperação avançada em que o deslocamento foi conduzido depois pela injeção de água.

As figuras 4 e 5 mostram os resultados dos testemunhos molhados por água e óleo. No testemunho molhado por água, a injeção simultânea de água com CO₂ resultou em uma diminuição significativa da recuperação; a água causou o aprisionamento do óleo e esse óleo preso não foi solubilizado.

²⁷ TIFFIN D. L., YELLIG W. F.: Effects of Mobile Water a Multiple-Contact Miscible Gas Displacements, SPEJ, June 1983.

Figura 4 - Efeito da água móvel na recuperação do óleo para o deslocamento CO2 no reservatório de petróleo bruto (múltiplo contato no processo miscível), deslocamento terciário, testemunho molhado por água²⁸

Na figura 5 pode-se observar que esse efeito foi bem menos acentuado na inundação de óleo nos testemunhos do Berea.

Figura 5 - Efeito da água móvel na recuperação do óleo para o deslocamento CO₂ no reservatório de petróleo bruto (múltiplo contato no processo miscível), deslocamento terciário, testemunho molhado por óleo²⁹

A recuperação do óleo é adversamente afetada pela presença de água móvel nos testemunhos molháveis a água, mas esse efeito é insignificante em

²⁸ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p.168. ²⁹ Ibid., p.168

amostras que apresentavam molhabilidade mista ou preferencialmente ao óleo. Nestes últimos casos, a função do contato prolongado e a difusão do solvente no óleo aprisionado são importantes.³⁰

A correlação do fenômeno de aprisionamento é dado por:

$$S_{or,wb} = \frac{S_{or}}{1 + \alpha k_{ro}/k_{rw}}$$
(5)

Onde:

Sor = Saturação de óleo residual após a injeção de água;

 $S_{or,wb}$ = Saturação de óleo residual após o deslocamento miscível na presença de água móvel;

 α = constante impírica;

 k_{or} = permeabilidade relativa do óleo;

 k_{wr} = permeabilidade relativa da água.

Um valor de α = 1,0 representa um forte aprisionamento de óleo, enquanto que valores na ordem de 100 representam fracos aprisionamentos. Essa correlação foi primeiro apresentada por Raimondi e Torcaso³¹ e mais tarde modificada por Chase e Todd.³²

A figura 6 mostra um exemplo de $S_{or,wb}$ em função do S_w para diferentes valores de α . As curvas também ilustram o efeito da saturação de água, manifestada pela correlação k_{ro}/k_{rw} .

 ³⁰ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p.168.
 ³¹ RAIMONDI P., TORCASO M. A.: Distribution of the Oil Phase Obtained Upon Imbibition of

 ³¹ RAIMONDI P., TORCASO M. A.: Distribution of the Oil Phase Obtained Upon Imbibition of Water, SPEJ, March 1964.
 ³² CHASE JR. C. A., TODD M. R.: Numerical Simulation of CO₂ Food Performance, SPEJ, Dec.

³² CHASE JR. C. A., TODD M. R.: Numerical Simulation of CO₂ Food Performance, SPEJ, Dec. 1984.

Figura 6 - Função water-blocking utilizada em estudos de simulação³³

Os efeitos positivos de melhora da razão de mobilidade do gás injetado através do processo WAG podem ser compensados de forma negativa pelo aprisionamento do óleo, que na presença de água móvel atrapalha o processo WAG, pois a permeabilidade relativa do óleo reduz drasticamente na presença da água.34

2.2.3 **Deslocamento Linear**

No deslocamento linear, o escoamento é considerado como se água e solvente fossem injetados simultaneamente. Essa suposição simplifica os cálculos porque a injeção, na prática de campo, ocorre com injeção alternada de discretas golfadas. Quando isso ocorre, o canal solvente entra na golfada de água por causa da razão de mobilidade desfavorável. Assim, a dissipação de uma pequena golfada é relativamente rápida, aproximando de uma condição de injeção simultânea.35

Stalkup³⁶ desenvolveu um método para descrever condição de fluxo à mesma velocidade das fases solvente e água. Segundo ele, a escolha dessas condições foi para aproveitar o aumento da mobilidade resultante da injeção WAG.

³³ GREEN D. W.; WILLHITE G. P. **Enhanced Oil Recovery**, SPE Textbook Series, Texas, 1998, p. 169. ³⁴ Ibid., p. 169.

³⁵ Ibid., p. 169.

³⁶ STALKUP Jr., F. I. **Miscible Displacement**, Monograph Series, SPE, Richardson, TX (1983), p. 8.

Se pouca água for injetada, de modo que a velocidade de solvente seja maior, uma zona de solvente se formará a frente da água. Isso resultará em uma razão de mobilidade desfavorável na interface solvente/óleo, como conseguencia canalizações de solvente entrarão na zona de óleo, o que reduziria a eficiência do processo.

No caso de se injetar muita água, esta irá se mover mais rápido que o solvente, resultando no aumento da saturação de água na interface solvente/óleo. O aprisionamento do óleo é susceptível de ser aumentado pela maior saturação de água. A intensidade do aprisionamento do óleo depende da molhabilidade da rocha.

Essas observações são válidas somente quando é injetado água e gás concomitantemente, mas deve-se verificar se existe a possibilidade de formação de hidratos.

Existem equações que permitem o cálculo da razão de injeção água/solvente necessária para as mesmas velocidades. O modelo é para escoamento em uma direção e é baseado na teoria do escoamento fracionado. Equações e soluções gráficas são apresentadas para descrever a injeção WAG para condições de recuperação terciária.

2.2.4. Saturação Residual do Óleo para Injeção de Água (Sorw)

A figura 7 mostra o deslocamento no caso em que houve a de injeção de água na 1° fase ficando óleo residual, posteriormente, foi injetado água e solvente, que retira parte do óleo que estava retido e produz o excedente. O problema é determinar o escoamento fracionário de água que terá velocidades iguais de solvente e água.

Figura 7 - Deslocamento WAG³⁷

Onde:

S_s é a saturação de solvente

S_w é a saturação de água;

S_{rw} é a saturação residual de água;

 S_{wob} é a saturação de água no banco de óleo à frente do banco de solvente/água;

Sorw é a saturação residual de óleo na injeção de água;

V_s e V_w são as velocidades do solvente, da água e do óleo, respectivamente;

V_{ob} é a velocidade do banco de óleo;

Oil bank = banco de óleo;

Solvent = solvente;

Water = água.

São feitos balanços volumétricos em um elemento situado na interface, como já mostrado. Como antes, presume-se que nenhum óleo é contornado (*"bypassed*") e que não há a solubilidade de uma fase para outra. Stalkup fez

³⁷ GREEN D. W.; WILLHITE G. P. **Enhanced Oil Recovery**, SPE Textbook Series, Texas, 1998, p. 169.

31

equações correspondentes sem esse pressuposto³⁸. O balanço volumétrico do solvente é dado por:

$$A\Phi S_s \Delta x = q_t f_s \Delta t \qquad (6)$$

Onde:

A= área transversal (ft²);

 S_s = saturação da fase solvente (L³/L³); L=unidade de comprimento;

 Δx = variação da distância (ft);

q= vazão volumétrica total (ft/dia);

 f_s = fluxo fracionário da fase solvente (L³/L³);

 Δt = variação do tempo (dias).

Reorganizando e fazendo $\Delta x \rightarrow 0$ e, $\Delta t \rightarrow 0$ temos:

$$\frac{dx_s}{dt} = v_s = \frac{q_t f_s}{A \phi S_s} \quad (7)$$

Onde:

 v_s = velocidade intersticial (ft/dia).

No caso da recuperação avançada, existe escoamento de água à frente do banco de solvente/água e assim o balanço de água é:

$$A\Phi S_{w}\Delta x|_{t+\Delta t} - A\Phi S_{wob}\Delta x|_{t} = q_{t}f_{w}\Delta t|_{in} - q_{t}f_{wob}\Delta t|_{out}$$
(8)

Onde:

 S_{wob} = saturação de água no banco de óleo na razão solvente/água e na interface do banco de óleo;

 f_{wob} = escoamento francionário da água na interface do banco de óleo;

in= entrada;

³⁸ STALKUP Jr., F. I. Miscible Displacement, Monograph Series, SPE, Richardson, TX (1983), p.
8.

Dividindo por Δt e por Δx , fazendo $\Delta t \rightarrow 0$ e $\Delta x \rightarrow 0$ temos:

$$\frac{dx_w}{dt} = v_s = \frac{q_t \left(f_w - f_{wob}\right)}{A \Phi(S_w - S_{wob})} \quad (9)$$

Definindo $v_s = v_w$,

$$\frac{f_s}{S_s} = \frac{1 - f_w}{1 - S_w} = \frac{f_w - f_{wob}}{S_w - S_{wob}}$$
(10)

Também deve ser verdade que:

$$\boldsymbol{v}_{\boldsymbol{w}} = \boldsymbol{v}_{\boldsymbol{s}} = \boldsymbol{v}_{\boldsymbol{o}\boldsymbol{b}} \qquad (11)$$

Onde:

 v_{ob} = é a velocidade da borda direita do banco de óleo

A saturação da água no banco de óleo, S_{wob} e o escoamento fracionário de água, f_{wob} deve satisfazer a equação de escoamento fracionário, que é:

$$v_{ob} = \left(\frac{dx}{dt}\right)_{S_{wob}} = \frac{q_t}{A\phi} \left(\frac{\partial f_w}{\partial S_w}\right)_{S_{wob}}$$
(12)

As equações 10 e 12 combinadas com a razão solvente/óleo e óleo/água nas curvas de fluxo fracionário, tornam possível uma solução gráfica para f_w e S_w , como mostrado na figura 8. Da equação 10, linha traçada a partir do ponto (1,1) através (f_w , S_w) na curva de fluxo fracionário da razão solvente/água deve passar por (f_{wob} , S_{wob}) na curva de fluxo fracionário da razão óleo/água.³⁹

$$\frac{1 - f_w}{1 - S_w} = \frac{f_w - f_{wob}}{S_w - S_{wob}} = \frac{1 - f_{wob}}{1 - S_{wob}} \quad (13)$$

A equação 12 exige que esta linha também seja tangente à curva de fluxo fracionário da razão óleo/água no ponto (f_{wob} , S_{wob}), como mostra a figura 8. A taxa de injeção fracionária de água para atingir velocidades iguais de solvente e água é dado no ponto (f_w , S_w) da curva de fluxo fracionário da razão solvente/água.

³⁹ GREEN D. W.; WILLHITE G. P. **Enhanced Oil Recovery**, SPE Textbook Series, Texas, 1998, p. 170.

Figura 8 - Processo WAG, cálculo do escoamento fracionário de água⁴⁰

2.2.5. Eficiência de Varrido Volumétrico

A redução da razão de mobilidade no processo de deslocamento resulta em uma melhoria na eficiência de deslocamento e pode melhorar a eficiência de varrido volumétrica. Na aplicação, o processo normalmente é modelado matematicamente no computador.41

Como exemplo, o campo de Dollarhide, no oeste do Texas, é dividido em três blocos falhados, no qual existem duas zonas de produção separadas por uma barreira de calcário, sendo a maior com aproximadamente 75% do volume de óleo in place (VOIP), estimado em 138 MMbbl.42

O campo foi desenvolvido em 161.874,25 m² (40 hectares) de área. Inicialmente, a recuperação foi feita pelo processo primário e depois por injeção de água, que foi bastante eficiente, conforme mostrado na figura 9. A última recuperação usada foi por combinação dos processos primário e secundário obtendo cerca de 43,1% do VOIP.43

As condições do reservatório do óleo eram: grau API igual a 40 e viscosidade de 12,2 cP. A pressão inicial de 3300 psia e temperatura de 48,9 °C (120 °F). A pressão de bolha em torno de 2830 psia e a pressão de miscibilidade

⁴³ Ibid., p. 172.

⁴⁰ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 170. ⁴¹ Ibid., p. 170.

⁴² Ibid., p. 170.

Figura 9 - Comparação das taxas de produção de petróleo previsto para vários processos de injeção de CO₂ nos campos de Dollarhide

Onde:

Oil production rate = taxa de produção de óleo;

Year = anos;

Hybrid = híbrido;

Infill case = caso de preenchimento;

Single slug = única golfada;

End of run 90% water cut = 90% de corte de água no final da corrida da simulação.

Deslocamento miscível de CO₂ começou em 1985, no bloco ao sul da falha do campo. Testes com simulação computacional foram realizados para injeção de única golfada de CO2, injeção WAG e para um terceiro método chamado de processo híbrido.46

⁴⁴ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 170. ⁴⁵ Ibid., p. 172.

Uma simulação desse tipo descrito por Todd e Longstaff⁴⁷ foi realizada. Na simulação de injeção WAG, o bloqueio de água foi modelado com a equação 14 para α = 5 baseado nos experimentos com testemunho. Outro parâmetro usado nesse modelo foi baseado em medições laboratoriais e ajustes de históricos de recuperação primária e secundária.⁴⁸

$$S_{or,wb} = \frac{S_{or}}{1 + \alpha k_{ro}/k_{rw}} \qquad (14)$$

Foram estudadas corridas de injeção de única golfada de CO_2 com tamanhos variando entre 8,8% e 50% do volume poroso contendo hidrocarboneto (HCPV). Foi determinado um valor ótimo de 30% pois, para volumes maiores, o aumento da recuperação do óleo caiu abaixo de 0,1 bbl por 1 Mcf de CO_2 injetado. Esse tamanho de golfada de CO_2 foi usado para simulação WAG.

Os resultados dessas corridas são vistos na tabela 1, onde mostra a recuperação prevista para injeção contínua de água no reservatório original e para injeção contínua de água *infill drilling*, expresso como porcentagem de VOIP.

Sumário dos resultados de predição de simulação para Dollarhide Field Study.										
	Injeção de Água Acumulada	Injeção Contínua de Água	Injeção de Água Infill drilling	8,8% HCPV CO2 Slug	20% HCPV CO2 Slug	30% HCPV CO2 Slug	40% HCPV CO2 Slug	50% HCPV CO2 Slug	30% HCPV CO2 1:1 WAG	30% HCPV CO2 Híbrido
Recuperação acumulada de óleo % OOIP	42,5	48,9	50,8	57,5	61,5	64,1	66,2	67,9	66,0	64,8
Incremento de recuperação de óleo por inundação por injeção % OOIP	NA	NA	0,0	6,7	10,7	13,3	15,4	17,1	15,2	14,0
Eficiência de solvente bbl/Mcf	NA	NA	NA	0,187	0,132	0,109	0,095	0,084	0,125	0,110
*OOIP = 16 X 10/6 bbl. Recuperações de óleo calculadas a um limite econômico de 90% de teor de água, ou 97% de teor de água no campo.										
NA = Não aplicável										

Tabela 1 – Resumo da Previsão dos Resultados do Estudo do Campo de Dollarhide⁴⁹

O espaço inundado na linha de perfuração é convertido de 0,32 km² (80 acre) para 0,16 km² (40 acre), que é o espaço usado para todo o cálculo de CO₂ injetado. Em todo ciclo computado foi determinado uma economia limite

⁴⁷ TODD, M. R. e LONGSTAFF, W. J.: The Development, Testing, and Aplication of a Numerical Simulation for Predicting Miscible Flood Performance", JPT, July 1972.

⁴⁸ GREEN D. W.; WILLHITE G. P. **Enhanced Oil Recovery**, SPE Textbook Series, Texas, 1998, p. 172

⁴⁹ Ibid., p. 172

correspondendo a uma produção de ROW (razão entre óleo e água) de 97% fração de água.50

Nas corridas WAG, foi determinado uma relação entre água e gás de 0,5 a 2,0 (razão entre água e CO₂ em condições de reservatório) com o tamanho total da golfada de CO₂ constante. Uma relação de 1:1 foi selecionada para as simulações.

O processo WAG rendeu um incremento na recuperação final de 1,9% VOIP acima do processo de única golgada. No entanto, a resposta de produção do óleo para o CO₂ injetado foi adiada no processo WAG em comparação com o processo de uma única golfada. O resultado obtido na injeção WAG ocorreu em função da produção ter sido prorrogada por cerca de 4 anos, antes de o limitado econômico ser alcançado.51

Embora, a recuperação do óleo estivesse prevista para ser maior no processo WAG, a economia pode não ser tão favorável, devido à produção tardia. O comportamento na injeção WAG, comparada com a injeção de única golfada, resulta de uma combinação do aumento do varrido no processo WAG, no aumento do tempo necessário para injetar o volume de CO₂ e aprisionamento de óleo.52

O aprisionamento do óleo na rocha molhada por água é um fator negativo significante, mas um atraso na resposta de produção correspondente pode afetar negativamente a economia do processo, que é um fator significativo para a indústria.53

Guiado pelos resultados de única golfada e de simulação WAG, uma terceira abordagem, a injeção híbrida de CO₂, foi examinada. Esta abordagem utilizou um pré-WAG com injeção de CO₂ de 8,8% de volume poroso contendo hidrocarboneto HCPV. Isso foi seguido pela injeção WAG com uma relação de 1:1 até um total de 30% de HCPV para injeção de CO2, um total de injeção WAG de 42,4% HCPV. O regime de injeção híbrida rendeu uma recuperação de 1,2%

 ⁵⁰ Ibid., p. 172
 ⁵¹ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 172 ⁵² Ibid., p. 172. ⁵³ Ibid., p. 172.
VOIP menor que a injeção WAG, mas 0,7% VOIP mais que o processo de única golfada.54

2.2.5. Experiências de Campo

A tabela 2 resume a recuperação do óleo em vários projetos de campo. A litologia da rocha no campo e a recuperação, expressas em porcentagem de VOIP, são mostradas para vários experimentos de única golfada e projetos de deslocamento miscível de WAG com CO₂

Incremento de recuperação de óleo por campo - Projetos de CO2				
Projetos de CO2 - Singles-Slug	% VOIP		Projetos de CO2 - WAG	% VOIP
Litle Creek - arenito	18		SACROC (Phase III) - calcário	7,6
Twofreds - arenito	10		SACROC (Total) - calcário	7,0
Garber - arenito	14		SACROC (pitolt) - calcário	6,0
Mead-Strawn - arenito	15		Slaughter Estate - dolomita	21,0
Shannon, West Sussex - arenito	13		South Welch - dolomita	5,2
Maljamar - arenito dolomítico	18		Shannon - arenito (North Meadown Creek)	2,0
			Levelland - dolomita	8,9
Média	15		Média	8,2

Tabela 2 - Incremento da Recuperação de Óleo nos Campos com Injeção de CO255

A molhabilidade da rocha nestes experimentos é desconhecida, sabe-se que em geral calcário é molhável ao óleo. O tamanho da golfada de CO₂ variou nos diferentes projetos, mas foram maiores que 15% do VOIP em todos os casos. A recuperação média em projeto de única golfada foi 15% do VOIP, enquanto ele era apenas de 8,2 do VOIP no projeto WAG.56

O motivo desta aparente discrepância a favor do projeto de única golfada de CO₂ esta no fato de a injeção ser em reservatório inclinado. Como exemplo, existem relatos de sucesso, tais como o Quarantine Bay num projeto piloto em reservatório raso e de pequena inclinação na costa do golfo nos Estados Unidos, onde mais projetos miscíveis têm sido relativamente fortes em reservatório inclinados, e processos de única golfada têm sido utilizados para desenvolver inundação de gravidade estável.57

 ⁵⁴ Ibid., p. 172.
 ⁵⁵ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 173 ⁵⁶.Ibid., p. 173. ⁵⁷ Ibid., p. 173.

Já o projeto de Slaughter Estate foi conduzido um pouco diferente, em que uma golfada maior de solvente CO₂/H₂S foi injetado e isso foi seguido por um tamanho igual de golfada de N₂. Ambos, solventes e gás foram injetados na corrida WAG.58

Os resultados mostrados na tabela 2 levantam questões sobre a eficiência do processo WAG. Os dados são informados apenas para um pequeno número de projetos, no entanto, tais parâmetros como tamanho da golfada, litologia, e saturação de óleo residual por injeção de água varia significativamente entre os diferentes projetos. Assim, esses resultados não devem ser generalizados para toda aplicação WAG, mas servem como um alerta a ser considerado.59

A simulação computacional de Quarantine Bay prevê que o processo WAG teria um desempenho melhor que injeção contínua de CO₂. Um projeto ótimo, com base em simulação, foi um processo WAG com um total de volume de golfada de CO₂ de 19,5% de volume de poro contendo hidrocarboneto e uma relação WAG de 1:1.60

No projeto piloto real, um tamanho de golfada de CO₂ foi de 18,9% de HCPV usado e relação WAG foi elevada para 2:1 durante o processo com base em resultados de simulação posteriores.61

Áreas lado a lado foram estabelecidas para injeção miscível de CO₂. Injeção contínua de CO₂ foi utilizada em um processo e uma relação de WAG 1:1 no outro. Em ambas as áreas, um solvente final de tamanho de golfada de 40% de HCPV foi usado.⁶²

A resposta de produção antecipada de petróleo na área de injeção contínua de solvente foi muito mais favorável que na área de WAG. Com o progresso do processo, alguns poços produtores na área contínua tenderam a altas razões entre gás e óleo e tiveram de ser fechados.⁶³

Isso levou os operadores a considerar a combinação, ou processo híbrido, que consistiu na injeção contínua de golfada de CO₂, entre 4 a 6 anos,

⁵⁸ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 173 ⁵⁹ Ibid., p. 173. ⁶⁰ Ibid., p. 173. ⁶¹ Ibid., p. 173.

⁶² Ibid., p. 173.

⁶³ Ibid., p. 173.

seguido por um processo convencional de WAG 1:1. Eles chamaram isso de Denver Unit WAG (DUWAG).64

A figura 10 compara resultados de simulação computacional de injeção contínua, injeção comnvencional 1:1, e injeção DUWAG 1:1 e mostra vantagem da abordagem combinada DUWAG. Este processo foi aplicado no Denver Unit, embora parâmetros específicos como tamanho de golfada e o momento em que a conversão é realizada a partir de injeção contínua WAG podem variar de local para local dentro da unidade.65

Figura 10 - Cálculo do acúmulo adicional na recuperação avançada pelo tempo⁶⁶

⁶⁴ GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998, p. 173. ⁶⁵ Ibid., p. 173. ⁶⁶ Ibid., p. 173.

3. Dióxido de Carbono (CO₂)

Em 1988 o Painel Intergovernamental sobre Mudança do Clima (Intergovernmental Panel on Climate Change - IPCC) foi criado pelo Programa das Nações Unidas para o Meio Ambiente e pela Organização Meteorológica Mundial para estudar os fenômenos relacionados às mudanças climáticas. O Painel reúne 2.500 renomados cientistas de mais de 130 países.67

No quinto relatório (AR5) do IPCC em 2013 os cientistas alertaram que caso as emissões de gases do efeito estufa continuem crescendo às atuais taxas ao longo dos próximos anos, a temperatura do planeta poderá aumentar até 4,8 graus Celsius neste século, o que poderá resultar em uma elevação de até 82 centímetros no nível do mar e causar danos importantes na maior parte das regiões costeiras do globo.68

O cenário mais otimista prevê que o aumento da temperatura terrestre poderia variar entre 0,3 °C e 1,7 °C de 2010 até 2100 e o nível do mar poderia subir entre 26 e 55 centímetros ao longo deste século. Para que esse cenário acontecesse, seria preciso estabilizar as concentrações de gases do efeito estufa nos próximos 10 anos e atuar para sua remoção da atmosfera.

Já o pior cenário, no qual as emissões continuam a crescer em ritmo acelerado, a superfície da Terra poderia aquecer entre 2,6 °C e 4,8 °C ao longo deste século, fazendo com que o nível dos oceanos aumente entre 45 e 82 centímetros.69

O nível dos oceanos já subiu em média 20 centímetros entre 1900 e 2012. Se subir outros 60 centímetros, com as marés, o resultado será uma forte erosão nas áreas costeiras de todo o mundo. Rios como o Amazonas, por exemplo, sofrerá forte refluxo de água salgada, o que afeta todo o ecossistema local.70

Segundo o relatório AR5 do IPCC, em todos os cenários é possível (90% de probabilidade) que a taxa de elevação dos oceanos durante o século XXI exceda a observada entre 1971 e 2010. A expansão térmica resultante do

⁶⁷Fonte:<http://www.brasil.gov.br/cop/panorama/o-que-esta-em-jogo/painel-intergovernamentalsobre-mudanca-do-clima-ipcc>, acesso em 27/04/2011. ⁶⁸ Fonte:< http://agencia.fapesp.br/17944>, acesso em 14/01/2014

⁶⁹ Ibid.

⁷⁰ Ibid.

aumento da temperatura e o derretimento das geleiras seriam as principais causas.⁷¹

O aquecimento das águas marinhas tem ainda outras consequências relevantes, que não eram propriamente consideradas nos modelos climático anteriores. Conforme o oceano esquenta, ele perde a capacidade de absorver CO₂ da atmosfera. Se a emissão atual for mantida, portanto, poderá haver uma aceleração nas concentrações desse gás na atmosfera.⁷²

O aquecimento dos oceanos, diz o relatório, continuará ocorrendo durante séculos, mesmo se as emissões de gases-estufa diminuírem ou permanecerem constantes. A região do Ártico é a que vai aquecer mais fortemente, de acordo com o IPCC.⁷³

As concentrações atmosféricas de dióxido de carbono, metano e óxido nitroso aumentaram para níveis sem precedentes, pelo menos nos últimos 800 mil anos. Sendo que, a de CO₂ aumentou em 40% desde os tempos préindustriais, principalmente, em função das emissões de combustíveis fósseis. O oceano tem absorvido cerca de 30% do dióxido de carbono antropogênico emitido, causando acidificação dos oceanos.

Segundo o relatório IPCC de 2007, o CO_2 representa mais de 97% das emissões totais de gases do efeito estufa (GEE) de fontes móveis, ver figura 11.

Figura 11 - CO₂ Atmosférico⁷⁴

⁷¹ Fonte:< http://agencia.fapesp.br/17944>, acesso em 14/01/2014

⁷² Ibid.

⁷³ Ibid.

