
Eiji Adachi Medeiros Barbosa

Global-Aware Recommendations for
Repairing Exception Handling Violations

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio as partial fulfillment of the
requirements for the degree of Doutor em Informática

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
November 2015

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Eiji Adachi Medeiros Barbosa

Global-Aware Recommendations for
Repairing Exception Handling Violations

Thesis presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio as partial fulfillment of the
requirements for the degree of Doutor em Informática.

Prof. Clarisse Sieckenius de Souza
President

Departamento de Informática — PUC–Rio

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática — PUC–Rio

Prof. Marco Túlio de Oliveira Valente
UFMG

Prof. Leonardo Gresta Paulino Murta
UFF

Prof. Márcio de Oliveira Barros
UNIRIO

Prof. Arndt von Staa
Departamento de Informática — PUC-Rio

Prof. Simone Diniz Junqueira Barbosa
Departamento de Informática — PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico da PUC–Rio

Rio de Janeiro — November 30th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

All rights reserved.

Eiji Adachi Medeiros Barbosa

Eiji Adachi Medeiros Barbosa received his Bachelor degree in
Computer Science from the Federal University of Rio Grande
do Norte (UFRN) in 2009. He received his Master degree in
Informatics from the Pontifical Catholic University of Rio de
Janeiro (PUC-Rio) in 2012. His main research interests are
Software Engineering, Exception Handling and Recommender
Systems for Software Engineering.

Bibliographic data
Barbosa, Eiji Adachi Medeiros

Global-Aware Recommendations for Repairing Excep-
tion Handling Violations / Eiji Adachi Medeiros Barbosa;
Advisor: Alessandro Fabricio Garcia. — 2015.

v., 213 f: il. ; 29,7 cm

1. Tese (Doutorado em Informática) - Pontif́ıcia
Universidade Católica do Rio de Janeiro, Departamento
de Informática.

Inclui bibliografia.

1. Informática – Teses. 2. Tratamento de exceções. 3.
Sistemas de recomendação para engenharia de software.
4. Poĺıticas de tratamento de exceções. 5. Reparação de
violações de tratamento de exceções. I. Garcia, Alessandro
Fabricio. II. Pontif́ıcia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

To my beloved grandmother,
Nobu Adachi (in memoriam).

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Acknowledgments

I would like to express my deepest gratitude to my beloved wife Maria

Luiza for being by my side from the first day to the last day of this journey.

Your love, a↵ection and support were my driving force to achieve this goal.

Although the proper words fail me to express my gratitude, I thank my

parents, my sisters and all family for all the love, trust and encouragement. You

are my greatest inspiration and motivation. Special thanks to my grandmother

Nobu Adachi (in memoriam), who since my childhood taught me about the

importance of studying. You will forever be my example of courage and

perseverance.

My sincere gratitude to my supervisor, Alessandro Garcia, for all the

confidence in me and for the enormous contribution to my professional growth.

Your professionalism, dedication and enthusiasm are exemplary.

I thank all my coursemates at PUC-Rio, all my friends from LES and

all my friends from my hometown. Without you company this journey would

have been far more di�cult.

I thank all the professors of the Department of Informatics at PUC-

Rio for contributing to my education. I also thank all the employees of the

department for their services.

I am also grateful to CNPq, FAPERJ and PUC-Rio for the financial

support that made my PhD work possible.

To all of you, my sincere thanks.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Abstract

Barbosa, Eiji Adachi Medeiros; Garcia, Alessandro Fabricio (advisor).
Global-Aware Recommendations for Repairing Exception
Handling Violations. Rio de Janeiro, 2015. 213p. DSc Thesis —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Exception handling is the most common way of dealing with exceptions

in robust software development. Exception handling refers to the process of

signaling exceptions upon the detection of runtime errors and taking actions

to respond to their occurrence. Despite being aimed at improving software

robustness, software systems are still implemented without relying on explicit

exception handling policies. Each policy defines the design decisions governing

how exception handling should be implemented in a system. These policies

are often not documented and are only implicitly defined in the system

design. Thus, developers tend to introduce in the source code violations of

implicit policies and these violations commonly cause failures in software

systems. In this context, the goal of this thesis is to support developers in

detecting and repairing exception handling violations. To achieve this goal,

two complementary solutions were proposed. The first solution is based on a

domain-specific language supporting the detection of violations by explicitly

defining exception handling policies to be enforced in the source code. The

proposed language was evaluated with a user-centric study and a case study.

With the observations and experiences gathered in the user-centric study,

we identified some language characteristics that hindered its use and that

motivated new language constructs. In addition, the results of the case study

showed that violations and faults in exception handling share common causes.

Therefore, violations can be used to detect potential causes of exception-

related failures. To complement the detection of exception handling violations,

this work also proposed a solution for supporting the repair of exception

handling violations. Repairing these violations requires reasoning about the

global impact that exception handling changes might have in di↵erent parts of

the system. Thus, this work proposed a recommender heuristic strategy that

takes into account the global context of where violations occur to produce

recommendations. Each recommendation produced consists of a sequence of

modifications that serves as a detailed blueprint of how an exception handling

violation can be removed from the source code. The proposed recommender

strategy also takes advantage of explicit policy specifications, although their

availability is not mandatory. The results of our empirical assessments revealed

that the proposed recommender strategy produced recommendations able to

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

repair violations in approximately 70% of the cases. When policy specifications

are available, it produced recommendations able to repair violations in 97% of

the cases.

Keywords
Exception handling; Recommender systems for software engineering;

Exception handling policies; Repair of violations in exception handling.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Resumo

Barbosa, Eiji Adachi Medeiros; Garcia, Alessandro Fabricio.
Recomendações Globais para Reparação de Violações de
Tratamento de Exceções. Rio de Janeiro, 2015. 213p. Tese de
Doutorado — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Tratamento de exceções é o modo mais comum de lidar com erros no

desenvolvimento de software robusto. Tratamento de exceções refere-se ao pro-

cesso de sinalizar exceções quando erros em tempo de execução são detectados

e de tomar ações para responder à ocorrência destas exceções. Apesar de ob-

jetivarem a melhoria da robustez de software, sistemas de software ainda são

implementados sem se basear em uma poĺıtica expĺıcita para tratamento de

exceções. Cada poĺıtica define as decisões de projeto que governam como trata-

mento de exceções deve ser implementado num sistema. Tais poĺıticas não são

comumente documentadas e são apenas implicitamente definidas no projeto

do sistema. Desta forma, desenvolvedores tendem a introduzir no código fonte

violações das poĺıticas impĺıcitas e tais violações comumente causam falhas

em sistemas de software. Neste contexto, o objetivo desta tese é apoiar desen-

volvedores na detecção e reparação de violações de tratamento de exceções.

Para atingir este objetivo, duas soluções complementares foram propostas. A

primeira solução é baseada numa linguagem espećıfica de domı́nio que apoia

a detecção de violações ao definir explicitamente poĺıticas de tratamento de

exceções que devem ser obedecidas no código fonte. A linguagem proposta

foi avaliada num estudo centrado no usuário e num estudo de caso. Com as

observações e as experiências coletadas no estudo centrado no usuário, nós

identificamos algumas caracteŕısticas da linguagem que dificultavam o seu uso

e que motivaram novos construtos. Além disso, os resultados do estudo de

caso mostraram que violações e falhas costumam ter causas comuns. Portanto,

violações de tratamento de exceção podem ser usadas para detectar causas

de faltas relacionadas à exceções. Para complementar a detecção de violações,

este trabalho também propôs uma solução para apoiar o reparo de violações de

tratamento de exceções. Reparar estas violações requer raciocinar sobre o im-

pacto global que mudanças em tratamento de exceções pode ter em diferentes

partes do sistema. Desta forma, este trabalho propôs uma estratégia heuŕıstica

de recomendação que leva em conta o contexto global onde violações ocorrem

a fim de produzir recomendações. Cada recomendação produzida consiste em

uma sequência de modificações que servem como um plano detalhado de como

uma violação de tratamento de exceções pode ser removida do código fonte.

A estratégia de recomendação proposta também se beneficia de especificações

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

expĺıcitas de poĺıticas, embora sua disponibilidade não seja obrigatória. Os

resultados das nossas avaliações emṕıricas revelaram que a estratégia de re-

comendação proposta produziu recomendações capazes de reparar violações

em aproximadamente 70% dos casos. Quando especificações de poĺıticas estão

dispońıveis, a estratégia produziu recomendações capazes de reparar violações

em 97% dos casos.

Palavras-Chave
Tratamento de exceções; Sistemas de recomendação para a engenharia

de software; Poĺıticas de tratamento de exceções; Reparação de violações em

tratamento de exceções.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Contents

1 Introduction 15

1.1 Problem Statement and Limitations of Related Work 16
1.1.1 Lack of Explicit Exception Handling Policies 19
1.1.2 Di�culty in Repairing Violations 21

1.2 Goal and Research Questions 25

1.3 Thesis Outline 27

2 Background 29

2.1 Basic Terminology 29
2.1.1 Exception Handling 30
2.1.2 Exception Handling in Java 33

2.2 Exception Handling in Practice 39
2.2.1 Exception Handling Implementation 40
2.2.2 Recurring Problems in Exception Handling 43

2.3 Support for Exception Handling 46
2.3.1 Exception Handling Comprehension 47
2.3.2 Specifying and Verifying Exception Handling Properties 48
2.3.3 Exception Handlers Implementation 50

2.4 Summary 52

3 Investigating Exception Handling Faults 55

3.1 Settings of the Study 56
3.1.1 Goal and Questions 56
3.1.2 Study Design 58

3.2 Data Analysis 63
3.2.1 Collected Commits 63
3.2.2 Categories of Exception Handling Faults 65

3.3 Results and Discussions 76
3.3.1 Exception Handling Dependencies and Fault Types 76
3.3.2 Di�culty in Detecting Exception Handling Faults 78
3.3.3 All Faults Related to Global Exceptions 80
3.3.4 Harmful Exception Handling Negligence 81

3.4 Threats to Validity 81
3.4.1 Construct Validity 82
3.4.2 Internal Validity 82
3.4.3 External Validity 83

3.5 Related Work 84

3.6 Summary 87

4 Specifying and Verifying Exception Handling Policies 89

4.1 Making Exception Handling Policies Explicit 92

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

4.1.1 Compartments 92
4.1.2 Rules 93
4.1.3 Alias for Exceptions 96

4.2 Verifying Exception Handling Policies 97
4.2.1 Extracting dependency facts 97
4.2.2 Checking the rules 102

4.3 User-Centric Evaluation 105
4.3.1 Settings of the Study 105
4.3.2 Data Analysis and Results 110
4.3.3 Threats to Validity 124

4.4 Case Study 125
4.4.1 Settings of the Study 125
4.4.2 Data Analysis 129
4.4.3 Results and Discussions 138
4.4.4 Threats to Validity 140

4.5 Related Work 142

4.6 Summary 147

5 Repairing Violations in Exception Handling 149

5.1 The RAVEN Strategy 151
5.1.1 Solution Space Construction 151
5.1.2 Constructing Recommendations 154
5.1.3 Ranking Recommendations 159

5.2 Settings of the Evaluation Procedure 160
5.2.1 Goals, Questions and Metrics 160
5.2.2 Study Design and Hypothesis 162
5.2.3 Preparation Procedure 163

5.3 Data Analysis 178
5.3.1 Overview of Collected Data 178
5.3.2 Hypothesis Testing 185

5.4 Results and Findings 186
5.4.1 RAVEN Produces Relevant Recommendations 186
5.4.2 RAVEN Ranks Relevant Recommendations in Topmost Positions 187
5.4.3 E↵ectiveness of RAVEN Improves with Policy Specifications 189
5.4.4 Mitigating the Cold Start Problem 190
5.4.5 Potential Threats in Using Policy Specifications 191

5.5 Threats to Validity 193
5.5.1 Construct Validity 193
5.5.2 Internal Validity 193
5.5.3 External Validity 194

5.6 Related Work 194

5.7 Summary 196

6 Conclusion 197

6.1 Revisiting the Thesis Contributions 198

6.2 Future Work 200

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 204

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

List of Figures

1.1 Health Watcher Structure 17

2.1 Internal Structure of a Robust Software Module 31
2.2 Exception Hierarchy Tree in Java 34

3.1 Data Collection Procedure 60
3.2 Collected Commits 63
3.3 Categories of Exception Handling Faults 66
3.4 Sub-Categories of Incorrect Handlers 67

5.1 Hit and Hit@10 Metrics v.s. Coverage of Policy Specification 180
5.2 Histograms for All Target Systems Together 181
5.3 Histograms per Individual Target System 182

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

List of Tables

2.1 Types of Exception Handlers 40
2.2 Size of Exception Handlers 42

3.1 Collected Data for Exception Handling Faults 65
3.2 Comparison with the work of Ebert et al. 86

4.1 Exception handling dependencies supported by EPL 94
4.2 Participants Profile 110
4.3 Specifications Produced in the First Task 111
4.4 Specifications Produced in the Second Task 113
4.5 Mobile Media’s Policy Violations 132
4.6 Health Watcher’s Policy Violations 135
4.7 Comparison of EPL with Related Works 143

5.1 Comparison Between Tuples 157
5.2 Target Systems 165
5.3 Values of the Hit and Hit@10 Metrics 178
5.4 Descriptive Statistics for the Reciprocal Rank Scores 183
5.5 Frequency of the Reciprocal Rank Scores 183
5.6 Result of the Hypothesis Testing 186

6.1 Papers Produced in the Context of this Thesis 200

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

1
Introduction

As software systems grow ubiquitous in our society, so does the need for

robustness. Software robustness refers to the ability of a software system to

remain in operation and deliver its services despite the occurrence of errors

(IEEE, 1990). When the services delivered by software systems deviate from

their specifications, it is said that failures occur (AVIZIENIS et al., 2004,LEE

and ANDERSON, 1990). The state of a software system that enables the

occurrence of a failure is called an error and the causes of errors are called

faults (AVIZIENIS et al., 2004, LEE and ANDERSON, 1990). A fault is an

incorrect or missing instruction or data definition in programs (IEEE, 1990).

Accessing an invalid array index or using uninitialized variables are examples

of faults in programs.

When software systems detect errors at runtime, they respond to service

requests with exceptions (LEE and ANDERSON, 1990). An exception is an

event signaled to indicate the impossibility of providing requested services

(BUHR, 2000, CRISTIAN, 1989, GOODENOUGH, 1975). For this reason,

the state of a software system is often inconsistent when exceptions are

raised (BUHR, 2000,CRISTIAN, 1989,GOODENOUGH, 1975). If the system

continues its execution in an inconsistent state, it may lead to additional

exceptions or to failures. Therefore, it is important to avoid or mitigate the

potential negative impact of exceptions in the system operation.

Exception handling is the most common way of dealing with errors

during the development of software systems (BUHR, 2000, GARCIA et al.,

2001, JAKOBUS et al., 2015). Exception handling refers to the process of

detecting runtime errors, signaling exceptions upon the detection of these

errors and taking actions to respond to the occurrence of these exceptions

(BUHR, 2000,CRISTIAN, 1989,GOODENOUGH, 1975). This way, software

robustness is improved if exception handling is designed and implemented

properly.

Nowadays, developers design and implement exception handling using

built-in exception handling mechanisms in programming languages (GARCIA

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 16

et al., 2001, JAKOBUS et al., 2015). An exception handling mechanism is a

set of language constructs to signal exceptions and to structure sets of actions

responsible for coping with these exceptions (BUHR, 2000,CRISTIAN, 1989,

GOODENOUGH, 1975). The importance of exception handling mechanisms in

the development of software systems can be attested by their wide adoption in

mainstream programming languages. Among the top-ten most widely adopted

programming languages, nine languages provide built-in exception handling

mechanisms (JAKOBUS et al., 2015).

However, despite being intended to improve software robustness, the

causes of recurring failures in software systems are located in the exception

handling code (CACHO et al., 2014a,CACHO et al., 2014b,COELHO et al.,

2008,MARINESCU, 2011,MARINESCU, 2013,SAWADPONG et al., 2012). In

particular, common failures are caused by global exceptions being left uncaught

or being caught in the wrong place in the system (CACHO et al., 2014a,

CACHO et al., 2014b,COELHO et al., 2008). Global exceptions are those raised

and handled in di↵erent methods of a program (CACHO et al., 2008,CACHO

et al., 2009,ROBILLARD and MURPHY, 1999,ROBILLARD and MURPHY,

2003). In fact, all failures reported in previous studies were caused by global

exceptions (CACHO et al., 2014a,CACHO et al., 2014b,COELHO et al., 2008).

In this context, developers need to detect and repair the causes of

exception-related failures. Otherwise, the exception handling code will com-

promise software robustness, instead of improving it.

1.1 Problem Statement and Limitations of Re-
lated Work

Exceptions are inherently global in software systems. As previously

discussed, exceptions are raised when runtime errors are detected in software

modules. Continuing program execution in a module where an error was

detected may lead to failures in the system. For this reason, it is advisable to

transfer program execution from the module where the exception was raised

to another module, so that the error is confined to the module where it was

detected. This is why most exceptions are raised and handled in di↵erent

modules of a system. Therefore, dealing with global exceptions is central to the

design and implementation of exception handling in any non-trivial software

system.

In order to define and illustrate the problems tackled in this thesis, this

section introduces an example extracted from Health Watcher (KULESZA

et al. 2006, SOARES et al. 2002), an n-tier web-based system for controlling

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 17

complaints about institutions inspected by health departments of city halls.

This example was chosen because it is easy to understand and illustrates

recurring failures whose causes are located in the exception handling code.

This example was also chosen because it illustrates commonly reported failures

caused by global exceptions (CACHO et al., 2014a, CACHO et al., 2014b,

COELHO et al., 2008).

Figure 1.1: Health Watcher Structure

As one can observe in the diagram depicted in Figure 1.1, the structure

of the Health Watcher system is separated into multiple tiers: GUI, Façade,

Business and Persistence. The GUI tier is responsible for processing user

requests. It processes user requests and delegates them to the Business tier

through Façade. Then, the Business controls the complaints registered in the

system by accessing the Persistence tier. The Persistence tier creates, reads,

updates and deletes the complaints in the data base (DB) through an API.

When the Persistence tier requests services to the API, the data base may

not be able to provide the requested service correctly. For this reason, the

API used to access the data base raises a SQLException to indicate this

impossibility. In this case, the developer is expected to properly implement

the exception handling behavior in charge of handling the SQLException raised

by the data base API. Next, Listing 1.1 presents a simplified code snippet of

the functionality responsible for saving a complaint in the system. The code

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 18

Listing 1.1: Exception-Related Failure in Health Watcher

1 // GUI

2 ComplaintGUI.insertSpecialComplaint(complaint){

3 try{ Facade.insertComplaint(complaint); }

4 catch(PersistenceException e){ errorPage (); }

5 }

6 // FACADE

7 Facade.insertComplaint(complaint){

8 Complaint.insert(complaint);

9 }

10 // BUSINESS

11 Complaint.insert(complaint){

12 try{ Persistence.insertComplaint(complaint); }

13 catch(SQLException e)

14 { throw new RuntimeException(e); }

15 }

16 // PERSISTENCE

17 Persistence.insertComplaint(complaint){

18 // Access database.

19 // Db -API raises SQLException!

20 }

snippet depicts the source code that was deployed and caused a field failure,

i.e., a failure observed in a production environment.

In the code snippet depicted in Listing 1.1, the developer allowed the

SQLException to flow from within the Persistence tier (lines 17-20) to the

Business tier (lines 10-15). In the Business tier, the developer decided to

capture the SQLException with a catch block. A catch block delimits a set

of statements implementing actions responsible for dealing with specific types

of exceptions. Also, it declares an argument, which is usually an exception

type. This argument is used as a filter to decide which exceptions the catch

block captures. This filter usually follows sub-type compatibility rules of the

programming language. Thus, a catch block captures any exception that is a

subtype of its argument.

Within this catch block, the developer decided to invoke a throw state-

ment. A throw statement explicitly raises an exception. When a throw state-

ment is invoked from within a catch block, it is said that the captured exception

is re-mapped to another type. In the previous example, the developer decided to

re-map from SQLException to RuntimeException (line 14). However, the de-

veloper did not handle the re-mapped exception anywhere in the system. Thus,

the re-mapped exception flowed through the methods in Business, Façade and

GUI without being captured and left the boundaries of the Health Watcher

system. Then, the web server that runs Health Watcher terminated its exe-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 19

cution showing an error page displaying the uncaught exception. This way,

an uncaught exception caused a failure by abruptly terminating the system

execution.

Although one may think that the failure depicted in the previous example

is not frequent because its cause seems simple, previous studies have shown

that similar failures are commonly observed in software systems (CACHO et

al., 2014a, CACHO et al., 2014b). In previous studies conducted by Cacho

et al., re-mapped exceptions left uncaught was the most frequent cause of

failures in the analyzed systems. In a sample of sixteen Java programs, 48% of

the failures occurred because exceptions were re-mapped, but the re-mapped

exceptions were not handled (CACHO et al., 2014a). Similarly, 38% of failures

in sixteen C# programs were also caused by re-mapped exceptions being left

uncaught (CACHO et al., 2014b). Uncaught exceptions usually cause severe

failures because they make the whole system crash, making it unavailable to

its users. Therefore, the failure depicted in the previous example is a frequent

and severe exception handling-related problem.

1.1.1 Lack of Explicit Exception Handling Policies

Although exception handling is central to robust software development,

most software systems still implement exception handling without relying

on an explicit exception handling design (DELEMOS and ROMANOVSKY,

2001,KIENZLE, 2008). In this thesis, we refer to the set of design decisions

governing how exception handling should be implemented in a system as

the exception handling policy of the system. For the sake of brevity, from

hereafter the terms “policy” and “exception handling policy” will be used

indistinguishably in this thesis.

Developers participating in recent surveys reported that there exist

exception handling policies in their systems, although not much e↵ort is spent

in documenting them (EBERT and CASTOR, 2013, EBERT et al., 2015).

At best, these policies are partially documented in API documentation or

source code comments. Most of the times these policies are not documented

and exist as implicit rules in the source code (BUSE and WEIMER, 2008,

THUMMALAPENTA and XIE, 2009). In fact, the lack of explicit exception

handling policies is considered one of the main reasons why developers struggle

to implement exception handling (SHAH et al., 2010).