⁷⁴ Fonte:< http://www.ipcc.ch/report/ar5/wg1/>, acesso em 25/05/2014

Os combustíveis fósseis queimados em usinas de energia elétrica são a maior fonte isolada do CO₂ proveniente de atividades humanas, seguidos do transporte e da indústria.

Figura 12 - Produção de CO₂ - bilhões de toneladas, em %⁷⁵

Nas últimas décadas, o país que mais emitiu CO₂ foram os Estados Unidos, mas foram ultrapassados recentemente pela China, como mostrado na figura 12 acima. Esses dois "gigantes emissores" são responsáveis por 37% do total mundial, e se a eles somarmos as emissões da União Europeia, Rússia, Índia, Japão, Brasil e Canadá terão quase 70% do CO₂ que é lançado na atmosfera.⁷⁶

O International Energy Outlook 2004, publicado pela Administração de Informações sobre Energia dos EUA (EIA), prevê que o uso mundial de energia aumentará em cerca de 50% de 2001 a 2025. O uso de energia renovável (incluindo eólica, solar, de ondas e de marés) aumentará de forma consistente, mas prevê-se que a queima de carvão, gás natural e petróleo irão crescer ainda mais rápidos⁷⁷.

Por essa razão, é fundamental que as nações cheguem a um acordo para reduzir suas emissões de gases de efeito estufa para a atmosfera de modo a obter uma economia de baixo carbono. Sendo assim, o Brasil instituiu em 2009

⁷⁷ Ibid.

 ⁷⁵ Fonte: < http://www.clubemundo.com.br/pages/Integra.aspx?materia=1184>, acesso em 25/05/2014.
 ⁷⁶ Ibid.

o Painel Brasileiro sobre Mudanças do Clima que durante os quatro últimos anos, envolveu 360 pesquisadores das universidades e centros de pesquisa brasileiros, para produzir o primeiro "Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas (RAN 1 / PBMC)".⁷⁸

A preocupação com o aquecimento global tem motivado investimentos em novas fontes de energia e o desenvolvimento de tecnologias voltadas para a redução das emissões atmosféricas de dióxido de carbono.

O CCS (*Carbon Capture and Storage*) representa uma alternativa possível para mitigação dos efeitos negativos das emissões antropogênicas e envolve três etapas: a captura do CO₂, que seria liberado na atmosfera, ainda na planta industrial; seu transporte, por meio de dutos, navio ou caminhão, até um reservatório geológico adequado para ser armazenado, como em campos de petróleo, camadas de carvão ou aquíferos salinos.⁷⁹

A captura do dióxido de carbono pode ser feita diretamente nas grandes fontes poluidoras, tais como as refinarias de petróleo e termoelétricas. Para capturar esse CO₂ existem algumas estratégias, que podem ser: separar o CO₂ após a combustão ou queimar combustíveis fósseis no oxigênio em vez de no ar, resultando em CO₂ concentrado.⁸⁰

Após a captura, o dióxido de carbono, é comprimido e, quando está praticamente liquefeito, é introduzido em dutos que o levarão até o local escolhido para armazenagem. Com isso estima-se que entre 20% e 40% das emissões globais de CO₂ poderão ser capturadas e armazenadas até 2050, segundo dados do Painel Internacional sobre Mudanças Climáticas.⁸¹

Ketzer afirmou que as tecnologias de CCS são maduras, usadas comercialmente nos EUA desde os anos 1960. Para ele, os grandes desafios são adaptar as tecnologias já existentes às condições de produção e reduzir os

⁷⁸ Fonte:< http://www.pbmc.coppe.ufrj.br/pt/noticias >, acesso em 21/02/2015.

⁷⁹ OLIVEIRA W. S; MACHADO C. X; ROCKETT G. C.; KETZER J. M. **Mapa Brasileiro de Captura**, Transporte **e Armazenamento de Carbono Renovável**, 1º Congresso de CO₂ na Indústria de Petróleo, Gás e Biocombustíveis, Rio de Janeiro, 2011.

⁸⁰ Fonte: <http://www.inovacao.unicamp.br/index.php>, acesso em 27/04/2011.

⁸¹ ALMEIDA A. S., da Diretoria de Exploração e Produção do Pré-Sal da Petrobras, no debate "Pré-Sal e Mudanças Climáticas: Avaliação das Tecnologias de Captura e Armazenamento de Carbono", organizado pelo Grupo de Pesquisa de Ciências Ambientais do Instituto de Estudos Avançados da USP (IEA), no dia 26 de novembro de 2009, em São Paulo.

custos. Calcula-se que hoje a captura e o armazenamento de gás carbônico custem de US\$ 60 a US\$ 80 a tonelada.⁸²

Existem 499 projetos de CCS para captura e armazenagem de carbono no mundo. Os dados da Empresa Australiana Worley Parsons, mostram que 224 deles são projetos apenas de pesquisa e desenvolvimento, ou seja, de escala pequena; dos 275 restantes, 34 foram concluídos, 28 foram cancelados ou estão atrasados, e 213 estão ativos.

Dos projetos ativos, apenas 101 podem operar em escala comercial, ou seja, capturam e armazenam mais de 1 Mt de carbono por ano⁸³. Desses, somente 62 são considerados integrados, ou seja, realizam todas as etapas: captura transporte, armazenamento e monitoramento do gás carbônico, onde somente 7 estão, de fato, em operação, o que é explicado, principalmente, pelos custos elevados das tecnologias CCS.⁸⁴

Para Almeida, um dos maiores gargalos no uso das tecnologias CCS está na instalação de uma planta de captura e separação de gás carbônico na plataforma, o que requer mais espaço e amplia o peso a ser suportado por ela, obrigando a empresa a fazer plataformas maiores no mar. Com isso, aumentam os custos de exploração.⁸⁵

Outro desafio está no método de extração do dióxido de carbono. Para isso, podem ser usadas solventes como aminas e membranas. O problema tecnológico está nos grandes volumes de amina necessários para uso no processo, mas o desenvolvimento das membranas vem crescendo e já são aplicadas em campos offshore, como por exemplo, o Projeto Piloto de Lula.

Estudos para capturar dióxido de carbono em plataforma de petróleo demonstram que a tecnologia de remoção por membranas, é a que apresenta a melhor viabilidade técnica e econômica. Dentre as principais vantagens desse sistema, quando comparado com uma unidade de aminas nas mesmas condições, estão: a capacidade de lidar com altos teores de contaminante,

⁸² ALMEIDA A. S., da Diretoria de Exploração e Produção do Pré-Sal da Petrobras, no debate "Pré-Sal e Mudanças Climáticas: Avaliação das Tecnologias de Captura e Armazenamento de Carbono", organizado pelo Grupo de Pesquisa de Ciências Ambientais do Instituto de Estudos Avançados da USP (IEA), no dia 26 de novembro de 2009, em São Paulo. ⁸³ Ibid.

⁸⁴ Ibid.

⁸⁵ GOMES R. H. P.; LEITE M. M.; QUINTANILHA L. F. N.; BARROS I. M. A.; RIBEIRO R. C.; COSTA E. C. M. **Remoção de CO**₂ com **Tecnologia de Membranas: Aplicação em Unidades Offshore**, Petrobras/CENPES, 1º Congresso de CO₂ na Indústria de Petróleo, Gás e Bicombustíveis, Rio de Janeiro, 2011.

"footprint" reduzido, baixo peso, operação simples e facilidade de expansão do sistema.86

A captura de CO₂ também pode ser feita por materiais cerâmicos com capacidade de absorver quimicamente e armazenar o dióxido de carbono, em temperaturas que variam de 70 a 600°C, com uma eficiência de cerca de 40%, dependendo do tipo de composição e dos componentes presentes.⁸⁷

Outra dificuldade no processo de captura e separação do carbono está na criação de uma planta capaz de lidar com concentrações variáveis de carbono. Como opção existe a possibilidade de se reinjetar CO₂ no reservatório para aumentar a pressão e conseguir extrair mais petróleo, a tendência ao longo do tempo é que se tenha menos petróleo e mais carbono na rocha, aumentando cada vez mais a concentração de gás carbônico no reservatório.

Após a extração e sem que haja reinjeção, o dióxido de carbono é comprimido, ocupando menos de 1% do espaço que ocuparia em estado normal, para depois ser transportado por tubulações, chamadas de carbodutos, navios, ou caminhões, para ser armazenado. O CO₂ também pode ser transportado na forma sólida, como hidrato ou gelo seco.

O primeiro projeto mundial em larga escala de armazenamento geológico de CO₂ foi iniciado pela empresa norueguesa Statoil e seus parceiros no Campo de Sleipner, no Mar do Norte em 1996, onde 1 milhão de toneladas de carbono é capturado e armazenado por ano.88

Uma das tecnologias que propiciam o armazenamento do CO₂ ocorre nos campos depletados, reservatórios de petróleo já abandonados porque foram explorados no limite de economicidade. Trata-se de campos que produziram de 30 ou mais 40 anos, necessitando de investimentos para melhorar equipamentos e instalações, porém, é um gasto sem retorno financeiro.

Outra opcão é a injecão em aquíferos salinos, rochas porosas que contêm água extremamente salgada, que não podem ser usados pelo homem e

⁸⁶ GOMES R. H. P.; LEITE M. M.; QUINTANILHA L. F. N.; BARROS I. M. A.; RIBEIRO R. C.; COSTA E. C. M. Remoção de CO₂ com Tecnologia de Membranas: Aplicação em Unidades Offshore, Petrobras/CENPES, 1º Congresso de CO2 na Indústria de Petróleo, Gás e Bicombustíveis, Rio de Janeiro, 2011.

VOGA G. P.; LIMA G. M.; BELCHIOR J. C.; ANDRADE F. V., OLIVEIRA R. CO2 - Captura e Estocagem - uma Proposta Química, 1º Congresso de CO2 na Indústria de Petróleo, Gás e Bicombustíveis, Rio de Janeiro, 2011.

não têm contato com a superfície. O gás carbônico também pode ser armazenado no próprio reservatório para fazer recuperação avançada de petróleo (EOR) ou em camadas de carvão.

No caso do uso da EOR, o desafio tecnológico está no fato de a mistura do gás carbônico com o petróleo criar outro tipo de fluido com características parecidas às de um solvente. Também há risco de corrosão, o que vai requerer equipamentos com metalurgia especial, ampliando o custo.

Outra possibilidade de armazenamento é em cavernas de sal, como nos Estados Unidos e na Europa que utilizam essa técnica para armazenamento estratégico de óleo durante o verão para uso no inverno.

Os EUA armazenam 750 milhões de barris em cavernas, para o caso de haver guerra. São cavernas construídas, em que se fura um poço, injeta-se água para dissolver a salmoura, e abre-se um buraco na camada de sal.

Nesse caso, além do problema do custo, é preciso saber como o gás carbônico interage com a caverna e como fazer cavernas no pré-sal, embaixo do mar, nos EUA é feito em terra. Segundo Almeida⁸⁹, essa tecnologia ainda não é viável comercialmente para armazenagem de carbono.

3.1. Captura, Transporte e Armazenamento de Carbono no Brasil

Projetos de captura e armazenamento de carbono que venham a ser aplicados no pré-sal brasileiro demandarão sistemas de tratamento e injeção de CO₂ mais compactos e materiais para fabricação de dutos que suportem o contato com o dióxido de carbono em ambientes úmidos.

A Petrobras dará início em novembro de 2015 à injeção de gás CO₂ em alta pressão no campo terrestre de Miranga, município de Pojuca, na Bahia, que testará tecnologias que poderão contribuir para os futuros projetos de desenvolvimento do pré-sal na Bacia de Santos. O gás carbônico produzido nos futuros campos do pré-sal será reinjetado nos próprios reservatórios para aumentar o fator de recuperação.⁹⁰

⁸⁹ ALMEIDA A. S., da Diretoria de Exploração e Produção do Pré-Sal da Petrobras, no debate "Pré-Sal e Mudanças Climáticas: Avaliação das Tecnologias de Captura e Armazenamento de Carbono", organizado pelo Grupo de Pesquisa de Ciências Ambientais do Instituto de Estudos Avançados da USP (IEA), no dia 26 de novembro de 2009, em São Paulo. ⁹⁰ Eonte: http://depatecurate.teci.

⁹⁰ Fonte: http://planetasustentavel.abril.com.br/noticia/petrobras/projeto-injecao-co2-teste-pre-sal-510366.shtml, acesso em 03/06/2015.

Nos campos do pré-sal o teor de CO_2 varia entre 8% e 12% ante uma média de 3% em outras áreas do Brasil. No caso da região petrolífera de Lula, maior campo do pré-sal Brasileiro em produção, o teor médio de CO_2 é de 12%.⁹¹

3.2. CO₂ no Método de Recuperação Avançado

O processo de injeção dióxido de carbono está entre os métodos de EOR mais eficazes para recuperação especial de petróleo. Ele é preferível devido a sua alta eficiência de deslocamento, e ao seu potencial para benefícios ambientais concomitantes, através de sua estocagem no reservatório de petróleo. A primeira injeção de CO₂ ocorreu no Texas, no início dos anos 70.

Como exposto no Capítulo 2, o CO₂ apresenta forte atração e se dissolve no óleo do reservatório causando inchamento, vaporização e consequente deslocamento do mesmo, ou seja, uma frente miscível se forma.

A pressão necessária para atingir a miscibilidade com dióxido de carbono é geralmente muito menor do que a pressão necessária para miscibilidade com gás natural, gás de combustão ou nitrogênio. Esta é uma grande vantagem do processo com CO₂ miscível, porque a miscibilidade dinâmica pode ser alcançada em pressões atingíveis em um amplo espectro de reservatórios.

Na pressão mínima de miscibilidade (PMM) um gás injetado pode atingir miscibilidade dinâmica através de um processo de contatos múltiplos (MMC) com um dado óleo na temperatura do reservatório. A injeção de gás acima da PMM é um recurso largamente utilizado para melhorar a recuperação de óleos em muitos reservatórios.

O trabalho "Correlação Empírica para o Cálculo da Pressão Mínima de Miscibilidade para CO₂ com Dados de Campo" apresentado no 1º Congresso Brasileiro de CO₂ na Indústria do Petróleo, Gás e Bicombustíveis, mostrou uma nova correlação para a PMM de CO₂ puro.⁹²

⁹¹ Fonte: http://www.adrio.org.br/site/admin/uploads/projetos/1280413958.pdf, acesso em 04/06/2011.

⁹² ROCHA P. S. M. V., COSTA G. M. N, Correlação Empírica para o Cálculo da Pressão Mínima de Miscibilidade para CO₂ com Dados de Campo, 1º Congresso Brasileiro de CO₂ na Indústria do Petróleo, Gás e Bicombustíveis, Rio de Janeiro, 2011.

Nesse artigo é mostrado que a estimativa precisa da PMM pode trazer benefícios econômicos, porém a sua determinação experimental consome muito tempo. E por esta razão, é que correlações empíricas foram desenvolvidas.93

Estudos desenvolvidos no Centro de Estudos em Petróleo e Gás Natural (CEPGN) da Universidade Salvador (UNIFACS) demonstraram que todas as variáveis importantes que caracterizam o comportamento do óleo que são utilizadas nas correlações empíricas de PMM, estão incluídas no seu ponto de bolha (Relatório CEPGN, 2004). Sendo assim, é possível considerar como variáveis independentes somente a temperatura do óleo e a sua pressão de saturação.94

O trabalho utilizou um banco de dados de PMM compilado a partir de informações da literatura. Assim, apresentou uma relação funcional da PMM em função de dados de campo utilizando 41 óleos. A melhor relação funcional obtida foi àquela mostrada na Equação abaixo.95

$$log(PMM) = A_0 + A_1 \times T + A_2 \times T^{1,5} + A_3 \times P_b^{0,5}$$
(15)

Onde $A_0 = 1,7722015$, $A_1 = 0,0216056$, $A_2 = -0,0010182$, $A_3 = 0,0064857$, T é a temperatura (°F), P_b é o ponto de bolha (psia) e PMM é a pressão mínima de miscibilidade (psia).

Nos 41 óleos empregados no desenvolvimento da correlação, a faixa de PMM experimental foi de 1.100,0 a 4.410,0 psia. O reservatório no qual o processo é aplicado deve ser operado acima da pressão mínima de miscibilidade para desenvolver miscibilidade por contatos múltiplos⁹⁶, pois, se for abaixo, resultam em deslocamento imiscível e consequentemente recuperações mais baixas de óleos.97

Para verificar a qualidade da descrição da PMM pela nova correlação, vários testes foram realizados com óleos que não participaram do seu desenvolvimento. Foram avaliados 10 óleos da literatura e também 4 óleos da Petrobras.

- ⁹⁶ Ibid.
- 97 Ibid.

⁹³ ROCHA P. S. M. V., COSTA G. M. N, Correlação Empírica para o Cálculo da Pressão Mínima de Miscibilidade para CO₂ com Dados de Campo, 1º Congresso Brasileiro de CO₂ na Indústria do Petróleo, Gás e Bicombustíveis, Rio de Janeiro, 2011.

Ibid. ⁹⁵ Ibid.

Os resultados mostraram que em 3 dos óleos da literatura o erro foi inferior a 7%, em 4 deles foi entre 8 e 10% e nos outros 3 óleos foi entre 11 e 15%. Para os óleos da Petrobras, em dois deles o erro foi inferior a 4% e nos outros dois o erro ficou entre 7 e 8%, o que comprova que existe uma concordância muito boa entre valores calculados e os experimentais.⁹⁸

Diferente de outras correlações empíricas encontradas na literatura, esta nova correlação, apresentada no artigo, não está restrita a uma região geográfica específica, já que o seu desenvolvimento envolveu uma base de dados experimentais obtidos da literatura com espectro geográfico bastante amplo.

Esta nova correlação dispensa análises adicionais de laboratório, necessitando para a sua implementação, de dados experimentais de campo disponíveis em qualquer reservatório, que são temperatura e pressão de bolha.

Porém, esse estudo foi feito para CO₂ puro que nem sempre está disponível para uma injeção de gás. Fluxos de CO₂ impuro, no entanto, estão disponíveis a partir de uma variedade de fontes, incluindo reservatórios naturais e correntes de processo de resíduos vegetais.⁹⁹

Normalmente, o CO_2 impuro contém uma quantidade significativa de nitrogênio, H_2S e hidrocarbonetos. Outra fonte potencial de CO_2 impuro é o gás produzido a partir de poços em um campo onde CO_2 é injetado. A reutilização do gás produzido poderia reduzir o custo das injeções de CO_2 de alta pureza, porque a limpeza do fluido é cara.¹⁰⁰

3.3. CO₂ Supercrítico

Um fluido supercrítico é qualquer fluido que esteja a uma temperatura acima da sua temperatura crítica e da sua pressão crítica, na figura 13 é mostrado o diagrama de fases do CO₂, com destaque para o ponto crítico e ponto triplo. É importante ressaltar que uma substância pode ser levada ao estado supercrítico pelo uso de calor e pressão até superar o seu ponto crítico.

 ⁹⁸ ROCHA, P. S., ALVES, D. R., COSTA, G. M. N. Pure and Impure CO₂ Minimum Miscibility Pressure: Comparing Sixteen Correlations, CEPGN.
 ⁹⁹ Ibid.

¹⁰⁰ Ibid.

Figura 13 - Diagrama de fases do CO₂

O poder de solubilização de um solvente é medido de forma que quanto maior ele for, mais denso será. Acima e nas proximidades do ponto crítico, um pequeno aumento de pressão produz um grande aumento do poder de solubilização do solvente. É esta característica bastante peculiar do fluido supercrítico que se constitui no princípio fundamental do processo de extração supercrítica.

No estado supercrítico, as propriedades físico-químicas de um fluido assumem valores intermediários àqueles dos estados líquido e gasoso. Propriedades relacionadas à capacidade de solubilização, como a densidade, de um fluido supercrítico aproximam-se daquelas típicas de um líquido, enquanto que propriedades relacionadas ao transporte de matéria, como a difusividade e a viscosidade, alcançam valores típicos de um gás.

Sabe-se que os líquidos são excelentes solventes, mas de difusão lenta e alta viscosidade. Os gases, por sua vez, são péssimos solventes, mas se difundem com extrema facilidade e são pouco viscosos.

Os solventes supercríticos, combinando características desejáveis tanto de líquidos quanto de gases, são ótimos solventes com alta difusividade e baixa viscosidade. O dióxido de carbono é o fluído supercrítico mais usado devido a sua baixa temperatura crítica (31°C). No processo de CCS, após a separação e recuperação do gás de queima, o CO₂ é transportado para o local de injeção e armazenamento. Para facilidade de transporte, é comprimido sob condições supercríticas (fase densa com pressões acima de 1200 psi), porém quantidades substanciais de energia são necessárias para essa compressão.

Espera-se que o armazenamento em reservas de hidrocarbonetos ou formações salinas ocorra a profundidades abaixo de 800 m, onde as condições de pressão e temperatura resultarão no CO₂ supercrítico. Consequentemente, o dióxido de carbono vai ocupar menos espaço poroso na subsuperfície do que na superfície.¹⁰¹

Em condições supercríticas, a massa específica do CO₂ fica entre 50 e 80% da massa específica da água, o que é próximo da densidade de alguns petróleos, resultando numa forca de empuxo positiva, que tende a levar o gás carbônico para cima no reservatório, o que faz com que a selagem destas reservas seja de suma importância para garantir que o dióxido de carbono permaneça armazenado.

3.4. Análise da Corrosão do CO₂

A corrosão por CO₂ é frequentemente encontrada na indústria de petróleo e gás e ocorre em todos os estágios de produção, desde a prospecção até as instalações de processamento.¹⁰²

Isso ocorre porque o CO₂ reage com água formando ácido carbônico (H₂CO₃), que é agressivo ao aço carbono. A corrosividade do ácido carbônico pode ser superior a qualquer outro ácido completamente dissociado em um mesmo pH.

A formação do produto de corrosão sobre a superfície sofre influência da composição do aço, do fluxo e das condições ambientais.¹⁰³

Sabe-se que a camada de produto de corrosão tem papel fundamental no mecanismo, na cinética e no tipo de corrosão por CO₂. Quando existe uma

¹⁰¹ PUC-Rio - Certificação Digital Nº 0721413/CA.

 ¹⁰² EBENEZER R. R. L. S. Análise da Corrosão e da Erosão-Corrosão do Aço Carbono em Meio com NaHCO₃ e CO₂, Dissertação de Mestrado, UFR, Curitiba, 2008.
 ¹⁰³ Ibid.

camada protetora, a transferência de massa para a superfície metálica se torna o fator de controle da taxa de corrosão, antes do desprendimento do hidrogênio.

A formação irregular da camada de corrosão é o principal fator que contribui para a corrosão localizada por CO₂. Camadas de corrosão protetoras são capazes de diminuir a taxa de corrosão inicial em até 3 vezes, levando a taxa nula com o passar do tempo. A corrosão por dióxido de carbono pode ser ocasionada tanto pelas condições do meio, quanto pelos aspectos metalúrgicos ou materiais.

Os fatores ambientais que afetam a corrosão por CO_2 são o pH, a pressão parcial do dióxido de carbono, a contaminação com oxigênio, a temperatura, a composição química da solução e supersaturação, a taxa de fluxo e contaminação por H₂S.

O desgaste por CO₂ em aços carbono e de baixa liga é fortemente dependente da formação de filmes na superfície durante os processos de corrosão. A proteção, a taxa de formação/precipitação e a estabilidade do filme controlam a taxa de degradação e a sua natureza (corrosão generalizada ou localizada).

Em geral, as características de proteção do filme de corrosão dependem tanto das características do aço carbono (microestrutura, tratamento térmico, elementos de liga) quanto das variáveis ambientais.

Esses filmes podem ser dos tipos transparentes, carbetos de ferro (Fe₃C), carbonatos de ferro (FeCO₃), carbonatos de ferro com carbetos de ferro (FeCO₃ + Fe₃C).

Muitos estudos têm sido feitos para mitigar os efeitos da corrosão por CO₂ na indústria de Petróleo, principalmente nas tecnologias de CCS com a utilização de resinas internas protetoras.

4. Fluidos do Reservatório

O petróleo é uma mistura de hidrocarbonetos, que pode ser encontrada nos estados sólido, líquido, ou gasoso, dependendo das condições de pressão e temperatura à que estão sujeitos. Em um reservatório de hidrocarbonetos haverá duas ou três fases durante a sua vida produtiva (óleo, gás e água).

As proporções, composição e propriedades físicas das fases presentes, podem mudar conforme ocorre a produção e a pressão é alterada.¹⁰⁴ O diagrama de fases é um gráfico de pressão versos temperatura, mostrando as condições em que as várias fases de uma substância estarão presentes. Normalmente referimo-nos a este diagrama como: "diagramas P-T".¹⁰⁵

Em um sistema de vários componentes, o diagrama P-T irá apresentar um envelope de fases ao invés de uma única linha. O ponto crítico (PC) é representado pelo ponto que separa as curvas de ponto de bolha ("*bubble point*") e ponto de orvalho ("*dew point*").¹⁰⁶

O diagrama de fases de um fluido multicomponentes, dependendo das condições iniciais de pressão e temperatura, pode representar cinco tipos de reservatórios, que são o "*black-oil*", óleo volátil, gás seco, gás condensado ou de gás retrogrado e gás úmido.¹⁰⁷

No diagrama de fases mostrado na figura 14, os elementos em destaque são: fase envolvente, linhas de qualidade, ponto crítico, ponto cricondentérmico, ponto cricondenbárico, curva ponto de bolha e curva de ponto de orvalho.

53

¹⁰⁴ PUC-Rio – Certificado Digital nº 0221059/CA – http://www.maxwell.vrac.puc-rio.br/6084/6084_4.PDF - Acesso em 25/01/2015.

¹⁰⁵ Ibid. ¹⁰⁶ Ibid.

¹⁰⁷ Ibid.

Figura 14 - Diagrama de Fases - pressão x temperatura¹⁰⁸

Fase envolvente

Resulta da união das curvas do ponto de bolha e do ponto de orvalho (linha BCA), onde o gás e o líquido coexistem em equilíbrio. Essa fase divide o diagrama em três regiões a primeira, chamada região de líquidos, está situada à esquerda da isoterma crítica; a segunda, chamada região de gases, encontra-se à direita da isoterma crítica; a última é conhecida como região de duas fases; nessa região, encontram-se todas as combinações de temperatura e pressão onde a mistura de hidrocarbonetos pode permanecer em equilíbrio.

• Linhas de qualidade

As linhas segmentadas dentro do diagrama de fases são chamadas linhas de qualidade. Elas descrevem as condições de pressão e temperatura para volumes iguais de líquido. Note que as linhas de qualidade convergem no ponto crítico.

Ponto crítico

É aquele no qual a linha dos pontos de bolha e a dos pontos de orvalho se junta, ou mais propriamente, é o ponto onde as propriedades do líquido e do gás são iguais (ponto C).

¹⁰⁸ PUC-Rio – Certificado Digital n° 0115617/CA <http://www.maxwell.vrac.pucrio.br/4025/4025_3.PDF> - acesso em 25/01/2015

- Ponto cricondentérmico, Tct
 É o ponto de temperatura máxima em que ainda existem duas fases em equilíbrio (ponto E).
- Ponto cricondenbárico, Pcb
 É o ponto de pressão máxima em que ainda existem duas fases em equilíbrio (ponto D).
- Curva ponto de bolha
 Define-se como a linha que separa a região de fase líquida da região de duas fases (linha BC).
- Curva ponto de orvalho
 Define-se como a linha que separa a região de fase vapor da região de duas fases (linha AC).¹⁰⁹

O modelo "*black-oil*" é uma simplificação do modelo composicional e adequa-se a reservatórios contendo óleos pesados ou de baixa volatilidade. Desta forma, este modelo tem a característica de ser, em geral, um modelo isotérmico cujo comportamento das fases é regido por relações PVT (pressão, volume e temperatura).¹¹⁰

Um diagrama de fase pressão – temperatura para o *black oil* é mostrado na figura 15, na qual deve-se notar que as linhas de qualidade caracterizam este diagrama. Seguindo a trajetória da redução da pressão indicada pela linha vertical EF, a curva de líquido encolhida é preparada traçando o percentual de volume líquido como uma função da pressão. Essa curva aproxima-se da linha reta, exceto às pressões muito baixas. Quando o *black oil* é produzido, normalmente gera uma relação gás – óleo entre 200 – 700 scf/stb sendo a densidade do óleo de 15 – 40 °API.

Figura 15- Diagrama de Fases Black Oil

4.1. Interações Rocha-Fluido

Um reservatório contém sempre dois ou mais fluidos que estão associados a um escoamento multifásico. Isso ocorre, em geral, porque existe uma saturação de água, em virtude do próprio mecanismo de formação das rochas sedimentares, onde uma parte dessa água é deslocada pelos fluidos que estão entrando e a outra não consegue ser deslocada ficando na rocha, esta é conhecida como saturação de água conata.

4.1.1. Saturação

Saturação é percentual que cada fluido ocupa do volume poroso da rocha reservatório, e a soma das saturações é sempre igual a 1.

$$S_o + S_w + S_g = 1 \quad (16)$$

As distribuições iniciais das saturações de água e óleo influenciam o fator de recuperação por injeção WAG. Quando as rochas do reservatório são inicialmente molháveis a água, devido à natureza dos principais minerais que a constituem. Estas sofrem processo de drenagem durante o deslocamento do óleo, o que está diretamente relacionado a saturação de óleo residual deixado após a frente de água do processo WAG.¹¹¹

Na rocha molhável à água, os poros preenchidos com óleo são envolvidos por um filme de água que cobre a sua superfície. Contudo, componentes surfactantes do óleo podem ser adsorvidos na superfície de alguns poros tornando-os molháveis ao óleo, o que caracteriza um reservatório de molhabilidade mista. Quanto menos solúveis esses componentes forem ao óleo, maior será a tendência de se adsorverem na superfície da rocha tornando-a molhável ao óleo.¹¹²

4.1.2. Permeabilidade Relativa

Permeabilidade absoluta é a capacidade do fluido, que satura o meio, percoladar o reservatório. Em um meio poroso saturado por dois ou mais fluidos, a vazão de uma fase é sempre menor que a vazão dessa mesma fase quando somente ela satura o meio poroso.

No caso de dois fluidos saturando o meio poroso, a capacidade de escoamento de um desses fluidos chama-se permeabilidade efetiva do meio poroso ao fluido considerado.¹¹³

O quociente entre a permeabilidade efetiva e a permeabilidade absoluta (k) do meio é denominada permeabilidade relativa ao fluido (k_{rfluido}). Variável admensional que pode ser representada em termos percentuais, variando de zero (inexistência de fluxo) a 100% (meio poroso 100% saturado com um único fluido).¹¹⁴

Seja um meio poroso, molhado preferencialmente pela água, no qual existe água e óleo. Incialmente o óleo (fluido não molhante) não consegue fluir pois, sua saturação é muito baixa, ou seja, a permeabilidade efetiva é nula.

À medida que a saturação do óleo aumenta gradativamente, a saturação da água diminue e sua permeabilidade efetiva cai sensivelmente no ínicio. Isso

¹¹¹ LAKE, L. W. (2007), Petroleum Engineering Handbook. Society of Petroleum Engineers. ¹¹² Ibid

¹¹³ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, **Engenharia de Reservatórios de Petróleo**, Rio de Janeiro, Interciência, 2007, p.152

¹¹⁴ Ibid., p. 152

ocorre porque o óleo passa a ocupar, inicialmente, o centro dos capilares de maior diâmetro.115

O óleo começa a fluir, somente, quando sua saturação torna-se suficiente para formar uma fase contínua, onde suas permeabilidades efetiva e relativa deixaram de ser zero. Em paralelo a saturação e as parmeabilidades da água decrescem, mas não tão lentamente como no início do processo.¹¹⁶

Com a crescente saturação de óleo, as permeabilidades efetiva e relativas elevam rapidamente, pois o óleo ocupa, preferencialmente, os capilares de maior diâmetro. O aumento da saturação do óleo ocorre até a saturação da água atingir a saturação irredutível (S_{wi}), em que a mesma pára de fluir, zerando assim, suas permeabilidades efetiva e relativa (ver figura 16).¹¹⁷

Figura 16 - Curvas de permeabilidade relativa vs saturação da água¹¹⁸

Quando a saturação de um reservatório, inicialmente, somente com a fase molhante, decresce pela inclusão de uma fase não molhante diz-se que é um processo de drenagem. No entanto, quando o reservatório está saturado

¹¹⁵ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo, Rio de Janeiro, Interciência, 2007, p.152

lbid., p. 153.

¹¹⁷ Ibid., p. 153. 118

MACHADO C.G., Histerese nas Curvas de Permeabilidade Relativa Trifásica em Carbonatos Usando Tomografia Computadorizada de Raios-X, Dissertação de Mestrado em Ciências e Engenharia de Petróleo, UNICAMP, 2013

pela fase que não molha, e este é invadido pela fase que molha, da-se o nome de embebicão.119

A figura 17 mostra o resultado de um ensaio de permeabilidade relativa óleo-água com experimentos de embebição e drenagem, comparando com a figura 16 nota-se que k_{rw} permanece o mesmo, ou seja, independe do processo.

Figura 17 - Influência do processo de saturação nas curvas de permeabilidade relativa

As curvas de permeabilidade relativa apresentadas na figura 16 cobrem apenas o intervalo $S_{wi} \le S_w \le (1-S_{or})$ ou $S_{wi} \le S_w \le (1-S_{oc})$, onde S_{or} é a saturação de óleo residual e Soc a saturação de óleo crítica, isso ocorre devido ao fato que o intervalo de saturação de interesse para estudos de reservatório situa-se entre S_{wi} e (1-S_{or}) ou (1-S_{oc}).¹²⁰

Na diferença entre as curvas (1-S_{or}) e (1-S_{oc}), obtidas pelos processos de drenagem e embebição, mostrado na figura 17, encontra-se a saturação mínima para produzir fluxo do fluido não molhante.

No processo de embebição, o fluido que molha penetra no meio poroso alojando-se junto às paredes dos poros e nos capilares de menor diâmetro, deslocando o fluido que não molha para capilares de maior diâmetro, onde

¹¹⁹ ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo, Rio de Janeiro, Interciência, 2007, p.154. ¹²⁰. ROSA; CARVALHO; XAVIER, op. cit., p.154

existe uma corrente contínua desse fluido. Esse processo continua até que a saturação do fluido não molhante seja reduzida a um valor tal (Sfuido r) que este fica retido, deixando de escoar, devido ao efeito Jamin^{121,122}

Já nos processos de drenagem, o fluido que não molha percola, preferencialmente, através dos capilares de maior diâmetro, ocupando as partes centrais dos canais de fluxo. Na realidade, a saturação mínima necessária para que o fluido não molhante forme uma fase contínua e escoe através do meio poroso (S_{fluido c}) é menor que sua saturação residual (S_{fluido r}).

Portanto, a saturação residual do fluido (Sfluido r) é sempre maior que a saturação crítica (S_{fluido c}). Quanto à permeabilidade relativa ao fluido que molha, não se verifica grande diferenca na curva entre os processos de embebição e drenagem, com raras exceções.¹²³

Devido à influência do processo de saturação nas curvas de permeabilidade relativa, a curva de embebição deve ser considerada na previsão do comportamento de um reservatório molhado pela fase de maior molhabilidade.124

Para o processo WAG é essencial conhecer das curvas de permeabilidade trifásica, pois todos os fluidos que saturam a rocha (óleo, água e gás) são móveis na maior parte do tempo. Sem esse conhecimento das permeabilidades e dos fenômenos de histerese, torna-se difícil definir, por simulação numérica, o plano de desenvolvimento, as variáveis de processo responsáveis pelo acréscimo do fator de recuperação e a economicidade de um projeto WAG em escala de campo.¹²⁵

¹²¹ Efeito Jamin decorre das variações nos diâmetros dos poros interconectados em duas dimensões nos reservatórios heterogêneos. Essa diferença entre os poros (interpretados como capilares) gera diferentes tendências de fluxo, especialmente em um processo de injeção de água. A diferenca de pressão necessária para o fluxo dos fluidos provém da pressão capilar (p_c) entre as fases de água e do óleo, sendo assim, diferença de pressão será maior no conduto menor, ou seja, será o caminho preferencial da água ao longo de sua percolação (nesse caso a água é a fase que molha a rocha). Quando toda a água desloca o óleo do capilar de menor diâmetro, ela encontra a interligação com o poro de maior diâmetro e avança através desse segundo capilar. Contudo, por se tratar de duas interfaces iguais, no mesmo conduto, a pc em cada superfície de separação entre a água e o óleo serão iguais e, por consequência, pA será igual a pB, cessando-se o fluxo pelo capilar superior, confinando o volume de óleo. ¹²² ROSA A. J.; CARVALHO R. S.; XAVIER J. A. D, **Engenharia de Reservatórios de Petróleo**,

Rio de Janeiro, Interciência, 2007, p.154. ¹²³ Ibid., p. 154.

¹²⁴ Ibid., p. 154.

¹²⁵ PEGORARO R. T., Escoamento Trifásico em Meios Porosos: Permeabilidade Relativa Óleo-Gás-Água, Dissertação de mestrado de Pós-Graduação em Tecnologia em Processos

Os fenômenos envolvidos no escoamento trifásico em um processo WAG ainda não são completamente entendidos para permitir uma predição confiável do mecanismo.¹²⁶

Para casos trifásicos, a definição dos processos de embebição e drenagem, que são os processos usualmente realizados para medir as permeabilidades bifásicas, tornam-se ambíguas. Por exemplo, durante uma injeção de gás as saturações de água e óleo podem diminuir simultaneamente, o que não ocorre em um experimento bifásico.¹²⁷

Para sistemas bifásicos, só existem dois caminhos possíveis para a saturação de uma fase, que aumenta ou diminui, enquanto que para um sistema trifásico, um número infinito de caminhos de saturações pode acontecer.128

Na figura 18, são mostrados dois diagramas ternários para diferentes caminhos que as saturações, em uma amostra de rocha submetida ao processo WAG, poderiam percorrer, em que cada vértice do triângulo representa a

saturação de 100% de uma das fases.

Figura 18 - Diagrama ternário de permeabilidades trifásicas ao óleo em função de possíveis caminhos de saturações percorridos durante um processo WAG¹²

SHAHVERDI; SOHRABI; JAMIOLAHMADY, op. cit.

Químicos e Bioquímicos da Escola de Química da Universidade Federal do Rio de Janeiro (UFRJ),

^{2012.} ¹²⁶ SHAHVERDI, H.; SOHRABI, M.; JAMIOLAHMADY, M. **A new algorithm for estimating three**phase relative permeability from unsteady-state core experiments. In: International Symposium of the Society of core analysts, Halifax, Canada Paper SCA 2010-42. Outubro, 2010. LARSEN, J.A.; SKAUGE, A. Methodology for numerical simulation with cycle dependent relative permeabilities. SPE Journal, v.3, n.2, paper SPE 38456. Junho, 1998.

¹²⁹ PEGORARO R. T., Escoamento Trifásico em Meios Porosos: Permeabilidade Relativa Óleo-Gás-Água, Dissertação de mestrado de Pós-Graduação em Tecnologia em Processos Químicos e Bioquímicos da Escola de Química da Universidade Federal do Rio de Janeiro (UFRJ), 2012.

Com as injeções alternadas de água e gás a saturação da amostra vai se modificando de diversas maneiras, podendo seguir incontáveis caminhos, dependendo das propriedades dos fluidos, da rocha e das vazões de injeção de cada fluido, dentre outros fatores.¹³⁰

A determinação experimental de permeabilidades relativas trifásica é extremamente complicada, pois existem restrições de cunho operacional e de interpretação do teste.¹³¹

4.1.3. Tensão Interfacial na Permeabilidade Relativa

No caso de um hidrocarboneto multifásico é necessário considerar o efeito das forças que atuam na interface quando duas fases fluidas em contato são imiscíveis. Quando os dois fluidos, líquido e gás, estão em contato, eles são separados por uma interface bem definida denominada superfície do líquido, que tem uma espessura de alguns diâmetros moleculares e possui todas as propriedades das fases fluidas em contato.¹³²

A combinação de todas as forças ativas determina a molhabilidade e a pressão capilar de uma rocha porosa. Considerando óleo e gás como as fases fluidas, geralmente existe uma tensão interfacial entre eles. Uma molécula de óleo que é afastada da interface é rodeada por outras moléculas do óleo, tendo, assim, uma força de atração sobre o líquido cuja resultante das forças sobre molécula é zero.

No entanto, sobre a molécula da interface atua uma força acima da interface, oriunda do gás, e outra força em sentido contrário, a partir das moléculas de óleo localizadas abaixo da interface.¹³³

As forças resultantes são desequilibradas e dão origem a tensão interfacial. A força atrativa entre as moléculas cria uma superfície de tipo

¹³⁰ PEGORARO R. T., **Escoamento Trifásico em Meios Porosos: Permeabilidade Relativa Óleo-Gás-Água**, Dissertação de mestrado de Pós-Graduação em Tecnologia em Processos Químicos e Bioquímicos da Escola de Química da Universidade Federal do Rio de Janeiro (UFRJ), 2012.

¹³¹ SHAHVERDI, H.; SOHRABI, M.; FATEMI, M.; JAMIOLAHMADY, M.; IRELAND, S.; ROBERTSON, G. **Evaluation of three-phase relative permeability models for WAG injection using water-wet and mixed-wet core flood experiments**. In: SPE EUROPEC/EAGE Annual Conference and Exhibition, Viena, Áustria. Paper SPE 143030 Maio, 2011.

 ¹³² SEQUEIRA T. D, Compositional Effects on Gas-Oil Interfacial Tension and Miscibility at Reservoir Conditions, degree of Master of Science in Petroleum Engineering in Faculty of the Louisiana State University, 2006.
 ¹³³ Ibid.

membrana. Uma certa quantidade de trabalho, chamada de energia livre superficial do líquido, é necessária para mover uma molécula de óleo de dentro do corpo do líquido através da interface.

Energia livre de superfície é definida como o trabalho necessário para criar uma unidade de área de superfície nova e é expresso em unidades de ergs por centímetro. Tensão interfacial, é a força por unidade de comprimento necessária para criar uma nova superfície e é expressa em unidades de dines por centímetro.¹³⁴

Assim, a tensão interfacial é uma medida coesiva (excesso) de energia presente numa interface resultante do deseguilíbrio de forças entre as moléculas de uma interface (gás / líguido). A tensão interfacial sendo uma propriedade termodinâmica é fortemente afetada pela pressão, temperatura e composição das fases líquido-líquido.135

Se as propriedades das duas fases de fluido forem aproximadas, a tensão interfacial entre elas diminui e aproxima-se de zero, indicando que a miscibilidade entre os fluidos foi alcançada. Por isso, a tensão interfacial é considerado uma boa indicação de equilíbrio de fases de fluidos.¹³⁶

Avirala et al. (2006)¹³⁷ sugeriu a dependência da tensão interfacial entre dois líquidos na transferência de massa entre as fases através de toda a interface. As variações dependentes do tempo na tensão interfacial, de dois fluidos imiscíveis que são postos em contato, são resultado da tranferência de massa até que seja atingido o equilíbrio termodinâmico, e são devido as variações na tensão interfacial.¹³⁸

Assim, a tensão interfacial dinâmica reflete interações entre as fases de líquidos devido às variações nas condições termodinâmicas, resultante das alterações de propriedades dinâmicas de um estado de equilíbrio para outro. A transferência de massa contra-direcional, de componentes de hidrocarboneto do

¹³⁴ SEQUEIRA T. D, Compositional Effects on Gas-Oil Interfacial Tension and Miscibility at Reservoir Conditions, degree of Master of Science in Petroleum Engineering in Faculty of the Louisiana State University, 2006.

¹³⁵ Ibid. ¹³⁶ Ibid.

¹³⁷ AYIRALA, S.C., XU, W. and RAO, D.N.: "Interfacial Behavior of Complex Hydrocarbons at Elevated Pressures and Temperatures", The Canadian Journal of Chemical Engineering, February 2006. ¹³⁸ SEQUEIRA, op. cit.

óleo para as fases de gás e de gás para as fases de óleo, afeta a composição de ambas as fases de fluido assim como a tensão interfacial entre eles. 139

Os métodos experimentais usados para medir tensão interfacial entre o óleo e o gás são as técnicas de ascensão capilar e a do formato de gota.¹⁴⁰

4.1.2.1. Técnica de Ascenção Capilar

Quando um tubo capilar (figura 19) de pequeno diâmetro interno é inserido abaixo da interface de um sistema de duas fases, com uma das fases líquida (fase densa) e outra gasosa. O líquido irá subir no tubo capilar até uma altura acima do líquido e será côncava no que diz respeito à fase mais densa.

Figura 19 - Ascensão capilar em um tubo de vidro

Essa ascenção é devido às forças de atração (tensão interfacial) entre o tubo e o líquido e o pequeno peso representado pela coluna de líquido. A tensão interfacial é a força que tende a puxar o líquido através da adesão do mesmo à parede do tubo, que pode fazê-lo subir por ele até que essa força se iguale pelo peso da coluna do líquido.

$$\sigma = \frac{(\rho_l - \rho_v)grh}{2} \quad (17)$$

¹³⁹ SEQUEIRA T. D, Compositional Effects on Gas-Oil Interfacial Tension and Miscibility at Reservoir Conditions, degree of Master of Science in Petroleum Engineering in Faculty of the Louisiana State University, 2006¹⁴⁰ Ibid.

Onde σ é a tensão interfacial (dina/cm), r raio do tubo (cm), θ ângulo de contato (grau), h altura da coluna de líquido (cm), ρ_I densidade da fase líquida (gm/cc), ρ_v densidade da fase gás (gm/cc) e g é a força gravitacional (cm/s²).

A utilização da técnica de ascensão capilar, a temperatura e pressão elevadas, para medir tensão interfacial e miscibilidade em casos gás-óleo, foi demonstrado com sucesso por Ayirala (2005). Ele mediu as alturas capilares de dois sistemas padrão de óleo e gás, ou seja, CO_2 -n-decano a 100 °F e CO_2 misturado ao óleo sinteticamente (25% mole nC₁, 30% molar nC₄ e 45% mole nC₁₀) a 160 °F.¹⁴¹

Ele foi capaz de medir valores muito baixos de tensão interfacial (0,044 dina/cm) para a mistura sintética de óleo e CO₂ utilizando a técnica acima. Concluiu que a técnica era simples, precisa e eficiente para medir baixas tensões interfaciais, podendo ser facialmente adaptada para medir as tensões interfaciais, à pressão e temperatura elevadas, entre CO₂-óleo em sistemas de injeção de CO₂ no reservatório.¹⁴²

4.1.2.1. Método da Gota

Esta técnica é usada para medir a tensão interfacial gás-óleo à elevada pressão e altas temperaturas. A figura 20 apresenta uma gota de líquido que pendurada desde a ponta de um tubo capilar, como agulha de seringa em uma célula óptica de alta pressão cheia com vapor em equilíbrio.

Figura 20 - Método da gota¹⁴³

¹⁴¹ SEQUEIRA T. D, **Compositional Effects on Gas-Oil Interfacial Tension and Miscibility at Reservoir Conditions**, degree of Master of Science in Petroleum Engineering in Faculty of the Louisiana State University, 2006 ¹⁴² Ibid

¹⁴² Ibid.

¹⁴³ DANESH, A.: "PVT and Phase behavior of Petroleum Reservoir Fluids", Elsevier Science B.V. (1998).

A forma e tamanho da gotícula de líquido nas condições estáticas é controlada pela gravidade e forças de superfície. O formato da gota suspensa pendente do equilíbrio entre as forças que atuam sobre a gota, que são a gravidade, que a puxa para baixo através do alongamento, e a tensão superficial que atua impedindo o crescimento de área de superfície tendendo para o formato esférico.

O formato da gota depende da densidade e da tensão superficial do líquido, que está relacionado diretamente com tensão interfacial entre o óleo e o gás através da equação 18.¹⁴⁴

$$\sigma = \frac{gd_e^2}{l} \left(\rho^L - \rho^V \right) \quad (18)$$

Onde, g é a aceleração da gravidade, ρ^{L} densidade da fase líquida, ρ^{V} densidade da fase vapor, *l* fator de forma de gota e é uma função de $R = \frac{d_s}{d_e}$ (d_e diâmetro horizontal máximo da gota e d_s diâmetro da gota medida na altura acima da parte inferior da gota).

4.1.4. Histerese na Permeabilidade Relativa

A histerese é a tendência de um material ou sistema de conservar suas propriedades na ausência do estímulo que as gerou. Podem-se encontrar diferentes manifestações desse fenômeno. Nessa dissertação, serão realizadas simulações de reservatório com o processo WAG, onde as permeabilidades relativas variam irreversivelmente, dependendo do modo como variam as saturações dos fluidos.

No escoamento bifásico, a histerese é o efeito da dependência das diversas permeabilidades relativas e pressões capilares, que são inerentes às diferentes trajetórias de saturação e aos vários ângulos de contato dos sistemas rocha-fluido, com o aprisionamento dos fluidos resultantes dos processos de embebição/drenagem.

A figura 21 é um exemplo disso, mostrando a variação da permeabilidade relativa da água quando a rocha sofre um processo de drenagem ou embebição.

¹⁴⁴ DANESH, A.: "PVT and Phase behavior of Petroleum Reservoir Fluids", Elsevier Science B.V. (1998).

Acredita-se que o fenômeno de histerese esteja também relacionado com a distribuição dos poros e com a cimentação da rocha.¹⁴⁵

Figura 21 Diagrama de permeabilidade relativa bifásico ilustrando a histerese para a água¹⁴⁶

Para o escoamento multifásico de fluidos em meios porosos, a histerese pode ser observada através da diferença nas curvas de permeabilidade relativa, que é devido à alteração sequencial do processo de saturação (embebição ou drenagem) e do número de vezes que estas mudanças ocorreram.¹⁴⁷

Nas recuperações primária e secundária de petróleo (depleção, injeção de água e injeção de gás) como só existe alteração de saturações no meio poroso em uma direção, os fenômenos de histerese são negligenciados. Porém, nos processos de recuperação especiais, que envolvem a alternância de diferentes fluidos como a injeção alternada de água e gás (WAG), a histerese é bastante relevante, sobretudo no que tange às permeabilidades relativas das várias fases envolvidas. Além disso, o efeito da histerese cresce significantemente quando o escoamento envolve três fases móveis.

¹⁴⁵ M. HONARPOUR and S. M. MAHMOOD. **Relative-permeability measurements**: An overview. Journal of Petroleum Technology, 40(8):963–966, Agosto 1988. SPE 18565-PA.

 ¹⁴⁶ Ibid.
 ¹⁴⁷ PEGORARO R. T., Escoamento Trifásico em Meios Porosos: Permeabilidade Relativa Óleo-Gás-Água, Dissertação de mestrado de Pós-Graduação em Tecnologia em Processos Químicos e Bioquímicos da Escola de Química da Universidade Federal do Rio de Janeiro (UFRJ), 2012

A histerese de permeabilidade relativa tem três causas principais na escala de poros:¹⁴⁸

 Variação de ângulo de contato nos processos de embebição e drenagem;

O ângulo de contato de avanço de uma fase molhante deslocando uma fase não molhante é maior do que o ângulo de retrocesso desta mesma fase molhante. Isto ocorre devido à rugosidade das superfícies, efeitos hidrodinâmicos e adsorção de compostos orgânicos.

• Trapeamento de fase não-molhante;

Durante um processo de embebição, uma fração da fase nãomolhante pode acabar sendo desconectada, na forma de gotículas, tornando-se imóvel (trapeada). Este fenômeno ocorre sempre que existe uma fase pela qual a rocha tenha maior preferência.

É o tipo de histerese mais descrito, sendo causado por mudanças de direção dos processos de saturação. (Vale lembrar que em sistemas trifásicos de molhabilidade intermediária ou mista, todas as três fases podem ser trapeadas). Num sistema molhado por água ou por óleo, somente as fases gás e óleo podem ser trapeadas.

 Variações nos processos de trapeamento e destrapeamento de fase não molhante.