Without explicit exception handling policies, most developers are not

aware of how they should implement exception handling in their programs.

Consequently, they implement exception handling in an ad-hoc manner, prob-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 20

ably introducing in the source code violations to implicit policies. An exception

handling violation occurs when the implemented exception handling code does

not comply with the exception handling policy of a system. From hereafter,

the terms “exception handling violation” and “violation” will be used indis-

tinguishably throughout this thesis.

These violations may have negative consequences in software systems.

In the code snippet depicted in Listing 1.1, for example, there exists a

catch block declaring the PersistenceException type in the GUI tier

(line 4). The developer was expected to re-map from SQLException to

PersistenceException and then handle the re-mapped exception with this

existing catch block in GUI. However, the developer violated this impli-

cit policy by implementing an incorrect re-mapping from SQLException to

RuntimeException. This violating re-mapping originated an uncaught excep-

tion, which caused a field failure. In fact, recent studies have been reporting

exception handling violations as frequent causes of exception-related failures:

all failures in (COELHO et al., 2008), 90% of failures in (CACHO et al., 2014b),

85% of failures in (CACHO et al., 2014a) and 47% of failures in (EBERT et

al., 2015) were caused by violations.

Also, the lack of explicit policies hinders the detection of exception

handling violations. Without knowing how exception handling was expected

to be implemented, developers cannot identify which parts of the code are not

implemented as intended. Since exception handling code is rarely exercised

during program execution and exceptional situations are poorly tested (FU et

al., 2005,SINHA and HARROLD, 2000), exception handling violations remain

dormant in the source code. For this reason, these violations are only discovered

later when they cause field failures (FU et al., 2005, SINHA and HARROLD,

2000).

In this context, the first problem tackled by this thesis is stated as follows:

The lack of explicit exception handling policies in software

systems.

Even if software designers and developers are keen on explicitly defining

exception handling policies for their systems, there is still no proper support

for that. Currently, mainstream programming languages provide built-in ex-

ception handling mechanisms. However, these mechanisms were conceived to

implement error handling behavior in programs. They are not intended to

define policies expressing how exception handling should be implemented. At

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 21

best, developers can express part of their exception handling design decisions

in the names of exception types. For example, the SQLException type, as

its name suggests, should be used to represent database-related errors. Impli-

citly, this is an exception type that should be used by modules implementing

database-related features. Thus, based on the name of the exception type, de-

velopers can infer which modules raised exceptions of this type. However, one

cannot assure that exceptions of this type will only be raised by persistence-

related modules. Similarly, one cannot assure that persistence-related modules

will only raise exceptions of this type. Also, one cannot express where excep-

tions of this type are intended to be re-mapped and handled, for example. And

this type of design decision is important to exception handling, as shown in the

previous example depicted in Listing 1.1. Developers may even try to express

these decisions as source code comments, but comments do not enforce policy

adherence nor aid the detection of violations in the source code.

Currently, there exist solutions aimed at specifying and verifying ex-

ception handling design rules (ABRANTES and COELHO, 2015,CACHO et

al., 2008, SALES and COELHO, 2011, SILVA and CASTOR, 2013). All these

solutions rely on the assumption that for designing exception handling it is

enough to specify the places where exception should be raised and handled in

the source code. However, these are only part of the design decisions involved

in dealing with exceptions. Exceptions are commonly captured and re-mapped

along their propagation paths (FU and RYDER, 2007). And recent studies

showed that recurring uncaught exceptions occurred due to the introduction

of catch blocks that re-map exceptions (CACHO et al., 2014a,CACHO et al.,

2014b). No current solution takes into account these properties of global ex-

ceptions, that is, they do not support the specification of the places where

global exceptions are supposed to be re-mapped. Therefore, current solutions

still provide limited support for the specification and verification of exception

handling policies.

1.1.2 Di�culty in Repairing Violations

Exception handling violations must be repaired to avoid the risk of caus-

ing failures. The repair of exception handling violations refers to performing

modifications in the source code to make it policy-compliant. However, re-

pairing exception handling violations is a di�cult and error-prone task. The

di�culty in repairing exception handling violations stems from the complexity

in performing modifications in the error handling behavior of a system. These

modifications often deal with global exceptions, which require non-local reas-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 22

oning about the possible impact of these exceptions. Global exceptions may

impact any method in the call-chain of methods through which they traverse.

While performing changes in a given method m, there exists the possibility

of exceptions coming from any method directly or transitively invoked by m.

Similarly, there is also the possibility of exceptions flowing to any method that

directly or transitively invokes m. Moreover, any non-trivial software system

has complex call-chains of methods and global exceptions that traverse through

multiple methods. Thus, modifying the source code that deals with global ex-

ceptions requires reasoning about their impact in many di↵erent places of the

system.

Consider for example the violation that occurs in the Complaint.insert

method depicted in Listing 1.1 (lines 11-15). It should be noted that the code

snippet depicted in Listing 1.1 is only a simplified version of the real source

code. Considering the call-chain of methods actually implemented in the sys-

tem, the Complaint.insert directly invokes 15 methods. If transitive method

invocations are considered, this number exceeds the hundreds. Also, there ex-

ist 56 di↵erent methods transitively calling Complaint.insert. Therefore, de-

velopers have to reason about a large number of possible places where excep-

tions can come from and where they can flow to. Failing to properly reason

about the possible impacts of global exceptions in these places may introduce

faults in the source code (CACHO et al., 2008,CACHO et al., 2009,COELHO

et al., 2008). Developers can inadvertently catch exceptions in the wrong place,

implement incorrect re-mappings, miss the implementation of expected re-

mappings or miss the implementation of expected handlers (COELHO et al.,

2008,CACHO et al., 2014a,CACHO et al., 2014b,EBERT et al., 2015).

The di�culty in repairing violations is worsened when explicit policies

are not available because developers do not know which violations may be

causing the failure. They also do not know how they should modify the source

code to make it policy-compliant. Thus, they follow an ad-hoc strategy to

identify and repair the causes of the failures. Following ad-hoc strategies,

developers often introduce other violations in the source code while trying

to repair existing ones (CACHO et al., 2014a, CACHO et al., 2014b). In

fact, developers introduce exception handling violations in the source code

even when doing simple modifications, such as adding method invocations to

existing catch blocks (CACHO et al., 2014a,CACHO et al., 2014b).

Consider for now that developers tried to repair the cause of the failure

depicted in Listing 1.1 without being aware of the implicit policy of the system.

This failure was caused by an uncaught exception originated from the re-map

performed in a method located in the Business tier. Once developers trace

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 23

back the uncaught exception to the place where it was originated, they may

infer that the cause of the failure relates to the re-mapping. Then, developers

may try to repair it in di↵erent ways. One developer may try to repair it by

adding a catch block to handle the uncaught RuntimeException in one of

the methods in the tiers above the Business tier. However, this catch block

would also handle other exceptions that are subtypes of RuntimeException,

which includes NullPointerException, ArithmeticException, and the like.

This way, this catch block would handle exceptions related to other faults,

rather than only the one detected in the Persistence tier. And handling these

exceptions in the incorrect place would probably lead to other failures.

Alternatively, another developer may try to repair it by removing the

throw statement that originated the uncaught exception. That is, instead of

re-mapping from SQLException to RuntimeException, this developer would

handle the SQLException in the Business tier. However, this decision would

hide the fault that originated the SQLException in the first place. Hiding

the original fault would allow the system to continue its execution without

correctly executing the persistence service, which would actually characterize

another failure. In fact, when developers follow ad-hoc strategies to repair

violations related to global exceptions they run the risk of introducing other

violations, possibly leading to new failures (CACHO et al., 2014a,CACHO et

al., 2014b). As tests are often not properly defined for exception handling (FU

et al., 2005, SINHA and HARROLD, 2000), it is unlikely that the developer

would review possible failures before the system is deployed to a production

environment. If this violation leads to a field failure, the system would persist

inconsistent data, possibly causing other failures when this data is retrieved.

Persisting inconsistent data could even cause failures in other systems using the

same database. Therefore, this violation would have subtle and severe negative

consequences to the system.

Even if developers were aware of the implicit policy of the system,

repairing the cause of the failure depicted in Listing 1.1 would still be a

di�cult task. First, developers would need to identify the exception handling

violations in the source code. Then, they would need to figure out how they

should modify the source code to make it policy-compliant. In the previous

example, developers would have to identify that the Persistence tier should not

have propagated SQLException to the upper tier. Instead, the Persistence tier

should have re-mapped from SQLException to PersistenceException. Then,

developers would have to realize that the re-mapped PersistenceException

was supposed to be handled in the GUI tier. Developers would also have to

identify that the Business tier was not supposed to re-map from SQLException

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 24

to RuntimeException.

After identifying the exception handling violations in the source code

and realizing how the exception handling is supposed to be implemented, de-

velopers would have to modify the source code to make it policy-compliant. To

make the source code policy-compliant, developers would have to remove the

violation in the Persistence tier related to the absence of a re-mapping and also

the violation in Business tier related to an existing but incorrect re-mapping.

To do so, first, developers would have to modify the method in the Persist-

ence method tier to remap from SQLException to PersistenceException.

Then, they would have to propagate the PersistenceException to the GUI

tier, where a proper method would handle it. Propagating the exception from

Persistence to GUI requires inspecting all the methods through which the ex-

ception traverse to assure that no method before GUI is catching it along the

propagation path. This requires inspecting 56 methods distributed in 9 classes

pertaining to 4 modules in the system.

In this context, the second problem tackled by this thesis is stated as

follows:

The di�culty in repairing exception handling violations in the

source code.

Currently, there is still no support for the repair of exception handling

violations. Many solutions supporting exception handling are aimed at visual-

izing how exceptions propagate through methods in the source code (CHANG

et al., 2001,FU and RYDER, 2007,ROBILLARD and MURPHY, 1999,ROBIL-

LARD and MURPHY, 2003,SHAH, GÖRG and HARROLD, 2008a). However,

visualization-based solutions do not provide visual cues of where violations are

located in the source code, nor assists in the comprehension of which modi-

fications must be performed in the source code to repair the violations. At

best, these solutions may assist the comprehension of the source code before

developers try to repair violations.

Solutions aimed at specifying and verifying exception handling design

rules can only detect the places where specifications are violated (ABRANTES

and COELHO, 2015,CACHO et al., 2008,SALES and COELHO, 2011,SILVA

and CASTOR, 2013). They do not assist developers in deciding which modific-

ations in the source code must be performed to actually repair these violations.

Without this type of support, developers have to repair these violations on their

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 25

own, often performing modifications that introduce other violations while they

try to repair existing ones, as previously discussed.

There are also solutions supporting exception handling based on recom-

mender systems (BARBOSA et al., 2012,BARBOSA et al., 2012a,RAHMAN

and ROY, 2014), but they are not aimed at supporting the repair of exception

handling violations. These solutions are aimed at assisting the implementation

of exception handlers. Therefore, they are not aware of the existence of ex-

ception handling violations in the source code, let alone support their repair.

Finally, in the software architecture literature, there is one solution aimed at

assisting developers in repairing architectural violations, some of which are re-

lated to exception handling (TERRA et al., 2015). The main limitation of this

solution when employed to the repair of exception handling violations is its

unawareness of the global impact that exceptions might have. Unaware of the

global e↵ect of exceptions, this solution may be able to repair a given exception

handling violation, but the changes performed may actually introduce other

violations in the source code. This is similar to what we previously discussed

when we presented the two strategies developers could follow without policies.

1.2 Goal and Research Questions

As discussed in the previous section, the lack of explicit exception hand-

ling policies brings negative consequences to software systems. It contributes

to the introduction of exception handling violations in the source code and also

hinders the detection of these violations. In addition, when exception handling

violations are detected in the source code, they must be repaired. However,

repairing exception handling violations requires extensive reasoning about the

impact of global exceptions, which is a far from trivial task. If developers fail

to detect and properly repair exception handling violations, they run the risk

of letting such violations cause failures.

In this context, the goal of this thesis is stated as follows:

Goal. Support the detection and repair of exception handling

violations in the source code of software systems.

To achieve this goal, two complementary solutions were proposed. The

first proposed solution supports the detection of exception handling violations

in the source code. Supporting the detection of violations in the source code

requires tackling the problem of the lack of explicit exception handling policies.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 26

Thus, by explicitly defining exception handling policies and checking their

conformance in the source code, the detection of violations is addressed. In

this context, our first research question is stated as follows:

RQ1. How to support the definition and checking of exception

handling policies in the source code?

To address the research question RQ1, we have designed a domain-specific

language (VANDEURSEN et al., 2000,FOWLER, 2010) to specify and verify

exception handling policies. Developers can benefit from the proposed language

by using it to explicitly define policies governing how exception handling should

be implemented in their systems. They can also use it to detect and localize

where exception handling violations occur in the source code. Therefore, the

proposed language fulfills the first part of the goal of this thesis. Chapter 4

presents the language proposal and the studies conducted to evaluate it.

To complement this first solution, this work also proposed a solution for

supporting the repair of exception handling violations. This led to our second

research question:

RQ2. How to support the repair of exception handling viola-

tions in the source code?

The second research question (RQ2) aimed at investigating a solution to

support the repair of exception handling violations. Addressing the research

question RQ2 required tackling the di�culty of repairing violations related to

global exceptions. To do so, we proposed a recommender heuristic strategy that

takes into account the global context of where exception handling violations

occur. This global context encompasses the whole call-chain of methods where

the violation is located. This way, the proposed heuristic strategy considers

the possible impacts of global exceptions in order to provide recommendations

on how to repair violations in the source code. Therefore, the proposed

recommender heuristic fulfills the second and final part of the goal of this thesis.

The heuristic proposal and the study conducted to evaluate it are presented

in Chapter 5.

Documenting explicit exception handling policies with the proposed lan-

guage supports the detection of violations in the source code. After detecting

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 27

these violations, the proposed recommender heuristic supports their repair. In

addition, the recommender heuristic leverages on explicit policy specifications

to improve its e↵ectiveness. Therefore, developers will be better-o↵ if they use

the two proposed solutions combined.

Finally, it is worth discussing why this thesis aimed at supporting the

detection and repair of exception handling violations, instead of directly

detecting and repairing exception handling faults. In fact, our initial goal

was to support the detection and repair of exception handling faults. Before

investigating solutions for this type of support, we investigated what categories

of exception handling faults occur. This study is presented in Chapter 3. By

better understanding what categories of exception handling faults occur, we

thought that it would be possible to support their detection and repair.

However, during this study on exception handling faults, we observed

that most of these faults were not confined to specific structural patterns in

the source code, such as empty or generic catch blocks. Actually, we observed

an ambiguity in some structural patterns in exception handling code: whereas

some faults occurred due to a specific structural pattern, other faults were

repaired using the same structural pattern. For example, there were faults that

occurred due to generic catch blocks, whereas other faults were repaired using

generic catch blocks. In the example depicted in Listing 1.1, the failure was

caused by a re-mapping, but it was also repaired by implementing another re-

mapping. Therefore, it would be di�cult to support the detection of exception

handling faults by only analyzing structural patterns in the source code, as

explored in programs that implement exception handling using idioms based

on returning error values (BRUTNIK et al., 2006). This type of solution is more

appropriate to programs implemented in programming languages without a

built-in exception handling mechanism. By only reviewing the source code of

the system, it is impractical to decide whether a given element in the exception

handling code is faulty or not. One would need a proper specification defining

the intended exception handling design. In other words, it became clear to us

the need for explicit policies in order to properly analyze the exception handling

implementation. For this reason, we focused on supporting the definition of

explicit exception handling policies, as well as on supporting the detection and

repair of exception handling violations in the source code.

1.3 Thesis Outline

This introductory chapter portrayed an overview of this thesis. The re-

mainder of the thesis is structured as follows. Chapter 2 gives an overview

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 1. Introduction 28

of the basic concepts explored in this thesis and also summarizes the main

works related to ours. Chapter 3 presents the preliminary study conducted to

investigate what types of exception handling faults occur in software systems.

Chapter 4 presents a domain-specific language for specifying and verifying

exception handling policies in programs. Chapter 5 presents a recommender

heuristic strategy that assists the repair of exception handling violations. Fi-

nally, Chapter 6 concludes this thesis by summarizing the research contribu-

tions achieved, making final considerations and pointing to directions for future

research.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

2
Background

This chapter outlines the terminology adopted throughout this thesis

(Section 2.1). It also presents a series of previous empirical studies conducted to

investigate how exception handling is being implemented in software systems

(Section 2.2). Finally, it presents current solutions proposed for supporting

exception handling (Section 2.3).

2.1 Basic Terminology

A software system consists of a set of modules that cooperate with each

other to deliver services to an external environment (LEE and ANDERSON,

1990). A software module is a software element that encapsulates a set of func-

tionalities and provides services through an interface (LEE and ANDERSON,

1990). When a software system delivers its services according to their specific-

ations, it is said that the system delivers its services correctly (AVIZIENIS et

al., 2004,LEE and ANDERSON, 1990). On the other hand, when the services

delivered by a software system deviate from their specifications, it is said that a

failure occurs (AVIZIENIS et al., 2004,LEE and ANDERSON, 1990). Failures

occur either because the system implementation does not comply with its spe-

cification or because the specification does not describe the system’s services

adequately. The state in which the services of a system deviate from their spe-

cifications is called an error (AVIZIENIS et al., 2004,LEE and ANDERSON,

1990). In other words, errors are the states that enable the occurrence of fail-

ures. And the cause of an error is called a fault (AVIZIENIS et al., 2004,LEE

and ANDERSON, 1990). Faults are incorrect or missing instructions or data

definitions in programs (IEEE, 1990).

Robust software systems must remain in operation despite the occurrence

of errors (IEEE, 1990). To do so, they must be able to detect errors during

runtime and take actions to confine the consequences of errors, allowing the

system to continue in operation. When a software system is robust and is also

able to deliver its services correctly after detecting errors, this system is also

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 30

fault tolerant (LEE and ANDERSON, 1990). Fault tolerance is achieved by

detecting errors and responding to these errors by taking actions for recovering

the system from inconsistent states (LEE and ANDERSON, 1990).

Recovering from inconsistent states can be achieved with two broad cat-

egories of techniques: backward error recovery and forward error recovery (LEE

and ANDERSON, 1990). In backward error recovery, the state of a system is

restored to a recovery point upon the detection of errors. Recovery points

are previous and non-erroneous states of the system (LEE and ANDERSON,

1990). They are recovered by undoing the e↵ects of operations performed since

the last recovery point was established, or by saving and reloading previous

states. In forward error recovery, the state of a system is restored without

reversing previous operations, nor saving previous states (LEE and ANDER-

SON, 1990). Forward error recovery is performed by finding a safe state for the

system. After an error is detected, safe states can be achieved by reconfiguring

the system, using redundancy to fix corrupted data or replacing an erroneous

value with a default value that will have a benign e↵ect, for example.

Backward error recovery techniques can be expensive and impose per-

formance penalties to programs because they require saving previous states

of the system or a log of the operations performed (LEE and ANDERSON,

1990). In addition, there is no guarantee that after recovering the system to a

recovery point the error will not occur again. If the error was caused by a fault

in the source code of the system, the error will likely occur again if the system

is recovered and then executes the same portion of the code where the fault is

located. Forward error recovery techniques, on the other hand, impose fewer

overheads to programs (LEE and ANDERSON, 1990). In addition, if the error

was caused by a fault in the source code, forward error recovery techniques

are able to avoid executing the portion of the code where the fault is located.

For these reasons, forward error recovery is more employed in software systems

than backward error recovery. Exception handling, which is the focus of this

thesis, is one of the main instruments for implementing forward error recovery

in software systems.

2.1.1 Exception Handling

Software modules receive service requests from the external environment

and produce responses. The diagram depicted in Figure 2.1 presents the

structure of robust software modules adapted from (LEE and ANDERSON,

1990). This abstract structure serves as a conceptual framework for the design

and implementation of robust software modules. As one can observe in the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 31

Figure 2.1: Internal Structure of a Robust Software Module

diagram depicted in Figure 2.1, the execution flow of a robust module can be

internally separated into normal and exceptional flows (LEE and ANDERSON,

1990). In addition, the responses from a robust module can be separated into

two distinct categories: normal responses and exceptional responses (LEE and

ANDERSON, 1990). When robust modules receive service requests and they

are able to provide their services correctly, then they execute their normal flow

and produce normal responses. Normal responses correspond to the results

of correct services and the normal flow comprises the actions that a robust

module implements to provide its services correctly (LEE and ANDERSON,

1990).

In addition, when robust modules detect errors during the execution of

their normal flow, they must take actions to respond to these errors. To do

so, robust modules deviate their execution flow from the normal flow to the

exceptional flow. The exceptional flow comprises the actions that a robust

module implements to respond to errors (LEE and ANDERSON, 1990). If

robust modules are able to properly confine the consequences of an error,

then their execution flow resumes from the exceptional flow to the normal

flow. Otherwise, they respond to service requests by producing exceptional

responses. Exceptional responses are produced to indicate that requested

services cannot be correctly provided. An exceptional response is also referred

to as an exception (BUHR, 2000,CRISTIAN, 1989,GOODENOUGH, 1975).

Software modules typically signal exceptions when errors are detec-

ted during runtime. For this reason, the state of a software module is of-

ten inconsistent when exceptions are signaled (BUHR, 2000, CRISTIAN,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 32

1989, GOODENOUGH, 1975). If the module continues its execution in an

inconsistent state, it may lead to additional exceptions or even to failures. For

this reason, it is important to avoid or mitigate the potential negative im-

pact of exceptions in the system operation. Otherwise, software robustness is

compromised.

Exception handling is the most common way of dealing with exceptions

during the construction of robust software systems (BUHR, 2000, GARCIA

et al., 2001, JAKOBUS et al., 2015). Exception handling refers to the pro-

cess of identifying runtime errors, signaling exceptions upon the detection of

these errors and taking actions to respond to the occurrence of these excep-

tions (BUHR, 2000,CRISTIAN, 1989,GOODENOUGH, 1975). These actions

should, ideally, confine the consequences of errors and allow the system to

remain in operation. This way, the proper design and implementation of ex-

ception handling improves software robustness.

In order to support developers in implementing robust software systems,

most mainstream programming languages provide built-in exception handling

mechanisms (GARCIA et al., 2001, JAKOBUS et al., 2015). An exception

handling mechanism is a set of language constructs to (i) represent excep-

tions in software systems, (ii) signal the occurrence of these exceptions, (iii)

structure sets of actions responsible for coping with exceptions and (iv) activ-

ate these actions upon the detection of exceptions (BUHR, 2000,CRISTIAN,

1989,GOODENOUGH, 1975). The set of actions responsible for coping with

exceptions is also referred as an exception handler. Programming languages

with built-in exception handling mechanisms also provide runtime support

for: (i) deviating the execution flow of a program from its normal to its excep-

tional flow when exceptions are raised and (ii) resuming from the exceptional

to the normal flow when exceptions are handled (BUHR, 2000, CRISTIAN,

1989,GOODENOUGH, 1975).

In the context of programming languages, there are di↵erent variants

of how exception handling mechanisms can be implemented (BUHR, 2000,

GARCIA et al., 2001). We observed in a recent study that among the 54

most widely adopted programming languages with built-in exception handling

mechanisms, 53 follow the try-catch-throw model (JAKOBUS et al., 2015).

This model relies on the definition of guarded scopes with try blocks, exception

handlers with catch blocks and exceptions raisers with throw statements. The

try blocks delimit a portion of the code that may raise exceptions, but is

guarded from their occurrence by catch blocks. The catch blocks delimit a

portion of the code responsible for dealing with specific types of exceptions.

When a throw statement is invoked to raise an exception, the program

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 33

execution is transferred from the place where throw statement was invoked

to the first enclosing catch block able to capture this exception. After the

catch block is executed, the program continues its normal flow.

This thesis focuses on exception handling mechanisms that follow the try-

catch-throw model. In particular, it focuses on the mechanism implemented by

the Java programming language for two main reasons. First, Java is the most

adopted programming language with a built-in exception handling mechanism

following the try-catch-throw model (JAKOBUS et al., 2015). Second, the char-

acteristics of the Java exception handling mechanism subsume the characterist-

ics of the mechanisms in most mainstream programming languages (GARCIA

et al., 2001). Thus, the Java exception handling mechanism is representative of

mechanisms most frequently used by developers nowadays to achieve software

robustness. The next section describes the exception handling mechanism of

the Java programming language.

2.1.2 Exception Handling in Java

This section describes the exception handling mechanism of the Java

programming language, as described in The Java Languages Specification: Java

SE 6 (JSL-6). The next sections describe the main features of the exception

handling mechanism of Java.

Exception Representation

Exceptions are represented as objects in Java. More specifically, all

exceptions in Java are instances of the class Throwable or one of its subclasses

(JSL-6). The Throwable class is the root of the exception hierarchy tree in

Java. The diagram in Figure 2.2 depicts the partial exception hierarchy tree in

Java. The Throwable class has two direct subclasses: Error and Exception.

Exceptions that are instances of the Error class, or of one of its subclasses,

represent serious problematic conditions external to the application (JSL-6).

For this reason, these exceptions should not be handled at the application level.

An example of a problematic condition external to the application occurs when

the Java Virtual Machine runs out of resources necessary for it to continue

operating (e.g. OutOfMemoryError).

The RuntimeException class is a direct subclass of the Exception

class. The RuntimeException class and its subclasses represent exceptions

that are internal to the application (JSL-6). These exceptions are typically

raised when semantic constraints of the Java programming language are in-

fringed. Examples of such infringements are attempts to access null point-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 34

Figure 2.2: Exception Hierarchy Tree in Java

ers or index outside the bounds of an array. These infringements result

in NullPointerException and ArrayIndexOutOfBoundsException, respect-

ively. For this reason, client code cannot reasonably be expected to recover

from or to handle these exceptions in any way. Therefore, measures should

be taken in the source code to prevent the occurrence of exceptions that are

instances of RuntimeException or one of its subclasses.

The Exception class and its subclasses, except those that inherit from

the RuntimeException class, represent exceptions that are internal to the

application and are typically related to recoverable conditions (JSL-6). In other

words, they represent exceptions that the application is able to recover from.

For example, an instance of the SQLException class may be raised to indicate

a transient problem in a database server. If the application performs some

recovery actions and retries the operation that previously raised the exception,

then this operation may be able to succeed.

Checked vs. Unchecked Exceptions

In Java, exceptions can be classified as either checked or unchecked

exceptions. The unchecked exceptions are those that are subtypes of the

RuntimeException and Error classes (JSL-6). All the other exceptions are

checked exceptions (JSL-6). That is, the checked exceptions comprise all

exceptions that are subtypes of the Throwable class other than the subtypes

of RuntimeException and Error classes.

Methods that raise checked exceptions are bound to the “Catch or Specify

Requirement” (JSL-6). This requirement states that methods raising checked

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 35

exceptions must either capture these exceptions with a catch block or specify

these exceptions in their signature with the throws clause. The throws clause

defines in the signature of a method its exceptional interface, i.e., the list

of exceptions that flows through the boundaries of this method. Moreover,

a method calling another method with checked exceptions in its exceptional

interface is also bound to the “Catch or Specify Requirement”. The Java

compiler statically verifies at compile-time if methods adhere to the “Catch or

Specify Requirement”. If a method fails to adhere to this requirement, the Java

compiler signals an error. This compile-time verification for checked exceptions

is aimed at reducing the number of exceptions that are not properly handled

by developers (JSL-6).

The static reliability check to verify the “Catch or Specify Requirement”

is not performed for the unchecked exceptions. The declaration of unchecked

exceptions in the exceptional interface of a method is not mandatory. Accord-

ing to the Java specification, exceptions that are subtypes of the Error class

are not required to be declared in exceptional interfaces because they can oc-

cur at many points in the program and recovering from them is di�cult or

impossible (JSL-6). Requiring the declaration of these exceptions would make

programs excessively cluttered. Similarly, the designers of the Java program-

ming language judged that having to declare exceptions that are subtypes of

the RuntimeException in exceptional interfaces would not aid in establishing

the correctness of programs (JSL-6). Many of the operations in Java can result

in RuntimeExceptions, so requiring such exceptions to be declared would only

be an extra burden to developers.

Although not mandatory, unchecked exceptions may still be declared in

exceptional interfaces. Declaring unchecked exceptions in the exceptional in-

terfaces of methods does not impose any contract to callee methods. Bloch

argues against the declaration of unchecked exceptions in exceptional inter-

faces (BLOCH, 2008). Bloch argues that developers must be aware of which

exception types are checked and which are unchecked, as their responsibilit-

ies di↵er in these two cases. For this reason, the exceptional interface of a

method provides should help developers distinguish checked exceptions from

unchecked. Therefore, only checked exceptions should be declared in the ex-

ceptional interface of a method.

Guarded Scopes, Exception Handlers and Terminating Actions

A guarded scope delimits a portion of code guarded from the occurrence

of exceptions. An exception handler is a set of actions responsible for coping

with specific exceptions detected during runtime. Guarded scopes and excep-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 36

tion handlers are defined with try blocks and catch blocks, respectively, as

depicted in the following generic structure:

try{ S }

catch(E1) { H1 }

catch(E2) { H2 }

The try block guards a sequence of statements S from occurrences of

exceptions by preventing that certain exceptions flow out of the block. To

prevent that exceptions flow out of a try block, a sequence of catch blocks is

attached to it. Each catch block may capture specific exceptions flowing out

of the try block.

A catch block is defined in terms of an argument En and a sequence of

statements Hn. The argument of a catch block is a type used as a filter of which

exceptions may be captured. In Java, this filter follows sub-type compatibility

rules of the programming language (JSL-6). Thus, a catch block declaring

the type En as its argument captures any exception of this type and also

exceptions that are subtypes of En. When a catch block captures an exception

that is a subtype of its argument, it is said that the exception was caught by

subsumption. Moreover, the sequence of statements Hn implements the set of

actions that actually cope with an exception.

The terminating actions are delimited by finally blocks. These blocks

may be attached to try blocks, as depicted in the following generic structure:

try{ S }

catch(E) { H }

finally { F }

The finally block delimits a sequence of statements F that is always

executed when the control leaves the try block. The control can leave a try

block when all statements in the try block are executed normally. Control can

also leave as a result of the execution of a break, continue or return statement,

or of an exception flowing out of the try block. When an exception flows out

of the try block and a catch block captures this exception, the finally block is

executed after the execution of the catch block.

In other words, the finally block is always executed, regardless of whether

the try block terminates normally or exceptionally. In practice, finally blocks

can be used to avoid that a transfer of control accidentally bypasses a given

sequence of statements. For this reason, finally blocks are often used to

perform actions that must be executed every time a sequence of statements

terminates its execution, even in the occurrence of exceptions. The following

code snippet exemplifies the definition of guarded scopes, exception handlers

and terminating actions:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 37

public Data readData(String sql){

Connection conn = DbUtils.getConnection ();

Statement stmt = null;

try{

stmt = conn.createStatement ();

ResultSet set = stmt.executeQuery(sql);

// process set

}

catch(SQLException e) { conn.rollback (); }

finally { if (stmt != null) stmt.close(); }

}

In the previous code snippet, there is a definition of a try-catch-finally

block within the readData method. It is worth noticing that guarded scopes

in Java are defined at the block-level. That is, try blocks are attached to

blocks of statements in the source code. In the previous examples, the method

invocations conn.createStatement() and stmt.executeQuery(sql) may

result in exceptions of the SQLException type. These invocations are guarded

by the try block, to which a catch block is attached. There is also a finally

block attached to the try block. This finally block is responsible for invok-

ing the stmt.close() method in order to release an allocated resource. If a

SQLException occurs during the execution of conn.createStatement() or

stmt.executeQuery(sql), then the conn.rollback() method is invoked

within the catch block to undo the changes performed in the database and re-

lease any lock held by the database connection. After executing the catch block,

the finally block is executed to close opened resources. If no SQLException is

raised, then all the statements within the try block are executed, followed by

the execution of the statements within the finally block.

Exception Raisers

Exceptions are raised with the throw statement. The result of raising

an exception is an immediate transfer of control from the normal flow to the

exceptional flow of a program. The Java virtual machine halts the program

execution and starts the search for a suitable handler. Suitable handlers are

catch blocks able to capture the raised exception.

The search for a suitable handler starts from the place where the

exception is raised. If the exception is raised from a statement outside a try

block, then the call-stack is unwound until a try block is found. When a try

block is found or when the exception is raised from within a try block, a suitable

handler is searched in the list of catch blocks attached to this try block. The

runtime type of the raised exception is compared with the exception types in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 38

each catch block. For the first matching catch block, its sequence of statements

is executed. When all statements of a catch block are executed without raising

any exception, it is said that the exception is handled. After an exception is

handled, the execution flow returns to the normal flow in the first syntactic

unit after the executed catch block.

If no matching catch block is found in the list of catch blocks attached

to a try block, then the call-stack continues to be unwound until another try

block is found. If the whole call stack is unwound and no matching catch block

is found, then the thread that detected the exception is terminated (JSL-6).

Exception Propagation

The exception handling mechanism implemented by Java provides a hy-

brid design solution for exception propagation. In Java, unchecked exceptions

are implicitly propagated. That is, unchecked exceptions are automatically

propagated from the method where they are raised to the methods where

proper handlers are found, possibly traversing through intermediate methods.

Intermediate methods are those in an exception propagation path situated

between the place where the exception is raised and the places where the ex-

ception is handled.

Checked exceptions, on the other hand, are explicitly propagated. That

is, checked exceptions are only propagated when they are declared in the

exceptional interface of methods. If a checked exception occurs in the context

of a method and it is neither handled by a catch block nor declared in the

throws clause of the method, then the Java compiler signals a compilation

error.

Exception Re-throwers and Re-mappers

After being raised, exceptions usually traverse through di↵erent interme-

diate methods on the call stack before they are handled. In some cases, it may

be necessary to implement partial handling actions in intermediate methods.

In these cases, intermediate methods need to capture the exception, implement

partial handling actions and re-throw the caught exception to its immediate

callers.

In Java, there is no specific command to re-throw an exception. Instead,

a re-throw is performed as follows:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 39

try { S }

catch(E1 e){

// perform handling actions

throw e;

}

As one can observe in the previous code snippet, a re-throw is imple-

mented in Java with a throw statement within a catch block that explicitly

receives as its argument the same exception captured by the catch block.

In addition to scenarios in which intermediate methods need to re-throw

the caught exception, there are also scenarios in which they need to re-map the

caught exception. An exception re-mapping occurs when an exception di↵erent

from the exception caught by the catch block is raised from within the catch

block. Java does not provide a specific construct to perform exception re-

mappings. The following generic code depicts how exception re-mappings can

be implemented in Java:

try { S }

catch(E1 e){ throw new E2(e); }

catch(T1 e){ throw new T2(); }

In the previous code snippet, the first catch block captures exceptions

that are subtypes of E1 and raises an exceptions of type E2. In this case, it is

said that the exception is re-mapped from E1 to E2. Notice that the caught

exception is wrapped in the re-mapped exception. This practice can be used

to store the original exception in the re-mapped exception. In fact, this is a

common practice and most of Java built-in exception classes have constructors

that take an exception as parameter. The second catch block in the previous

code snippet re-maps from T1 to T2 without wrapping the caught exception in

the re-mapped exception. Exception re-mappings can be implemented in both

manners; developers are free to decide which manner suits them best.

2.2 Exception Handling in Practice

This section provides an overview of the empirical studies related to

the theme of this thesis. We present empirical studies we conducted in

collaboration with other researchers, as well as studies conducted by other

research groups. Next, Section 2.2.1 presents empirical studies that assessed

how exception handling is implemented in programs. Section 2.2.2 presents

studies conducted to analyze the occurrence of faults located in the exception

handling code.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 40

Table 2.1: Types of Exception Handlers

Handler Type Libraries Stand-alone Server-apps Servers

.NET

Alternative
Configuration

28% 11% 23% 25%

Empty 21% 21% 11% 25%
Log 15% 33% 42% 14%

Return 3% 15% 14% 0%
Throw 6% 14% 8% 16%

Java

Alternative
Configuration

3% 4% 3% 7%

Empty 11% 15% 17% 13%
Log 28% 57% 38% 41%

Return 9% 15% 7% 11%
Throw 44% 5% 30% 23%

2.2.1 Exception Handling Implementation

Empirical studies have been conducted to analyze how exception hand-

ling is implemented. Cabral and Marques (CABRAL and MARQUES, 2007)

performed a study in the context of 16 di↵erent programs implemented in

Java and of 16 di↵erent programs implemented in the .NET platform. These

programs were divided into four groups: “Servers”, “Libraries”, “Stand-alone

applications” and “Server-apps”. The authors analyzed what types of actions

were implemented in exception handlers. For the .NET programs, they ob-

served in the four groups of programs that 72% to 97% of the handlers were

categorized as one or more of the following categories: “Empty”, “Log”, “Al-

ternative Configuration”, “Throw” or “Return”. “Empty”, “Log” and “Re-

turn” handlers, as their names suggest, are implemented with empty catch

blocks, logging operations and return statements, respectively. Handlers cat-

egorized as “Alternative Configuration” perform reconfigurations in the sys-

tem and those categorized as “Throw” invoke a throw statement within the

catch block to either re-throw or re-map the exception captured by the catch

block. For the Java programs, the authors also observed in the four groups of

programs that 95% of the handlers were in these categories. Table 2.1 sum-

marizes the distribution of handlers in these categories, as reported by Cabral

and Marques (CABRAL and MARQUES, 2007). Other handlers analyzed in

this study were categorized as: “Assert”, “Close”, “Continue”, “Rollback” and

“Others”. Except for the “Assert” handlers, which accounted for approxim-

ately 26% of the handlers in the “Libraries” group of .NET programs, these

other types of handlers were not very frequent.

One can observe in Table 2.1 that “Log” handlers were common in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 41

both .NET and Java programs. One possible explanation for this observation

could be the fact that many exceptions raised by third-party libraries do

not represent actual errors in the system, so they are usually handled by

only logging error messages. Moreover, “Alternative Configuration” handlers

were more common in .NET than in Java, whereas “Throw” handlers were

more common in Java than in .NET. As Cabral and Marques pointed out,

.NET programs favored the implementation of handlers focused on avoiding

premature program termination. This may be the reason why most handlers

in .NET were categorized as “Alternative Configuration”, “Empty” or “Log”,

since these handlers captured exceptions and rapidly allowed the system to

continue its normal execution. By avoiding premature program termination

with simple handlers, developers provide a minimum level of robustness in

their systems. For the Java programs, on the other hand, it was observed that

they often centralized system reconfiguration in specific modules implementing

“Alternative Configuration” handlers. Then, “Throw” handlers were used to

re-map global exceptions, so the re-mapped exceptions can be handled by

centralized handlers reconfiguring the system. However, as we shall discuss

in the next section, even these simple handlers can violate implicit policies,

leading to failures. Finally, it is also interesting to notice that empty handlers

were more common in .NET than in Java. One could expect a priori that

empty handlers were commonly implemented in Java as a way to avoid the

reliability checks performed by the Java compiler. It should be noted that

programming languages in the .NET platform do not have reliability checks

similar to that performed by the Java compiler.

To further investigate how exception handling was implemented in other

programming languages, we recently conducted an empirical study (JAKOBUS

et al., 2015). First, we analyzed what the most adopted programming languages

nowadays are and what kind of exception handling mechanism they provide.

By combining a set of indices of programming languages adoption, we produced

a list of the 71 most widely adopted programming languages. After examining

the specifications of these languages, we concluded that 54 out of the 71

examined languages (approximately 76%) provide built-in exception handling

mechanisms. From the 54 programming languages with built-in exception

handling mechanisms, 53 follow the try-catch-throw model and only 1 – the

Go programming language – provides an exception handling mechanism that

follows a di↵erent model.

Next, we analyzed 50 popular open-source projects hosted on public re-

positories of the GitHub hosting service, 10 for each of the 5 most adopted pro-

gramming languages (JavaScript, Java, PHP, C# and C++). These projects

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 42

Table 2.2: Size of Exception Handlers

Programming
Language

Empty
Handlers

Handlers With Only
1 Statement

Handlers With More
Than 1 Statement

Javascript 29% 38% 33%
Java 11% 69% 20%
C# 20% 51% 29%
C++ 11% 48% 41%
PHP 15% 47% 38%

were analyzed to investigate how exception handlers are commonly implemen-

ted in these languages. We investigated the size of the handlers in terms of

the number of statements within the catch blocks. Table 2.2 depicts the data

collected for the size of the handlers. As one can observe in this table, the

number of empty catch blocks observed in Java and C# projects is very sim-

ilar to the numbers observed in the study of Cabral and Marques. It is worth

mentioning that C# is part of the .NET platform, which was the focus of the

study of Cabral and Marques. It is interesting to notice that Java projects had

the smallest percentage of empty handlers. Thus, the use of checked exceptions

did not seem to influence the existence of empty handlers, as one might expect.

The observations of our study are aligned with those made by Cabral and

Marques. For the Java programs, in particular, we observed that few handlers

contain more than one statement. These are the handlers that centralized

reconfiguring actions, as observed by Cabral and Marques. In addition, we

observed that the majority of handlers was simple. These are the handlers that

log exceptions that do not represent errors to the system or re-map exceptions

so central handlers can handle them, as observed by Cabral and Marques.

In fact, implementing simple handlers that delegate to centralized handlers

the responsibility of properly handling exceptions seems a reasonable design

decision as not all methods in a system are able to implement proper handling

actions.

The occurrence of global exceptions is favored by the implicit policies

observed, as these policies are often related to propagating exceptions from

the place where they occur to modules responsible for actually handling them.

In large systems, developers are usually in charge of implementing specific

modules. As a consequence, developers might not have the global knowledge

required to deal with global exceptions. And as exception handling policies are

often only implicitly defined in the source code and not explicitly documented,

developers tend to violate them in the source code. As we shall discuss in the

next section, most exception-related failures are caused by these violations.

Currently, there is still limited support for defining explicit exception handling

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 43

policies. Exception handling mechanisms in programming languages (Section

2.1.2) are not adequate for that. These mechanisms are intended to implement

exception handling, not to design how it should be implemented. Therefore,

there is still a need to support the definition of explicit policies in software

systems, as well as the detection of violations in the source code. This is further

discussed in Chapter 4.

2.2.2 Recurring Problems in Exception Handling

Exception handling is the most common way of dealing with errors dur-

ing the development of software systems. Indeed, software robustness is im-

proved if exception handling is designed and implemented properly. However,

recent empirical studies have shown that the causes of recurring failures in

software systems are located in the exception handling code (CACHO et al.,

2014a,CACHO et al., 2014b,COELHO et al., 2008,MARINESCU, 2011,MAR-

INESCU, 2013,SAWADPONG et al., 2012).

Sawadpong et al. (SAWADPONG et al., 2012) conducted an exploratory

study in the context of six major releases of Eclipse to compute the fault

density of the source code. The authors defined fault density as the number

of known faults divided by the number of lines of uncommented source code.

Then, the authors compared the fault density of the exception handling code

to the fault density of the overall code. Their findings showed that the fault

density in exception handling code is almost three times higher than the overall

fault density. For this reason, the authors claimed that there seems to exist

a relationship between the use of exception handling mechanisms and the

occurrence of faults in Java programs.

The work of Sawadpong et al. showed that faults are commonly located

in the exception handling code, but they did not further investigate how

these faults occurred. Marinescu (MARINESCU, 2011) investigated exception

handling faults in more details. First, she assessed if Java classes that either

raise or handle exceptions are more fault-prone than classes that do not use

exceptions. This study showed that classes using exceptions are more likely

to exhibit faults than classes not using exceptions. In a subsequent work,

Marinescu (MARINESCU, 2013) investigated whether classes that handle

exceptions with generic catch blocks are more likely to exhibit fault than classes

that handle exceptions with specific catch blocks. The findings of the study

showed that classes that use exceptions and handle them with generic catch

blocks are more likely to exhibit faults than classes that use exceptions, but

do not handle them with generic catch blocks.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 44

Other empirical studies have also tried to characterize faults in the

exception handling code. Coelho et al. (COELHO et al., 2008) assessed

the impact of exception handling in software robustness in the context of

aspect-oriented programs. The authors analyzed the robustness of programs

implemented in Java and their counterparts implemented in AspectJ. The

AspectJ versions of programs were refactored from the Java versions to

simplify and better modularize existing concerns, including exception handling.