Nos casos que envolvem variados ciclos de embebição e drenagem, como é o caso do método WAG, a fase não-molhante pode não ser trapeada (embebição) e destrapeada (drenagem) sempre da mesma forma. Isso acarreta em um fenômeno chamado na literatura de "histerese de trapeamento", "histerese de ciclo" ou "irreversibilidade de curvas *scanning*".

Os efeitos de histerese de permeabilidade relativa, normalmente, ajudam a aumentar a eficiência do processo WAG. A mobilidade da água é reduzida após a injeção de um banco de gás seguida de um banco de água, que

¹⁴⁸ PEGORARO R. T., Escoamento Trifásico em Meios Porosos: Permeabilidade Relativa Óleo-Gás-Água, Dissertação de mestrado de Pós-Graduação em Tecnologia em Processos Químicos e Bioquímicos da Escola de Química da Universidade Federal do Rio de Janeiro (UFRJ), 2012

aprisiona uma parte deste gás no meio poroso, reduzindo também a sua mobilidade.

Este trapeamento representa, portanto, um benefício, visto que a mobilidade do gás será substancialmente reduzida. Como consequência, o varrido será melhorado e a produção será feita com menor razão gás-óleo (RGO). Logo, o processo WAG não pode ser modelado corretamente sem que se leve em conta os fenômenos de histerese.¹⁴⁹

Em contrapartida, a alternância de fluidos causa perda de injetividade, pois no momento da troca de fluido injetado, o novo fluido (água) encontrará, inicialmente, a rocha saturada quase que exclusivamente do fluido injetado anteriormente (gás), o que resulta em permeabilidade relativa elevada para o gás e bastante reduzida para a água. Essa perda resulta em menor quantidade de fluido injetado e/ou aumento na pressão de injeção, podendo resultar em redução no fator de recuperação.

Assim, a molhabilidade da rocha-reservatório, as permeabilidades relativas trifásicas e a histerese são consideradas os fenômenos de maior influência para os processos que envolvem ciclagem de fluidos.¹⁵⁰

Em projetos CCS de CO₂ a histerese é também muito importante. Simulações mostram que o processo é mais bem descrito com a inclusão dos fenômenos de histerese, o que resulta em uma maior saturação de gás retida no reservatório, ou seja, maior capacidade de estocagem de CO₂.¹⁵¹

¹⁴⁹ SPITERI, E.J.; JUANES, R.; BLUNT, M.J.; ORR, F.M. **A new model of trapping and relative permeability hysteresis for all wettability characteristics**. SPE Journal, v.13, n.3, p. 277-288. Paper SPE 96448, September, 2008. ¹⁵⁰ ELEMENT D. L. MASTERS, LUK, SAROCENT, M.O., MARCENT, M.O., MARTERS, LUK, SAROCENT, M.O., MARTERS, MARTERS, LUK, SAROCENT, M.O., MARTERS, MARTERS, LUK, SAROCENT, M.O., MARTERS, MARTERS, LUK, SAROCENT, MARTERS, MARTER

 ¹⁵⁰ ELEMENT, D.J.; MASTERS, J.H.K.; SARGENT, N.C.; JAYASEKERA, A.J.; GOODYEAR, S.G.
 Assessment of three-phase relative permeability models using laboratory hysteresis data.
 SPE 84903. In: SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malásia. Outubro, 2003.
 ¹⁵¹ GHOMIAN, Y.; POPE, G.A.; SEPEHRNOORI, K. Hysteresis and field-scale optimization of

¹³¹ GHOMIAN, Y.; POPE, G.A.; SEPEHRNOORI, K. **Hysteresis and field-scale optimization of WAG injection for coupled CO2-EOR and sequestration**. SPE 110639.In: SPE Symposium on Improved Oil Recovery, Tulsa, USA. Abril, 2008.

5. Simulação Numérica de Fluxo Contínuo

Para a realização das simulações numérica de fluxo contínuo serão utilizados os simuladores WinProp, Builder, IMEX e GEM, que fazem parte do pacote da CMG, que se encontra instalado e disponível, com sua respectiva licença, nos computadores do Departamento de Engenharia Mecânica da PUC-Rio.

5.1. WinProp

O WinProp possui uma interface gráfica que permite preparar os dados, ver os perfis de entrada e executar o mecanismo para cálculo das propriedades das fases utilizando equações de estado de equilíbrio multifásico para:

- Modelar fluidos;
- Agrupamento ("Lumping") de componentes;
- Ajuste de dados de laboratório através da regressão;
- Simulação de processos de contato múltiplo;
- Construção do diagrama de fases;
- Simulação de experimentos de laboratório (Liberação diferencial, teste do separador óleo – gás, etc.).

Neste trabalho o WinProp será utilizado para prever o comportamento das fases do fluido do reservatório, bem como caracterizá-los para simulações numéricas de fluxo contínuo no GEM e IMEX. O comportamento das fases do sistema gás-óleo do reservatório pode ser analisado para gerar propriedades dos componentes que serão utilizados no simulador composicional, GEM, e no simulador *black-oil*, IMEX.

5.2. Builder

O Builder é uma ferramenta usada para criar o arquivo de entrada, de extensão .dat, para os simuladores da CMG. Para isso é necessário:

- Descrição do modelo do reservatório;
- Modelo do fluido (óleo e gás injetado);
- Propriedades rocha-fluido;

- Condições iniciais (pressão inicial do reservatório, profundidade das zonas de contato água - óleo, etc.);
- Descrição dos poços.

Para esse trabalho, na interface inicial do Builder, selecionou-se o simulador GEM e IMEX, as unidades de campo, a porosidade e a data de início da simulação a partir de 01/01/1986 com término previsto para 01/01/2020 (período de produção de 12418 dias).

5.3. IMEX

IMEX é um simulador *black oil* de três fases que considera os efeitos da gravidade e da capilaridade. O *grid* pode ser cartesiano, cilíndrico ou de profundidade e espessura variáveis. As principais características são:

- O IMEX pode ser rodado em modelo explícito ou adaptado para modo implícito;
- A opção de dupla porosidade permite a discretização de blocos de matriz em formato agrupado chamado de múltipla interação continua (Multiple-Interacting Continua - MINC);
- Modelar processos pseudo-miscíveis de primeiro contato e processos miscíveis de múltiplos de contatos. Pode modelar solvente na fase de água e também na fase de gás;
- Modelar processos considerando adsorção de polímeros na rocha, o que influencia no volume de poros, fatores de resistência, mistura de viscosidade e dispersão.

Nesta dissertação o IMEX será utilizado para simular um modelo *black oil* explícito, com porosidade constante e igual a 0,3, permeabilidade variável, *grid* refinado e parâmetros de produção limitados como vazão máxima, pressão mínima de fundo de poço, razão gás óleo e porcentagem de água. Além disso, a pressão de injeção também está limitada para que não ocorra fraturamento do reservatório.

Para simular o processo de recuperação WAG no IMEX, é necessário o arquivo de entrada criado no Builder que, armazena os dados das características dos modelos do reservatório, dos fluidos e dos poços. O GEM é uma ferramenta essencial de engenharia para modelar reservatórios com complexas interações no comportamento de fases que, impactam diretamente sobre os mecanismos dos métodos de recuperação. Suas principais características são:

- Simulador composicional baseado na equação de estado para modelar o fluxo de três fases em fluidos multicomponentes;
- Pode modelar processos miscíveis e imiscíveis tais como a injeção de CO₂ e hidrocarbonetos, injeção cíclica de gás, processo WAG e vários outros;
- Modela qualquer tipo de reservatório como gás condensado ou óleo volátil, onde a importância da composição do fluido e as suas interações são essenciais para entender o processo de recuperação.

Nesta dissertação o GEM será utilizado para controlar a proporção de CO₂ na corrente do gás injetado e seus efeitos no fator de recuperação aliado ao armazenamento geológico do mesmo. Controle de parâmetros de produção, como limite de produção de gás, corte de água e pressão média do reservatório também serão aplicados.

E assim como o IMEX, o GEM precisa do arquivo de entrada, criado pelo Builder, para armazenar os dados e características do reservatório, dos fluidos e dos poços.

5.5. Dados de Entrada da Simulação

O modelo do fluido do reservatório foi criado a partir de um teste PVT obtido do livro de Ezekwe N. *"Petroleum Reservoir Engineering Practice"*, edição 2011, APPENDIX 5A. O resumo dos dados do fluido do reservatório utilizado para realização do teste PVT é mostrado na tabela 3, onde pode ser observado que se trata de um óleo médio, cujo °API é 29.
	Caracteristicas Fluido do Reservatório							
Temper	Temperatura do reservatório 212 °F							
Pressão	o de saturação@ 212°F	7153	psia					
Compre	Compressibilidade do óleo do reservatório @ 212°F							
	na pressão estática de fundo de poço de 10640 psia	8,25E-06	psia ⁻¹					
	na pressão do ponto de bolha	1,20E-03	psia ⁻¹					
Óleo saturado @ 7153 psia, 212°F								
	Densidade	0,669	gm/cc					
	Densidade 23							
	Volume específico	0,02394	ft ³ /lb					
	Viscosidade	0,467	ср					
	Fator volume de formação (FVF)							
	* FVF @ P _{b,} óleo residual @ 60°F	1,5572	rb/bbl					
	** FVF @P _b , óleo no tanque de estocagem @60°F	1,5186	rb/bbl					
	Razão gás-óleo da solução							
	1153	scf/bbl						
	1049	scf/bbl						
Óleo do	reservatório @ 10460 psia, 212°F							
	Densidade	0,6931	gm/cc					
	Densidade	242,9	lb/bbl					
	Volume específico	0,02311	ft ³ /lb					
	Viscosidade	0,676	ср					
	Fator volume de formação (FVF)							
	* FVF @ P _{b,} óleo residual @ 60°F	1,5031	Bbl/bbl					
	** FVF @P _b , óleo no tanque de estocagem @60°F 1,458							
Densidade do óleo @ 15 psia, 60°F 0,8813								
Densidade da água @ 15 psia, 60°F 1 gm/cc								
Grau Al	Grau API do óleo 29,06 °API							
Nota								
*Liberaç	ção diferencial							
**Separ	**Separação flash em condições do separador de campo							

Tabela 3 -	Compos	icão	do óleo
------------	--------	------	---------

A composição do óleo do modelo utilizado é mostrada na tabela 4. Contudo, trabalhar com a quantidade real dos componentes da mistura possui dois grandes inconvenientes, os cálculos seriam extremamente demorados em razão da complexidade das equações envolvidas, e a impossibilidade de identificar todos os componentes da mistura com os métodos de destilação e cromatografia disponíveis.¹⁵²

5A.2 Calculated Analysis of Reservoir Fluid					
Component	Mole %	Component	Mole %		
Hydrogen Sulfide	0.00	Tetradecanes	0.89		
Carbon Dioxide	0.23	Pentadecanes	0.93		
Nitrogen	0.30	Hexadecanes	1.19		
Methane	67.51	Heptadecanes	1.05		
Ethane	2.25	Octadecanes	0.62		
Propane	1.87	Nonadecanes	1.21		
i-Butane	0.61	Eicosanes	0.69		
n-Butane	1.00	Heneicosanes	0.58		
i-Pentane	0.5	Docosanes	0.53		
n-Pentane	0.55	Tricosanes	0.49		
Hexanes	1.10	Tetracosanes	0.44		
Heptanes	1.28	Pentacosanes	0.43		
Octanes	1.26	Hexacosanes	0.32		
Nonanes	1.38	Heptacosanes	0.35		
Decanes	1.28	Octacosanes	0.32		
Undecanes	1.05	Nonacosanes	0.30		
Dodecanes	0.99	Triccontoneo Dive	E E1		
Tridecanes	0.99	maconianes Plus	5.51		
	TOTAL		100.0		

Tabela 4 - Composição do óleo

Na modelagem PVT de uma mistura de hidrocarbonetos, deve-se ajustar uma equação de estado para reproduzir dados experimentais dessa mistura. Isso se deve, além das imprecisões próprias da equação, à complexidade da mistura, que torna impossível a identificação de todos os componentes e a determinação de suas propriedades críticas para serem utilizadas nas equações de estado.

Para solucionar esse problema agrupam-se todos os elementos mostrados na tabela 4, neste caso acima de 30 carbonos (C30⁺), em um único componente chamado de pseudo-componente (ver tabela 5) e, a partir de alguns dados experimentais como peso molecular, massa específica ou densidade, determinam-se as propriedades críticas desse pseudo-componente através de correlações.¹⁵³

 ¹⁵² BARBOSA W. C, MACIEI R. F., Desenvolvimento de Metodologia para o Cálculo de Propriedades Termodinâmicas de Petróleos Pesados, 4° PDPETRO, Campinas, SP, outubro 2007.
¹⁵³ Ibid.

Caracteristicas do Óleo					
Base de recombinação molecular	1167	scf/bbl			
Peso molecular	88,37	lb/lb-mol			

Tabela 5 - Composição do óleo da fração pesada C30 *

Caracteristicas do C30+				
Gravidade específica	0,9847	-		
Peso molecular	610,6	lb/lb-mol		

Os resultados experimentais do APPENDIX 5A¹⁵⁴ mostrados nas tabelas 6, 7, 8 e 9 abaixo foram carregados no WinProp para criar o modelo do fluido que serão utilizados, posteriormente, nas simulações. Nos separadores Flash e diferencial a pressão utilizada foi de 15.025 psia e no tanque de estocagem 14.69595 psia, a 60°F.

5A.3 Pressure-Volume Properties at 212°F						
	(Constant Com	position Expansion	on)			
Pressure (psia)	Relative Volume (V/Vsat) (Exp. ROV)	Oil Density (lbm/ft3)	Oil Compressibility (ΔV/V/Δpsi X 10/6) (1/psia)			
10640*	0.9652	432.688	8.25E-06			
10000	0.9706	430.316	8.61E-06			
9000	0.9797	426.320	9.27E-06			
8000	0.9899	421.950	0.01029			
7153** 1 417.643 0.01196						
	TWO-PHASE REGION DATA BELOW					
7000	1.0035	41.4207	-			
6300	1.0230	40.8216	-			
5600	1.0500	39.7791	-			
4900	1.0881	38.3807	-			
4200	1.1437	36.5203	-			
3500	1.2287	33.9920	-			
2800	1.3671	30.5522	-			
2100	1.6155	25.8514	-			
1400	2.1474	19.4463	-			
700	3.8323	10.8999	-			
*Pressão estática do fundo do poço **Pressão de bolha, P _b						

Tabela 6 - Liberação CCE do óleo

¹⁵⁴ Cf. EZEKWE N. "*Petroleum Reservoir Engineering Practice*", Prentice Hall, 2011, p. 142 - 155.

		5A4 Differential L	iberation at 212°F				
Pressure (psia)	Density	FVF B _{oD} BB/bbl	FVF B₀⁺	Oil Compressibility (AV/V/Apsi X	Solution GOR Bus		
(1-2-2)	(9)	residual oil at	(RB/STB)	10^6)	(scf/bbl)		
10640*	0.6931	1.5031	1.4658	8.25	1153		
10000	0.6893	1.5114	1.4739	8.61	1153		
9000	0.6829	1.5256	1.4877	9.27	1153		
8000	0.6759	1.5414	1.5032	10.29	1153		
7153**	0.6690	1.5572	1.5186	11.96	1153		
	TWO -PHASE REGION DATA BELOW						
7000	0.6728	1.5436	1.5053	10.64	1129		
6300	0.6881	1.4803	1.4435	9.49	977		
5600	0.7033	1.4232	1.3879	8.90	843		
4900	0.7175	1.3725	1.3385	8.53	719		
4200	0.7312	1.3263	1.2934	8.20	604		
3500	0.7448	1.2836	1.2517	7.90	497		
2800	0.7584	1.2434	1.2126	7.61	398		
2100	0.7718	1.2056	1.1757	7.35	301		
1400	0.7856	1.1684	1.1394	7.09	206		
700	0.7993	1.1313	-	6.86	112		
15	0.8215	1.0728	-	-	0		
15@ 60°F	0.8813	1.000	-	-	0		
*Pressão estática do **Pressão de bolha.	o fundo do poço Ph						

Tabela 7 - Liberação diferencial do óleo

Tabela 8 - Liberação diferencial do gás

5A.5 - Gas Differentially Liberated at 212°F							
Pressure (psia)	Oil FVF (rb/stb)	GOR (scf/stb)	Gas Z Factor	Gas FVF (rcf/scf)	Gas SG (Air = 1)		
7153	-	-	-	-	-		
7000	15.436	1129	1.133	0.003144	0.603		
6300	14.803	977	1.091	0.003363	0.595		
5600	14.232	843	1.051	0.003644	0.59		
4900	13.725	719	1.013	0.004015	0.5861		
4200	13.263	604	0.98	0.004531	0.584		
3500	12.836	497	0.952	0.005284	0.5811		
2800	12.434	398	0.935	0.00648	0.582		
2100	12.056	301	0.928	0.00858	0.5832		
1400	11.684	206	0.936	0.012987	0.5920		
700	11.313	112	0.962	0.026688	0.6540		
15	10.728	0	1	1.292438	0.9210		

Tabela 9 - Dados de Viscosidade

5A.6 -Viscosity Date at 212°F						
Pressure	Oil Viscosity	Gas Viscosity				
(psia)	(cp)	(cp)				
7153	-	-				
7000	0.471	0.0309				
6300	0.507	0.0285				
5600	0.548	0.0262				
4900	0.598	0.0241				
4200	0.671	0.0221				
3500	0.772	0.0202				
2800	0.944	0.0183				
2100	1.286	0.0167				
1400	1.774	0.0153				
700	2.435	0.014				
15	3.436	0.122				

O modelo do fluido gerado pelo WinProp foi ajustado aos dados das tabelas apresentadas que, foram obtidos experimentalmente em laboratório. O ajuste é feito através da regressão dos parâmetros dos coeficientes de interação e do pseudo-componente mais pesado do fluido.

Todos esses dados, foram usados para criar um modelo confiável e representativo do fluido do reservatório que possa ser usado para simular o processo WAG no IMEX e GEM.

5.6. Modelagem de Fluido Utilizando o WinProp

O ajuste dos parâmetros foi realizado em duas etapas, a primeira foi a regressão utilizando os dados exceto da viscosidade e segunda o ajuste da viscosidade isoladamente.

Com esses dados o resultado da regressão da pressão de saturação, mostrado na figura 22, apresentou um erro na ordem de 0,2%, que é bastante satisfatório.

Summary of Regression Results

Calculation	Data type	(MF-SWELL)	Experimental data	Before	After	ERROR	ERROR	Weight factor
5 PRESSAT								
	PSAT		7.1530E+03	7.1331E+03	7.1331E+03	-1.7814E-13	2.7751E-03	0.0000E+00

Figura 22 - Erro da regressão da pressão de saturação

As curvas obtidas da regressão realizada no WinProp são mostradas abaixo, desconsiderando a viscosidade que não precisa ser ajustado nesta fase.

O fator volume de formação do óleo é a razão entre o volume que o óleo ocupa na condição de reservatório pelo volume ocupado na condição padrão (1 atm. e 20°C). Na pressão inicial do reservatório, que é de 10.640 psia, observase na figura 23 que o óleo possui uma alta compressibilidade.

Figura 23 - Gráfico da regressão na liberação diferencial do fator de compressibilidade do óleo (Z) e fator volume de formação do óleo (FVF) vs pressão

Nota-se que à medida que a pressão do reservatório vai se aproximando da pressão de saturação a compressibilidade diminui em função da expansão do gás associado. Quando a pressão é reduzida a um nível inferior ao da pressão de saturação, o gás começa a se dissociar do óleo.

O fator de compressibilidade do gás foi bem ajustado e o fator volume de formação do gás (FVF) sofreu um aumento brusco quando a pressão foi reduzida para abaixo de 1.000 psia.

Na figura 24, observa-se que a razão gás-óleo (GOR) também foi bem ajustada, assim como o fator volume de formação do gás.

Figura 24 - Gráfico da regressão na liberação diferencial da razão gás-óleo (GOR) e do volume relativo do óleo (ROV) vs pressão

A figura 25 mostra que, quando a pressão está alta a quantidade de gás em solução também é alta, sendo que o gás se desprende do óleo à medida que a pressão diminui. A gravidade específica do gás (SG) sofre uma leve queda entre 7.000 psia e 1.500 psia, porém, à medida que a pressão continua diminuindo sofre um aumento brusco.

Figura 25 - Gráfico da regressão na liberação diferencial da gravidade específica do gás (SG) vs pressão

Observa-se na figura 26 que, a densidade do óleo diminui à medida que pressão diminui até a pressão de saturação. Em função da escala do gráfico, aparentemente, a densidade do óleo está mal ajustada, mas está bem retratada.

Figura 26 - Gráfico de regressão na expansão da densidade do óleo vs pressão

E a figura 27, representa o ajuste realizado na segunda etapa. Nota-se que o ajuste da viscosidade foi realizado com sucesso.

Figura 27 - Gráfico da regressão na liberação diferencial da viscosidade do óleo e da viscosidade do gás vs pressão

5.7. Simulações *Black oil* e Composicional

Os modelos físicos estudados consistem de um modelo tridimensional com malha cartesiana (direções i, j, k). Onde foram analisados casos com 2 (figura 28), 4 (figura 29) e 6 (figura 30) poços produtores e injetores, considerando 9 camadas entre o topo e o fundo do reservatório.

Figura 29 - Grid do modelo de 4 poços produtores e 4 poços injetores WAG

As coordenadas dos poços produtores são:

- Poço produtor 1 (PROD 1) (4, 7, 3);
- Poço produtor 2 (PROD 2) (7, 7, 3);
- Poço produtor 3 (PROD 3) (4, 4, 3);
- Poço produtor 4 (PROD 4) (7, 4, 3);
- Poço produtor 5 (PROD 5) (2, 5, 3);
- Poço produtor 6 (PROD 6) (9, 5, 3).

Coordenadas dos poços injetores:

- Poço injetor 1 (INJ-GAS 1 e INJ-H2O 1) (9, 10, 1);
- Poço injetor 2 (INJ-GAS 2 e INJ-H2O 2) (1, 1, 1);
- Poço injetor 3 (INJ-GAS 3 e INJ-H2O 3) (9, 1, 1);
- Poço injetor 4 (INJ-GAS 4 e INJ-H2O 4) (1, 10, 1);
- Poço injetor 5 (INJ-GAS 5 e INJ-H2O 5) (2, 2, 1);
- Poço injetor 6 (INJ-GAS 6 e INJ-H2O 6) (5, 10, 1).

Limites de produção adotados:

- Vazão máxima: 12.000 STB/day;
- Pressão mínima no fundo do poço: 1.000 psi;
- Corte máximo de água (fração) monitorada na produção: 95%;
- Limite máximo da razão gás-óleo produzido: 50.000 ft³/bbl

Vale ressaltar que foram realizadas rodadas com diferentes limites de vazão, e até caso sem limitar esse parâmetro, porém os melhores resultados foram obtidos adotando a vazão máxima de 12.000 STB por dia.

Com isso, diversas simulações foram realizadas com intuito de estudar o comportamento do reservatório diante dos métodos de recuperação convencionais e especiais. O foco desse trabalho é a obtenção de melhores fatores de recuperação aliado ao armazenamento geológico de CO₂.

5.7.1. Características Rocha-Fluido

Com os dados de entrada obtidos no WinProp as simulações no Builder geraram as curvas mostradas abaixo, onde o comportamento de algumas propriedades resultantes da interação rocha-fluido pode ser observado em função da variação de pressão no reservatório.

A figura 31 evidencia o comportamento da razão de solubilidade e do fator volume de formação do óleo que, diminui com a redução da pressão do reservatório devido ao aumento de gás dissociado, ou seja, parte do gás que estava dissolvido no óleo se dissocia com a redução da pressão.

Figura 31 – Curvas de razão de solubilidade do óleo (Rs) e do fator volume de formação do óleo (Bo) vs pressão

O fator volume de formação de gás, volume ocupado em condições de pressão e temperatura do reservatório por uma unidade de volume de gás em

condições padrão, é constante até que o reservatório atinja uma pressão muito baixa, onde aumenta de forma bastante acentuada, conforme figura 32.

Figura 32 – Curva do fator volume de formação do gás vs pressão

Na figura 33, pode-se observar a relação entre as viscosidades do gás e do óleo conforme a pressão varia. Na condição inicial do reservatório (10640 psia) a viscosidade do óleo é muito baixa (0,012 cP) enquanto que a do gás é alta (0,062 cP).

À medida que o reservatório produz a pressão diminui influenciando as viscosidades que, aumenta gradativamente para o óleo e diminui mais acentuadamente para o gás. Com isso, o óleo escoa com mais dificuldade enquanto que o gás com mais facilidade o que faz com que o gás tenha uma velocidade de deslocamento maior que a do óleo à medida que a pressão diminui.

Figura 33 – Curvas de viscosidade do óleo (Visc₀) e da viscosidade do gás (Viscg) vs pressão

Na figura 34 observa-se que quando a saturação da água é de 100% a permeabilidade relativa do óleo é 0%, ou seja, não há fluxo. A medida que iniciase a produção a saturação do óleo aumenta gradativamente e a saturação da água diminue. O óleo começa a fluir quando a saturação da água diminui até o ponto em que a saturação do óleo torna-se suficiente para formar uma fase contínua, onde a permeabilidade relativa deixa de ser zero.

Em paralelo, a parmeabilidade relativa da água decresce mais acentuadamente que no início do processo. O aumento da saturação do óleo ocorre até quando a saturação da água atinge a saturação irredutível, que é quando a curva de permeabilidade da água atinge o valor zero

Figura 34 – Curvas de permeabilidade relativa à água (K_{rw}) e ao óleo (k_{row}) vs saturação da água (S_w)

Na figura 35, nota-se que a pressão capilar da água começa a aumentar quando o óleo começa a fluir no reservatório.

Figura 35 – Curva de pressão capilar da água vs saturação da água

5.7.2. Métodos de Recuperação Convencionais 5.7.2.1. Caso Base

No caso base não será utilizado nenhum método de recuperação complementar para melhorar produção de petróleo, o objetivo é analisar o comportamento do reservatório em um processo de depleção.