The authors observed that, despite the e↵orts in simplifying and better

modularizing exception handling, the AspectJ programs were less robust than

their counterparts in Java. They observed not only a higher number of faults

in the AspectJ programs, but also a higher increase in their occurrence during

the evolution of the AspectJ programs. These systems were implemented and

refactored without relying on explicit exception handling policies, so this

may be one of the reasons why exception handling faults were increasingly

introduced in the systems along software evolution.

In this study, Coelho et al. also identified patterns of recurring faults loc-

ated in the exception handling code. These patterns were related to violations

of exception handling design decisions. In particular, design decisions defining

the places where exception handlers should have been implemented were not

implemented as intended in the source code. The authors observed faults re-

lated to uncaught exceptions being introduced because aspects did not capture

exceptions in the intended places. These aspects were not capturing exceptions

in the intended places due to the improper definition of their point-cuts. They

also observed that uncaught exceptions were created because aspects explicitly

raised them, but no proper catch blocks existed in the source code.

To further understand how faults related to uncaught exceptions occur,

we performed two empirical studies, one with C# programs (CACHO et

al., 2014b) and the other with Java programs (CACHO et al., 2014a). In

these studies, we analyzed if and to what extent changes in the normal

and exceptional flows of a program introduced faults related to uncaught

exceptions. We focused on uncaught exceptions because they usually cause

severe failures that make the whole system crash. We performed a change

impact analysis and exception flow analysis in the context of 16 evolving

C# programs and 16 evolving Java programs. For each group of programs,

we identified which change scenarios introduced faults related to uncaught

exceptions.

For the C# programs, we observed that two recurring change scenarios

accounted for approximately 66% of the exception handling faults. The first

recurring change scenario was related to the introduction of catch blocks that

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 45

re-throw the caught exception. This change scenario increased the number

of faults because the re-thrown exceptions were not handled in the context

of the program. This scenario was responsible for approximately 38% of the

exception handling faults. The second recurring change scenario was related

to the introduction of catch blocks handling exceptions. This change scenario

increased the number of faults because one of the statements within the catch

block raised an exception and this exception was not handled within the

program. This scenario was responsible for approximately 28% of the observed

faults.

For the Java programs, we observed that three recurring change scenarios

accounted for approximately 83% of the exception handling faults. The first

change scenario was responsible for almost 48% of the faults related to

uncaught exceptions. This change scenario was related to the introduction

of catch blocks that re-mapped checked exceptions to unchecked exceptions.

The number of faults increased because the applications did not handle

the unchecked exceptions. The second change scenario was responsible for

approximately 22% of the observed faults. This scenario was related to the

introduction of catch blocks in the source code. The number of faults related

to uncaught exceptions increased because one of the statements within the

introduced catch block raised an exception that was not handled by the

program. The third change scenario was responsible for almost 13% of the

observed faults and was related to the removal of existing catch blocks. This

way, exceptions that were previously captured by these catch blocks became

uncaught.

In these studies, we observed that the change scenarios that introduced

faults were similar for the C# and Java programs. They were related to viol-

ations of implicit policies. Examples of violations observed were implementing

incorrect re-mappings, inappropriately removing catch blocks or missing the

implementation of catch blocks. There is still little support for detecting these

violations in the source code, so maybe this is one of the reasons why these

violations were increasingly introduced during the evolution of the analyzed

programs. Without adequate support, developers can only resort on the fea-

tures of exception handling mechanisms in programming languages to detect

these violations. However, these mechanisms are not intended for supporting

the detection of violations. The reliability checks performed by Java, for ex-

ample, can only detect the lack of existing catch blocks for checked exceptions.

Even so, developers avoid these checks by re-mapping checked exceptions to

unchecked exceptions, which often originated faults in the programs. For this

reason, there is still a need to support the detection of exception handling

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 46

violations in the source code. We further discuss this in Chapter 4.

We also observed in these studies that most faults related to uncaught

exceptions were introduced while developers modified the exception handling

code. And this was observed in both groups of programs. These modifications

in the exception handling code evidence that developers do try to improve

it or repair it along software evolution. However, they perform these changes

following ad-hoc strategies due to the lack of explicit policies in their systems.

In some cases, developers were actually trying to repair existing violations

in the exception handling code when they introduced others. This finding

highlights the di�culty in repairing exception handling violations without

causing negative side-e↵ects in other parts of the programs. In these studies, we

could observe that developers focused on the local context of the method where

the violation was located and overlooked the impact that these modifications

might have in other methods due to global exceptions. It was very common

to observe developers focusing on capturing and re-mapping exceptions, but

forgetting to properly handle the re-mapped exception in other methods, for

example. For this reason, there is still a need to support developers while they

repair exception handling violations. We further discuss this in Chapter 5.

Finally, the studies presented in this section have focused on quantifying

exception handling faults (SAWADPONG et al., 2012,MARINESCU, 2011)

or on assessing specific types of exception handling faults, such as those

related to generic catch blocks (MARINESCU, 2013) and uncaught exceptions

(COELHO et al., 2008,CACHO et al., 2014a,CACHO et al., 2014b). Rather

than these two kinds of exception handling faults, there is still little empirical

knowledge about what other kinds of exception handling faults occur. The

ignorance about exception handling faults may contribute to their introduction

and hinder their identification in the source code, since developers may not

recognize them. In Chapter 3, we present an empirical study we conducted to

further investigate what kinds of exception handling faults occur in software

systems.

2.3 Support for Exception Handling

Many solutions have been proposed in the last years for assisting de-

velopers in dealing with exceptions. These solutions can be clustered in three

main groups. Section 2.3.1 presents solutions aiding the comprehension of ex-

ception handling code. Section 2.3.2 presents solutions for specifying and veri-

fying constraints that must be satisfied in the exception handling code. Section

2.3.3 presents recommender systems that assist developers in implementing ex-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 47

ception handlers.

2.3.1 Exception Handling Comprehension

Software comprehension can be defined as the activity of understanding

existing software when developers implement and maintain the source code

of software systems (BROOKS, 1983). In the context of exception handling,

many solutions have been proposed to support the comprehension of exception

handling code (CHANG et al., 2001, FU and RYDER, 2007, ROBILLARD

and MURPHY, 1999,ROBILLARD and MURPHY, 2003,SHAH, GÖRG and

HARROLD, 2008a).

Robillard and Murphy (ROBILLARD and MURPHY, 1999, ROBIL-

LARD and MURPHY, 2003) investigated the di�culties that developers face

when dealing with exceptions during software construction. The authors distin-

guished between local and global exceptions. Local exceptions are those raised

and handled in a single method, whereas global exceptions are those raised and

handled in di↵erent methods. Robillard and Murphy argued that the greatest

di�culty in understanding the exception handling code stem from the impact

that global exceptions have in the source code of a program. In this context,

they proposed a model to represent the propagation path of global exceptions

and implemented the JEX tool to support this model. This tool computes

exceptional propagation paths in Java programs and displays these paths as

oriented graphs to show which exceptions traverse through specific methods in

the program. Thus, the JEX tool supports the process of understanding the

propagation of global exceptions in Java programs.

Similarly to Robillard and Murphy, Chang et al. (CHANG et al., 2001)

developed a static analysis tool to estimate exceptional propagation paths

in Java programs. The authors used these paths to detect unnecessary try

blocks and throws clauses. That is, try blocks that guard statements that do

not explicitly raise exceptions and throws clauses declaring exceptions that

do not flow through the boundaries of a given method. Their tool assists

developers in simplifying the exception handling code of their programs by

detecting unnecessary code that can be removed.

Complementing the works of Robillard and Murphy and of Chang et al.,

Fu and Ryder (FU and RYDER, 2007) proposed a static analysis technique

that considers chained exceptions in Java programs. Chained exceptions occur

when catch blocks capture and re-throw or re-map exceptions. By considering

chained exceptions, the propagation paths of exceptions are analyzed as long

paths in which the type of the exception may change, instead of fragmented

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 48

paths. This technique reduces the number of propagation paths computed by

previous techniques, since chained exception are common in Java programs.

Given the lower number of propagation paths produced, the comprehension of

the propagation of exceptions is facilitated.

Following the same approach of these previous works, Shah et al. (SHAH,

GÖRG and HARROLD, 2008a) proposed a visualization tool named EN-

HANCE – ExceptioN HANdling CEntric visualization. This tool provides three

di↵erent views for the exception handling code implemented in Java programs.

The “quantitative view” displays as a dependency matrix the relationship

between packages, classes and methods that raise and handle exceptions. The

“flow view” displays as graphs the relationship between methods that raise

and handle exceptions. The “contextual view” displays in more details the

propagation paths of exceptions, showing not only the places where exceptions

are raised and handled, but also the intermediate methods that they traverse.

Although software comprehension is part of the detection and repair of

exception handling violations, current solutions supporting exception handling

are aimed at only displaying how the exceptions propagate through methods in

the source code. At best, these solutions may assist the comprehension of the

source code before developers try to detect or repair violations. Visualization-

based solutions do not provide visual cues of where violations are located in the

source code, nor assists in the comprehension of which modifications must be

performed in the source code to repair the violations. Therefore, these solutions

do not properly support detecting and repairing exception handling violations.

2.3.2 Specifying and Verifying Exception Handling
Properties

Some programming languages provide exception handling mechanisms

with extra facilities to further support the construction of robust programs.

The Java programming language, for example, allows the specification and

verification of exceptional interfaces of methods. In particular, Java verifies

at compile time whether client code implements proper catch blocks to

handle checked exceptions declared in exceptional interfaces. In the exception

handling literature, there exist solutions aimed at verifying other exception

handling specifications, rather than just those related to exceptional interfaces.

In particular, these solutions allow the specification and verification of the

places where specific exceptions are expected to be raised and handled. These

solutions mainly di↵er in how these exception handling properties are specified.

There are solutions that specify these properties by means of new language

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 49

constructs added to existing programming languages (CACHO et al., 2008,

SILVA and CASTOR, 2013), while other solutions specify these properties with

domain-specific languages external to the programming languages (SALES and

COELHO, 2011,ABRANTES and COELHO, 2015).

Cacho et al. (CACHO et al., 2008) extended the AspectJ programming

language with a new language construct to explicitly define intended proper-

ties that the exception handling code must comply with. In particular, the

solution proposed by Cacho et al. provides the new construct called “expli-

cit exceptional channel”. An explicit exceptional channel defines the types of

exceptions that specific methods in the source code should raise and handle.

These channels are specified with a new AspectJ point-cut designator and are

verified at compile time.

Similarly to Cacho et al., Silva and Castor (SILVA and CASTOR, 2013)

extended Java with a new language construct called “exception propagation

channel”. Conceptually, the exception propagation channels proposed by Silva

and Castor are equivalent to the explicit exceptional channels proposed by

Cacho et al.. Exception propagation channels also define the exceptions that

specific methods are expected to raise and handle.

The solution proposed by Sales and Coelho (SALES and COELHO,

2011) specifies the places where exceptions are expected to be raised and

handled using an XML-based idiom. Based on these specifications, their

solution generates partial JUnit test cases intended to stimulate the exceptional

flow of the system. Then, developers finish the implementation of these test

cases and run them to verify whether the implemented system adheres to the

specified exceptional contracts. In a subsequent work, Abrantes and Coelho

(ABRANTES and COELHO, 2015) extended the work of Sales and Coelho.

The solution proposed by Abrantes and Coelho instruments the source code

of a program to monitor the adherence of the specifications during program

execution. Whenever specifications are violated, notifications are sent to a

remote server, where they are stored and later analyzed.

All these solutions rely on the assumption that for designing exception

handling it is enough to specify the places where exception raisers and handlers

should be implemented. However, the study conducted by Fu and Ryder

has already shown that a high number of global exceptions are constituted

of chained exceptions (FU and RYDER, 2007), that is, global exceptions

are commonly captured and re-thrown or captured and re-mapped along

their propagation paths. Moreover, the studies we conducted showed that

recurring uncaught exceptions were caused by introducing catch blocks that

either re-throw or re-map exceptions (CACHO et al., 2014a, CACHO et al.,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 50

2014b). None of the aforementioned solutions take into account chained global

exceptions, that is, they do not support the specification of the places where

global exceptions are supposed to be re-thrown or re-mapped. Therefore, these

solutions still provide limited support for the specification and verification of

exception handling policies for global exceptions. We further discuss this in

Chapter 4.

Even more critical than the limited support provided by these solutions is

the lack of support for repairing exception handling violations. The aforemen-

tioned solutions can only detect the places where specifications are violated.

They do not assist developers in deciding which modifications in the source

code must be performed to actually repair these violations. Without this type

of support, developers have to repair these violations on their own, at the

risk of introducing other violations while they try to repair existing ones. We

present our solution for supporting the repair of exception handling violations

in Chapter 5.

2.3.3 Exception Handlers Implementation

Recently, recommender systems have been explored as assisting tools

for software engineering activities, including development and maintenance

activities (ROBILLARD et al., 2010). In the context of exception handling,

there exist recommender systems assisting developers in implementing excep-

tion handlers (BARBOSA et al., 2012,BARBOSA et al., 2012a,RAHMAN and

ROY, 2014).

Barbosa et al. proposed a recommender system to support developers

in the implementation of exception handlers in Java programs (BARBOSA

et al., 2012, BARBOSA et al., 2012a). Their solution mines open-source

projects to build a local repository of code snippets implementing exception

handlers. Then, when a developer wishes to handle an exception, he triggers the

recommender system to receive recommendations of how they may implement

his handler. This recommender system works on the premise that functionally

similar methods handle exceptions in similar manners. The recommender

system extracts information from the method where the developer wishes to

handle the exception to query the repository for similar code snippets. The

most similar code snippets are returned to the developer to serve as concrete

examples of how he may implement his exception handler. By recommending

concrete examples of how exception handlers may be implemented, their

recommender system assists developers in the process of discovering handling

actions relevant to their context. Thus, developers are expected to implement

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 51

more e↵ective exception handling actions.

Similarly, Rahman and Roy also proposed a recommender system to

support developers in the implementation of exception handlers of Java pro-

grams (RAHMAN and ROY, 2014). They also provide code snippets as con-

crete examples of how exception handlers may be implemented in a given con-

text. However, instead of using a local repository of code snippets, the solution

proposed by Rahman and Roy performs its searches in repositories hosted on

GitHub. Moreover, it uses di↵erent metrics to measure functional similarity

in addition to metrics that try to estimates the quality of an exception hand-

ler. In particular, their solution estimate the quality of an exception handler

by measuring the readability of the exception handler, the average number of

statements in each catch block of a code snippet and the fraction of the code

in the code snippet that is intended for exception handling. This way, their

solution is able to recommend more relevant code snippets than the solution

proposed by Barbosa et al.

The solutions proposed by Barbosa et al. and by Rahman and Roy

are not intended to detect or repair exception handling violations. They are

aimed at assisting the implementation of exception handlers. Even if they

were employed to support the repair of violations in exception handlers, they

would probably not work e↵ectively. The main limitation of these solutions

is the fact that they are unaware of the impact of global exceptions. These

solutions may provide recommendations that do not introduce faults in the

local context of a method where they are applied, but due the impact of

global exceptions, these recommendations may introduce violations in other

methods of the system. For example, these solutions may recommend re-

mapping from an exception to another type, but the re-mapped exception

may be left uncaught in the global context of the program. In fact, re-mapping

exceptions and leaving them uncaught was commonly observed in the studies

we conducted (CACHO et al., 2014a,CACHO et al., 2014b). Therefore, there is

still no proper support for assisting the repair of exception handling violations.

We present our recommender heuristic strategy that supports the repair of

exception handling violations in Chapter 5.

Following a more extreme approach, Cabral and Marques proposed a

solution for automatically handling exceptions without intervention of de-

velopers (CABRAL and MARQUES, 2008). This solution relies on the as-

sumption that for specific exception types it is possible to define default hand-

lers that can be automatically executed. The runtime system that supports

the program execution is responsible for activating these handlers whenever

exceptions of pre-defined types are raised. Thus, it is expected that some ex-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 52

ceptions be automatically handled by the runtime system without requiring

developers to write exception handling code.

However, the assumption that there exist default handling actions for

specific exception types does not always hold, since the same exception type

can be handled in distinct manners in the same system. The way exceptions

are handled vary according to the place where exceptions occur. For example,

the way a FileNotFoundException should be handled in a operation related

to a user choosing a file to open is di↵erent from the manner in which it should

be handled in a operation that the system is manipulating configuration files.

While handling the exception in the first operation would probably require

implementing actions to warn the user about the error, the second case would

probably require the system to implement reconfiguration actions based on

default values, for example. In addition, there are no guarantees that default

handling actions will not have any negative side-e↵ects in other parts of

the system. Therefore, the solution proposed by Cabral and Marques is only

applicable to a restricted set of exception types. In addition, developers would

still have to implement the exception handling code for the exceptions defined

in their own programs. In this case, the solution proposed by Cabral and

Marques would not provide support for detecting and repairing violations in

the source code.

2.4 Summary

This chapter presented the main concepts addressed in this thesis. First,

Section 2.1 presented the basic terminology adopted throughout this thesis. In

particular, it presented basic concepts related to software robustness, such as

errors, faults and failures. This section also defined the terminology related to

exception handling. Exception handling is the most common way of dealing

with errors during software development. A system that fails to properly

implement exception handling is likely to continuously crash, compromising

software robustness. For this reason, exception handling must be properly

designed and implemented in software systems.

Section 2.2 presented previous studies conducted to assess exception

handling implementation in software systems. This section presented empirical

studies we conducted in collaboration with other researchers, as well as

studies conducted by other research groups. The results of our studies in

collaboration with other researchers are published in previous papers (CACHO

et al., 2014a, CACHO et al., 2014b, JAKOBUS et al., 2015). The studies

covered in Section 2.2.1 analyzed how programs implement exception handling.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 53

In particular, these studies observed that programs tend to follow implicit

exception handling policies.

The studies presented in Section 2.2.2 showed that the causes of recurring

failures in software systems are located in the exception handling code. Despite

being consistently reported in software systems, there is still little knowledge

about what types of exception handling faults occur. Some studies have only

quantified the occurrence of exception handling faults, whereas others have

focused on a few kinds of faults, such as those related to uncaught exceptions.

Our studies in collaboration with Cacho et al., for example, identified di↵erent

change scenarios that led to uncaught exceptions. These studies focused on

faults related to uncaught exceptions because this type of faults usually

cause severe failures that cause system crashes. However, faults related to

uncaught exceptions are just one kind of exception handling faults. Other types

of exception handling faults may also threaten software robustness without

developers even being aware. To bridge this gap, we conducted an empirical

study to investigate what types of exception handling faults occur in software

systems. This study is further described in Chapter 3.

In the following, Section 2.3 presented existing solutions to support the

design and implementation of exception handling. In the exception handling

literature, much work has been done on visualization tools that display

information about the exception propagation path of exceptions. However,

these solutions provide no support for detecting and repairing exception

handling violations. Moreover, Section 2.3 also presented solutions aimed at

designing exception handling constraints that must be adhered to in the source

code. In particular, these solutions rely on the assumption that for designing

exception handling is enough to specify the places where exception raisers

and handlers should be implemented. However, the studies we conducted in

collaboration with Cacho et al. have shown that recurring faults are caused by

violations in exception re-mappers and re-throwers. Therefore, one must also

design how these re-mappers and re-throwers should be implemented in the

source code, as well as detect when the intended implementation is violated. In

Chapter 4, we further discuss our solution for supporting the specification and

verification of exception handling policies and for detecting exception handling

violations in the source code.

Finally, Section 2.3 presented solutions supporting the handling of excep-

tions. First, we presented solutions based on recommender systems that provide

recommendations on how to implement exception handlers. These solutions are

not aimed at assisting the detection and repair of exception handling violations.

But even if they were employed in the repair of exception handlers, they would

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 2. Background 54

fail. They would fail because they are limited to the analysis of local informa-

tion extracted from a single method, whereas the repair of exception handling

violations requires reasoning about the global impact of exceptions. Next, we

presented a solution aimed at automatically handling specific exception types

with default handling actions. However, the suitability of the handling actions

are usually sensitive to the place where exceptions are handled. Therefore,

default handling actions are only applicable to a constrained set of exception

types. In addition, this solution does not aid the repair of exception handling

violations. In fact, there is still no solution aimed at supporting the repair of

exception handling violations. In Chapter 5, we present a recommender heur-

istic strategy that supports the repair of exception handling violations.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

3
Investigating Exception Handling
Faults

Recent studies presented in the previous chapter showed that most of the

causes of recurring failures in software systems are located in the exception

handling code (Section 2.2.2). Although the design and implementation of

exception handling are intended to improve software robustness, in many cases

the exception handling behavior of a system is not able to prevent errors

from causing failures. Given the recurrence of failures caused by exception

handling faults, developers must be able to detect these faults in their systems.

Otherwise, software robustness is compromised.

Currently, there exists tool support for detecting exception handling

faults in C programs that use return-code idioms to implement exception hand-

ling (BRUTNIK et al., 2006). This tool leverages on a categorization of excep-

tion handling faults in return-code idioms commonly adopted in C programs.

By knowing what categories of exception handling faults and their character-

istics are, the tool is able to statically detect in the source code structural

patterns that pinpoint to potential faults. For programs implemented follow-

ing the try-catch-throw model, there is no categorization of exception hand-

ling faults. Previous studies have only quantified the occurrences of exception

handling faults, or reported faults related to uncaught exceptions or generic

handlers (Section 2.2.2). Besides this, little is known about other categories of

exception handling faults.

The lack of a categorization of exception handling faults in programs

following the try-catch-throw model hinders their detection in the source

code. Without knowing existing categories of exception handling faults, it is

not possible to provide proper support for automatically detecting them in

the source code. Therefore, a deeper understanding about what categories of

exception handling faults occur in programs is precondition for supporting

their detection.

In this context, this chapter presents an empirical study conducted

to better understand what categories of exception handling faults occur in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 56

programs implemented following the try-catch-throw model. We analyzed bug

reports in open-source projects and the respective repairing modifications

performed in the source code to gather knowledge about exception handling

faults. Since little was known about exception handling faults by the time this

study was conducted, we could not rely on tools for automatically selecting the

bug reports related to exception handling faults. Similarly, we could not rely

on tools to automatically extract from version control systems the revisions

that repaired exception handling faults.

For this reason, this study relied on a heuristic strategy for identifying

the bug reports and the revisions that could be related to exception handling

faults. This heuristic strategy required extensive and careful inspections to

identify which bug reports and revisions were related to exception handling

faults. The thorough inspection during data collection favored the confidence

in the collected data, although we are aware that this decision decreased

the study scalability. Given the lack of knowledge about exception handling

faults, there was no other option other than digging in the data and carefully

inspecting it. As the results of this analysis, a categorization of exception

handling faults comprising 9 categories emerged from the data. This was

the first categorization proposed for exception handling faults in programs

following the try-catch-throw model.

The investigation about exception handling faults was carried out fol-

lowing the methodology presented in Section 3.1. The analysis of the collected

data is presented in Section 3.2 and the results of the study are presented in

Section 3.3. The threats to the study validity are discussed in Section 3.4 and

related works are presented in Section 3.5. Finally, this chapter is summarized

in Section 3.6.

3.1 Settings of the Study

This section describes the settings of the study conducted to investigate

exception handling faults. In particular, Section 3.1.1 presents the goal of the

study and the questions addressed and Section 3.1.2 details the design of the

study.

3.1.1 Goal and Questions

Although existing studies have consistently reported exception handling

faults, there is still no categorization of exception handling faults occurring in

programs following the try-catch-throw model. Without this knowledge, it is

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 57

not possible to support the detection of exception handling faults in the source

code. In this context, the goal of this study is stated as follows:

Goal: Analyze software faults for the purpose of understanding

what categories of exception handling faults occur in software sys-

tems.

The exception handling code is the part of a program responsible for

signaling and handling the occurrence of exceptions. In mainstream program-

ming languages, the exception handling code is structured with the use of

built-in exception handling mechanisms. These mechanisms allow the defin-

ition of exception types and the implementation of structural dependencies

between methods and exceptions. In particular, the structural dependencies

between methods and exceptions comprise the definition of guarded scopes, the

definition of terminating actions, as well as the raising, handling, propagation,

re-mapping and re-throwing of exceptions (Section 2.1.2). Thus, developers

can implement these dependencies to delegate specific exception handling re-

sponsibilities to methods in programs. For the sake of brevity, from hereafter

the structural dependencies that can be established between methods and ex-

ceptions will be called as “exception handling dependencies”.

In this context, this study started its investigation by analyzing what

exception handling dependencies are implemented in exception handling faults.

Therefore, the following question was refined from the previous goal:

What exception handling dependencies are implemented in excep-

tion handling faults?

The first question of this study aimed at understanding what exception

handling dependencies are implemented in these faults. From hereafter, the

exception handling dependencies implemented in faults will be called as “faulty

exception handling dependencies” or simply as “faulty dependencies”. In

addition to this first question, this study also sought to better understand

why exception handling faults occur. This investigation was carried out based

on basic human errors: errors of commission and errors of omission (SWAIN

and GUTTMANN, 1983). Errors of commission occur when results are not

within expectations because the actions were executed incorrectly. On the

other hand, errors of omission occur when results are not within expectations

because actions were not executed. In this study, we employed these concepts to

define fault types: faults of commission and faults of omission. If a fault occurs

because an exception handling dependency was implemented incorrectly, then

this fault is considered a fault of commission. If a fault occurs because an

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 58

exception handling dependency was not implemented at all, then this fault is

considered a fault of omission.

In this context, the following question was also refined from the goal of

this study:

Do exception handling faults occur due to commission or omission?

The second question complemented the first one. The first question

investigated what faulty exception handling dependencies in programs are,

whereas the second question investigated whether these faulty dependencies

are typically implemented incorrectly or not implemented at all. By better

understanding these characteristics, our initial aim was to lay the foundations

for further investigations on the detection and repair of exception handling

faults.

Finally, it is worth mentioning that this study investigated exception

handling faults focusing on their observable features. We did not focus in

assessing the adequacy of the underlying intentions and beliefs that motivated

developers during software construction. This discussion is beyond the scope

of this study.

3.1.2 Study Design

To achieve the goal and answer the questions defined in Section 3.1.1,

this study analyzed faults reported in software projects. To collect the data

required for this study, the target systems selected must meet the following

criteria. First, the target systems must have an active process of reporting and

registering the detected faults, so that the descriptions associated to the faults

can be analyzed. Second, the target system must have the history of modi-

fications in their source code registered, so that the repairing modifications

can be analyzed. Third, it must be possible to map a given bug report to the

respective repairing modifications, so that the descriptions in the bug report

can be related to the respective modifications in the source code. Last, the bug

reports and the history of modifications in the source code must be publicly

available, so that they can be analyzed.

Given these criteria, open source projects were good candidates for target

systems of this study since they provide their source code in publicly available

version control systems. In addition, these projects report the detected fail-

ures in publicly available bug reports. In fact, open source projects typically

have an active community of users that proactively participate in the devel-

opment process by asking for new features and reporting failures (ZHAO and

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 59

ELBAUM, 2003). These projects usually have multiple developers spread all

over the world contributing to the source code (ZHAO and ELBAUM, 2003).

For this reason, their issue tracking systems are an important means of com-

munication between developers. Moreover, open source projects usually have

quality assurance developers to triage and confirm the reported failures (ZHAO

and ELBAUM, 2003). Thus, there is a satisfactory degree of confidence that

the reports that are confirmed by the quality assurance team of open source

projects are actual failures. Consequently, the issue tracking systems of open-

source projects are a valuable source of information about the existing faults

in these projects.

Procedure for Data Collection

The data required for this study consisted of bug reports related to

exception handling faults and the commits that repaired these faults. To link

bug reports to their respective commits, the heuristic strategy described by

Bachmann and Bernstein was employed (BACHMANN and BERNSTEIN,

2009). This strategy relies on the observation that many software projects

adopt patterns in their commit messages. In particular, these projects demand

that their developers put as part of their commit messages an identifier in a

standard format specifying to which bug report that commit is related. This

standard format is project-dependent. It can be the URL of the bug report,

numbers in combination with specific keywords (e.g. “Fixes #10”, “BugId-

17”), among others. The strategy described by Bachman and Bernstein works

by scanning through the commit messages searching for a given pattern. Then,

the commits whose messages match a given pattern are manually inspected

to discard false positives. First, we verified whether the matched pattern

actually refers to a valid bug report in the issue-tracking system. Then, we

also verified whether the referred report relates to a fault, or to another kind

of issue (e.g. “New Feature”). In this study, the heuristic strategy described

by Bachmann and Bernstein was adapted to search not only for the project-

dependent commit message pattern, but also for the keyword “exception”.

We opted for this strict criterion to improve the chances and confidence that

commits were indeed related to exception handling.

The data collection procedure of this study followed the workflow depic-

ted in Figure 3.1. (i) Commits whose messages matched the project-dependent

commit message pattern and the keyword “exception” are called as “commits

potentially related to exception handling faults”. Then, the commits poten-

tially related to exception handling faults were manually inspected to discard

false positives. (ii) First, we checked whether the pattern matched actually re-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 60

Figure 3.1: Data Collection Procedure

ferred to an existing bug report in the repository. For those that referred to an

existing report, the respective report was inspected to confirm whether it was

related to a failure or not. (iii) If a given report was not marked as a failure

by the development team, then their opinion was considered as sovereign and

the given commit and the respective report were not considered for analysis.

If the report was marked as being related to a failure, then we manually re-

viewed the corresponding changes performed in the source code. (iv) If the

modifications performed in the source code were related to the definition of

guarded scopes, the definition of terminating actions, the declaration, raising,

handling, propagation, re-mapping or re-throwing of exceptions, then the fault

was considered an exception handling fault.

Finally, it is worth noting that due to the little knowledge about ex-

ception handling faults in programs following the try-catch-throw model, this

study had an inherent exploratory nature. Without a priori knowledge about

exception handling faults, it was not possible to build tools for assisting the

automatic identification of bug reports and commits related to these faults. For

this reason, the data collection procedure of this study relied on extensive and

careful inspections to certify that the bug reports and commits identified were

related to exception handling faults. Thus, the thorough inspections favored

the confidence in the collected data, at the cost of reducing the scalability of

the data collection procedure.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 61

Procedure for Data Analysis

To analyze the collected data, for each exception handling fault collected,

we reviewed the corresponding repairing modifications performed in the source

code. To support the review of the changes performed in the source code, the

SemDi↵ tool was used (DAGENAIS and ROBILLARD, 2011). The SemDi↵

tool downloads to a local repository all commits available on a given version-

control system and computes the di↵ between each pair of subsequent revisions.

During the source code review, the observed modifications performed between

the faulty and the repaired versions were textually described. For example, by

analyzing the modifications performed to repair a fault analyzed in this study,

the textual description produced was:

Changed the type of the exception used by a throw statement.

As one can observe in the previous description, the fault was repaired

by modifying the type of the exception raised by an existing throw statement.

After describing the modifications in the source code, we analyzed the faults

according to the following criteria. If the fault was repaired by adding new

exception handling dependency, then it was considered that the fault occurred

due to the lack of this dependency. Therefore, this fault was considered a fault

of omission. On the other hand, if the fault was repaired by modifying or re-

moving an existing exception handling dependency, then it was considered that

the fault occurred because the existing dependency was incorrect. Therefore,

this fault was considered a fault of commission.

Besides reviewing the source code, we also reviewed the textual descrip-

tion and comments available in the bug reports, as well as the commit mes-

sages. From these data sources, we extracted sentences describing the faults

or explaining how they should be repaired. For the aforementioned fault, the

following comment was extracted from its bug report:

(...) Tomcat is however not throwing the right exception in this case

As one can observe in the previous comment, the problem associated to

this fault was an exception being raised with a type di↵erent from what was

expected. Thus, the sentences extracted from bug reports and commit messages

were used to support the observations of the modifications in the source

code, supporting the identification of what exception handling dependencies

were implemented and whether they were incorrectly implemented, or not

implemented at all.

Finally, the faults were categorized as follows. Faults of omission were

categorized as “Missing <dependency>” faults, where <dependency> refers to

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 62

the name of the exception handling dependency observed in the fault (e.g.,

“Missing re-mapper” or “Missing handler”). Similarly, faults of commission

were categorized as “Incorrect <dependency>” faults.

For the aforementioned fault, we observed that modifying an existing

raiser repaired it. More specifically, modifying the exception used by an

existing throw statement repaired the fault. Moreover, based on the comment

extracted from the bug report and the repairing modifications performed in the

source code, we could understand that this fault occurred due to an incorrect

implementation of a raiser. In other words, this fault occurred due to a fault

of commission. Therefore, this fault was categorized as “Incorrect raiser”.

Target Systems

A set of open-source projects that adopt a commit message pattern

was identified. Most of the projects of the Apache Software Foundation, such

as Ant, Hadoop, Ivy, Maven, Tomcat, among others, adopt project-specific

commit message patterns. Among the projects from the Apache Software

Foundation, we selected as the target systems of our study those with strict

robustness requirements: the Tomcat web server and the Hadoop framework.

Both Tomcat and Hadoop are two of the most complex and adopted open

source projects nowadays. Moreover, they have large and active communities

of users and developers.

Among the list of potential candidates from the Apache Software Found-

ation, Tomcat is the longest-lived project and is widely adopted in large-scale

production environments due to its maturity and robustness. On the other

hand, Hadoop is a younger project that has rapidly gained fame in industrial

settings in the last years due to its performance and robustness. With these

two target systems, we expected to observe source code produced by develop-

ment teams concerned with the quality of the exception handling, due to the

robustness requirements of their systems. This would allow us to observe how

exception handling faults occur and how they are repaired in the context of ro-

bust, complex and large-scale software systems that have successfully evolved

over the years.

By the time this study was conducted, the Apache Software Foundation

maintained two main development branches for Tomcat, versions 6.0.x and

7.0.x, and a single development branch for Hadoop. Only these two versions of

the Tomcat had the complete history of evolution of the source code available

on an open version-control system. Therefore, we analyzed the complete

revision history of the versions 6.0.x and 7.0.x available on the Tomcat version-

control system and the complete revision history of the main development

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 63

branch of Hadoop as collected on April 25, 2013.

3.2 Data Analysis

This section presents the analysis of the data gathered in this study.

Section 3.2.1 gives an overview of the collected commits and Section 3.2.2

presents the categories of exception handling faults identified in this study.

3.2.1 Collected Commits

The data collection procedure of this study identified 63 commits poten-

tially related to exception handling faults in the context of Tomcat and 105

commits potentially related to exception handling faults in Hadoop. From this

total of 168 commits, a tally of 54 commits were identified as being related to

exception handling faults, which accounts for approximately 32% of the total.

The rest of the commits were not considered for analysis for di↵erent reasons.

The chart shown in Figure 3.2 summarizes the reasons why these commits

were not analyzed.

Figure 3.2: Collected Commits

The first category (“Improvement tasks”) encompasses commits that

were related to bug reports marked as improvements to existing features of

the system. Examples of commit messages in this category are: “Changed

exception type thrown when session manager exceeds active session limit”, or

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 64

“Trim long exception messages”. Thus, these commits were somehow related

to exceptions, but not to faults. It is worth noticing that almost 45% of

the collected commits were actually related to improvements in exception

handling code. This suggests that during the evolution of the target systems the

development teams were continually addressing issues related to improvements

in the exception handling code of the systems. This way, our initial assumption

that projects with strict robustness requirements would be more concerned

with the proper implementation of exception handling seemed to hold for our

target systems.

The second category (“Faults due to unchecked exception”) encompasses

commits that repaired faults related to the occurrence of unchecked exceptions.

As discussed in Chapter 2, in the context of the Java programming language,

unchecked exceptions are exceptions that typically represent infringements to

constraints of the language semantics. Therefore, commits related to unchecked

exceptions infringing constraints of the language semantics were not considered

related to exception handling faults, since the root cause of the problem was

not related to exception handling.

The third category (“Tests”) encompasses commits related to the imple-

mentation of tests. Next, it is shown an example of a commit message in this

category:

Test org.apache.hadoop.fs.TestFilterFileSystem fails due to

java.lang.NoSuchMethodException.

This way, these commits were discarded because they were not related

to exception handling faults, which are the target of this study.

The fourth category (“Workaround to avoid external faults”) encom-

passes commits that implemented workarounds to avoid the side e↵ects of

faults in third party libraries. One of the commits of this category, for in-

stance, had the following message:

Avoid ArrayIndexOutOfBoundsException triggered by Java 6/7

XML parser bug.

As one can observe in the previous message, the root cause of the problem

was a bug in a third-party library. For this reason, this commit was not

considered for analysis.

The fifth category (“Others”) encompasses only one commit that repaired

a fault due to an infinite loop that was implemented within an exception class.

This commit had the following message:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 65

Prevents infinite loops when an exception is thrown the returns

itself for getRootCause().

This commit was also not analyzed because it was a fault not related

to an exception handling dependency, but to an incorrect instruction in the

normal code.

Finally, the last category presented in Figure 3.2 (“Commits related to

exception handling faults”) encompasses the commits that were related to

exception handling faults. A total of 27 commits from Hadoop and 27 commits

from Tomcat were identified as being related to exception handling faults.

3.2.2 Categories of Exception Handling Faults

After the triage process, a total of 54 commits were identified as being

related to exception handling faults. It is worth mentioning that 8 of these

commits were related to two exception handling faults and 1 commit was

related to three di↵erent exception handling faults. The other commits were

related to only one exception handling fault each. Therefore, even though the

number of commits related to exception handling faults is 54, the total number

of exception handling faults observed in this study is 64. From this total, there

were 35 exception handling faults in Hadoop and 29 faults in Tomcat.

The collected data for the categories of exception handling faults is

presented in Table 3.1. Each row in Table 3.1 corresponds to the faulty

exception handling dependencies observed in this study. The columns labeled

as “Faults of Commission” and “Faults of Omission” refer to the fault types

considered in the data analysis procedure, as described in Section 3.1.2. The

last row presents the sum of faults per fault type and the last column presents

the sum of faults per exception handling dependency.

Table 3.1: Collected Data for Exception Handling Faults

Faults of
Commission

Faults of
Omission

Total

Handler 20 6 26
Raiser 5 15 20
Re-mapper 9 3 12
Terminating Action 3 2 5
Guarded scope 1 0 1

Total 38 26 64

As one can observe in Table 3.1, faults of commission were more frequent

than faults of omission: approximately 59% of the faults were faults of

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 66

commission. Moreover, we observed 5 exception handling dependencies in the

analyzed faults. The three most frequent dependencies – “Handler”, “Raiser”

and “Re-mapper” – appeared in approximately 90% of the faults analyzed in

this study. The other dependencies observed in this study were “Terminating

actions” and “Guarded scope”.

Figure 3.3: Categories of Exception Handling Faults

Based on the analysis procedure presented in Section 3.1.2, we identified

9 categories of exception handling faults. These categories are presented in

the chart depicted in Figure 3.3. Among the categories identified, the most

frequent categories were: “Incorrect handler”, “Missing raiser” and “Incorrect

re-mapper”. These categories sum a total of 44 faults, which is approximately

70% of the total faults analyzed. The other categories identified were: “Missing

handler”, “Incorrect raiser”, “Missing re-mapper”, “Incorrect terminating

action”, “Missing terminating action” and “Incorrect guarded scope”. In the

next sections, each category is detailed.

Incorrect Handler

There were 20 faults classified as “Incorrect handler”. These were the

most frequent faults observed in this study, comprising approximately 31%

of the analyzed faults. Exception handling faults in the “Incorrect handler”

category occur when an exception handler is implemented in the source code,

but it is implemented incorrectly. Di↵erent reasons of why exception handlers

were incorrect were observed. These di↵erences were also analyzed in order to

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 67

identify sub-categories of the “Incorrect handler” category. The chart depicted

in Figure 3.4 presents the sub-categories of faults identified in the context of

the “Incorrect handler” category.

Figure 3.4: Sub-Categories of Incorrect Handlers

One can observe in the chart depicted in Figure 3.4 that 3 di↵erent sub-

categories of faults were observed in the context of the “Incorrect handler”

category. The identified sub-categories were: “Missing handling action” (11

faults), “Missing su�cient information” (7 faults) and “Incorrect argument of

catch block” (2 faults). Next, each one of these sub-categories is detailed.

Missing Handling Action. Faults in the “Missing handling action” sub-

category are related to the lack of specific actions within a catch block. In par-

ticular, we observed the lack of handling actions responsible for reconfiguring

the system, the lack of handling actions responsible for releasing pre-allocated

resources and the complete lack of handling actions for specific exceptions.

There were 4 faults related to the lack of specific actions responsible

for reconfiguring the system in an attempt to restore it to a correct state.

Without these reconfiguration actions, after the catch block is executed, the

system continued its normal flow in an incorrect state, which ultimately led to

failures.

There were 4 faults related to pre-allocated resources that were expected

to be released in case of exceptions, but no specific actions for releasing them

were implemented in an existing catch block. When exceptions occurred in the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 68

try block, the resources were not released in catch blocks, nor in finally blocks,

which ultimately led to failures caused by resource leaks.

Finally, there were 3 faults related to catch blocks capturing exceptions

and not implementing any handling action for them. These catch blocks ignored

the captured exceptions, when they should not be ignored. Two out of the three

faults in this sub-category were related to completely empty catch blocks. The

other fault in this category, which was observed in Tomcat, ignored the caught

exception without using an empty catch block. The following code snippet

adapted from the source code of Tomcat depicts this fault:

try{ S }

catch(GenericException e) {

if(e instanceof SpecificException){

// handle exception

}

}

In the previous code snippet, the catch block declares a generic exception

type as its argument, but it uses an if statement to select which exception

types it will actually handle. There are no handling actions for the exceptions

captured by the catch block that do not match the condition specified in the

if statement. Therefore, these exceptions were silently ignored by the catch

block, when they should not be.

Missing Su�cient Information. Faults in the “Missing su�cient in-

formation” sub-category are related to exception handlers not providing im-

portant information related to the exception to other parts of the system. The

following sentences extracted from bug reports exemplify descriptions of the

faults in this sub-category:

The getPassword() method of the DataSourceRealm does not log

enough information when it encounters an SQL exception.

(The catch block) does not provide any information on the file where

it (the exception) occurred.

The previous sentences exemplify faults that occurred because handlers

did not log su�cient information about exceptions. It should be noted that

both Hadoop and Tomcat are systems whose users are developers. Thus, it is

important that these systems provide su�cient information about exception

occurrences to developers, so they can monitor the execution of the system.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 69

Incorrect Argument of Catch Block. Faults in the “Incorrect Argument

of Catch Block” sub-category are related to catch blocks declaring incorrect

exception types as their arguments. In particular, the 2 analyzed faults

classified in this sub-category were related to catch blocks declaring overly-

generic exception types, which incorrectly captured exceptions by subsumption

(Section 2.1.2). The problems related to these faults occurred because these

exceptions should not be captured where these catch blocks were implemented.

This way, exceptions that were expected to flow out of a given method to

be handled somewhere else were unintentionally captured by subsumption by

catch blocks declaring overly-generic exception types.