Como podem ser observados na figura 36 e no resumo da tabela 10, os fatores de recuperação obtidos no GEM e no IMEX são muito baixos, o que torna esse tipo de processo economicamente inviável, além disso, os poços produzem durante pouco tempo em função da redução acentuada da pressão do reservatório no início do processo.

Em todos os casos a produção foi interrompida em função do limite de GOR ter sido atingido antes do prazo de duração da simulação previsto, ver tabela 10.

Tabela 10 - Resumo	da	figura	36 –	casos	base
--------------------	----	--------	------	-------	------

Fator de Recuperação % - Caso Base								
	2 poços	Duração da Produção (dias)	4 poços	Duração da Produção (dias)	6 poços	Duração da Produção (dias)		
GEM	15,84%	5243	16,48%	2191	17,27%	1356		
IMEX	17,88%	6089	17,31%	2557	17,31%	1990		

Comparando os fatores de recuperação entre o GEM e o IMEX no mesmo período de simulação, obtêm-se os valores da tabela 11. Observa-se

que os fatores de recuperação no IMEX foram maiores que no GEM. Pois, o GEM considera a volatilidade do óleo no gás, isto é, o óleo se torna solúvel no gás e com isso sua produção é reduzida no separador.

Fator de Recuperação % - Caso Base - mesmo tempo de simulação									
	2 poços	Período de Produção (dias)	4 poços	Período de Produção (dias)	6 poços	Período de Produção (dias)			
GEM	15,83%	5113	16,48%	2191	16,68%	1096			
IMEX	17,79%	5113	17,27%	2191	16,97%	1096			

Tabela 11 - Comparação entre GEM e IMEX no mesmo ano - casos de depleção

Outro ponto desfavorável é que o gás carbônico que está contido no reservatório é produzido. Sendo assim, será necessário separar esse CO₂, o que aumentará ainda mais os custos do processo.

Na figura 37 observa-se a produção de CO₂ junto ao gás na simulação com o GEM. A figura 38 e o resumo da tabela 12 mostram a quantidade total de dióxido de carbono liberados para os casos simulados de 2, 4 e 6 poços produtores.

Figura 37 - Quantidade em moles de CO2 produzido no óleo e no gás

A tabela 12 mostra que a produção de CO₂ foi maior no caso com 2 poços produtores e 2 injetores, porém neste caso o prazo de simulação foi maior do que nos outros dois casos. Sendo assim, será necessária uma comparação no mesmo período de duração.

Tabela 12 - Produção acumulada de CO₂

CO ₂ acumulado	2 poços	4 poços	6 poços	
(gmole)	978 bilhões	845 bilhões	872 bilhões	

Tabela 13 – Produção acumulada de CO₂ com 1096 dias

CO ₂ acumulado	2 poços	4 poços	6 poços	
(gmole)	226 bilhões	208 bilhões	179 bilhões	

Como pode ser observado, a produção de dióxido de carbono para o caso de 2 poços produtores é superior, pois o tempo de produção de óleo foi maior em função da queda de pressão no reservatório ter sido menos acentuada quando comparada aos demais casos, conforme figura 39.

Figura 39 - Depleção do reservatório - caso base - GEM

5.7.2.2. Injeção de água

A recuperação através da injeção de água também contribui somente para a liberação do CO₂ do reservatório, em contrapartida, esse processo resulta em um fator de recuperação elevado, o que é um atrativo financeiro para a indústria petrolífera, uma vez que a própria água que é produzida pode ser reinjetada.

Na figura 40 pode ser observado que o fator de recuperação obtido mais elevado obtido foi para o caso de 4 poços produtores e 4 injetores. Apesar disso, tanto no GEM como o IMEX o processo não ocorre até 2020. No primeiro a produção para em 2006 e no último em 2010, ambos devido ao limite de corte de água de 95%.

Figura 40 - Fatores de recuperação (%) na injeção de água

Pode-se observar que somente no caso com 2 poços produtores e 2 injetores no simulador IMEX ocorreu produção continua até 2020 enquanto que no GEM a produção parou em 2017. Isso ocorreu porque o simulador composicional em 2017 atingiu o limite de corte de água que foi estipulado nos dados de entrada, que foi "WCUT 0.95", ou seja, o poço produtor para de produzir quando o corte de água atinge 95% (figura 41).

Figura 41 - Corte de água (%) na recuperação secundária com injeção de água

Na tabela 14 observa-se que os fatores de recuperação foram maiores em todos os casos no IMEX, porém observa-se que a produção para a maioria dos casos foi interrompida antes de 2020, isso ocorreu em virtude do limite de corte de água ter sido atingido. Nota-se também que, o aumento do número de poços produtores e injetores melhora a eficiência de varrido do óleo, com isso a queda de pressão do reservatório é mais acentuada, reduzindo o tempo de duração das simulações.

Fator de Recuperação % - injeção de água									
	2 poços	Duração da Produção (dias)	4 poços	Duração da Produção (dias)	6 poços	Duração da Produção (dias)			
GEM	54,13%	11483	61,68%	7525	59,25%	4148			
IMEX	58,79%	12418	64,70%	8766	62,28%	5359			

Tabela 14 - Resumo dos fatores de recuperação (%) na injeção de água

Comparando os fatores de recuperação entre o GEM e o IMEX no mesmo ano de referência, obtêm-se os valores da tabela 15. Observa-se que os fatores de recuperação do IMEX em todos os casos foram superiores que no GEM, como já explicado na tabela 10.

Tabela 15 - Comparação entre GEM e IMEX - mesmo tempo de duração – injeção de água

Fator de Recuperação % - injeção de água - mesmo tempo de simulação									
	2 00000	Período de Produção	1 nocos	Período de Produção	6 00000	Período de Produção			
	2 μοξος	(dias)	4 p0ç0s	(dias)	u hořoz	(dias)			
GEM	54,03%	11323	61,47%	7305	59,22%	4018			
IMEX	57,55%	11323	62,59%	7305	60,23%	4018			

O ponto negativo desse método é a liberação do CO₂ que estava no reservatório junto com o óleo e gás produzidos, e como não ocorre injeção de gás neste caso, não contribui para o armazenamento do dióxido de carbono.

Sendo assim, o gás produzido contribui para o aumento do dióxido de carbono na superfície, necessitando de tratamento e transporte, o que aumenta os custos de produção. A figura 42 mostra a quantidade em gmole de CO₂ que é produzido ao longo do processo.

Figura 42 - Produção de CO₂ do reservatório

5.7.2.3. Injeção de Gás

O processo de recuperação com injeção de gás é favorável para indústria e meio ambiente, uma vez que fatores de recuperação elevados são obtidos, assim como, grandes quantidades de CO₂ podem ser armazenadas com a injeção de gás contendo dióxido de carbono. A figura 43 mostra as porcentagens de óleo recuperado para cada caso de 2, 4 e 6 poços produtores e injetores no GEM.

Figura 43 - Fatores de recuperação (%) na injeção de gás – GEM

Observa-se que a produção dos casos de 2, 4 e 6 poços produtores e injetores não ocorreram até o fim do período inicialmente previsto para a simulação. No GEM, a produção foi interrompida em 2008, 2000 e 1995, respectivamente, devido à limitação da razão gás-óleo ter sido atingida nesses anos, o valor máximo estabelecido nos dados de entrada foi de 50.000 ft³/bbl, ver figura 44.

Figura 44 - Razão gás óleo na injeção de gás - GEM

A figura 45 mostra o fator de recuperação para cada caso do o IMEX. Nota-se que, em todos os casos simulação foi finalizada antes do prazo previsto.

O limite da razão gás-óleo foi atingido em 2005 para os casos de 2 e 4 poços produtores e injetores, como pode ser observado nas figuras 46 e 47.

Figura 46 - Razão gás óleo na injeção de gás - IMEX

Já no caso com 6 poços produtores e injetores a simulação finalizou em 1998 devido a razão gás óleo ter atingido o a taxa de 51.409 ft3/bbl no ano de 1998, como pode ser observado no arquivo de saída .log da figura 47.

	SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid															
Ti	me St	ep			Time		Total (Production	n		Total I	njection	Total PV	Max. Mat.	Max. Cl	nange
NO.	Size Davs	IT	C U T	Davs	vv:mm:dd	Oil STB/D	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
201 202w 203 204	53.5 62.5 62.5 8.04	2 6 3 5	- 0 1 1 3	4383 4446 4508 4516	1998:01:01 1998:03:05 1998:05:06 1998:05:14	7528.940 7316.879 7086.259	352465.5 357887.2 364297.4	.1214268 .1247039 .1288051	46815 48913 51409	.0016 .0017 .0018	384938.9 383369.7 383167.4 359829.5		9282 9285 9285 9285 9352	2.40 2.40 2.40 2.40 2.40	.054g .071g 0660 .0440	244 327 231 1046

IMEX TIME STEP SUMMARY

Figura 47 - Arquivo de saída .log – 2 poços produtores e injetores – IMEX

Na tabela 16 observa-se que os fatores de recuperação foram maiores em todos os casos no IMEX. O tempo de simulação superior para os casos com menor número de poços foi explicado na tabela 14.

Tabela 16 - Resumo dos fatores de recuperação (%) na injeção de gás

	Fator de Recuperação % - injeção de gás									
	2 poços	Duração da Produção (dias)	4 poços	Duração da Produção (dias)	6 poços	Duração da Produção (dias)				
GEM	51,73%	8195	67,30%	5253	66,85%	3477				
IMEX	61,98%	9559	75,81%	6940	74,32%	4508				

Comparando os fatores de recuperação entre o GEM e o IMEX no mesmo período de simulação, obtêm-se os valores da tabela 17. Os fatores de recuperação no IMEX foram superiores ao GEM, pois, o GEM considera a volatilidade do óleo no gás, isto é, o óleo se torna solúvel no gás e com isso sua produção é reduzida no separador.

Tabela 17 - Comp	aração entre GEM	e IMEX - mesmo	período - in	jeção de	gás
------------------	------------------	----------------	--------------	----------	-----

	Fator de Recuperação % - injeção de gás - mesmo tempo de simulação								
	2	Período de Produção	1 00000	Período de Produção	6 00000	Período de Produção			
	z poços	(dias)	4 poços	(dias)	σροζος	(dias)			
GEM	51,20%	8035	67,15%	5113	66,01%	3287			
IMEX	58,11%	8035	67,65%	5113	67,95%	3287			

O GEM é usado para analisar o saldo de CO₂ que pode ter ficado armazenado através do processo de injeção de gás na recuperação secundária. A figura 48 exibe o quantitativo de dióxido de carbono que é produzido junto ao óleo e injetado junto ao gás, cuja proporção de CO2 foi de 10%. A diferença entre o que é injetado do que é produzido está representada na figura 49, que mostra uma boa contribuição desse processo no sequestro do dióxido de carbono.

Figura 48 – GEM - CO₂ produzido x injetado

A figura 49 e a tabela 18 mostram o saldo positivo do sequestro de dióxido de carbono obtido com o processo de injeção de gás na recuperação convencional.

Figura 49 - Armazenamento de CO₂ no processo de recuperação secundário de injeção de gás

CO ₂ Armazenado	2P e 2IG	4P e 4IG	6P e 6IG	
(gmole)	38.985 bilhões	62.016 bilhões	65.289 bilhões	

Os valores apresentados na tabela 8 representando as quantidades acumuladas de CO_2 que ficaram armazenadas nos reservatórios durante o período simulado. Esses valores representam respectivamente 79%, 81% e 80% da quantidade total de CO_2 que foi injetado no reservatório para aumentar o fator de recuperação.

5.7.3. Métodos Especiais de Recuperação 5.7.3.1. WAG – Sem tensão interfacial e sem histerese

As simulações WAG foram estudadas no GEM e no IMEX, para 2, 4, e 6 poços produtores e injetores, e em cada um desses casos foram analisados os resultados obtidos quando se injeta primeiro água e depois gás e vice-versa. O intuito foi verificar o efeito da molhabilidade do óleo e da água no fator de recuperação. A molhabilidade depende do tipo de rocha do reservatório. O modelo utilizado é molhável à água.

No caso de um fluido mais complexo seria necessário o uso do *Lumping* o que gera um resultado mais apurado e próximo da realidade e não penaliza as simulações com relação ao tempo de rodada. Como o modelo usado nessa dissertação foi mais simples, isso não foi necessário.

a) Início da injeção com água

Nos 3 casos do GEM ocorreu erro devido a mudanças na densidade molar do CO_2 no bloco (9, 8, 1) localizado no poço injetor de número 1, conforme figura 50, isso ocorreu, pois há iterações próximas ao poço injetor, em que essa diferença de densidade é elevada, o que ocasionou dificuldades de convergência do modelo em um mesmo *time-step*, interrompendo as rodadas antes do prazo previsto.

Figura 50 - Modelo 3D - Início da injeção com água

Analisando as simulações do processo WAG no IMEX e GEM, as rodadas foram realizadas com sucesso, apesar do erro mostrado acima. O volume de óleo recuperado foi satisfatório.

Na figura 51 e na tabela 19, pode-se observar que somente o caso com 2 poços do IMEX teve a rodada concluída em 2020, os demais casos foram interrompidos antes do prazo final.

Figura 51 - Fator de recuperação (%) WAG – Início da injeção com água – IMEX -GEM

Tabela 19 - Resumo do fator de recuperação – WAG - Início da injeção com água – IMEX - GEM

	Fator de Recuperação % - WAG - início água									
		Duração da Produção		Duração da Produção		Duração da Produção				
	2 poços	(dias)	4 poços	(dias)	6 poços	(dias)				
GEM	9,61%	1207	19,06%	1198	28,21%	1181				
IMEX	54,43%	12418	65,59%	10795	65,59%	7057				

A tabela 20 compara os fatores de recuperação no mesmo ano de referência, observa-se que a configuração de 6 poços foi a mais favorável para a recuperação do óleo, como já mencionado na tabela 14.

Tabela 20 - Resumo do fator de recuperação – WAG Início da injeção com água mesmo período – IMEX - GEM

	Fator de Recuperação % - WAG - início água - mesmo tempo de simulação								
	2	Período de Produção	1 20000	Período de Produção	C nonce	Período de Produção			
	z poços	(dias)	4 poços	(dias)	ο μοζος	(dias)			
GEM	8,72%	1096	17,44%	1096	26,20%	1096			
IMEX	8,73%	1096	17,47%	1096	26,20%	1096			

Nos casos de 4 poços produtores e 4 injetores do IMEX a simulação foi interrompida em 2015 devido a razão gás óleo ter atingido o valor de 51.421 ft³/bbl, ver figura 52.

I M E X T I M E S T E P S U M M A R Y SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid

Ti	me Step			Time		Total	Production	n		Total 1	Injection	Total	Max.	Max. Cl	hange
	5170	C			0i1	Gas	Water	GOR.	Wat.	Gas	Water	AVg.	bal.	Satur.	Pres.
NO.	Days IT	т	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%	DOMAX	psia
661	12.6 3	0	10637	2015:02:15	1323.140	57791.34	13997.71	43677	91.36		24201.75	8975	3.4g	.152w	-32.2
662 663	12.4 3 13.1 3	0	10650	2015:02:28 2015:03:13	1295.256	57379.77	13989.78	44463	91.53 91.68		26407.82 27920.65	8949 8925	3.4g 3.5g	.142W .113w	28.1
664 665	17.5 2 28.1 3	0	10680 10708	2015:03:30 2015:04:27	1238.970 1196.841	57087.41 56693.00	13996.04 14009.47	46076 47369	91.87 92.13		29534.99 31417.70	8899 8865	3.5g 3.5g	.093w .108w	38.0 63.8
666 667	38.9 3 47.9 3	0 0	10747 10795	2015:06:05 2015:07:23	1146.221 1091.230	56329.36 56111.91	14013.06 14001.79	49144 51421	92.44 92.77		33214.23 34735.79	8827 8793	3.5g 3.6g	.122w .161w	94.4 118

Figura 52 – Arquivo de saída .log - Razão gás óleo - 4 poços produtores e 4 injetores

E no caso com 6 poços produtores e 6 injetores a simulação foi interrompida em 2005 devido à razão gás óleo ter atingido a taxa de 51.123 ft³/bbl, como mostrado na figura 53.

Ι	М	Е	X T	ΙΜΕ	STE	P S	UMMARY
			SPE5 :	SPE5	COMPOSI	TIONAL	. RUN 1
				Corner	r Point	Grid	

Ti	Time Step Time			Time	Total Production					Total I	njection	Total	Max.	Max. Cl	nange	
			c			oil	Gas	Water	GOR.	Wat.	Gas	Water	Avg.	bal.	Satur.	Pres.
NO.	Size Days	IT	U T	Days	yy:mm:dd	STB/D	MCF/D	STB/D	SCF/ STB	cut %	MCF/D	STB/D	pres. psia	err. %	DSMAX	DPMAX psia
461	46.7	9	0	6831	2004:09:14	1308.767	55824.84	14902.59	42655	91,93	115831.8		9282	3, 50	106a	587
462	54.6	9	ŏ	6885	2004:11:07	1266.332	55523.81	15166.68	43846	92.29	110030.8		9343	3.50	104w	387
463	54.6	9	0	6940	2005:01:01	1236.177	55330.30	15365.31	44759	92.55	104967.8		9394	3.50	091w	630
464w	5.00	1	0	6945	2005:01:06	1230.635	55263.52	15389.61	44906	92.60		29784.12	9387	3.50	101g	-76.9
465	7.41	1	0	6952	2005:01:13	1220.786	55087.45	15428.13	45125	92.67		21758.32	9376	3.50	083g	-58.2
466	13.3	1	0	6966	2005:01:27	1198.789	54574.13	15506.06	45524	92.82		19332.96	9348	3.60	.114w	169
467	17.5	3	0	6983	2005:02:13	1168.894	54570.21	15403.20	46685	92.95		22607.73	9303	3.60	.152w	115
468	17.3	3	0	7000	2005:03:02	1142.480	54575.32	15325.54	47769	93.06		26343.34	9266	3.60	.150w	115
469	17.2	3	0	7018	2005:03:20	1118.519	54592.56	15265.12	48808	93.17		29271.87	9236	3.60	.144w	114
470	18.0	3	0	7036	2005:04:07	1095.121	54611.44	15218.04	49868	93.29		31370.07	9210	3.60	.128w	159
471	21.0	2	0	7057	2005:04:28	1068.661	54633.34	15178.51	51123	93.42		33307.32	9188	3.60	.081w	99.5

Figura 53 - Arquivo de saída .log - Razão gás óleo - 6 poços produtores e 6 injetores

b) Início da injeção com gás

No GEM ocorreu o mesmo erro da simulação que no início da injeção com água. E no IMEX a produção de óleo foi interrompida antes do prazo previsto devido ao limite máximo de razão gás óleo ter sido atingido. Nas figuras 54 e 55 pode-se observar que todos os casos, nos dois simuladores, as rodadas foram interrompidas antes do prazo final.

Figura 54 - Fator de recuperação processo WAG - início gás - GEM

Figura 55 - Fator de recuperação processo WAG - início gás - IMEX

A tabela 21 mostra um resumo dos fatores de recuperação obtidos e o tempo de duração das simulações.

Tabela 21 - Resumo do fator de recuperação – WAG - Início da injeção co	m gás –
IMEX - GEM	

	Fator de Recuperação % - WAG - início gás												
	2	Duração da Produção	4 10 0000	Duração da Produção	6	Duração da Produção							
	z poços	(dias)	4 poços	(dias)	o poços	(dias)							
GEM	6,72%	850	19,06%	1198	19,72%	826							
IMEX	54,88%	12418	65,09%	11791	64,63%	6310							

Comprando os fatores de recuperação no mesmo ano de referência, pode-se observar que a configuração para 6 poços foi a mais favorável na recuperação do óleo, ver explicação da tabela 14.

Tabela 22 - Resumo do fator de recuperação – WAG - início da injeção com gás mesmo período – IMEX – GEM

	Fator de Recuperação % - WAG - início gás - mesmo tempo de simulação												
	Período de Produção Período de Produção Período de Produ												
	2 poços	(dias)	4 poços	(dias)	6 poços	(dias)							
GEM	5,81%	730	17,44%	1096	17,43%	730							
IMEX	5,81%	730	17,47%	1096	17,45%	730							

5.7.3.2. WAG com tensão interfacial

Com objetivo de estudar o efeito da tensão interfacial na permeabilidade relativa foram realizadas simulações com 4 diferentes valores de tensão interfacial, 20, 50, 70 e 80 dina/cm, para os casos de 2, 4 e 6 poços produtores e injetores e duas configurações de injeção, iniciando com água e com gás.

a) Início da injeção com água

No simulador GEM, com a inclusão da tensão interfacial nos arquivos de entrada, o processo WAG apresentou erro de cálculo para a densidade em células redefinidas do modelo base, pois a tensão interfacial afeta a pressão capilar que, por sua vez, ocasiona a formação de fluido trapeado o que dificulta a convergência, finalizando as simulações.

No IMEX para o caso com 2 poços produtores e 2 injetores pode-se observar na figura 56 que, as curvas para 70 dina/cm e 80 dina/cm são muito próximas e foram as que resultaram em fatores de recuperação maiores se comparadas com as curvas de 50 dina/cm e 20 dina/cm.

Figura 56 - Fator de recuperação para 2 poços produtores e 2 injetores

No GEM, para o caso com 2 poços produtores e 2 injetores pode-se observar na figura 57 que, as curvas com as diferentes tensões interfaciais estão sobrepostas.

Figura 57 - Fator de recuperação para 2 poços produtores e 2 injetores - GEM

No IMEX, figura 58, para o caso com 4 poços produtores e 4 injetores, os fatores de recuperação para as curvas de 70 dina/cm e 80 dina/cm apresentaram valores muito próximas e também resultaram em fatores de recuperação maiores se comparadas com as curvas de 50 dina/cm e 20 dina/cm.

Figura 58 - Fator de recuperação para 4 poços produtores e 4 injetores - IMEX

No GEM, figura 59, para o caso com 4 poços produtores e 4 injetores as curvas com as diferentes tensões interfaciais também ficaram sobrepostas.

Figura 59 - Fator de recuperação para 4 poços produtores e 4 injetores - GEM

No IMEX, no caso com 6 poços produtores e 6 injetores pode-se observar na figura 60 que, os valores dos fatores de recuperação para 50 dina/cm, 70 dina/cm e 80 dina/cm foram próximos e na tensão interfacial de 20 dina/cm o resultado foi inferior em relação aos demais.

Figura 60 - Fator de recuperação para 6 poços produtores e 6 injetores - IMEX

Figura 61 - Fator de recuperação para 6 poços produtores e 6 injetores - GEM

Analisando os arquivos .log do IMEX, nos casos iniciando com injeção de água, é possível verificar que o tempo de produção para o caso de 4 poços produtores e 4 injetores foi o único caso em que a simulação não foi interrompida antes do prazo final, com tensão interfacial de 50 dina/cm. Nos casos de 20, 70 e 80 dina/cm a interrupção ocorreu em 2019, sendo que, em 20 dina/cm a causa foi o limite da razão gás-óleo ter sido atingido, e para 70 e 80 dina/cm o limite do corte da água ultrapassou os 95%.

Os arquivos .log dos casos 6 poços produtores e 6 injetores também mostram que as simulações foram interrompidas antes do prazo final. Para a tensão interfacial de 20 dina/cm, pode-se verificar na figura 62 que, a produção foi interrompida em 2006 devido ao limite da razão gás óleo ter sido atingido.

Figura 62 - RGO - 6 poços produtores e injetores – início água - 20 dina/cm – IMEX

As figuras 63, 64 e 65, ilustram os casos das tensões interfaciais de 50, 70 e 80 dina/cm para os 6 poços produtores e 6 injetores, cujas simulações foram finalizadas devido ao limite de 95% para o corte de água ter sido atingido.

	IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid														
Time Step Time			Total Production				Total I	njection	Total	Max.	Max. Cł	nange			
NO.	size Days IT	C U T	Days	yy:mm:dd	оіl sтв/d	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
 321 322 3224 3225 3226 3228 3229 3320 3320 3331 3340 3340 3357 338 339 340w	$\begin{array}{c} 29.3\\ 58.4\\ 117\\ 28.9\\ 63.2\\ 4\\ 5.06\\ 221.6\\ 63.2\\ 4\\ 5.06\\ 221.6\\ 3\\ 5.5\\ 112.6\\ 3\\ 5.5\\ 3\\ 5.00\\ 1\\ 25.0\\ 125.2\\ 25.00\\ 1\\ 25.0$	000000000000000000000000000000000000000	8109 8167 8284 8313 8335 8401 8406 8448 8438 8448 8438 8448 8796 8796 8796 8981 9056 9131 9136	2008.03:10 2008.09:16 2008.09:16 2008.09:16 2008.10:25 2009.11:12 2009.01:01 2009.01:01 2009.01:01 2009.01:01 2009.01:01 2009.01:18 2009.01:02 2009.01:02 2010.01:01 2010.01:01 2010.01:01 2010.02:01 2010.02:01 2011.01:16 2011.01:06	803.2485 794.2848 778.6922	37521.13 37507.98 37352.23	14741.39 14769.34 14914.85	46712 47222 47968	94.83 94.90 95.04	65905.99 73803.46 79494.67 72869.79 49114.97 13454.69 10706.56 9043.348 9752.412 8965.219 7405.971	18219.85 15353.49 13898.39 13658.23 8893.970 7179.314 3308.674	9068 9079 9118 9229 9459 9459 9459 9459 9459 9516 9516 9820 9820 9835 9845 9835 9872	$\begin{array}{c}\\ 4.60\\$	075w 075w .065w .0800 .018g .040g 065g 061g 061g 061g .028g .026g .028g .026g	$\begin{array}{c} 115\\ 215\\ 5135\\ 1338\\ 169\\ 217\\ -19.00\\ 31.6\\ 39.7\\ 70.6\\ 122\\ 82.3\\ 64.9\\ 4.44\\ 20.1\\ 54.5\\ 150\\ 94.7\\ 6.34 \end{array}$

Figura 63 - Wat. Cut - 6 poços produtores e injetores – início água - 50 dina/cm – IMEX

	IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid														
ті	Time Step Time			тime	Total Production				Total I	njection	Total	Max.	Max. Ch	nange	
NO.	Size Days IT	C U T	Days	yy:mm:dd	Oil STB/D	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
301 302 303 304 305 306 307 308w 309 310 311 312 313 314 315 316 317 318 319w 320	$\begin{array}{c} -7.96&2\\ 13.3&4\\ 30.1&3\\ 50.4&3\\ 84.6&4\\ 84.6&3\\ 5.00&1\\ 7.19&2\\ 33.2&3\\ 33.2&3\\ 33.2&3\\ 33.2&3\\ 67.4&4\\ 109&4\\ 6.67&3\\ 6.14&1\\ 30.7&3\\ 65.8&4\\ 5.00&1\\ 11.8&3\\ \end{array}$	000000000000000000000000000000000000000	7683 7696 7777 7866 8035 8040 8059 8085 8115 8182 8298 8305 8335 8401 8401 8448	2007:01:14 2007:01:27 2007:01:28 2007:07:16 2007:07:16 2008:01:06 2008:01:06 2008:01:25 2008:02:17 2008:03:21 2008:05:27 2008:09:14 2008:09:27 2008:09:27 2008:10:27 2008:10:27	954.2415 944.4326 925.7175 908.4487 852.6243 8452.6243 845.8836 841.250 841.250 841.250 816.0012 802.6778 785.3378	34403.46 34373.34 34359.51 34410.66 34586.08 34736.00 34806.43 34778.64 34778.64 34778.64 34768.94 34768.94 34769.40 34767.14 34618.38	15154.24 15132.49 15132.49 151126.56 15111.61 15117.96 15162.67 15164.62 15158.94 15138.94 15138.94 15138.51	 36053 36396 37117 37878 39066 40265 40823 41126 41341 41651 42136 41341 42136 42607 43211 44081	94.08 94.13 94.24 94.33 94.47 94.67 94.72 94.72 94.78 94.78 94.78 94.88 94.88 94.88 94.97 95.08	53776.72 49858.52 53990.22 58427.07 62656.16 68211.48 76232.62 75802.27 75116.01 67243.99 50494.02	25180.64 25219.63 35007.80 35166.23 35319.55	9096 9086 9079 9083 9101 9111 9105 9098 9079 9072 9076 9101 9123 9255 9388 9338			52.5 92.5 379 292 3446 -68.66 40.66 67.9 101 111 2066 67.9 101 111 206 161 201 203 161 231 242 232.7 36.3

Figura 64 - Wat. Cut - 6 poços produtores e injetores – início água - 70 dina/cm – IMEX

IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid												
Time Step	Time	Total Productio	n	Total Injection	Total Max. Max. Change							
C Size U No. Days IT T Days	оil yy:mm:dd sтв/р	Gas Water MCF/D STB/D	GOR. Wat. SCF/ Cut STB %	Gas Water MCF/D STB/D	Avg. bal. Satur. Pres. Pres. err. DSMAX DPMAX psia % psia							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2008:01:24 854 574 572 2008:02:16 843.2507 2008:03:20 830.7509 2008:05:28 812.7440 2008:09:14 784.5021 2008:09:18 2009:01:101 2009:01:101 2009:01:18 2009:02:09 2009:02:09 2009:01:18 2009:01:18 2009:01:18 2009:01:18 2009:01:18 2009:02:09 2009:02:09 2009:02:00 2009:01:01 2010:01:01 2010:01:11 2010:03:29 2010:08:01	34120 34 15148 52 34117.57 15136.84 34090.68 15132.11 33940.93 15177.51 33797.57 15242.21	39937 94 66 40460 94.72 41035 94.80 41761 94.92 43082 95.11	1448.78 59123.57 63029.18 67448.13 74078.24 7333.26 6727.73 15638.23 15638.23 14452.98 10593.06 9147.523 7510.050	$\begin{array}{c} 9060 & -4.40 & -0.71 \\ + 0.52 \\ 9060 & 4.40 & -1.03 \\ + 0.51 \\ 9055 & 4.40 & -0.68 \\ + 0.55 \\ 9055 & 4.40 & -0.68 \\ + 0.55 \\ 9056 & 4.40 & -0.54 \\ + $							

Figura 65 – Wat. Cut - 6 poços produtores e injetores – início água - 80 dina/cm – IMEX

Como pode ser observado na tabela 23, para cada tensão interfacial do IMEX a produção foi interrompida em uma respectiva data.

IMEX - Fator de Recuperação % - WAG - início água												
Tensão	2	Duração da Produção	4	Duração da Produção	C	Duração da Produção						
Interfacial	2 poços	(dias)	4 poços	(dias)	6 poços	(dias)						
20 dina/cm	56,32%	12418	65,51%	12180	65,30%	7372						
50 dina/cm	57,48%	12418	66,62%	12418	66,86%	8284						
70 dina/cm	58,40%	12418	67,16%	12053	66,61%	8292						
80 dina/cm	58,38%	12418	66,99%	1201	66,81%	8292						

Tabela 23 - Analise comparativa entre as diferentes tensões interfaciais no IMEX – início água

Sendo assim, para uma análise adequada dos fatores de recuperação, os valores serão comparados em uma mesma data, ver tabela 24.

Tabela 24 - Analise comparativa entre as diferentes tensões interfaciais no IMEX – mesmo período - início água

IMEX - Fator de Recuperação % - WAG - início água - mesmo tempo de simulação												
Tensão	2 00005	Período de Produção	Anocos	Período de Produção	6 00000	Período de Produção						
Interfacial 2 poços		(dias)	4 p0ç0s	(dias)	υμοξος	(dias)						
20 dina/cm	56,32%	12418	65,47%	12053	65,28%	7305						
50 dina/cm	57,48%	12418	66,52%	12053	66,57%	7305						
70 dina/cm	58,40%	12418	67,16%	12053	66,32%	7305						
80 dina/cm	58,38%	12418	66,98%	12053	66,52%	7305						

Para o caso de 2 e 4 poços produtores e injetores o melhor fator de recuperação foi obtido com a tensão interfacial de 70 dina/cm e para o caso de 6 poços produtores e injetores o melhor fator de recuperação foi atingido com a tensão interfacial de 50 dina/cm. Estes fatos podem ser explicados pelo novo conjunto gerado de curvas de permeabilidade relativa que juntamente com o varrido obtido alterou o comportamento das linhas de fluxo de forma favorável à produção de óleo.

No GEM, em função do erro, a simulação foi interrompida bem no início da produção, conforme tabela 25.

Tabela 25 - Analise comparativa entre as diferentes tensões interfaciais no GEM – início água

GEM - Fator de Recuperação % - WAG - início água												
Tensão	2 2 2 2 2 2	Duração da Produção	4 10 0000	Duração da Produção	Change	Duração da Produção						
2 poços		(dias)	4 poços	(dias)	6 poços	(dias)						
20 dina/cm	9,60%	1207	19,05%	1197	28,27%	1184						
50 dina/cm	9,58%	1204	19,11%	1200	28,28%	1185						
70 dina/cm	9,56%	1202	19,03%	1196	28,30%	1185						
80 dina/cm	9,59%	1205	19,20%	1172	28,32%	1186						

Sendo assim, para uma análise adequada dos fatores de recuperação do GEM, os valores serão comparados no mesmo período, ver tabela 26.
	GEM - Fator de Recuperação % - WAG - início água - mesmo tempo de simulação												
Tensão	1 no.coc	Período de Produção	4 00000	Período de Produção	6 00000	Período de Produção							
Interfacial	z poços	(dias)	4 poços	(dias)	o poços	(dias)							
20 dina/cm	8,72%	1096	17,44%	1096	26,17%	1096							
50 dina/cm	8,72%	1096	17,44%	1096	26,17%	1096							
70 dina/cm	8,72%	1096	17,44%	1096	26,17%	1096							
80 dina/cm	8,72%	1096	17,44%	1096	26,17%	1096							

Tabela 26 - Analise comparativa entre as diferentes tensões interfaciais no GEM – mesmo período - início água

Nota-se que os melhores fatores de recuperação foram obtidos para os casos com maior número de poços, pois esta configuração melhora o varrido do reservatório. O fator de recuperação para as diferentes tensões interfaciais foi o mesmo, pois, no GEM o efeito da volatilidade no óleo, explicado na tabela 10, se sobrepõe ao efeito da tensão interfacial, conforme já mencionado na tabela 24.

b) Início da injeção com gás

O GEM apresentou o mesmo erro que no início de injeção com água, sendo as rodadas finalizadas antes do prazo previsto.

No IMEX, para o caso com 2 poços produtores e 2 injetores, pode-se observar na figura 66 que as curvas para 70 dina/cm e 80 dina/cm foram as que resultaram em fatores de recuperação maiores se comparadas com as curvas de 50 dina/cm e 20 dina/cm.

Figura 66 - Fator de recuperação para 2 poços produtores e 2 injetores - IMEX

No GEM para o caso com 2 poços produtores e 2 injetores pode-se observar na figura 67 que as curvas com as diferentes tensões interfaciais estão sobrepostas.

Figura 67 - Fator de recuperação para 2 poços produtores e 2 injetores - GEM

No IMEX, para o caso com 4 poços produtores e 4 injetores, os fatores de recuperação para as curvas de 70 dina/cm e 80 dina/cm apresentaram valores muito próximas e também resultaram em fatores de recuperação maiores se comparadas com as curvas de 50 dina/cm e 20 dina/cm, ver figura 68.

Figura 68 - Fator de recuperação para 4 poços produtores e 4 injetores - IMEX

No GEM, para o caso com 4 poços produtores e 4 injetores, as curvas com as diferentes tensões interfaciais também ficaram sobrepostas, conforme figura 69.

Figura 69 - Fator de recuperação para 4 poços produtores e 4 injetores - GEM

No IMEX, no caso com 6 poços produtores e 6 injetores, pode-se observar na figura 70 que os fatores de recuperação para 50 dina/cm, 70 dina/cm e 80 dina/cm resultaram em valores próximos, sendo que a tensão interfacial de 20 dina/cm apresentou resultado inferior em relação aos demais.

Figura 70 - Fator de recuperação para 6 poços produtores e 6 injetores - IMEX

No GEM, assim como nos demais casos, as curvas para o caso com 6 poços produtores e 6 injetores ficaram sobrepostas, ver figura 71.

Figura 71 - Fator de recuperação para 6 poços produtores e 6 injetores – GEM

Analisando os arquivos .log do IMEX, nos casos iniciando com injeção de gás, é possível verificar que, o caso de 4 poços produtores e 4 injetores e 20 dina/cm, foi interrompido antes do prazo final devido a razão gás-óleo ter atingido o limite máximo em 2019. E no caso de 6 poços produtores e 6 injetores para todas as tensões interfaciais a simulação foi interrompida antes do prazo final.

Analisando o caso de 6 poços produtores e 6 injetores, para a tensão interfacial de 20 dina/cm, pode-se verificar na figura 72 que a produção foi interrompida em 2005 devido ao limite da razão gás óleo ter sido atingido.

IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid													
Time Step		тime		Total	Total I	Total	Max.	Max. ch	nange				
Size No. Days IT	C U T Days	yy:mm:dd	оіl stв/d	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	2004:06:24 2004:06:24 2004:08:11 2005:01:02 2005:01:02 2005:01:02 2005:01:25 2005:01:25 2005:01:25 2005:01:25 2005:01:25 2005:01:02 2005:01:02 2005:01:02 2005:01:02 2005:11:00 2005:10:00 2005:10 2005:10:00 200	904.4340 902.2814 881.6931 888.16955 885.4044 882.9494 882.9499 881.0271 880.2343 879.7461 873.0305 871.0215 863.4640 862.0476 859.2352 856.0571 849.9065	41463.72 41781.38 41887.53 42632.70 42609.89 42605.60 42639.31 42635.85 42664.81 42655.60 42651.38 42669.68 42661.88 42618.28 42622.31 42622.53 42626.59 4268.15 42708.85	$\begin{array}{c} 14997.11\\ 14922.26\\ 14919.38\\ 14875.24\\ 14807.71\\ 14813.80\\ 14814.12\\ 14799.93\\ 14804.34\\ 14784.41\\ 14776.17\\ 14782.57\\ 14788.20\\ 14788.30\\ 14810.51\\ 14788.31\\ 14810.51\\ 14808.83\\ 14811.97\\ 14808.83\\ 14811.97\\ 14808.47\\ 14813.06\\ \end{array}$	45845 46306 46975 47477 47948 48125 48223 48223 48223 48223 48223 48223 48248 48481 48875 48929 49439 49433 49610 49864 50251	$\begin{array}{c} 94.31\\ 94.36\\ 94.36\\ 94.36\\ 94.36\\ 94.37\\ 94.37\\ 94.37\\ 94.38\\ 94.38\\ 94.38\\ 94.38\\ 94.38\\ 94.54\\ 94.49\\ 94.50\\ 94.52\\ 94.54\\ 94.57\\ \end{array}$	54828.56 51377.02 56964.36 62433.20 69955.55 83046.85 93496.08 101869.7 114245.6 118901.4 121874.8 126423.0 128522.2	33569.52 34824.13 35720.3 36147.19 36444.19	9143 9141 9140 9141 9132 9127 9126 9132 9132 9132 9133 9133 9133 9133 9134 9134	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	089g 094g .056w 069g .101g .096g 097w 092w 092w 092w 088w 054w 044w 031w 022w .017g .010g .010g .017g .010g .0104w 022w .017g .0104w 022w .017g .0102w .022w	290 646 514 631 -60.6 102 101 170 359 287 307 324 248 201 161 161 265 141 1078

Para as tensões interfaciais de 50, 70 e 80 dina/cm a razão da interrupção da simulação foi o limite de 95% para o corte de água ter sido atingido, conforme mostrado nas figuras 73, 74 e 75.

IMEX TIME STEP SUMMARY SPE5: SPE5 COMPOSITIONAL RUN 1 Corner Point Grid											
Time Step T	ime	Total Production					Total Injection		Max.	мах. с	nange
C Size U	oi1	Gas	Water	GOR. SCF/	Wat. Cut	Gas	Water	Avg. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
NO. DAYS IT T DAYS	yy:mm:dd STB/D	MCF/D	STB/D	STB	~~~~	MCF/D	STB/D	psia	%		psia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37407.78 77418.87 77439.90 77458.67 37456.04 77452.07 77449.76 77481.08 37532.53 37532.53 37532.53 37522.72 37497.02 37497.02 37497.02 37497.02 37497.02 37497.02 37497.02 37497.02 37497.02 37497.02 3760.99 8763.09 8001.37 380045.75	14779.38 14767.67 14758.04 14768.29 14789.20 14789.20 14798.920 14807.35 14817.25 14817.25 14817.25 14826.99 14826.58 14786.08 14786.76 14766.76	39738 40052 40379 41187 42067 42487 42812 43806 43801 43876 43876 43876 43876 44542 47095 48613 48821 49156	$\begin{array}{c} 94. \ 01\\ 94. \ 05\\ 94. \ 09\\ 94. \ 20\\ 94. \ 38\\ 94. \ 42\\ 94. \ 38\\ 94. \ 42\\ 94. \ 53\\ 94. \ 55\\ 94. \ 54\\ 94. \ 53\\ 94. \ 54\\ 94. \ 54\\ 94. \ 98\\$	59956.96 64628.10 69360.99 79848.93 89343.85 95187.50 98703.93 102930.6 105692.8 59365.75 56084.49 61105.86	32174.41 28301.88 27526.79 31334.27 34984.05 37066.18 38778.14 39836.40	9052 9049 9052 9055 9055 9055 9057 9059 9059 9059 9059	2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70	078w 110w 075w 075w 047w 028w 028w 028w 028w .025w 028w .088w .073w 089g 089g 089g 089g 088g 086g 088g 088g 088g 088g 088g 088g 088g 088g 086	83.3 171 124 284 333 281 230 238 273 -68.4 37.5 65.2 143 249 228 443 443 443 443 248 443 443 248 443 443 443 443 443 443 443 443 443 4

Figura 73 - Wat. Cut - 6 poços produtores e 6 injetores – início gás - 50 dina/cm – IMEX

	SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid															
ті	me Ste	ep			тime	Total Production					Total Injection		Total	Max.	мах. cł	nange
	size		C			oil	Gas	Water	GOR.	Wat.	Gas	Water	AVG.	bal.	Satur. DSMAX	Pres. DPMAX
NO.	Days	IT	Ť	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
321 3222 3222 3225 3227 3228 3227 3228 3228 3228 3228 3228	51.3 91.1 3.07 15.9 72.4 5.00 11.7 50.0 73.5 100 5.00 82.2 125 82.2 128 5.00	- 33213551243334123141	-00m00000000000000000000000000000000000	8143 8234 8234 8240 8256 8329 8401 8406 8418 8443 8493 8567 85666 8771 8796 8771 8796 8771 8796 8771 8796 8771 8793 8003 9131 9136	008:04:18 2008:07:21 2008:07:24 2008:07:24 2008:07:24 2008:07:24 2008:07:24 2008:07:24 2008:07:24 2008:01:21 2009:01:01 2009:01:18 2009:04:03 2010:01:01 2010:01:01 2010:01:01 2010:01:01 2010:01:31 2010:04:23 2011:01:01	826 9168 811.1222	33535.74 33767.97	15445.27 15413.08	40555	94.92 95.00	32249.01 25795.91 24115.47 21431.63 18068.90 14917.26 11286.06	32815.17 34995.51 34992.55 34961.90 3809.31 26623.45 19998.62 5064.597 4656.468 4256.222 3469.503 2715.497	9084 9089 9010 9168 9531 9535 9589 9555 9699 9750 9808 9808 9808 9808 9808 9851 9899 9920	2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	084g 076g .0350 .0190 .0270 .043g 0250 .064g 068w 077w 102w .054w 054w .036g 020g 054g 032g 032g 032g 012w	104 240 949 175 211 211 211 226.3 47.2 62.50 57.1 53.6 57.1 53.6 57.1 53.5 341.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 33.0 41.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Figura 74 - Wat. Cut - 6 poços produtores e 6 injetores – início gás - 70 dina/cm – IMEX

IMEX TIME STEP SUMMARY

	SPE5 : SPES COMPOSITIONAL RUN 1 Corner Point Grid															
тi	ne St	ep			тime		Total I	production	יייייי ו		TOTAl I	njection	Total	Max.	мах. сн	nange
	size		c			011	Gas	Water	GOR. SCF/	Wat. Cut	Gas	Water	AVG. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
NO.	Days	IT	т	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
321 3223 3224 3225 3226 32278 3229 3331 33323 3331 3335 3335 3335 3335 333	56.1 102 9.6 47.9 80.00 11.3 24.4 47.7 72.2 102 5.00 25.0 25.0 25.0		002000000000000000000000000000000000000	8149 8251 8263 8272 8320 8401 8447 8447 8442 8442 8562 8562 85766 8771 8796 8874 8874 8999 9131 61	2008:04:24 2008:08:10 2008:08:25 2008:10:12 2009:01:01 2009:01:01 2009:01:17 2009:02:11 2009:02:12 2009:09:21 2009:09:21 2010:01:01 2010:01:01 2010:01:01 2011:01:01 2011:01:01 2011:01:01 2011:01:01 2011:01:01	829.3670 814.4324	31807.44 32193.30	15744.58 15686.50	38351 39529	95.00 95.06	33982.92 27430.88 25863.43 23065.79 19329.04 15933.40 13304.36 9147.221 7388.592	32676.84 34579.11 34314.03 33647.25 28647.61 21325.80 5961.182 5470.505 5470.505 5470.505 4386.186 4691.768	9083 9092 9130 9165 9313 9497 9506 9557 9675 9730 9675 9776 9771 9824 9864 9864 9870 9876	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	082g 074g .0670 .049g 049g 049g 069w 069w 077w 099w 038g 023g 048g 023g 020g 020g 020g 020g 020g 020g	$145 \\ 313 \\ 1167 \\ 159 \\ 244 \\ 15.8 \\ 49.16 \\ 66.6 \\ 70.5 \\ 62.9 \\ 47.9 \\ 47.9 \\ 47.9 \\ 35.1 \\ 43.9 \\ 10.0 \\ 10.0 \\$

Figura 75 - Wat. Cut - 6 poços produtores e 6 injetores – início gás - 80 dina/cm – IMEX

Como pode ser observado na tabela 27, para cada tensão interfacial a simulação foi interrompida em uma determinada data.

Tabela 27 - Analise comparativa entre as diferentes tensões interfaciais no IMEX – início gás

	IMEX - Fator de Recuperação % - WAG - início gás											
Tensão Interfacial	2 poços	Duração da Produção (dias)	4 poços	Duração da Produção (dias)	6 poços	Duração da Produção (dias)						
20 dina/cm	56,54%	12418	65,28%	12112	64,51%	7292						
50 dina/cm	57,78%	12418	66,07%	12418	65,93%	8424						
70 dina/cm	58,77%	12418	66,69%	12418	66,31%	8234						
80 dina/cm	59,78%	12418	66,78%	12418	66,32%	8251						

Para uma análise adequada dos fatores de recuperação, os valores serão comparados, nos casos iniciando com gás, no mesmo período de simulação, ver tabela 28.

	IMEX - Fator de Recuperação % - WAG - início gás - mesmo tempo de simulação											
Tensão Interfacial 2 pocos Período de Produção 4 pocos Período de Produção 6 pocos Período de Produção												
TETISdU IIILETTdUldi	2 μοξος	(dias)	4 p0ç0s	(dias)	o hořoz	(dias)						
20 dina/cm	56,54%	12418	65,26%	12053	64,40%	6940						
50 dina/cm	57,78%	12418	65,97%	12053	65,47%	6940						
70 dina/cm	58,77%	12418	66,59%	12053	65,92%	6940						
80 dina/cm	59,78%	12418	66,69%	12053	65,92%	6940						

Tabela 28 - Analise comparativa entre as diferentes tensões interfaciais no IMEX – mesmo período - início gás

Assim como na injeção iniciando com água, a injeção iniciando com gás também apresentou o melhor fator de recuperação para o caso de 2 e 4 poços produtores e injetores, o que foi obtido com a tensão interfacial de 70 dina/cm, e para o caso de 6 poços produtores e injetores o melhor fator de recuperação foi obtido com a tensão interfacial de 50 dina/cm. A explicação é a mesma da tabela 24.

No GEM, em função do erro, a simulação foi interrompida no início da produção, ver tabela 29.

Tabela 29 - Analise comparativa entre as diferentes tensões interfaciais no GEM – início gás

	GEM - Fator de Recuperação % - WAG - início gás												
Tensão Interfacial	2 poços	Duração da Produção (dias)	4 poços	Duração da Produção (dias)	6 poços	Duração da Produção (dias)							
20 dina/cm	6,76%	850	19,05%	1197	19,80%	829							
50 dina/cm	6,82%	856	19,11%	1200	19,76%	827							
70 dina/cm	6,78%	852	19,03%	1196	19,81%	829							
80 dina/cm	6,81%	855	19,20%	1206	19,80%	829							

Sendo assim, para uma análise adequada dos fatores de recuperação no GEM, os valores serão comparados no mesmo período, conforme tabela 30.

GEM - Fator de Recuperação % - WAG - início gás - mesmo tempo de simulação												
Tensão Interfacial 2 pocos Período de Produção A pocos Período de Produção 6 pocos Período de Produção												
TETISOU TITLETTOLIOT	z poços	(dias)	4 µ0ç0s	(dias)	ohořoz	(dias)						
20 dina/cm	5,81%	730	11,65%	732	17,48%	732						
50 dina/cm	5,81%	730	11,65%	732	17,48%	732						
70 dina/cm	5,81%	730	11,65%	732	17,48%	732						
80 dina/cm 5,81% 730 11,65% 732 17,48%												

Tabela 30 - Analise comparativa entre as diferentes tensões interfaciais no GEM	M -
mesmo período - início gás	

Comparando os três casos, nota-se que com aumento do número de poços produtores e injetores melhora a eficiência de varrido, aumentando assim, o fator de recuperação. Quando o varrido é baixo, o fluido injetado encontra caminhos preferenciais e se dirige rapidamente para os poços de produção, deixando grandes porções de óleo no reservatório.

5.7.3.3. WAG com histerese

Com objetivo de estudar o efeito da histerese na permeabilidade relativa, foram realizadas rodadas com 02 valores de "EPSPC"¹⁵⁵, 0,1 e 0,05, que determina a transição entre as curvas de embebição e de drenagem para a pressão capilar óleo-água, para os casos de 2, 4 e 6 poços produtores e injetores, utilizando processo WAG iniciando com água e com gás

Tanto o GEM como o IMEX não aceitam o uso dos cartões de tensão interfacial e histerese simultaneamente. Para que a análise da histerese possa ser realizada é necessário retirar o efeito da tensão interfacial.

No simulador GEM, para o processo WAG iniciando com água e com gás, os casos de 2 e 4 poços produtores e injetores para os dois valores de histerese apresentaram o erro no bloco (9, 8, 1) (ver figuras 76 e 77) e tiveram suas rodadas finalizadas antes do prazo previsto, conforme já explicado no item 5.7.3.1, item a.

¹⁵⁵ Chave de entrada usada no arquico.dat dos simuladores.

Figura 76 - Saturação de gás - caso com 2 poços produtores e injetores- ano 1989 – GEM

Figura 77 - Saturação de gás - caso com 4 poços produtores e injetores- ano 1989 – GEM

Já os casos com 6 poços produtores e injetores os erros foram no bloco (5, 2, 1), ilustrado na figura 78, e também tiveram suas rodadas finalizadas até 1989.

Figura 78 - Saturação de gás - caso com 6 poços produtores e injetores- ano 1989 – GEM

a) Início da injeção com água e gás

No IMEX, todas as rodadas foram concluídas sem apresentar erro. Analisando as simulações para os valores de 0,05 e 0,1 de histerese, para o caso com 2 poços produtores e 2 injetores o resultado foram curvas de fator de recuperação com valores muito próximos, tanto na injeção iniciando com água quanto iniciando com gás, conforme figura 79.