Missing Raiser

There were 20 faults classified as “Missing raiser”. Faults classified in

this category were the second most frequent faults, comprising approximately

23% of the analyzed faults. Faults in this category are related to exceptions

not being raised in conditions that they should be. In this study, all faults in

this category were related to the lack of throw statements in the source code to

raise exceptions when erroneous conditions were met. We observed “Missing

raiser” faults caused by the lack of checking conditions to detect erroneous

conditions, allowing the systems to continue their execution in inconsistent

states, which ultimately led to failures. We also observed faults in this category

caused by erroneous conditions being signaled using the return of error codes,

when exceptions were expected. The following example depicts one “Missing

raiser” fault caused by the lack of checking conditions observed in Tomcat:

// SSL protocol

int value = SSL.SSL_PROTOCOL_ALL;

if ("SSLv2".equalsIgnoreCase(SSLProtocol)) {

value = SSL.SSL_PROTOCOL_SSLV2;

} else if ("SSLv3".equalsIgnoreCase(SSLProtocol)) {

value = SSL.SSL_PROTOCOL_SSLV3;

} else if ("TLSv1".equalsIgnoreCase(SSLProtocol)) {

value = SSL.SSL_PROTOCOL_TLSV1;

} else if ("SSLv2+SSLv3".equalsIgnoreCase(SSLProtocol)) {

value = SSL.SSL_PROTOCOL_SSLV2 | SSL.SSL_PROTOCOL_SSLV3;

}

// Create SSL Context

(...)

The previous code snippet depicts the portion of code of a method in

Tomcat that initializes a SSL connection (Secure Sockets Layer). As one can

observe in the code, the value variable is initialized with the default value

SSL.SSL PROTOCOL ALL. Next, the if-else-if statements check what the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 70

configuration of the protocol to be used in the connection is, which is stored

in the SSLProtocol variable. In case no if-else-if matches the expected

values for this variable, the system continues its execution with the variable

value containing its initial value. Allowing the system to continue its execution

with this default value in case of a missing configuration was the cause of the

problem, as pinpointed by a comment in the bug report:

Misconfiguration of an SSLProtocol should never silently fall back

to enabling all protocols. At minimum, misconfiguration of this

value should result in error messages. Since SSLv2 is vulnerable

to several attacks known to have some serious security flaws even

allowing the possibility of man-in-the-middle attacks, I think a

misconfiguration should cause the connector to fail.

As pointed out in the previous comment, the fault was caused because

a misconfiguration in the system allowed it to continue its execution with

more privileges than it should, possibly causing a security flaw in the system.

This fault was repaired by adding an else statement to detect the cases of

misconfigurations and raise exceptions to prevent the system to establish the

connection.

We also observed “Missing raiser” faults caused because error conditions

were signaled returning error codes, when exceptions were expected. The

following comment exemplifies these cases:

Currently the renew and cancel delegation token method will return

false if something goes wrong, but we need an exception.

As pinpointed in the previous comment, the methods returned “false”

in erroneous conditions instead of raising exceptions. This fault, in particular,

was repaired by replacing the return statement by a throw statement.

Incorrect Re-mapper

Faults classified as “Incorrect re-mapper” were the third most frequent

faults observed in this study. There were 9 faults in this category, comprising

approximately 14% of the analyzed faults. Faults in this category are related to

exceptions being re-mapped to other exception types in incorrect manners. In

particular, we observed two distinct cases in which exceptions were incorrectly

re-mapped: “Incorrect wrapping” and “Re-mapping between incorrect types”.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 71

Incorrect Wrapping. Faults in the sub-category “Incorrect wrapping”

are related to the re-mapped exceptions being instantiated with incorrect or

insu�cient information. This sub-category comprised 5 faults. The following

comment extracted from a bug report of Tomcat exemplifies the problem

related to this cause of incorrect re-mapping:

(The fault is) the fact that the catch block is swallowing the original

exception and (its) stack trace.

The following code snippet exemplifies the problem described in the

previous comment:

catch(T1 e){

throw new T2(e.getMessage ());

}

In the previous code snippet, the new exception is instantiated using

only the message of the original exception. This instantiation loses all the

other information contained in the captured exception. It is worth mentioning

that this practice is not always a fault, since in some cases we actually do not

want to expose information about the original exception due to the information

hiding principle.

Re-mapping Between Incorrect Types. Faults in the sub-category “Re-

mapping between incorrect types” are related to exceptions being re-mapped

from one type to another, when at least one of the two types is incorrect. Faults

in this sub-category may occur because a catch block re-mapping exceptions

captures the incorrect exception type, or because the throw statement re-

mapping exceptions raises the incorrect exception type. In this study, 1 fault

in this sub-category was related to the first case and 3 faults were related to

the second case.

Missing Handler

Faults classified as “Missing handler” were the fourth most frequent

faults observed in this study. There were 6 faults in this category, comprising

approximately 9% of the analyzed faults. Faults in this category are related to

the absence of catch blocks in the source code to handle specific exceptions.

In this study, 5 out of the 6 cases classified as “Missing handler” caused the

termination of the program execution due to uncaught exceptions. A tally of

3 out of these 5 faults that caused program termination were caused by faults

categorized as “Re-mapping Between Incorrect Types”. In particular, “Re-

mapping Between Incorrect Types” faults re-mapped the caught exceptions to

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 72

the RuntimeException type and no handler existed to handle the re-mapped

exceptions. This way, the re-mapped caused system crashes.

The other “Missing handler” fault, which was observed in Hadoop, did

not cause a program termination, but caused an incorrect behavior of the

system due to the premature termination of an operation. This fault, in

particular, was related to a method terminating its execution without retrying,

when it was expected that this method would retry this operation before

terminating its execution. The following code snippet depicts the repaired

version of this fault:

try {

result = in.read();

} catch (IOException e) {

LOG.info("Attempting to reopen " + key);

seek(pos);

result = in.read();

}

In the previous code snippet, the in.read() method invocation is

guarded by a try-catch statement, so that IOException is handled. In the

faulty version of the code, this method invocation was not guarded and the

IOException propagated to callee methods. The fault was repaired catching

the exception and retrying the operation that initially raised the exception. To

do this, the handling actions implemented within this catch block logged an

error message, invoked the seek(pos) method to reposition the file-pointer in

the input stream and then retried invoking the in.read() method. If this

method invocation raised an IOException again, then this exception was

propagated to callee methods.

Incorrect Raiser

The “Incorrect raiser” category comprised 5 faults, accounting for ap-

proximately 8% of the observed faults. Faults in this category are related to

exceptions being raised incorrectly. In particular, three causes of exceptions be-

ing incorrectly raised were observed: “Incorrect type raised”, “Incorrect raising

condition” and “Incorrect exception declaration”.

Incorrect Type Raised. A tally of 3 faults were categorized as “Incorrect

type raised”. Faults in this sub-category are related to throw statements raising

exceptions in correct exceptional conditions, but raising the exceptions with

the incorrect exception type. The following comment exemplifies faults in this

sub-category:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 73

(...) Tomcat is however not throwing the right exception in this case

As pointed out in the previous comment, the fault was caused because

a given module in Tomcat was not raising exceptions with the correct type.

This fault was repaired by modifying the type of the exception raised.

Incorrect Raising Condition. Only one fault was categorized as “Incor-

rect Raising Condition”. This fault is related to an exception being raised in

a condition in which it should not be raised. In particular, the exception was

raised in a non-erroneous situation because the condition of an if statement

was incorrectly defined. This fault was observed in Tomcat.

Incorrect Exception Declaration There was only one fault classified as

“Incorrect exception declaration”. This fault was observed in Tomcat and is

related to an exception being declared as a static final field in a class. This

fault was related to a memory leak, which was actually caused by a problem

in the class loader of the Java virtual machine. A comment extracted from the

respective bug report of the Java virtual machine pinpoints to the symptom

of this fault:1

This frequently occurs in servlet containers and can result in a

significant memory leak on web application reload.

The following comment was extracted from the Tomcat bug report and

pinpoints to the cause of the problem observed in this system:

This issue (memory leak) is apparently caused by an instance of

EnableDTDValidationException that is being kept in a static final

field.

Then, the following comment also extracted from the Tomcat bug report

proposed a solution for repairing this fault:

To avoid it in Tomcat, I vote for “Do not cache the Exception.

Create a new instance each time”.

In summary, all the raisers of a class were using an exception declared

as a static field. This exception was declared as a static field in the class to

avoid creating a new exception object every time an exception had to be raised

by the methods of a class. However, declaring the exception as a static field

1http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6916498

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 74

caused a memory leak in Tomcat due to a problem in the class loader of the

Java virtual machine. As explained in the previous comment, this fault was

repaired by not caching the exception. Thus, the exception declaration in a

static field was removed and all throw statements of this class were modified

to raise a new exception object.

Missing Re-mapper

The “Missing re-mapper” fault category comprised 3 faults, accounting

for approximately 5% of the observed faults. Faults in this category are related

to exceptions being propagated to out of methods without being re-mapped,

when they were expected to be re-mapped to di↵erent types. These faults

occurred because the exceptions that propagated to out of the methods were

not expected in other modules of the system. One of the comments in a bug

report explained:

(The module) DF should use a more reasonable exception when

mount cannot be determined.

As pinpointed in the previous comment, the problem occurred because

the DF module was not using a proper exception. In this fault in particular,

the module was letting exceptions flow out of its bounds without being re-

mapped. The following simplified code snippet depicts the repaired version of

this fault:

try {

(...)

this.mount = tokens.nextToken ();

(...)

} catch (NoSuchElementException e) {

throw new IOException("Could not parse line: " + line);

} catch (NumberFormatException e) {

throw new IOException("Could not parse line: " + line);

}

}

In the previous code snippet, one can observe that inserting re-

mappings from NoSuchElementException to IOException and from

NumberFormatException to IOException repaired the fault. In the faulty

version of this code, these re-mappings did not exist. Thus, the method allowed

NoSuchElementException and NumberFormatException. And callee modules

did not expect these exceptions.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 75

Incorrect Terminating Action

The “Incorrect terminating action” fault category comprised 3 faults,

accounting for approximately 5% of the observed faults. Faults in this cat-

egory are related to terminating actions implemented in finally blocks being

incorrectly implemented. In particular, all faults in this category were related

to actions within the finally unintentionally suppressing exceptions raised or

propagated from the statements guarded by try blocks. The following simpli-

fied code snippet adapted from Hadoop exemplifies faults in this category:

public void copyBytes () throws IOException{

try {

openStream ();

// manipulate and copy bytes

} finally { closeStream (); }

}

In the previous code snippet, assume that an IOException is raised from

one of the statements guarded by the try block. Then, when the finally block

is executed, it also raises an IOException, which suppresses the first exception

raised in the try block. This way, the exception raised or propagated from the

try block is lost.

Missing Terminating Action

The “Missing terminating action” fault category comprised 2 faults,

accounting for 3% of the observed faults. These faults are related to the absence

of finally blocks in the source code. In particular, faults in this category are

related to the lack of terminating actions responsible for releasing pre-allocated

resources. This category is similar to some of the cases of the sub-category

“Missing handling action”. The di↵erence between these two categories of

faults is the location of where the terminating actions were expected to be

implemented. In the “Missing terminating action” category, the actions for

releasing resources were expected to be implemented in finally blocks. It was

expected that the pre-allocated resources were released in both normal and

exceptional termination of the methods. In the “Missing handling action”,

on the other hand, the actions for releasing resources were expected to be

implemented only in catch blocks. It was expected that the pre-allocated

resources were released only when the methods terminate their execution

exceptionally. This slight detail di↵erentiates these two categories.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 76

Incorrect Guarded Scope

There was only one fault in the “Incorrect guarded scope” category. An

overly-protective try block caused the fault observed in this category. The try

block was so long that it guarded more statements than it should. The following

comment extracted from the respective bug report pinpoints to this problem:

I believe the scope for which the try-catch FileNotFoundException’

block applies is too great.

The long try block observed in this fault caused some guarded statements

to be skipped in case of exceptions, when these statements should not be

skipped. When exceptions occurred in one of the first statements of the long

try block, a transfer of execution control to the first matching catch block

occurred and the statements in the middle and in the final of the try block

were not executed.

3.3 Results and Discussions

This section presents the results of this study, as well as the discussion of

their implications. In particular, Section 3.3.1 presents the results that address

the first and the second questions of this study. Then, Sections 3.3.2, 3.3.3 and

3.3.4 present other findings of this study.

3.3.1 Exception Handling Dependencies and Fault
Types

The analysis of the collected exception handling faults supports the

answer to the questions of this study:

What exception handling dependencies are implemented in excep-

tion handling faults?

Do exception handling faults occur due to commission or omission?

In this study, we observed 5 exception handling dependencies in the

analyzed faults. In particular, the exception handling dependencies observed in

this study were: “Handler” (26 faults), “Raiser” (20 faults), “Re-mapper” (12

faults), “Terminating action” (5 faults) and “Guarded scope” (1 fault). The 3

most frequent dependencies – “Handler”, “Raiser” and “Re-mapper” – were

observed in almost 90% of the analyzed faults. In addition, exception handling

faults occurred due to commission and omission, but faults of commission were

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 77

a bit more frequent than faults of omission. From the 64 exception handling

faults analyzed in this study, 38 faults were faults of commission, which is

approximately 59% of the total. Faults of commission were further classified

as: “Incorrect handler” (20 faults), ”Incorrect re-mapper” (9 faults), “Incorrect

raise” (4 faults), “Incorrect terminating action” (3 faults) and “Incorrect

guarded scope” (1 fault).

It is interesting to notice that the exception handling dependencies

“Handler” and “Re-mapper” were the first and second most frequent and

they are both implemented with catch blocks. Thus, faults in catch block

comprised approximately 59% of the total faults. Also, faults classified as

“Incorrect handler” and ”Incorrect re-mapper” comprise approximately 76%

of the faults of commission. In other words, approximately 76% of the faults

of commission were observed in catch blocks. Therefore, exception handling

faults are frequently observed in catch blocks and these catch blocks are often

implemented incorrectly. A possible explanation to this could be the fact

that Java performs at compile-time automatic reliability verification for the

checked exceptions. This verification requires that checked exceptions are either

captured by catch blocks or declared in throws clauses. This way, it is likely

that in the early versions of the system developers implement simple catch

blocks to avoid compilation errors signaled by the Java compiler. Also, they

tend to implement simple catch blocks in early versions, when features are not

completely implemented and the proper exception handling may not be fully

understood. Then, as software evolves and core features are fully implemented,

it becomes clear how exceptions should be handled. Thus, developers try to

improve these simple catch blocks. As presented in Section 3.2.1, there were

many commits related to improvements in exception handling. However, some

of these simple catch blocks may remain unmodified in the source code, leading

to failures in later versions of the system.

The 26 faults of omission were further classified as: “Missing raiser”

(15 faults), “Missing handler” (6 faults), “Missing re-mapper” (3 faults) and

“Missing terminating action” (2 faults). A possible explanation to the higher

frequency of “Missing raiser” could be the fact that these faults represent

exceptional conditions that are only discovered along software evolution. These

new exceptional conditions may arise due to new features being implemented

in the system, or existing features that are better understood as they are more

exercised along software evolution. This might be the reason why “Missing

raiser” faults were more frequent in Hadoop (11 faults) than in Tomcat (4

faults). In fact, this was the only fault category in which a big di↵erence

between the two target systems was observed. Since Hadoop is a younger

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 78

project than Tomcat, it still had many new features being incorporated to its

core functionalities, as well as existing features that were still maturing. Thus,

it might be the case that exceptional conditions were still not fully understood

by Hadoop’s development team in the early versions of the system and were

only discovered and incorporated along software evolution. Since exception

handling is typically poorly tested (FU et al., 2005, SINHA and HARROLD,

2000), it is likely that the faults associated to undetected exceptional conditions

remained dormant in the source code and were only discovered when field

failures occurred.

Furthermore, faults of omission impose a di�cult challenge to developers,

since they are caused by the absence of elements in the source code. This way,

developers are required to be aware of which exception handling dependencies

they were supposed to implement and to detect their absence in the source

code. For some exception handling dependencies, current exception handling

mechanisms already provide support for developers. For example, the reliability

checks performed at compile-time by Java raises the awareness of developers

for the need of proper handlers for checked exceptions. Even so, developers

still introduce faults related to the lack of handlers, such as those related to

the faults classified as “Missing handler”. For the other exception handling

dependencies, there is no support to warn developers about the absence of

expected dependencies in the source code. The existence of re-mappers and

raisers in the source code, for example, is not verified by current exception

handling mechanisms. And faults classified as “Missing raiser” and “Missing re-

mapper” were frequent in this study. Therefore, it seems interesting to provide

support for checking the existence of expected raisers and re-mappers in the

source code.

3.3.2 Di�culty in Detecting Exception Handling Faults

Once exception handling faults are better known, automated solutions for

detecting them in the source code can be provided. In programming languages

that perform exception handling using return codes (e.g., C), the faults related

to exception handling can be automatically detected by statically analyzing the

source code and searching for specific structural patterns (BRUTNIK et al.,

2006). Our initial aim with this study was to better understand what categories

of exception handling faults occur in programs following the try-catch-throw

model. This way, we expected to lay the foundations for further investigations

on the detection and repair of exception handling faults.

However, in this study, it was not possible to generalize specific structural

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 79

patterns in the source code related to the categories of exception handling

faults. On the contrary, we observed ambiguities in some structural patterns.

We observed that a specific structural pattern in the source code was related

to the cause of one fault, whereas for another fault the same pattern was used

to repair it. For instance, generic catch blocks and empty catch blocks were

related to the causes of “Incorrect handler” faults, but they were also used to

repair “Missing handler” faults. Thus, simply searching for generic or empty

catch blocks could pinpoint to many false positives, including catch blocks that

were introduced in the source code to repair previous faults.

Detecting exception handling faults based on structural patterns would

be even worse for faults of omission. For example, “Missing re-mapper” faults

are caused by the absence of re-mappers. To detect potential faults of this

category, every catch block handling an exception can be considered as a

potential place where a re-mapper was not implemented. Similarly, every

method propagating an exception can also be considered as a potential place

where “Missing re-mapper” faults might be occurring. Given the abundance

of global exceptions being propagated through multiple methods in a system,

this strategy would yield many false positives. This would also happen for

the other faults of omission, such as “Missing raiser” and “Missing handler”.

Therefore, the detection of exception handling faults in programs following the

try-catch-throw model based on the search for structural patterns would yield

many false positives, or would be limited to very specific faults.

The detection of faults of commission requires detecting where in the

source code exception handling dependencies are implemented incorrectly.

Similarly, detecting faults of omission requires detecting where exception

handling dependencies are missing in the source code. However, without

prior knowledge about the intended exception handling design of a system,

one cannot be sure whether an existing exception handling dependency is

correct or not by only reviewing the source code. Also, without knowing

the intended exception handling design, one cannot know whether exception

handling dependencies are missing in the source code. In other words, one can

only know whether exception handling dependencies are correct or whether

they are missing in the source code if the exception handling design of a system

is known. For this reason, it is important to explicitly define and document

the intended exception handling design of a system.

In fact, we observed developers describing in commit messages and bug

reports that some faults occurred due to violations of exception handling

policies unknown to other developers. An exception handling policy refers

to the set of design decisions governing how exception handling should be

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 80

implemented. These policies were not documented in the projects, but were

known by core developers, who helped to clarify them to other developers.

Some of these comments were:

(Container) should throw the correct exception if an application

attempts to modify the associated JNDI context

execute() cannot throw JasperException, so it matches the signature

for Task.execute()

In the previous comments, developers explained that faults were caused

because exceptions were raised with incorrect types. We also observed faults

due to exceptions caught in the wrong place, exceptions not re-mapped as ex-

pected, and the like. These faults occurred because developers violated policies

defining which exception types should be raised, the places where exceptions

should be handled, how exceptions should be re-mapped, respectively. Thus,

detecting violations of exception handling policies may be an alternative to

detecting exception handling faults based on the search of structural patterns

in the source code.

3.3.3 All Faults Related to Global Exceptions

In this study, we observed that all exception handling faults analyzed

were related to global exceptions. This may point to the fact that the majority

of exceptions in the target systems were global, or that dealing with global

exceptions is more error-prone than dealing with local exceptions. In any case,

this points to the importance of taking into consideration the impact of global

exceptions.

In fact, implementing exception handling in the presence of global excep-

tions is not an easy task for most developers, since it requires being aware of

several global design decisions of the software system. These decisions comprise

where exceptions should be handled, which exception types should be used

to raise exceptions, where and how exceptions should be re-mapped, among

others. And all these decisions are important parts in the implementation of

exception handling dependencies for global exceptions. In large software sys-

tems, developers typically work in the source code of specific modules. Thus,

they are not always aware of the global design decisions governing global ex-

ception in a system. For this reason, it is important to define and document

the design decisions governing how exception handling for global exceptions

should be implemented. It is also important to check whether these decisions

are obeyed in the source code. As observed in the faults analyzed in this study,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 81

failing to realize these decisions correctly, or completely missing them, may

end up introducing faults in the source code.

3.3.4 Harmful Exception Handling Negligence

Currently, software systems are commonly implemented following incre-

mental development processes: software systems are gradually developed in

incremental versions, in which each increment adds to the previous version

new features and refinements to existing features. As a consequence, new ex-

ceptions may emerge along the software evolution, requiring that the related

exception handling dependencies be identified and implemented a posteriori.

By only reviewing the source code and bug reports, it is di�cult to analyze

what motivated developers during software construction. That is, it is di�cult

to judge whether the faults analyzed in this study were due to negligence of

developers in the early versions of the target systems, or because the appropri-

ated exception handling dependencies were only well-understood or discovered

later during software evolution. Even so, there were few cases that seemed to

point to cases of actual negligence.

A symptom of exception handling negligence could be observed in the

co-occurrence of faults classified as “Incorrect re-mapping” and faults classified

as “Missing handler”. In particular, 3 faults were classified as “Incorrect re-

mapping” because exceptions were re-mapped to unchecked exception types.

In addition, these faults were also related to the “Missing handler” category

because the re-mapped unchecked exceptions were left uncaught. This scen-

ario suggests that developers were trying to avoid the automatic reliability

verification performed by Java, since unchecked exceptions are not verified at

compile-time. Developers seem not to recognize that this practice may harm

the robustness of their systems. Without explicit policies prohibiting or dis-

couraging these practices, developers are free to implement them. Thus, de-

velopers introduce these faults in the source code without being aware of their

threats to robustness until failures occur.

3.4 Threats to Validity

This section discusses the study limitations based on the threats to the

study validity, presenting the measures took to mitigate these threats.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 82

3.4.1 Construct Validity

Threats to the construct validity relate to the identification of the

exception handling faults. The process of identifying exception handling faults

relied on a search heuristic that matches specific commit messages patterns and

the keyword “exception”. Only the keyword “exception” was used because we

wanted to observe only the commits that developers considered important to

explicitly mention that the modification performed was related to an exception.