Figura 79 - Fator de recuperação 2 poços produtores e 2 injetores – Histerese início água e início gás – IMEX

Analisando as simulações para os valores de 0,05 e 0,1 de histerese, para o caso com 4 poços produtores e 4 injetores observa-se na figura 80 que as curvas também ficaram muito próximas.

Figura 80 - Fator de recuperação 4 poços produtores e 4 injetores – Histerese início água e início gás – IMEX

E o caso de 6 poços produtores e 6 injetores, para os valores de 0,05 e 0,1 de histerese, observa-se na figura 81 o mesmo comportamento das curvas que nos casos anteriores.

Figura 81 - Fator de recuperação 6 poços produto res e 6 injetores – Histerese início água e início gás – IMEX

Analisando os arquivos .log do IMEX, nota-se que para os casos de 2 poços produtores e 2 injetores a produção ocorreu conforme previsto até 2020. Porém, para os casos de 4 poços produtores e 4 injetores, histerese de 0,05 e 0,1 iniciando a injeção com água, a produção foi finalizada em 2015 em função do RGO ter atingido o limite máximo estabelecido, conforme figuras 82 e 83.

I M E X T I M E S T E P S U M M A R Y SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid											
Time Step T	rime	Total Production					njection	Total	Max.	Max. Ch	nange
c Size U No. Days IT T Days	oil yy:mm:dd STB/D	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	015 0215 1223 140 015 0228 1295 256 0015 0218 1295 256 0015 02197 1386 970 015 02197 1386 970 015 02197 1386 970 015 0273 1091 230 015 0273 1091 230 015 0273 1091 230 015 0273 1091 230 015 025 1046 231 016 025 146 241 016 025 1091 230 016 021 125 1016 016 021 131 126 016 021 131 126 016 021 141 126 016 021 141 126 016 021 141 126 016 021	57791.34 57599.19 7309.71 56693.00 56329.36 56111.91	13997.71 13989.78 13986.89 13996.04 14009.47 14013.06 14001.79	43677 44463 45225 46076 47369 49144 51421	91.36 91.53 91.68 91.87 92.13 92.44 92.77	30924.90 27185.43 28963.44 28221.23 29234.8 28221.23 26848.73 25229.61	24201.75 26407.82 27920.65 29534.99 31417.70 33214.23 34735.79 33364.27 30775.24 26334.58 23228.80 20488.96	8975 8949 8925 8829 8865 8827 8793 88865 8827 8793 8980 9128 9317 9325 9337 9337 9337 9367 9411 9474 9549 9601 9645	44555556666655555555555555555555555555	.152w .142w .093w .103w .122w .122w .122w .077g .097g .136g .078g .087g .087g .087g .106w .087g .087g .096w .134w .095w .096w .096w .096w .096w .096w .096w	$\begin{array}{c} -32.2\\ -37.8\\ 28.1\\ 38.0\\ 63.8\\ 94.4\\ 118\\ 136\\ 164\\ 107\\ 92.2\\ -33.0\\ 16.7\\ -53.5\\ 53.4\\ -98.6\\ 76.0\\ 53.8\\ -141 \end{array}$

Figura 82 - RGO - 4 poços produtores e 4 injetores - início água – histerese 0,05 – IMEX

	IMEX IIME SIEP SUMMARY SPE5: SPE5 COMPOSITIONAL RUN 1 Corner Point Grid															
ті	Time Step Time					Total Production					Total I	njection	Total	Max.	мах. с	nange
	size		CU			oil	Gas	Water	GOR. SCF/	Wat. Cut	Gas	Water	Avg. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
NO.	Days	IT	Τ	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
661 662 663 664 665 666 667 668 670 672 672 675 675 675 676 677 678 679 680	$\begin{array}{c} 12.6\\ 12.4\\ 13.1\\ 17.5\\ 28.9\\ 47.9\\ 22.4\\ 28.2\\ 43.49\\ 33.9\\ 33.00\\ 8.62\\ 16.5\\ 36.8\\ 23.5\\ 36.8\\ 41.5\\ 32.5\\ 32.5\\ \end{array}$	33323335374511344653	00000001000000000011	10637 10650 10663 10680 10705 10705 10818 10846 10889 10923 10957 10962 10971 10962 10971 110147 110147 110154	2015:02:15 2015:02:28 2015:03:13 2015:03:30 2015:04:27 2015:06:05 2015:06:05 2015:08:15 2015:08:12 2015:10:25 2015:10:25 2016:01:11 2016:02:24 2016:03:31 2016:05:12 2016:07:16	1323.140 1295.256 1268.762 1238.970 1196.841 1146.221 1091.230	57791.34 57591.99 57379.77 57087.41 56693.00 56329.36 56111.91	13997.71 13989.78 13986.89 13996.04 14009.47 14013.06 14001.79	43677 44463 45225 46076 47369 49144 51421	91.36 91.53 91.68 91.87 92.13 92.44 92.77	30924.90 27185.43 28604.41 28983.36 29234.84 28221.23 26848.73 25229.61	24201.75 26407.82 29534.99 31417.70 33214.23 33364.27 30775.24 26334.58 2328.80 20488.96	8975 8949 89255 88899 88627 8793 88833 89800 9128 93155 9337 93411 9474 9549 9601 9645	44555555555555555555555555555555555555	.152w .142w .093w .108w .108w .108w .108w .161w .077g .097g .136g .097g .106g .078g .087g .087g .106g .078g .106g .078g .095w .096w .134w .095w .096w .095w .095w .095w .096w .095w .096w .095w .096w .096w .096w .096w .096w .096w .096w .096w .096w .096w .096w .096w .097g .006g .007g .007g .006g .007g .006g .007g .006g .007g .006g .007g	$\begin{array}{c} -32.2\\ -27.8\\ 28.1\\ 38.0\\ 63.8\\ 94.4\\ 118\\ 793\\ 136\\ 164\\ 107\\ 92.2\\ -33.0\\ 16.7\\ -53.5\\ 55.4\\ -98.6\\ 76.0\\ 55.8\\ -141\end{array}$

Figura 83 - RGO - 4 poços produtores e 4 injetores - início água – histerese 0,1 – IMEX

Para os casos de 4 poços produtores e 4 injetores, histerese de 0,05 e 0,1 iniciando a injeção com gás, a produção foi finalizada em 2016 em função do RGO ter atingido o limite máximo estabelecido, ver figuras 84 e 85.

	IMEXTIME STEPSUMMARY SPE5: SPE5COMPOSITIONAL RUN 1 Corner Point Grid															
ті	ne Ste	ep			тime		Total	Production	n		Total I	njection	Total	Max.	мах. с	nange
NO.	Size Days	іт	C U T	Days	yy:mm:dd	Oil STB/D	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas MCF/D	Water STB/D	Avg. Pres. psia	bal. err. %	Satur. DSMAX	Pres. DPMAX psia
721 722 723 725 726 727 728 729 730 731 732 731 732 733 733 735 738 738 738 738 738 738 738 738 738 738	5.89 110.96 112.68 113.33 131.32 50.20 113.33 132.52 383.42 335.22 14.65 355.43 355.24 30.22 14.65 355.47 77.7	-13233537414379116699	-0000000101100000000	10968 10979 11003 11014 11028 11044 11075 11101 11151 11123 11223 11328 11328 11343 11345 11429 11485 114563	$\begin{array}{c} \begin{tabular}{ c c c c c } \hline c & c & c & c & c \\ \hline c & c & c & c & c \\ \hline c & c & c & c & c & c \\ c & c & c & c &$	1209-579 1184-940 1186-911 1135-598 1115-307	57259.67 57018.82 56746.08 56478.56 56241.97	1436584 14400.99 14402.86 14409.16 14409.15	47339 48120 48881 49735 50427	92.24 92.40 92.55 92.69 92.81	17383.06 14090.98 13086.98 13086.98 11128.21 11128.21 9337.160	21265-90 128800-14 24268.22 24268.22 26377.38 26891.81 26259.31 24143.47 22385.12 24143.47 2385.0.46 16366.64 14833.61 12457.70 10246.83	9088 9055 90288 8998 9076 9076 9174 9243 9368 9452 9506 9505 9667 9655 9660 9769 9769 9769 9813		.079w .125w .125w .122g .078g .078g .079g .099g .048g .083g .083g .072g .072g .082w .149w .138w	$\begin{array}{c} -78.4\\ -57.1\\ 37.66\\ 43.69\\ 747\\ 111\\ 111\\ 131\\ 87.66\\ 72.1\\ 116\\ 74.00\\ -6.92\\ -28.66\\ 31.00\\ -43.99\\ 45.4 \end{array}$

Figura 84 - RGO - 4 poços produtores e 4 injetores - início gás – histerese 0,05 – IMEX

	IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid													
Time Ste	p		Time		Total I	production	n		Total I	njection	Total	Max.	Max. Ch	nange
Size	C			oil	Gas	Water	GOR. SCF/	Wat. Cut	Gas	Water	Avg. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
No. Days	т т	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10968 10979 109900 11003 11014 11028 11044 11075 11101 11151 11123 11223 11223 11328 11328 11343 11343 11345 11345 11345 11345 11355 11563		1209.579 1184.940 1160.911 1135.598 1115.307	57259.67 57018.82 56746.08 56478.56 56241.97	14386.84 14400.99 14412.86 14409.16 14407.15	47339 48120 48881 49735 50427	92.24 92.40 92.55 92.69 92.81	17383.06 14090.98 13086.27 12439.31 11128.27 9337.160	21265.90 18880.14 21209.52 24268.22 26377.38 26891.81 26259.31 24143.47 22385.12 18850.46 16366.64 14833.61 12457.70 10246.83	9088 9055 9028 8998 8998 8974 90176 9243 9368 9506 9583 9566 9565 9660 9662 9729 97729 97729 9813		.079w .129w .129w .129w .133w 122g 073g 071g 099g 062g 082g 082g .051g .072g .051g .072g .082w 188w	$\begin{array}{c} -78.4\\ -57.1\\ 37.6\\ 43.6\\ 40.9\\ 747\\ 111\\ 147\\ 111\\ 131\\ 87.6\\ 72.1\\ 116\\ 74.0\\ -6.92\\ -28.6\\ 31.0\\ -49.0\\ 9.45.4 \end{array}$

Figura 85 - RGO - 4 poços produtores e 4 injetores - início gás – histerese 0,1 – IMEX

Com o caso de 6 poços produtores e 6 injetores o mesmo acontece para as injeções iniciando com água, ou seja, para os 2 valores de histerese a produção é interrompida em 2005 em função do RGO ter atingido o limite máximo estabelecido, ver figuras 86 e 87.

	IMEX TIM SPE5: SF Cor	E STEP SUMI PE5 COMPOSITIONAL RUN 'ner Point Grid	MARY 1		
Time Step Time	Total F	production	Total Injection	Total Max.	Max. Change
C Size U No. Days IT T Days yy:mm	Oil Gas m:dd STB/D MCF/D	Water GOR. Wat. SCF/ Cut STB/D STB %	Gas Water MCF/D STB/D	Avg. bal. Pres. err. psia %	Satur. Pres. DSMAX DPMAX psia
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00$	14902 59 42655 91 93 15166 68 43846 92 29 15365 31 44759 92 55 15389 61 44906 92 60 15428 13 45125 92 67 15428 14 45125 92 67 15405 00 45665 92 85 15325 54 47769 93 06 15265 12 48808 93 17 15218 04 49868 93 29 15178 51 5122 93 42	115831.8 110030.8 104967.8 29784.12 21738.32 2138.32 22637.3 22807.9 22971.87 31370.07 31370.07 31370.07 31370.07 31370.47 228973.18 22893.13 22893.13 22189.42 17988.93 13783.27 10192.05 14156.64	$\begin{array}{c} -2282 \\ -3500 \\ -3433 \\ -3500 \\ -3434 \\ -3500 \\$	$\begin{array}{c} -10 6g \qquad 587 \\ -10 6g \qquad 587 \\ -10 91w \qquad 387 \\ -0 91w \qquad 630 \\ -10 1g \ -76 .9 \\ -0 83 g \ -76 .9 \\ -11 3g \ -76 .9 \\ -7$

Figura 86 - RGO - 6 poços produtores e 6 injetores - início água – histerese 0,05 – IMEX

	IMEX SPE5	TIME STEP 5: SPE5 COMPOSIT Corner Point G	SUMMARY ONAL RUN 1 id			
Time Step Time	2 T	rotal Production	Total I	injection Tota	1 Max.	Max. Change
C Size U	oil G	Gas Water GOI SCI	. Wat. Gas / Cut	Water Avg. Pres	bal. err.	Satur. Pres. DSMAX DPMAX
No. Days IT T Days yy:	mm:dd STB/D MC	F/D STB/D S	B % MCF/D	STB/D psia	%	psia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109-14 1308.767 558 111:07 1266.332 555 101:01 1236.332 555 101:01 1230.635 552 101:13 1220.786 540 102:13 1120.786 540 102:13 1168.894 545 103:20 1148.549 545 103:20 1148.549 545 104:28 1068.661 546 106:06 106:06 106:06 107:199 109:04 100:06 101	224,84 14902,59 42 23,81 5166,68 43 330,30 15365,31 44 68,52 15389,61 44 187,45 15428,13 45 77,12 115428,13 45 77,12 11530,00 4 6 775,32 15325,54 47 532,56 15265,12 48 511,44 15218,04 49 533,34 15178,51 51	55 91. 93 115831. 6 46 92.29 110030. 8 59 92.55 104967. 8 05 92.67 49 92.85 104967. 8 92.67 49 92.85 69 93.06 89 93.17 68 93.29 93.42 18111.51 14156.64	92 29784.12 938 29784.23 938 21758.36 939 21758.36 938 21758.36 933 26347.973 933 26343.34 926 29271.87 923 31370.07 918 33007.32 918 33007.32 918 33007.33 934 24803.13 934 21989.42 955 17988.93 955 10192.05 976 976 978	2 3. 50 0 3. 50 0 7 3. 50 0 7 5 0	$\begin{array}{c} -106g & 587 \\ -104W & 387 \\ -091W & 630 \\ -101g & -76.9 \\ -033g & -58.6 \\ -115W & 115 \\ -115W & 115 \\ -115W & 115 \\ -112W & 159 \\ -061U & 99.5 \\ -072G & 137 \\ -108G & 205 \\ -078G & 80.3 \\ -078G & 80.3 \\ -072G & 14.9 \\ -078G $

Figura 87 - RGO - 6 poços produtores e 6 injetores - início água – histerese 0,1 – IMEX

E para os casos de 6 poços produtores e 6 injetores, histerese de 0,05 e 0,1 iniciando a injeção com gás, a produção foi finalizada em 2003 também devido ao RGO ter atingido o limite máximo estabelecido, conforme figuras 88 e 89.

	IMEX TIME STEP SUMMARY SPE5 : SPE5 COMPOSITIONAL RUN 1 Corner Point Grid															
ті	ne St	ер			тime		Total I	production	n		Total I	njection	Total	Max.	мах. cł	nange
	size		ç			oil	Gas	Water	GOR. SCF/	Wat. Cut	Gas	Water	Avg. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
No.	Days	IT	Ť	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
441w 442 443 4445 445 446 445 446 445 455 455 455 45	5.00 5.75 7.58 18.2 21.9 30.6 4 24.4 48.8 4 33.7 53.7 53.7 22.1 55.5 50.6 3 103	12226516254633312253	00000001011010000000	6214 6220 6239 6239 6310 6336 6336 6336 6433 64433 64450 6574 6574 6574 6574 66790	2003:01:06 2003:01:12 2003:01:12 2003:01:12 2003:01:131 2003:00:131 2003:00:131 2003:00:142 2003:04:12 2003:05:08 2003:06:01 2003:06:12 2003:06:12 2003:06:11 2003:06:11 2003:06:11 2003:06:11 2003:06:11 2003:06:11 2003:09:16 2004:01:01 2004:01:02 2004:01:02 2004:01:02 2004:03:04 2004:03:04	1243.037 1230.703 1215.645 1192.299 1165.067 1143.589 1129.427	54567.89 54743.64 54982.51 55389.05 55947.15 56670.00 57582.00	13694.59 13676.90 13650.19 13597.84 13579.17 13579.06 13610.05	43899 44482 45229 46456 48021 49555 50983	91.68 91.74 91.82 91.94 92.10 92.23 92.34	83279.27 87453.85 95760.63 106783.7 125164.5 13664.5 139647.9 131892.6 106071.4 88193.58 62248.10 48183.18 1032.82 20641.82	7690.448 4601.845 3606.366 2805.726 2305.186	8710 8709 8714 8721 8759 8908 9039 9114 9281 9281 9601 9601 9603 9860 9878 98860 9878 98860 9878 98860 9878	1.9g 1.9g 1.8g 1.8g 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	.131g 114w 098w 025w 125w 140g 029w 070w 070w 067w 110w 067w 110w 085g .034w 093g 074g 121g	-96.7 41.2 51.2 103 89.6 102 105 1687 114 203 157 -243 157 -243 157 -243 157 -216 6.500 12.1 -116 6.500 12.5 20.3 55.2

Figura 88 - RGO - 6 poços produtores e 6 injetores - início gás – histerese 0,05 – IMEX

	IMEX TIME STEP SUMMARY SPE5: SPE5 COMPOSITIONAL RUN 1 Corner Point Grid														
ті	me Step	•		Time		Total I	production	n		Total I	njection	Total	Max.	мах. cł	nange
	size	C U			oil	Gas	Water	GOR.	Wat. Cut	Gas	Water	Avg. Pres.	bal. err.	Satur. DSMAX	Pres. DPMAX
NO.	Days I	тт	Days	yy:mm:dd	STB/D	MCF/D	STB/D	STB	%	MCF/D	STB/D	psia	%		psia
441 442 4443 4445 4445 4447 4447 4447 4447 4447	16.8 4 20.9 5 31.5 9 5.15 1 20.4 3 20.4 3 20.4 3 20.4 3 20.4 3 20.4 3 40.8 1 22.1 2 20.4 3 48.1 3 22.1 2 22.1 2 22.1 2 25.0 5 102 4 75.3 2 25.0 1		6254 6275 6323 6331 6351 6351 6412 6478 6579 66037 6688 6579 66037 6688 6789 66037 6688 6789 66940 6945 6970		1143.771 1124.304 1105.930	54699.30 55373.07 56415.33	13656.98 13683.31 13723.66	47824 49251 51012	92.27 92.41 92.54	132353.3 143433.1 146631.7 139228.1 136265.0 119206.8 101581.1 73399.43 45626.14 30162.55 20756.08	7655.044 4542.847 3616.354 2779.788 2270.834 1923.576 1554.029	8698 8766 88766 8997 9198 9335 9714 9810 9867 9872 9887 9905 9987 9905 9992 99941 9952 9953 9956	2.3gg 2.3gg 2.2gg 2.2gg 2.1gg 2.1gg 2.1gg 2.1gg 2.1gg 2.0gg 2.0gg 2.0gg 2.0gg 2.0gg 2.0gg 2.0gg	120w 149g 088g .029g 060w 093w 093w 127w .085g .079g .034w 092g 074g 074g 074g .074g 074g .074g	89.7 105 118 1952 82.4 187 1201 106 63.55 -17.3 201 106 63.55 -17.3 201 1.66 63.55 -12.58 20.0 9 -27.4 25.00 1.65 1.65 1.18 2.01 1.18 2.50 1.18 2.50 1.18 2.50 1.18 2.50 1.18 2.50 1.18 2.50 1.58 2.50 1.68 2.50 2.50 1.68 2.50 2

Figura 89 - RGO - 6 poços produtores e6 injetores - início gás – histerese 0,1 – IMEX

Na tabela 31, pode ser observado o resultado das simulações para os casos de 2, 4 e 6 poços produtores e injetores.

	IMEX - Fator de Recuperação % - WAG												
Lictoroco		2 p	oços			4 p	oços		6 poços				
nisterese	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)	
0,05	54,88%	12418	54,57%	12418	65,19%	11014	65,72%	10795	64,63%	6310	65,59%	7057	

Tabela 31 - Analise comparativa entre os diferentes valores de histerese no IMEX – início água e início gás

Comparando o caso de 2 poços produtores e 2 injetores com os outros casos, quanto menor o número de poços produtores e injetores mais baixo é o varrido, com isso o fluido injetado encontra caminhos preferenciais e se dirige rapidamente para os poços de produção, deixando grandes porções de óleo no reservatório e consequentemente o fator de recuperação é mais baixo.

11014

65,72%

10795

64.67%

6307

65,59%

7057

65,19%

12418

Os casos de 4 e 6 poços produtores e injetores apresentaram um fator de recuperação melhor no início de injeção feito com água, o que pode ser

54,88%

12418

54,57%

0.1

explicado pelo efeito da histerese relacionado a molhabilidade, uma vez que o reservatório modelo é molhável a água. Mas, os tempos de produção foram diferentes.

No caso de 4 poços produtores e 4 injetores o fator de recuperação foi maior com injeção iniciando com água mesmo que para um tempo de simulação menor. Sendo assim, não será necessário fazer uma análise comparativa para este caso no mesmo período de tempo. Contudo, no caso de 6 poço produtores e 6 injetores essa análise comparativa é mostrada na tabela 32, uma vez que o fator de recuperação foi maior para um prazo de simulação maior.

	IMEX - Fator de Recuperação % - WAG									
		6 poços								
Histerese	início gás	Duração da Produção	início água	Duração da Produção						
	micio gas	(dias)	illicio agua	(dias)						
0,05	64,59%	6209	65,21%	6209						
0,1	64,64%	6209	65,21%	6209						

Tabela 32 - Analise comparativa entre os diferentes valores de histerese no IMEX – início água e início gás – para 6 poços produtores e 6 injetores

Fica evidenciado então que, para o caso de 6 poços, assim como no caso de 4 poços, o melhor fator de recuperação é obtido iniciando a injeção com água, comprovando o efeito da histerese com a molhabilidade da rocha.

As simulações do GEM apresentaram o erro citado anteriormente, mas, apesar disso, os casos foram analisados para os 2 valores de histerese de acordo com as durações das simulações.

Como pode ser observado na tabela 33, para cada valor de histerese, dos casos de 2 e 6 poços produtores e injetores, a produção parou em uma respectiva data e para o caso de 4 poços produtores e 4 injetores, observa-se que o tempo de simulação para a injeção iniciando com gás foi igual ao iniciando com água.

Tabela 33 - Analise comparativa entre os diferentes valores de histerese no GEM – início água e início gás

	GEM - Fator de Recuperação % - WAG											
11		2p	oços		4 poços					6 p	oços	
HISTERESE	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)	início gás	Duração da Produção (dias)	início água	Duração da Produção (dias)
0,05	6,76%	849	9,59%	1205	19,13%	1202	19,13%	1202	19,73%	826	28,27%	1182
0,1	6,76%	849	9,59%	1205	19,13%	1202	19,13%	1202	19,73%	826	28,21%	1182

Analisando os casos de 4 poços produtores e 4 injetores os valores de fator de recuperação foram idênticos para os dois processos de injeção. A explicação para essa igualdade pode ser dada pela histerese de trapeamento que melhora o varrido. Sendo assim, a injeção iniciando com gás é favorecida pelo efeito do varrido enquanto que na injeção iniciando com água o benefício se dá pela molhabilidade.

Para o caso de 2 e 6 poços produtores e injetores para uma análise adequada dos fatores de recuperação, os valores serão comparados no mesmo período de simulação, conforme tabelas 34 e 35.

GEM - Fator de Recuperação % - WAG										
		2 pc	oços							
Histerese	início các	Duração da Produção	início água	Duração da Produção						
	micro gas	(dias)	inicio agua	(dias)						
0,05	5,09%	640	5,10%	640						
0,1	5,09%	640	5,10%	640						

Tabela 34 - Analise comparativa entre os diferentes valores de histerese no GEM – início água e início gás – para 2 poços produtores e 2 injetores

Neste caso o efeito da histerese na molhabilidade da rocha garante um fator de recuperação maior para o processo de injeção iniciando com água.

Já para o caso de 6 poços produtores e 6 injetores a histerese de trapeamento também é observada.

Tabela 35 - Analise comparativa entre os diferentes valores de histerese no GEM -	
início água e início gás – para 6 poços produtores e 6 injetores	

	GEM - Fator de Recuperação % - WAG									
	6 poços									
Histerese	inícia các	Duração da Produção	início ácuro	Duração da Produção						
	inicio gas	(dias)	inicio agua	(dias)						
0,05	8,71%	365	8,71%	365						
0,1	8,71%	365	8,71%	365						

5.8. Resultados das Simulações *Black-oil* e Composicional 5.8.1. Métodos Convencionais

Para os métodos convencionais de injeção de água e injeção de gás, destacados nas tabelas 36, 37 e 38, os fatores de recuperação obtidos com a injeção de gás foram melhores no IMEX, isso pode ser explicado pela diferença entre as viscosidades do fluido injetor com o fluido do reservatório. No GEM ocorreu o efeito da volatilidade. Este efeito não é observado no modelo *black-oil*.

Tabela 36 – Método convencionais - análise dos resultados – 2 poços produtores e 2 injetores

Fator de Recuperação % - Métodos Convencionais					
	Inj	eção de água	ção de água Inje		
Simulador	2 poços Período de Produção (dias)		2 poços	Período de Produção (dias)	
GEM	48,39%	8035	51,20%	8035	
IMEX	50,43%	8035	58,11%	8035	

Tabela 37 - Método convencionais - análise dos resultados – 4 poços produtores e 4 injetores

Fator de Recuperação % - Métodos Convencionais					
Simulador	Inj	eção de água	o de água Injeção de gás		
	4 poços	Período de Produção	4 poços	Período de Produção	
	. ,	(dias)		(días)	
GEM	56,14%	5113	67,15%	5113	
IMEX	57,14%	5113	67,65%	5113	

Tabela 38 - Método convencionais - análise dos resultados – 6 poços produtores e 6 injetores

Fator de Recuperação % - Métodos Convencionais					
Simulador	Inj	eção de água	In	ijeção de gás	
	6 no coc	Período de Produção	Change	Período de Produção	
	o poços	(dias)	o poços	(dias)	
GEM	56,93%	3287	66,01%	3287	
IMEX	57,81%	3287	67,95%	3287	

Os melhores resultados obtidos, dentre os métodos convencionais, foram com injeção de gás no IMEX. No GEM ocorreu o efeito na volatilidade. Na figura 90, pode-se observar que no caso do IMEX, como o gás é injetado no fundo do reservatório e devido à alta permeabilidade vertical, o gás vai para o topo exercer uma recuperação melhor porque ele vem varrendo de baixo para cima.

Figura 90 – Saturação de gás para injeção de gás com 6 poços - IMEX

Esse resultado positivo da injeção de gás é um aliado importante para o armazenamento geológico do CO₂, uma vez que a Indústria de Petróleo é favorecida economicamente com maior produção de óleo associada à redução dos custos do processamento e transporte do gás produzido, uma vez que este será reinjetado no reservatório. E como esse gás possui alto teor de dióxido de carbono, esse armazenamento contribui com os projetos de CCS.

Comparando os resultados no IMEX, o melhor fator de recuperação, dos três casos da injeção de gás, foi o de 6 poços produtores e 6 injetores, devido ao varrido que para esta configuração é maior, ver tabela 39. Em contrapartida, o tempo de simulação foi menor, isso pode ter ocorrido devido aos limites estabelecidos para a pressão do reservatório e também para a vazão de injeção.

Tabela 39 – Método	o convencionais -	 resultados do 	o IMEX –	- Injeção	de gás
--------------------	-------------------	-----------------------------------	----------	-----------	--------

IMEX - Fator de Recuperação % - Métodos Convencionais						
N° de poços	Fator de Recuperação	Período de Produção				
	(%)	(dias)				
2	58,11%	8035				
4	67,65%	5113				
6	67,95%	3287				

5.8.2. Métodos Especiais

Para os métodos especiais, os fatores de recuperação obtidos no IMEX foram maiores que no GEM, em função da volatilidade. Os resultados podem ser verificados nas tabelas 40, 41 e 42.

Tabela 40 - Método especiais - análise dos resultados IMEX – 2 poços produtores e
2 injetores

Fator de Recuperação % - Métodos especiais - IMEX - 2 poços produtores e 2 injetores					
Casos W/AG	início gás	Duração da Produção	início água	Duração da Produção	
		(dias)		(dias)	
s/ tensão interdacial e s/ histerese	8,73%	1096	8,73%	1096	
c/ tensão interfacial	59,78%	12418	58,40%	12418	
c/ histerese	54,88%	12418	54,57%	12418	

Tabela 41 - Método especiais - análise dos resultados IMEX – 4 poços produtores e 4 injetores

Fator de Recuperação % - Métodos especiais - IMEX - 4 poços produtores e 4 injetores					
	início gác	Duração da Produção	início água	Duração da Produção	
Casos WAG	micio gas	(dias)	micro agua	(dias)	
c/topoão interdecial o c/historeco					
sy tensão interdacial e sy histerese	17,47%	1096	17,47%	1096	
c/ tensão interfacial	66,69%	12053	67,16%	12053	
c/ histerese	65,17%	10795	65,72%	10795	

Tabela 42 - Método especiais - análise dos resultados IMEX – 6 poços produtores e 6 injetores

Fator de Recuperação % - Métodos especiais - IMEX - 6 poços produtores e 6 injetores					
	início gás	Duração da Produção	início água	Duração da Produção	
Casos WAG		(dias)		(dias)	
s/ tensão interdacial e s/ histerese	17,45%	730	26,20%	1096	
c/ tensão interfacial	65,92%	6940	66,57%	7305	
c/ histerese	64,67%	6307	65,59%	7057	

Para o caso de 2 poços produtores e 2 injetores, em que a tensão interfacial e a histerese são desconsideradas, o fator de recuperação é semelhante para as injeções iniciando com gás ou água, pois a atuação do varrido foi equivalente. Em contrapartida, o varrido causou a redução do tempo de simulação em relação demais casos, isso pode ter ocorrido devido aos limites estabelecidos para a pressão do reservatório e vazão de injeção.

E nos casos de 4 e 6 poços produtores e injetores, os melhores fatores de recuperação foram obtidos na injeção iniciando com água. Isso pode ser explicado por dois fatores, sendo o primeiro, a diferença entre as tensões interfaciais da água com óleo que, é menor do que do gás o óleo, e o segundo, o

efeito da histerese na molhabilidade, uma vez que o reservatório modelo é molhável à agua.

Outro destaque para os casos 4 e 6 poços produtores e injetores é a influência positiva da tensão interfacial para obtenção do maior fator de recuperação de todos os casos com WAG, sendo a melhor configuração a com 6 poços, em virtude do acréscimo do efeito do varrido, conforme mostrado na tabela 43.

Tabela 43 - Método especiais – resultados do IMEX – Injeção de gás – efeito da tensão interfacial

IMEX - Fator de Recuperação % - Métodos Especiais - com tensão interfacial					
Nº do posos	Fator de Recuperação	Período de Produção			
n de poços	(%)	(dias)			
4	63,98%	7305			
6	66,57%	7305			

6. Conclusão da Dissertação

Nos últimos 50 anos a quantidade de emissão de dióxido de carbono aumentaram exponencialmente atingindo níveis elevados, o que gera preocupações significativas aos especialistas da área considerando os efeitos o aquecimento global, como derretimento das calotas polares elevação das temperaturas nos mares, etc.

Os objetivos desta dissertação são estudar os efeitos do CO₂ injetado, da tensão interfacial e histerese sobre o fator de recuperação com a utilização do método de recuperação especial WAG e analisar a capacidade de armazenamento geológico de CO₂ nos reservatórios de petróleo.

Levando em consideração o baixo crescimento das economias mundial, a baixa demanda de petróleo e a queda no preço do barril, a indústria de petróleo terá que se adaptar a esse novo cenário e investir em pesquisas para desenvolvimento da exploração de petróleo visando à redução dos custos, aumento da produtividade e redução dos impactos ambientais na produção, ou seja, obter maiores fatores de recuperação de óleo e menor produção e emissão de CO₂.

Dentre os métodos de recuperação de petróleo, os métodos convencionais e especiais são o que permitem obter um incremento da produção quando os métodos convencionais de injeção de água e gás não são mais eficientes. Os métodos especiais de recuperação têm por objetivo melhorar as eficiências de varrido horizontal, de deslocamento e o fator de contato.

Neste trabalho foi estudado o método especial miscível WAG-CO₂, com injeções alternadas de água e CO₂ no reservatório a fim de obter melhores fatores de recuperação e armazenamento geológico de CO₂. Com isso foi analisado o efeito da inclusão das variáveis de histerese e da tensão interfacial sobre as curvas de permeabilidade relativa

Em um reservatório de petróleo, antes do início da produção, existem fluidos que estão em equilíbrio termodinâmico a uma determinada pressão e temperatura. A medida que esse reservatório entra em produção, as pressões começam a variar e consequentemente as demais variáveis termodinâmicas variam, sendo assim, as curvas de permeabilidade relativa também.

Para escoamentos multifásicos de fluidos em meios porosos, a histerese pode ser observada através da diferença nas curvas de permeabilidade relativa, que é devido a alteração sequencial do processo de saturação (embebição e drenagem) e das inúmeras vezes que estas mudanças ocorrem. O efeito das forças que atual na interface desses fluidos representam a tensão interfacial.

Nos processos de recuperação especial, que envolvem a alternância de diferentes fluidos como injeção alternada de água e gás (WAG), a histerese e a tensão interfacial são bastante relevantes, sobretudo no que tange às curvas de permeabilidades relativas que variam irreversivelmente.

Para as simulações realizadas neste trabalho foi utilizado o pacote de simuladores da CMG (Computer Modelling Group), WinProp; Builder; IMEX e GEM, e foram definidos os dados de entrada e o modelo PVT com objetivo analisar o fator de recuperação e o armazenamento geológico de CO₂.

O fluido do reservatório foi modelado no WinProp em duas etapas, a primeira através de regressão utilizando os dados de entrada exceto a viscosidade e a segunda etapa fazendo o ajuste da viscosidade isoladamente. O erro obtido da regressão da pressão de saturação foi de aproximadamente 0,2%, o que é considerado muito bom.

No Builder utilizando o modelo de fluido de reservatório obtido no WinProp as simulações geraram as curvas de fator de recuperação onde o efeito de algumas propriedades resulta da interação rocha-fluido e ser observado em função da variação de pressão no reservatório.

Foram realizadas simulações no GEM, que é um simulador composicional e no IMEX, simulador *black oil.* Em ambos os casos foram realizadas simulações para 2 poços produtores e 2 injetores, 4 poços produtores e 4 injetores e 6 poços produtores e 6 injetores.

Para a realização das simulações foram adotados alguns limites de produção, como vazão máxima, pressão mínima no fundo do poço; corte máximo de água (fração) monitorada na produção e o limite máximo da razão gás-óleo produzido, sendo o início da produção em 1986, início da injeção e 1987 e o final da produção em 2020.

Foram definidos os casos que seriam simulados e divididos em caso base (sem histerese e sem tensão interfacial), caso com histerese e caso com tesão interfacial. Observe que o pacote de simuladores do GEM e IMEX não permite fazer simulações considerando as variáveis de histerese e tensão interfacial ao mesmo tempo.

Nos casos WAG do GEM ocorreram erro devido a mudanças na densidade molar do CO_2 no bloco (9, 8, 1) localizado no poço injetor de número 1, isso ocorreu, pois há iterações próximas ao poço injetor, em que essa diferença de densidade é elevada, o que ocasionou dificuldades de convergência do modelo em um mesmo *time-step*, interrompendo as rodadas antes do prazo previsto.

Analisando os métodos convencionais de injeção de água e gás simulados no GEM, observamos que os melhores fatores de recuperação foram obtidos injetando gás. Nesta simulação de injeção de gás foi observado as quantidades acumuladas de CO_2 que ficaram armazenadas nos reservatórios durante o período simulado. Esses valores representaram respectivamente 79%, 81% e 80% da quantidade total de CO_2 que foi injetado no reservatório para aumentar o fator de recuperação.

As simulações WAG do GEM resultaram em fatores de recuperação com valores muito próximos e pouco tempo de duração em função do erro apresentado. Não foi possível para este trabalho resolver o problema do erro, ficando como sugestão para os futuros trabalhos, a solução para esse problema de mudanças densidade molar do CO₂. Assim como, não foi possível analisar o armazenamento geológico do CO₂ desses casos.

No IMEX as simulações ocorrem conforme previsto e os maiores fatores de recuperação foram obtidos considerando o fenômeno de tensão interfacial, devido ao novo conjunto de curvas de permeabilidade relativa gerados que juntamente com o varrido obtido alterou o comportamento das linhas de fluxo de forma favorável à produção de óleo.

Sendo assim, as conclusões gerais foram que as simulações que obtiveram melhores resultados foram as com inclusão dos fenômenos de tensão interfacial e histerese, a análise desses fenômenos permite estudar o efeito do trapeamento, comuns em processos WAG. O aumento do número de poços produtores e injetores melhora a eficiência de varrido do óleo e o saldo do

sequestro de CO₂ usando o EOR foi favorável, uma vez que a maior parte ficou retirada no reservatório

7. Recomendações

Refinar mais o grid e reduzir o *time-step* utilizado a fim de diminuir a densidade molar do CO₂ nos blocos próximos aos poços injetores, com objetivo corrigir os erros apresentados no GEM.

Estudar mais o efeito do teor de CO₂ na corrente de gás para armazenamento geológico.

Estudar os fenômenos de tensão interfacial e histerese atuando simultaneamente em simulações numéricas.

Avaliar o que provocou o problema do pequeno período de simulação WAG do GEM.

8. Referências Bibliográficas

ABREU E. C., Simulação Numérica de Escoamento Trifásico Água-Óleo-Gás em Reservatório de Petróleo, Tese de Doutorado em modelagem computacional no Instituto Politécnico na Universidade Estadual do Rio de Janeiro Nova Friburgo, RJ, 2007.

AHMED T., **Reservoir Engineering Handbook**, Elsevier, EUA Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 2006.

ALMEIDA A. S., da Diretoria de Exploração e Produção do Pré-Sal da Petrobras, no debate "**Pré-Sal e Mudanças Climáticas: Avaliação das Tecnologias de Captura e Armazenamento de Carbono**", organizado pelo Grupo de Pesquisa de Ciências Ambientais do Instituto de Estudos Avançados da Universidade de São Paulo (IEA), no dia 26 de novembro, em São Paulo.

ALMEIDA A. S., **Recursos Energéticos do Brasil: Petróleo, Gás, Urânio e Carvão**, Seminário Clube de Engenharia, Rio de Janeiro, 30 de setembro de 2004.

ARESTA M., Benefits of Using CO₂ in Chemical, Enhanced Biological and Technological Applications, Petrobras Lecture, Rio de Janeiro, April 18, 2011

AWAN, A. R.; TEIGLAND, R.; KLEPPE, J. A Survey of North Sea Enhanced-Oil-Recovery Projects Initiated During the Years 1975 to 2005. SPE Reservoir Evaluation & Engineering, Junho 2008.

BRESSAN L. W., IGLESIAS R. S., KETZER J. M. M., Geoquímica e Integridade Mineralógica de Amostras do Campo de Buracica, Reservatório Potencial para o Armazenamento Geológico de CO₂, Programa de Pós Graduação em Engenharia e Tecnologia de Materiais, Faculdade de Engenharia, Pontifica Universidade Católica do Rio Grande do Sul, 2008.

BRESSAN L. W., **Recuperação Avançada de Petróleo**, Centro de Excelência em Pesquisa e Inovação em Petróleo, Recursos Minerais e Armazenamento de Carbono, Pontifica Universidade Católica do Rio Grande do Sul, 2008. CHASE JR. C. A., TODD M. R.: Numerical Simulation of CO₂ Food Performance, SPEJ, Dec. 1984.

CHRISTENSEN, J. R.; STENBY. E. H.; SKAUGE, **A. Review of WAG Field Experience. SPE Reservoir Evaluation & Engineering**, Abril 2001.

DANESH, A.: "PVT and Phase behavior of Petroleum Reservoir Fluids", Elsevier Science B.V. (1998).

EBENEZER R. R. L. S. Análise da Corrosão e da Erosão-Corrosão do Aço Carbono em Meio com NaHCO₃ e CO₂, Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal do Paraná, Curitiba, 2008.

ELEMENT, D.J.; MASTERS, J.H.K.; SARGENT, N.C.; JAYASEKERA, A.J.; GOODYEAR, S.G. **Assessment of three-phase relative permeability models using laboratory hysteresis data**. SPE 84903. In: SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malásia. Outubro, 2003.

GEISON P. V.; GERALDO M. L.; BELCHIOR J. C.; ANDRADE F. V. e OLIVEIRA R. **CO₂ - Captura e Estocagem - uma Proposta Química**, 1º Congresso de CO₂ na Indústria de Petróleo, Rio de Janeiro, 2011.

GHOMIAN, Y.; POPE, G.A.; SEPEHRNOORI, K. Hysteresis and fieldscale optimization of WAG injection for coupled CO2-EOR and sequestration. SPE 110639.In: SPE Symposium on Improved Oil Recovery, Tulsa, USA. Abril, 2008.

GOMES R. H. P.; LEITE M. M.; QUINTANILHA L. F. N.; BARROS I. M. A.; RIBEIRO R. C.; COSTA E. C. M. **Remoção de CO₂ com Tecnologia de Membranas: Aplicação em Unidades Offshore**, Petrobras/CENPES, artigo publicado no 1º Congresso de CO₂ na Indústria de Petróleo, Rio de Janeiro, 2011.

GREEN D. W.; WILLHITE G. P. Enhanced Oil Recovery, SPE Textbook Series, Texas, 1998.

HABE R., Advanced CO₂ Compression Technologies for EOR, CCS and IGCC, artigo publicado no Rio Oil & Gas 2010, Rio de Janeiro.

KETZER J. M. M., IGLESIAS R. S., SBRISSA G. F., MARASCHIN A. J., HEEMANN R., BRESSAN L. W., CARVALHO T. R., MELO C., CUNHA P., MURCE T., Modelagem Numérica e Experimental do Sistema CO₂-Água-rocha em Reservatórios da Bacia De Campos com Potencial para Armazenamento Geológico de Carbono, artigo publicado no Rio Oil & Gas 2010, Rio de Janeiro, IBP2636_10.

KHAN L. F. K., QUIJADA D., MAESTRACCI W., EOR Evaluation Method for Highly Heterogeneous and Complex Reservoirs, artigo SPE 107177, 2007.

LARSEN, J.A.; SKAUGE, **A. Methodology for numerical simulation with cycle dependent relative permeabilities**. SPE Journal, v.3, n.2, paper SPE 38456. Junho, 1998

LAWRENCE J. J., TELETZKE G. F., HUTFILZ J. M., WILKINSON J. R., **Reservoir Simulation of Gas Injection Processes,** artigo SPE 81459, 2003.

LIN E. C., HUANG E. T. S., The Effect of Rock Wettabibility on Water Blocking During Miscible Displacement, SPEREE, May 1990.

MACHADO C. G. **Histerese nas Curvas de Permeabilidade Relativa Trifásica**, Dissertação de Mestrado em Ciências e Engenharia de Petróleo da Faculdade de Engenharia Mecânica e Instituto de Geociências da Universidade Estadual de Campinas, UNICAMP, 2013.

MELO. S. F., **Estudo sobre Simulação Composicional de Reservatórios de Petróleo com Injeção de CO**₂, Dissertação de Mestrado em Ciências e Engenharia de Petróleo da Faculdade de Engenharia Mecânica e Instituto de Geociências, Universidade de Campinas, 2011.

M. HONARPOUR and S. M. MAHMOOD. Relative-permeability measurements: An overview. Journal of Petroleum Technology, 40(8):963–966, Agosto 1988. SPE 18565-PA.

OLIVEIRA W. S; MACHADO C. X; ROCKETT G. C.; KETZER J. M. Mapa Brasileiro de Captura, Transporte e Armazenamento de Carbono Renovável, artigo publicado no 1º Congresso de CO₂ na Indústria de Petróleo, Rio de Janeiro, 2011.

PAULO S. M. V. R. e GLORIA M. N. C. Correlação Empírica para o Cálculo da Pressão Mínima de Miscibilidade para CO₂ com Dados de

Campo, artigo publicado no 1º Congresso de CO₂ na Indústria de Petróleo, Rio de Janeiro, 2011.

RAIMONDI P., TORCASO M. A.: **Distribution of the Oil Phase Obtained Upon Imbibition of Water**, March 1964.

RAVAGNANI A. T. F. S. G., Modelagem Técnico-Econômica de Sequestro de CO₂ considerando Injeção em Campos Maduros, Tese de Doutorado em Ciências e Engenharia de Petróleo da Universidade de Campinas, 2007.

Relatório do IPCC/ONU 2007, Organização das Nações Unidas, Quarto Relatório de Avaliação do Painel Intergovernamental Sobre Mudanças Climáticas, Contribuição do Grupo de Trabalho III, disponível em http://www.ecolatina.com.br/pdf/relatorio-IPCC-3.pdf>. Acesso em 27 de abril de 2011.

RIGHI E. F, PASCUAL M., Water-Alternating-Gas Pilot in the Largest Oil Field in Argentina: Chihuido de la Sierra Negra, Neuquen Basin, artigo SPE 108031, 2007.

RIGHI E. F., ROYO J., GENTIL P., CASTELO R., MONTE A. D., BOSCO S., **Experimental Study of Tertiary Immiscible WAG Injection**, artigo SPE 89360, 2004.

ROCHA, P. S., A., D. R., COSTA, G. M. N. **Pure And Impure CO₂ Minimum Miscibility Pressure: Comparing Sixteen Correlations**, Centro de Estudos em Petróleo e Gás Natural (CEPGN) – Universidade Salvador (UNIFACS).

ROCHA, P. S., SACRAMENTO, V. S., COSTA, G. M. N. Uma Abordagem do Ajuste de Dados PVT e Cálculo da PMM no Simulador WINPROP. In: 3º Congresso Brasileiro de P&D em Petróleo e Gás, 2005, Salvador.

ROSA A. J., CARVALHO R. S.; XAVIER J. A. D, Engenharia de Reservatórios de Petróleo, Rio de Janeiro, Interciência, 2007.

ROSA. M. B., Desafios da Simulação Numérica do Processo de Injeção Alternada de Água e Gás (WAG) para Reservatórios Heterogêneos, Rio Oil & Gas 2010, IBP2502_10. SANTOS J.P.M., **Reservatórios e Avaliação de Formações**, MBA Executivo em Petróleo e Gás, Fundação de Apoio ao Centro Federal de Educação Tecnológica (FUNCEFET), 2010.

SHAHVERDI, H.; SOHRABI, M.; JAMIOLAHMADY, M. A new algorithm for estimating three-phase relative permeability from unsteady-state core experiments. In: International Symposium of the Society of core analysts, Halifax, Canada Paper SCA 2010-42. Outubro, 2010.

SIMÕES J., Extração do pré-sal libera 60% mais gás carbônico; tecnologias de captura e armazenamento no reservatório trazem desafio para os custos, Programa Inova UNICAMP, Universidade de Campinas, disponível em:<http://www. inovacao.unicamp.br/index. php>. Acesso em 27 de abril de 2011.

SOUSA K. S. M., Estudo de Sistemas: Petróleo/Água/Tensoativo para aplicação na recuperação avançada do Petróleo, Monografia de Conclusão de Curso de Engenharia Química, Universidade Federal do Rio Grande do Norte, 2005.

SPITERI, E.J.; JUANES, R.; BLUNT, M.J.; ORR, F.M. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE

Journal, v.13, n.3, p. 277-288. Paper SPE 96448, September, 2008.

STALKUP Jr., F. I.: **Miscible Displacement**, Monograph Series, SPE, Richardson, Texas, 1983.

TANNER, C. S. et al.: **Production Performance of the Wasson Denver Unit CO₂ Flood**", paper SPE 24156 presented at the 1992 SPE/DOE Symposium on Enhanced Oil Recovery, Tulsa, April 22-24.

THOMAS J. E. Fundamentos de Engenharia de Petróleo, Rio de Janeiro, Interciência, 2001.

TIFFIN D.L., YELLIG W.F.: Effects of Mobile Water an Multiple-Contact Miscible Gas Displacements, SPEJ, June 1983.

TODD, M. R. e LONGSTAFF, W. J.: The Development, Testing, and Aplication of a Numerical Simulation for Predicting Miscible Flood Performance", JPT (July 1972) 874-82; Trans., AIME, 253.

VALE T. Y. F., Desenvolvimento de Tensoativos e Sistemas de Microemulsionados para Recuperação de Petróleo. Tese de Doutorado de Engenharia Química da Universidade Federal do Rio Grande do Norte, 2009.

8.1. Sites Consultados

AIE: Consumo recorde de petróleo em 2014, janeiro de 2014, disponível em: http://pt.euronews.com/2014/01/21/aie-consumo-recorde-de-petroleo-em-2014/. Acesso em 25 de maio de 2014.

Concentração média de CO2 na atmosfera deve exceder 400 partespormilhãoaté2015,disponívelem:<http://ecycle.com.br/component/content/article/38-no-mundo/1540-</td>concentracao-de-co2-na-atmosfera-deve-exceder-400-partes-por-milhao-ate-2015.html>. Acesso em 25 de majo de 2014.

Quinto relatório do IPCC mostra intensificação das mudanças climáticas, disponível em: http://agencia.fapesp.br/17944>. Acesso em 14 de janeiro de 2014.

Climate Change 2013: The Physical Science Basis, disponível em:< http://www.ipcc.ch/report/ar5/wg1/>. Acesso em 25 de maio de 2014.

Os Estados Unidos e o aquecimento global: mudanças de rumos?, disponível em <

http://www.clubemundo.com.br/pages/Integra.aspx?materia=1184>. Acesso em 25 de maio de 2014.

A Indústria do Petróleo, o Pólo Pré-Sal e o Desenvolvimento do Rio de Janeiro - Subsídios para a formulação de política de desenvolvimento atrelado ao setor petróleo no Estado do Rio de Janeiro, março de 2009, disponível em: <http://www.adrio.org.br/site/admin/uploads/projetos/1280413958.pdf>. Acesso em: 4 de junho de 2011.

Energia e Mudança do Clima Global - Captura e Armazenamento de Dióxido de Carbono, Schlumberger Excellence in Educational Development – SEED, disponível em: < https://www.planetseed.com/pt-br/node/15884>. Acesso em 27 de abril de 2011.

Energia e Mudança do Clima Global, Produção de CO₂ - Uma Perspectiva Internacional, Schlumberger Excellence in Educational Development – SEED, disponível em: https://www.planetseed.com/pt-br/node/15875>. Acesso em: 27 de abril de 2011.

Expert Viewpoint – THAI in situ combustion, Schlumberger - Heavy Oilinfo.com.,disponívelem:<</td>http://www.heavyoilinfo.com/feature_items/thai/expert-viewpoint-2013-thai-in-situ-combustion>. Acesso em: 27 de abril de 2011.

Métodos de Recuperação Suplementar, NUPEC, URFN, disponível em: http://www.nupeg.ufrn.br/downloads/deq0376/iep.01e.recuperacao.suple mentar.pdf>. Acesso em: 20 de abril de 2011.

Painel Intergovernamental sobre Mudança do Clima (IPCC), Brasil.gov.br, disponível em: . Acesso em: 27 de abril de 2011.

Perguntas e Respostas Sobre o Aquecimento Global, Fundação Floresta Viva, disponível em: http://www.ffv.org.br/perguntas-e-resposras-sobre-o-aquecimento-global.html. Acesso em: 31 de maio de 2011.

Projetos de CCS para o Pré-sal em Discussão, abril de 2011, disponível em: http://portalmaritimo.com/2011/04/19/projetos-de-ccs-para-o-pre-sal-em-discussao/. Acesso em 22 de junho de 2011.

Série sobre Energia - Plano de Aula 1 - Energia no Mundo, Nova Escola. Disponível em http://revistaescola.abril.com.br/geografia/pratica-pedagogica/questao-energia-brasil-mundo-507241.shtml. Acesso em 22 de junho de 2011.