We are aware that we could have used other words, such as “fault” and

“failure”, for example. We considered that if the developer did not use the

word “exception” in the comment, then he might not have considered that

commit as related to exception handling. However, we are aware that we may

have missed commits also related to exception handling, but whose commit

messages did not contain the keyword “exception”. With these strict selection

criteria we aimed at augmenting the confidence in observing commits actually

related to exception handling faults.

Furthermore, the data generated by these heuristics was manually re-

viewed to discard false positives. Commits that matched the searched patterns

were manually inspected to discard those that were not related to faults. In

particular, we only considered for analysis commits related to bug reports ex-

plicitly marked by the development teams of the analyzed systems as being

related to faults. Thus, we trusted in opinions that were not biased towards the

goal of our study. In addition, faults were considered as being related to excep-

tion handling if the observed changes performed in the source code involved

the modification, removal or addition of any exception handling dependency.

Due to the manual inspection of each commit identified, its respective bug

report and source code modifications, there is a certain degree of confidence

that the analyzed faults were actually related to exception handling faults.

3.4.2 Internal Validity

One threat to the internal validity of the study stems from possible

biases in the categorization of the analyzed exception handling faults. The

analyzed faults were classified according to the exception handling dependency

implemented and the fault type observed (faults of commission or faults of

omission). During the analysis method, the researcher manually inspected the

source code of both the faulty and repaired revisions of the target systems.

Based on this observation, the researcher classified a given fault according to

objective criteria, as defined in Section 3.1.2. Also, the commit messages and

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 83

the bug reports were also inspected to support the classification performed

by the researcher. And it is worth noticing that the developers who produced

these artifacts were not aware of the goals of this study. This way, biases from

the viewpoint of the researcher were mitigated by using objective classification

criteria and other sources of unbiased information.

Another threat to the internal validity of the study relates to the number

of exception handling faults analyzed. As we previously discussed, we adopted

a heuristic strategy with strict criteria for identifying exception handling faults.

The adopted heuristic may have missed commits that were related to exception

handling faults, but whose messages did not match the patterns searched. It is

worth noticing that it was not possible to first identify bug reports related to

exception handling and then identify which modifications in the source were

performed for this bug report. This was not possible because most bug reports

are not synchronized with the version control system of the projects. That is,

bug reports do not have links to the repairing modifications in the source code.

Thus, scanning through commit messages searching for links to bug reports

was the option left. We are aware that the strict criteria adopted may have

reduced the size of the sample analyzed. We adopted strict criteria to achieve

higher confidence in the results, since there was little previous knowledge about

exception handling faults. We favored the confidence in the results achieved,

at the cost of possibly missing other exception handling faults. Therefore, the

results achieved by this study are consistent, although possibly not complete,

since other exception handling faults in the target systems were possibly not

analyzed.

3.4.3 External Validity

This study focused on open-source projects implemented in Java. There-

fore, the study findings are still hardly generalizable to other kinds of software

projects and other programming languages, especially those that provide ex-

ception handling mechanisms with di↵erent characteristics. In addition, this

study adopted procedures for data analysis based on manual inspection of the

data. By manually inspecting the collected data we aimed at improving the

confidence in the results achieved, at the price of hindering the scalability of

the study to larger samples. In other words, the internal validity of the study

was favored in detriment to its external validity.

In order to promote the generalizability of the categories of exception

handling faults identified in this study, the faults were classified based on

generic fault types and exception handling dependencies that are commonly

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 84

implemented in programming languages following the try-catch-throw model.

It is worth highlighting that 53 mainstream programming languages follow the

try-catch-throw model. So this exception handling model is representative of

mechanisms most frequently used by developers nowadays to achieve software

robustness. It is expected that the proposed categories are generic enough to

cover exception handling faults identified in di↵erent programming languages

following the try-catch-throw model. In fact, an independent study conducted

by other researchers also identified categories of exception handling faults and

their categories can be subsumed by the categories presented in this study.

Even categories of exception handling faults identified in programs that do not

follow the try-catch-throw model can be subsumed by the categories identified

in this study. This is further discussed in Section 3.5.

3.5 Related Work

As far as we are concerned, our study was the first to conduct a

thorough analysis to categorize exception handling faults in programs following

the try-catch-throw model. An existing study was conducted in the context

of C programs using return-code idioms to implement exception handling

(BRUTNIK et al., 2006). Although the analysis of our study was conducted

in the context of programs following the try-catch-throw model, it is still

possible to trace some links between the fault categories identified in our study

and those observed in programs handling exceptions using the return-code

idiom. Brutnik et al. identified a list of fault categories in this idiom-based

exception handling strategy. The fault categories identified by the authors

were: “Function does not return”, “Wrong error variable returned”, “Assigned

and logged value mismatch”, “Not linked to previous value” and “Unsafe

assignment”. The “Function does not return” category, for example, is defined

as follows:

“(this fault category) occurs when a function declares and uses an

error variable (i.e., assigns a value to it), but does not return its

value”.

In other words, faults in this category occur due to the lack of a return

statement indicating an error code. This category is equivalent to our “Missing

raiser” category. Similarly, the “Wrong error variable returned” category is

defined as follows:

“(this fault category) occurs when a function declares and uses an

error variable but returns another variable”.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 85

That is, faults in this category occur due to a return statement indicating

the incorrect error code. This fault category is equivalent to our “Incorrect

raiser” category. Moreover, their “Assigned and logged value mismatch” and

“Not linked to previous value” categories are equivalent to our “Incorrect

handler” category and their “Unsafe assignment” category is equivalent to

our “Incorrect raiser” category. This evidences that the proposed classification

is able to cover exception handling faults even in programs implementing

exception handling with return-code idioms.

Current studies conducted in the context of programs following the try-

catch-throw model focused only on specific categories of exception handling

faults. Coelho et al. assessed exception handling faults in the context of

AspectJ programs (COELHO et al., 2008). The authors observed faults related

to uncaught exceptions being introduced because aspects did not capture

exceptions as intended. These aspects were not capturing exceptions in the

intended places due to the improper definition of their point-cuts. They also

observed that uncaught exceptions were created because aspects explicitly

raised them, but no proper catch blocks existed in the source code. According

to our classification, the faults identified by Coelho et al. can be categorized as

“Missing handler”. Thus, the analysis conducted in their study was restricted

to only one of the fault categories identified in our study.

In our empirical studies conducted in collaboration with Cacho et al.,

we assessed exception handling faults in the context of Java and C# pro-

grams (CACHO et al., 2014a,CACHO et al., 2014b). The exception handling

faults observed in this study were related to uncaught exceptions originated

from re-mappings. These faults can be categorized as “Missing handler”, and

to “Incorrect re-mapper”. There were also faults related to handling actions

raising exceptions that were left uncaught. We did not observe faults similar to

these in this study. This fault category could be categorized as “Missing hand-

ler”, due the uncaught exceptions, and also as “Incorrect handling action”, in

case the handling actions raising the exceptions were incorrectly implemented.

Thus, the analysis conducted in these studies was also restricted to three fault

categories identified in this study.

It would be interesting to revisit these previous studies by considering all

categories of exception handling faults identified in this study. These studies

concluded that the number of exception handling faults increased as systems

evolved and that developers introduced faults in the systems as they modified

exception handling code along software evolution. These conclusions were made

by considering only a small set of fault categories. By considering a wider range

of fault categories, these results could be even more alarming, since other faults

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 86

Table 3.2: Comparison with the work of Ebert et al.

Our Classification Classification proposed by Ebert et al.

Incorrect handler

Empty catch block

Error in the handler

Exception caught at the wrong level

General catch block

Catch block where only
a finally would be appropriate

Incorrect raiser
Error in the exception assertion

Exception that should
not have been thrown

Wrong exception thrown

Incorrect re-mapper
Wrong encapsulation
of exception cause

Incorrect terminating action Error in the cleanup action

Missing handler
Lack of a handler
that should exist

Missing raiser Exception not thrown

Missing terminating action
Lack of a finally block

that should exist

Missing re-mapper -

-
Error in the definition

of exception class

-
Inconsistency between source
code and API documentation

may have occurred in the analyzed systems but were not taken into account

during the data analysis.

After our study, Ebert et al. (EBERT et al., 2015) conducted a similar

investigation about exception handling faults. The authors performed a survey

with developers and analyzed bugs reported in Tomcat and Eclipse. By com-

bining the exception handling faults pinpointed by participants of the survey

and the faults analyzed in the bugs, the authors proposed a set of 15 categories

of exception handling faults. Table 3.2 compares the exception handling faults

classification proposed in our work to the classification proposed by Ebert et

al.. As one can observe in this table, their classification is similar to ours.

From the classification proposed by Ebert et al., five categories are equivalent

to the sub-categories of the “Incorrect handler” category, three are equivalent

to the sub-categories of the “Incorrect raiser” category. Moreover, one cat-

egory identified in our study were not present in theirs: “Missing re-mapper”.

Also, two categories proposed in their study were not observed in ours: “Error

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 87

in the definition of exception class” and “Inconsistency between source code

and API documentation”. According to our classification criteria, these cat-

egories would be called as “Incorrect exception type definition” and “Incorrect

exception documentation”.

3.6 Summary

Better understanding exception handling faults is important to avoid

their introduction and to detect them in the source code. This chapter

presented an empirical study conducted in the context of two open-source

projects to further investigate what categories of exception handling faults

occur. We collected and analyzed bug reports and commits related to exception

handling faults to gather empirical knowledge about them. The exception

handling faults analyzed were classified according to the exception handling

dependency implemented. They were also analyzed to check if they were

related to the absence of exception handling dependencies or to the existence

of incorrect dependencies (Section 3.1.2). This analysis resulted in a set

of 9 di↵erent categories of exception handling faults (Section 3.2.2). This

categorization is the first contribution of this thesis.

Initially, our goal with this study was to better understand what cat-

egories of exception handling faults occur in programs following the try-catch-

throw model, so that we could support their detection and repair. However,

we observed in this study that most exception handling faults were not re-

lated to structural patterns in the source code, such as empty or generic catch

blocks (Section 3.3.2). Therefore, supporting their detection by only analyzing

the source code structure, as performed in programs that implement excep-

tion handling using return-based idioms (BRUTNIK et al., 2006), would yield

many false positives or would be restricted to very specific cases.

We also observed that exception handling faults occurred because de-

velopers violated implicit exception handling policies (Section 3.3.2). These

policies were not documented in the projects, but were known by core de-

velopers, who helped to clarify them to other developers. In particular, we

observed faults due to exceptions caught in the wrong place, exceptions not

re-mapped as expected, exceptions raised with incorrect types, and the like.

And all these faults occurred because developers were unaware and violated

policies defining the places where exceptions should be handled, how exceptions

should be re-mapped and which exception types should be raised, respectively.

These results motivated us to move our goal towards the investigation of means

to support detecting and repairing violations of exception handling policies.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 3. Investigating Exception Handling Faults 88

Chapter 4 presents the proposed solution to support the explicit definition of

exception handling policies and the detection of violations in the source code.

Chapter 5 presents the proposed solution for assisting the repair of these vi-

olations. Finally, it should be noted that the results presented in this chapter

were published in a paper (BARBOSA et al., 2014).

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

4
Specifying and Verifying Exception
Handling Policies

Although exception handling is central to robust software development,

most software projects still deal with exceptions without explicit exception

handling policies (DELEMOS and ROMANOVSKY, 2001,KIENZLE, 2008).

In this thesis, we define an exception handling policy as the set of design

decisions governing how exception handling should be implemented in a

system. Developers participating in recent surveys reported that there exist

exception handling policies in their systems, although not much e↵ort is spent

in documenting them (EBERT and CASTOR, 2013,EBERT et al., 2015). Most

of the times these policies are not documented and exist as implicit rules in

the source code (BUSE and WEIMER, 2008,THUMMALAPENTA and XIE,

2009). In fact, in the study presented in Chapter 3, we observed that some

faults occurred due to violations of implicit exception handling policies of the

projects. These policies were not documented and only core developers seemed

to be aware of them.

The lack of explicit exception handling policies may have negative

consequences in software systems. Unaware of the design decisions governing

how exception handling should be implemented, developers implement it

following ad-hoc strategies. Following a policy-ignorant strategy will likely

induce developers to simplify the exception handling implementation in their

programs (Section 2.2.1), probably introducing violations in the source code.

In fact, without knowing the exception handling policy of their systems,

developers cannot even realize that they are introducing violations in the

source code. Since exceptions are expected to occur rarely during program

execution, the exception handling code is rarely exercised. And as exception

handling is poorly tested in software systems, exception handling violations

remain dormant in the source code (FU et al., 2005,SINHA and HARROLD,

2000). For this reason, these violations are only discovered later when they

cause field failures.

Even if software designers and developers are keen on explicitly defining

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 90

exception handling policies for their systems, there is still no proper support

for that (Section 2.3.2). They can try to use exception handling mechanisms

in programming languages, but these mechanisms are not intended to express

design decisions of how exception handling should be implemented. At best,

software designers and developers can express their exception handling policies

in unstructured documents in natural language, such as comments in the source

code. But these forms are not really useful in supporting the detection of

exception handling violations. For this reason, software projects should have

explicit exception handling policies. More important than that, these policies

should support the detection of violations in the source code.

In this context, this chapter presents the proposed solution that addresses

the first research question of this thesis:

RQ1. How to support the definition and checking of exception

handling policies in the source code?

In order to address the research question RQ1, we proposed the

Exception handling Policies Language (EPL), a specification and verification

language for exception handling policies in software projects. EPL supports

the detection of exception handling violations in the source code, which is the

first part of the research goal of this thesis. Exception handling violations are

detected by specifying exception handling policies and statically analyzing the

source code to check its policy adherence. Thus, developers can detect excep-

tion handling violations in the source code early in the development process,

avoiding that they remain dormant in the source code and cause failures.

The design of EPL was inspired by deontic logic and the fault types

presented in the previous chapter (faults of commission and faults of omission,

as defined in Section 3.1.1). Deontic logic is a branch of modal logic which

focuses on the study of norms expressed in terms of the concepts of obligation

and permission (CHELLAS, 1980). We borrow these concepts to express

exception handling policies as obligations and permissions over the structural

dependencies established between software modules and exceptions.

In addition, we designed EPL so that violations of obligations and

permissions are aligned with the definitions of faults of omission and faults

of commission, respectively. In EPL, a violation to an obligation means that

a given module was obligated to establish an exception handling dependency

with an exception, but it did not. For example, a module was obligated to re-

map from an API-specific exception to an application-specific exception, but

it did not implement this re-map in the source code. Similarly, a violation to

a permission means that a given module is establishing an exception handling

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 91

dependency with an exception, but it is not allowed to. For example, a module

is only allowed to re-map from SQLException to PersistenceException, but

it actually implemented a re-map from SQLException to RuntimeException,

which it is not allowed to. Therefore, using obligations and permissions to

define an exception handling policy and enforcing policy adherence in the

source code, developers can detect violations that may lead to failures in their

systems.

In addition, we designed and implemented EPL as a domain-specific

language. Domain-specific languages are programming or specification lan-

guages that o↵er expressive power focused on a particular problem domain

(VANDEURSEN et al., 2000, FOWLER, 2010). These languages provide a

bare minimum of features that allow solutions to be expressed with vocabu-

lary of terms and level of abstraction compatible with the problem domain.

We expressed obligations and permissions using the modal verbs “Must” and

“May”, respectively. We also used a vocabulary of terms that are commonly

employed in exception handling mechanisms in programming languages, such

as “Propagate”, “Handle”, “Raise”, etc. Thus, we aimed at designing EPL so

that policy specifications produced were easy to write and read to developers

minimally acquainted with exception handling mechanisms in programming

languages.

EPL was evaluated with a user-centric study and a case study. In the

user-centric study, we evaluated the “definition of exception handling policies”

part of the research question RQ1. This study was conducted with developers

and consisted of an observational study followed by semi-structured interviews.

With the observations and experiences gathered in this study, we could better

understand the trade-o↵s related to di↵erent language design decisions. Thus,

we identified some language characteristics that hindered the definition of

policies and that motivated new language constructs. In the case study, we

evaluated the “checking exception handling policies in the source code” part

of the research question RQ1. We performed a case study with one open-source

project and two industry-strength systems to investigate if and how violations

detected by EPL relate to exception handling faults. The results showed that

violations detected by EPL and faults in exception handling share common

causes. Therefore, exception handling violations can be used to detect potential

causes of exception-related failures.

The rest of this chapter is structured as follows. Section 4.1 how exception

handling policies are specified in EPL and Section 4.2 presents how these

policies are verified. Then, Section 4.3 presents a user-centric evaluation of EPL

and Section 4.4 presents the case study conducted to evaluate EPL. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 92

Section 4.5 presents related works and Section 4.6 summarizes this chapter.

4.1 Making Exception Handling Policies Expli-
cit

As previously discussed, EPL was designed as a domain-specific language

for exception handling policies. In particular, policies in EPL are expressed as

constraints over the exception handling dependencies that modules establish

with exceptions. In programs implemented with exception handling mechan-

isms following the try-catch-throw model, exception handling dependencies

are established at the method level. In other words, methods are the source

code elements that raise, handle, propagate, re-throw or re-map exceptions.

However, defining a system’s exception handling policy at the method level

would not scale well, since systems have a large number of methods. In order

to support the specification of exception handling policies at a higher level

of abstraction, EPL provides the Compartment construct. This construct is

further discussed in Section 4.1.1.

In EPL, constraints are expressed with the Rule construct. These con-

straints are expressed in terms of permissions, prohibitions obligations about

how compartments and specific exception types can establish exception hand-

ling dependencies. The rule construct is further discussed in Section 4.1.2.

Finally, in Section 4.1.3 we present the Alias construct, which allows the defini-

tion of an alias for a list of exceptions in the specification of exception handling

policies.

4.1.1 Compartments

In EPL, a compartment is a named and referable entity that comprises

a set of methods in the source code. Compartments may be specified in two

ways: by explicitly listing the names of their elements or by defining type

constraints for their elements. When a compartment is defined by explicitly

listing its elements, it is defined with the following syntactic structure:

define <elements > as compartment <comp_id >;

In the previous syntactic structure,<elements> specify a list of elements

in the source code that compose the compartment and <comp id> specifies

an identifier for the compartment being defined. To define a list of elements

in the source code, the wildcard character “*” may be used to define a name

pattern. The following example depicts how a compartment may be defined at

a fine-grained level:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 93

define pucrio.DataAccess.create*,

pucrio.DataAccess.read*,

pucrio.DataAccess.update*,

pucrio.DataAccess.delete*

as compartment DATA -ACCESS;

In the previous example, the DATA-ACCESS compartment comprises

all methods within the module pucrio.DataAccessor whose fully qualified

names have the prefix create, read, update or delete.

Moreover, compartments can also be defined in terms of more coarse-

grained elements, as shown in the next example:

define pucrio.controller .*.*

as compartment CONTROLLER;

In the previous example, the CONTROLLER compartment comprises

all methods of all modules whose fully qualified names has the prefix

pucrio.controller.

Compartments in EPL may also be specified by defining type constraints

for their elements. In particular, EPL supports the definition of compartments

in terms of subtype relations, as shown in the following example:

define X.* as compartment CONTROLLER

where X is subtype of IController;

In the previous example, the CONTROLLER compartment comprises

all methods within modules that are subtypes of the IController type. EPL

also supports the definition of compartments by combining name patterns and

subtype relations, as shown in the next example:

define X.create*, X.read*, X.update*, X.delete*

as compartment DATA -ACCESS where X is

subtype of IDataAccess;

In the previous example, the DATA-ACCESS compartment comprises

all methods within modules that are subtypes of the IDataAccess type and

whose fully qualified names have the prefix create, read, update or delete.

It is worth mentioning that this feature for defining compartments in terms of

subtype relations was not in the first version of EPL; we identified the need

for this feature during one of our case studies (Section 4.4).

4.1.2 Rules

The main purpose of an exception handling policy is to explicitly define

constraints over the exception handling dependencies that source code elements

establish with specific exception types. These constraints are expressed in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 94

EPL in terms of permissions and obligations. More specifically, the rule

concept expresses permissions and obligations about how compartments can

establish exception handling dependencies with specific exception types. A

given compartment C establishes an exception handling dependency with a

specific exception type E if there exists one of C’s element that establishes an

exception handling dependency with an exception of the type E. Moreover,

exception handling dependencies can be established between code elements

and exception types when a code element handles, raises, propagates, re-maps

or re-throws an exception of a given type. These are “canonical” structural

dependencies between exceptions and code elements, since they are typical

dependencies with which developers structure their exception handling code

(Chapter 2). Table 4.1 summarizes these exception handling dependencies.

Table 4.1: Exception handling dependencies supported by EPL
Exception Handling Dependency Description

m handles E
Method m
handles an exception of type E
in its scope

m raises E
Method m
explicitly raises an exception of type E
in its scope

m propagates E
Method m
propagates an exception of type E
from its scope

m re-maps from E1 to E2

Method m
re-maps an exception of type E1
to an exception of type E2 in
its scope

m re-throws E
Method m
re-throws an exception of type E
from its scope

EPL provides three rule types to express permissions: Only-May, May-

Only and Cannot rule types. Rules of the Only-May type express permissions

about which compartments can establish exception handling dependencies with

specific exception types. This rule type is expressed with the following syntactic

structure:

only <comp_id > may <dep_type > <exception_list >

The Only-May rule type is defined in terms of an exception handling

dependency (<dep type>), which may be one of the dependencies shown in

Table 4.1 and a list of exception types (<exception list>). For example, the

Only-May rule supports the definition of the following permission between a

compartment X and exception types A, B and C:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 95

only X may handle A, B, C;

In the previous example, the compartment named X is the only one in

the specification that has permission to handle exceptions of type A, B and C.

If a compartment di↵erent from X handles A, B or C, then this is considered

a violation of the specified rule. The semantics of the Only-May rule type is

the same for the other exception handling dependencies.

Another rule type provided by EPL to express permissions is the May-

Only rule type. Rules of this type express permissions about which exception

types a given compartment can establish exception handling dependencies.

This rule type is expressed with the following syntactic structure:

<comp_id > may only <dep_type > <exception_list >

The May-Only rule type is syntactically similar to the previous rule type.

It is also defined in terms of an exception handling dependency and a list of

exception types. The May-Only rule supports the definition of the following

permission between a compartment X and exception types A, B, C and D:

X may only remap from A to B, from C to D;

The compartment named X in the previous example has permission to

re-map only from exceptions of type A to exceptions of type B and from

exceptions of type C to exceptions of type D. If the compartment X performs

a re-mapping that is neither from type A to type B nor from type C to type

D, then this is considered a violation of the specified rule. The semantics of

the May-Only rule is the same for the other exception handling dependencies.

Notice in the previous example that the Re-map exception handling has

a syntactic structure slightly di↵erent from structure used in the example of

the Only-May rule type. The argument <exception list> for the Re-map

exception handling dependency is defined in terms of pairs (E1, E2). Each pair

specifies the exception type being caught (E1) and the exception type that the

caught exception is supposed to be re-mapped (E2). Each pair is expressed

in EPL with the syntactic structure: from E1 to E2. This syntactic structure

for the Re-map exception handling dependency is the same for the other rule

types.

EPL also provides a rule type to express permissions in a negative form.

That is, it allows expressing prohibitions. The Cannot rule type is used to

express rules that prohibits compartments to establish exception handling

dependencies with specific exception types. The Cannot rule was not part

of the first version of EPL; we identified the need for this type of rule during

our user-centric study (Section 4.3). The Cannot rule type is specified with

the following syntactic structure:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 96

<comp_id > cannot <dep_type > <exception_list >

The syntactic structure of the Cannot rule type is similar to the structure

of the other rules types. The Cannot rule type can be used to express

prohibitions as follows:

X cannot raise A, B, C ;

In the previous example, the compartment namedX is prohibited to raise

exceptions of type A, B and C. If compartment X raises exceptions of type A,

B or C, then this is considered a violation of the specified rule. The semantics

of the Cannot rule is the same for the other exception handling dependencies.

Besides allowing expressing permissions, EPL also provides a rule type

to express obligations. The Must rule type allows expressing obligations that

a given compartment has to establish with specific exception types. The Must

rules are defined with the following syntactic structure:

<comp_id > must <dep_type > <exception_list >

The Must rule type has syntactic structure similar to the other rule

types: it has an exception handling dependency and a list of exception types

as argument. The Must rule can be used to express obligations as follows:

X must propagate A, B, C;

The compartment named X in the previous example is obligated to

propagate exceptions of type A, B and C. If compartment X does not

propagate exceptions of type A, B and C, then this is considered a violation

of the specified rule. The semantics of the Must rule is the same for the other

exception handling dependencies.

4.1.3 Alias for Exceptions

EPL also provides a language construct to allow users to define an alias

for a given list of exception types. In fact, this language construct was also

not part of the first version of EPL; its need also emerged during our user-

centric study (Section 4.3). We defined the alias construct with a syntactic

structure similar to the structure used to define compartments. Aliases for

lists of exceptions are defined with the following syntactic structure:

define <exception_list > as alias <alias_id >;

This new language construct allows simpler specifications, as shown in

the following example:

define IOException , RecordStoreException as alias API -

EXCEPTIONS;

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 97

DATA -ACCESS cannot raise API -EXCEPTIONS;

DATA -ACCESS cannot handle API -EXCEPTIONS;

only CONTROLLER may handle API -EXCEPTIONS;

In the previous example, the alias API-EXCEPTIONS groups the excep-

tion types IOException and RecordStoreException. Then, the same alias is

used to specify di↵erent rules, avoiding the repetition of the same list of ex-

ceptions in the rules definition.

4.2 Verifying Exception Handling Policies

To verify a given exception handling policy, we implemented the EPL

Verifier, which verifies exception handling policies for Java programs. The

EPL Verifier consists of two main modules: the Rule Checker and the Facts

Extractor. The Rule Checker receives the policy specification and for each

specified rule it uses the Facts Extractor to check whether there exists methods

in the source code violating the rules. For each violated rule, the Rule Checker

module presents a list of the methods in the source code violating the rule.

Next, Section 4.2.1 details the Facts Extractor module and Section 4.2.2 details

how the Rule Checker works.

4.2.1 Extracting dependency facts

The Facts Extractor was implemented using the Eclipse Java Develop-

ment Tools (JDT). It analyzes the source code of a system to extract the

information needed by the Rule Checker module. In particular, the source

code of a system is parsed and its abstract syntax tree is analyzed in order

to extract dependency facts related to the exception handling dependencies

supported by EPL. To extract the dependency facts related to the exception

handling dependencies supported by EPL, the Facts Extractor analyzes the

catch blocks, throw statements and throws clauses in the source code.

In the context of the Facts Extractor module, catch blocks may be related

to the Handle, Re-map and Re-throw exception handling dependencies. The

Facts Extractor module registers only one dependency fact for each catch block.

The following pseudocode shows how it distinguishes each case:

IF catch -block contains throw -statement THEN

IF throw -statement raises the same exception instance caught

by the catch block THEN

Register Re-throw fact

ELSE

Register Re-map fact

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 98

END IF

ELSE

Register Handle fact

END IF

As defined in the previous pseudocode, if a given catch block contains a

throw statement, then the Facts Extractor module registers either a Re-throw

or a Re-map fact; otherwise, the Facts Extractor module registers a Handle

fact. If the throw statement contained by the catch block raises the same

exception captured by the catch block, then the module registers a Re-throw

fact; otherwise, the module registers a Re-map fact. The rationale behind this

characterization of the facts associated to catch blocks is that an exception

is only handled when the program execution flow returns to its normal flow.

When the caught exception is re-mapped or re-thrown, the program continues

in its exceptional flow. Therefore, the caught exception is not actually handled.

In the context of the Facts Extractor, throw statements may also be

related to more than one exception handling dependency; they may be related

to the Raise, Re-map and Re-throw dependencies. The following pseudocode

depicts how the Facts Extractor distinguishes each case:

IF throw -statement is inside catch block THEN

IF throw -statement uses the same exception instance caught

by the catch block THEN

Register Re-throw fact

ELSE

Register Re-map fact

END IF

ELSE

Register Raise fact

END IF

If a given throw statement occurs inside a catch block, then the Facts

Extractor module registers either a Re-throw or a Re-map fact; otherwise, the

module registers a Raise fact. If the throw statement inside a catch block

raises the same exception instance caught by the catch block, then the module

registers a Re-throw fact; otherwise, the module registers a Re-map fact.

Finally, from the throws clauses, the Facts Extractor module extracts the

facts related to which exceptions are explicitly propagated by a given method.

The following code snippet exemplifies the dependency facts extracted by the

Facts Extractor module:

public void foo() throws IOException , MyException2 ,

MyException3{

try{ throw new FileNotFoundException (); }

catch(MyException1 e){ /* handle exception */ }

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 99

catch(MyException2 e){ throw e; }

catch(MyException3 e){ throw new MyException3 (); }

}

In the previous example, the Facts Extractor module analyzes the throws

clause to extract the facts related to the Propagate exception handling depend-

ency. Thus, the module registers that the foo() method establishes Propagate

dependencies with the IOException, MyException2 and MyException3 types.

It should be noted that, in this Java variant of EPL, Propagate rules are in-

tended to specify how exceptional interfaces of methods should be declared.

Rules of this type are not intended to specify which specific exceptions flow

through the boundaries of a given method. In the previous example, the type

IOException is declared in the method exceptional interface, but the excep-

tion that is actually raised and flows through the boundaries of the method

is FileNotFoundException. To specify which exceptions throw statements

should raise, one should use Raise rules. For this reason, the dependency facts

related to the Propagate dependency are extracted directly from the throws

clause; the Facts Extractor module does not employ flow analysis techniques

to extract more accurate information about the exact types of the exceptions

flowing through the boundaries of methods.

The Propagate rules are intended to specify how exceptional interfaces

should be declared because these interfaces are an important part of the

exception handling code of Java programs. In fact, a significant part of the

maintenance e↵ort related to exception handling in Java programs is spent on

maintaining the exceptional interface of methods (BARBOSA and GARCIA,

2011,CACHO et al., 2014a). If a developer declares a given exception type on

his method’s exceptional interface and needs to change this interface during

software evolution, then this will result in changes to di↵erent parts of the

code. Therefore, deciding which exception types are allowed to be declared

on the exceptional interface of a method is an important design decision.

For this reason, it needs to be specified and verified throughout the software

development process.

In addition, EPL does not support the specification of rules defin-

ing which specific exceptions flow through the boundaries of a method be-

cause this requires knowing the internal structure of modules, which would

break the information hiding principle. Thus, by focusing on the specifica-

tion and verification of rules related to the Propagate dependency type only

in terms of the throws clause of Java methods, we allow developers to make

internal choices in their methods, as long as they adhere to the external be-

havior specified in the exception handling policy. Also, there are innumer-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 100

ous possible unchecked exceptions flowing through the boundaries of methods,

including NullPointerException, BufferOverflowException, Arithmetic-

Exception, and many others. Therefore, specifying all possible exceptions flow-

ing through the boundaries of methods would be impractical. In fact, this is

one of the reasons of why unchecked exceptions are not required to be declared

in exceptional interfaces in Java (JSL-6), as discussed in Chapter 2.

Still on the previous code snippet, the Facts Extractor module registers

for the first catch block the fact that the foo() method establishes a Handle

dependency with the MyException1 type. For the second catch block, which

contains the second throw statement, the module registers the fact that the

foo() method establishes a Re-throw dependency with the MyException2

type. For the third catch block, which contains the third throw statement,

the module registers the fact that the foo() method establishes a Re-map

dependency, in which it re-maps an exception of the MyException3 type to

another exception of the same type. It is worth highlighting that the Re-map

facts registered by the Facts Extractor module are defined in terms of the

exception type declared in the catch block and the exception type of the throw

statement.

To extract the dependency facts related to the Raise and Re-map depend-

encies, the Facts Extractor module analyzes the type of the throw statement

expression. In the previous example, the type of the throw statement expression

can be statically determined by only inspecting the throw statement: its ex-

pression is a new instance creation, so its type is the type of the instance being

created. In the previous example, the only exception type that can be raised by

the first throw statement is the FileNotFoundException type. Therefore, the

Facts Extractor module registers the fact that the foo() method establishes

a Raise dependency with the FileNotFoundException type. However, when

the expression of throw statements refer to method calls or conditional expres-

sions, the type of the raised exception cannot be directly determined by only

inspecting the throw statement. For this reason, a type-inference algorithm is

necessary to determine the type of the raised exception in these cases. The

following code snippet exemplifies these cases:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 101

public void bar() throws Exception {

if(condition1){

Exception e1 = new MyException ();

throw e1;

}

else{

Exception e2 = cond() ? new Type1Exception () :

createException ();

throw e2;

}

}

public Type2Exception createException (){

return new Type2Exception ();

}

In the previous example, the expressions of both throw statements

are references to variables. To determine the exception type actually raised

by the throw statements, we implemented the type-inference algorithm for

exception types proposed by Sinha and Harrold (SINHA and HARROLD,

2000). The algorithm performs a reverse data-flow analysis starting from the

throw statement, searching for statements that assign a type to that variable.

For the first throw statement in the previous example, the algorithm finds

an assignment expression for the e1 variable, whose right-hand side is a new

instance creation expression. Thus, the type of the raised exception can be

precisely determined and the Facts Extractor module registers the fact that

the bar() method raises MyException, which is the type of the instance being

created.

For the second throw statement, the type-inference algorithm also finds

an assignment expression for the e2 variable, but the right-hand side of the

variable assignment is a conditional expression. Since the assignment of the

e2 variable depends of a conditional expression, its type cannot be precisely

defined statically. Consequently, the type of the exception raised by the second

throw statement cannot be precisely defined either. In these cases, the type-

inference algorithm returns the set of the possible types of the throw state-

ment expression. Thus, in the previous example, the type-inference algorithm

finds two possible assignable types for the e2 variable: Type1Exception,

which comes directly of the then expression of the conditional expression;

and Type2Exception, which comes from the else expression of the condi-

tional expression – the returned type of the createException() method in-

vocation. Then, for each possible type of the throw statement expression, the

Facts Extractor module registers a fact. Thus, it registers the fact that the

bar() method establishes Raise dependencies with both Type1Exception and

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 102

Type2Exception. Similarly, if the type-inference algorithm finds more than

one possible type for a throw statement that is part of a re-map, then the

Facts Extractor will register more than one Re-map fact, one for each possible

type of the throw statement.

Finally, it is worth mentioning that the type-inference algorithm imple-

mented by the Facts Extractor module simplifies its analysis when a virtual

method invocation is found in its data-flow path. In Java, every non-static

method is by default a virtual method, except final and private methods (JSL-

6). Moreover, in object-oriented paradigm, a virtual method is a method whose

behavior can be overridden within an inheriting class by a method with the

same signature to provide polymorphic behavior. Therefore, given a virtual

method invocation, it is not alway possible to statically decide which con-

crete method is being invoked. To overcome this limitation, when the Facts

Extractor module finds a virtual method invocation in the data-flow analysis

path of a throw statement, it does not try to analyze all return statements

of all possible virtual method invocations to determine the precise type being

returned. Instead, it considers the return type in the method’s signature. This

simplification may return less precise types, but it is at least type-safe, since

the precise types are either the actual type or subtypes of the type considered

by the Facts Extractor module. In fact, this simplification is similar to the

analysis performed by the Java compiler. Moreover, empirical evidence sug-

gests that the overwhelming majority of throw statement expressions in Java

programs are new instance expressions (SINHA and HARROLD, 2000), so in

most cases the types of raised exceptions can be precisely determined without

loss of precision.

4.2.2 Checking the rules

The Rule Checker module checks for each specified rule in the exception

handling policy whether there exist in the source code violating facts. Then,

for each violated rule, the verifier presents a list of the violating facts. In EPL,

each rule type specifies how a given compartment is allowed to establish an

exception handling dependency to a list of exception types. Consider a rule R

that specifies how a compartment C is allowed to establish a dependency D to

a list E of exception types. A violation of a Cannot rule is defined as follows:

9m:Method 2 C ^ 9 e:Exception 2 E | D(m, e)

In the previous notation, D(m,e) means that a method m establishes an

exception handling dependency D with the exception type e. Thus, a violation

of a rule R of the Cannot type occurs when there exists a method m in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 103

compartment C that establishes an exception handling dependency D to an

exception type e in the list E. In other words, a violation of a Cannot rule

occurs when a method establishes an exception handling dependency to an

exception type that it is prohibited to.

Similarly, violations of May-Only rules are defined as follows:

9 m:Method 2 C ^ 9 e:Exception /2 E | D(m, e)

A violation of a rule R of the May-Only type occurs when there exists a

method m in compartment C establishing an exception handling dependency

D with an exception type e not in the list E. That is, the method establishes

an exception handling dependency to an exception type that it is not allowed

to.

Violations of Only-May rules are defined as follows:

9 m:Method /2 C ^ 9 e:Exception 2 E | D(m, e)

A violation of a rule R of the Only-May type occurs when there

exists a method m not in compartment C establishing an exception handling

dependency D with an exception e that is in the list E. That is, an Only-May

rule R states that only methods in C are allowed to establish an exception

handling dependency D with the exception types in E, but a method not in

C is establishing an exception handling D with an exception type in E.

Finally, violations of Must rules are defined as follows:

@ m:Method 2 C ^ 9 e:Exception 2 E | D(m, e)

A violation of a rule R of the Must type occurs when for at least one

exception type e in the list E there is no method m in compartment C

establishing an exception handling dependency D with e. In other words, for at

least one exception type e specified in the list E, there is no method fulfilling

its obligation of establishing an exception handling dependency D with e.

Verification warnings

EPL makes it possible to define sets of inconsistent rules. Developers

might specify rules that conflict with one another. Prior to checking for policy

violations, the Rule Checker module will validate the given set of specified

rules and warn the developer of any conflicts between rules. Developers must

then correct these conflicts before checking their policies. Thus, readers of the

specification can readily comprehend the intended use of exceptions without

the extra burden of understanding the complete specification and identifying

implicit conflicts. The following rule conflicts are detected by the EPL Verifier.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 104

Conflict between Cannot and Must, May-Only, Only-May. Given

the same compartment and the same exception handling dependency, a Cannot

rule and a Must rule will conflict if they share the same exception type.

Likewise, a Cannot rule will conflict with May-Only rules and Only-May rules

when referring to a common compartment and exception type. For example,

the following cannot rule:

X cannot handle A;

Conflicts with:

X must handle A;

X may only handle A;

only X may handle A;

Conflict between Only-May and Only-May. Given a common excep-

tion handling dependency and two or more di↵erent compartments, Only-May

rules will conflict if they refer to a common exception type. For example, the

following Only-May rules conflict with each other:

only X may raise A;

only Y may raise A;

Conflict between Must and May-Only. Given a common compartment,

a Must rule and a May-Only rule will conflict if an exception is declared in

the Must rule, but it is not declared in the May-Only rule. For example, the

following rules conflict with each other:

X must handle A;

X may only handle B, C;

Redundancy between Cannot and Only-May. Besides the previous

conflicts between rules, Cannot rules and Only-May rules may also interact

with each other to create implicit redundancies in the specification. A given

Cannot rule and a given Only-May rule will create an implicit redundancy if

they refer to di↵erent compartments and to a common exception type. The

following rules create a redundancy in a specification:

only X may handle A;

Y cannot handle A;

In the previous example, the rule “Y cannot handle A” is subsumed by

the rule “only X may handle A”, i.e., the second rule does not add practical

information to the policy specification. The Rule Checker will warn developers

about these implicit redundancies in the specification. Unlike conflicts between

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 105

rules, developers are allowed to verify their policies even if their specifications

contain redundant rules. Since redundancies between Only-May and Cannot

rules do not introduce inconsistencies in the policy specification, we allow

developers to leave redundant rules in the specification as a manner to make

them more explicit to other readers of the specification.

4.3 User-Centric Evaluation

We designed EPL as a domain-specific language in an attempt to promote

its acceptance among developers. For this reason, we designed a study to

investigate the acceptance of EPL. In addition, we were also interested in

investigating to what extent the language actually provides suitable constructs

for specifying exception handling policies. To investigate the design of EPL,

we conducted a user-centric study that consisted of an observational study

followed by interviews. In the next sections, we detail the settings of our

observational study (Section 4.3.1), we present its results (Section 4.3.2) and

discuss the threats to the study validity (Section 4.3.3).

4.3.1 Settings of the Study

This section describes the settings of the user-centric study. First, we

present the goal of the study and the research questions addressed. Then, we

detail the design of the study.

Goal and Questions

As previously discussed, EPL is a domain-specific language aimed at

providing support to developers define exception handling policies. The sup-

port for defining exception handling policies is the first part of the research

question RQ1. To actually support developers in this task, it is important that

EPL provide constructs that are indeed able to express exception handling

policies and that these constructs are well-accepted by developers. In this dir-

ection, we designed EPL as a domain-specific language for exception handling

policies in an attempt to improve its acceptance among developers. In this

context, the goal of this study is stated as follows:

Goal: Analyze EPL for the purpose of understanding its acceptance

from the viewpoint of potential users of the language.

This study aims at understanding the trade-o↵s related to decisions in

the language design and how these decisions may have a↵ected the acceptance

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 106

of the language. Thus, we refined the following research question from the

previous goal:

What are the factors that influence the acceptance of EPL?

With the previous research question, we aimed at investigating factors in

the language design that would a↵ect the acceptance of EPL and that could

inspire improvements in the language.

Study Design

In this study, we recruited developers with di↵erent backgrounds and

from di↵erent organizations and asked them to use EPL in an observational

study, which was followed by a semi-structured interview. We opted to combine

these two research methods for two reasons. First, we could set up scenarios

in which participants could use EPL while we directly observed them. Second,

we could use the interview to collect their experiences in using EPL.

Observational Study. The sessions of the observational study were per-

formed individually. All participants had access to the same artifacts and used

the same target system. Thus, it would be possible to compare the specifica-

tions produced by participants. Each session comprised two tasks of 30 minutes

each. The goal of the tasks was to mimic di↵erent scenarios of use of the pro-

posed language. This way, we could observe how participants used the language

in the di↵erent scenarios.

The first task simulated a scenario where the exception handling policy

is specified when the system is already in production, but without an explicit

policy. In this case, it is necessary to recover the exception handling policy from

the source code. The goal of participants was to inspect the source code of the

target system and infer an exception handling policy from the source code.

The source code of the target system was available as a project in the Eclipse

IDE and participants were allowed to use any feature of the IDE. Participants

were free to specify their policies as they wanted to, as long as they used only

the source code. In fact, they had no access to any type of documentation of

the target system. We believe that this would be the most common scenario of

use of the language, since documentation artifacts about exception handling

policies are currently not part of most software projects (DELEMOS and

ROMANOVSKY, 2001,KIENZLE, 2008).

The second task simulated a scenario where the exception handling policy

is specified during the design of the system, prior to its implementation.

This scenario is less usual, but it happens in some software projects with

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 107

more critical robustness requirements (BRITO et al., 2009). In this task,

participants received the system documentation. The system documentation

described the intended architecture of the target system, showing its main

components in a component diagram, as well as the intended dependencies

between these components. The documentation also described the intended

exception hierarchy tree, showing the hierarchy structure in a class diagram.

Finally, the documentation described the exception handling responsibilities of

each component regarding each exception type. Participants were in charge of

planning and producing the intended exception handling policy of the target

system based solely on the documentation of the target system; they had no

access to its source code.

Prior to actually performing the tasks, the researcher gave to each par-

ticipant a lecture (approximately 20 minutes) about: basic exception handling

concepts, the concepts provided by EPL, the study settings and the architec-

ture of the target system. The presentation covered all main topics of EPL:

compartments, types of rules and exception handling dependencies supported.

Participants had at their disposal in both tasks a notebook with a regular

text editor to produce the specification. They also had a printed document

containing the description of the core concepts of the language, the language

grammar and a concrete example of an exception handling policy specification.

The concrete example was defined to cover all concepts provided in the

specification language. This way, participants were exposed to all main features

of EPL: compartments, rules and dependency types. During the lecture and in

the printed document provided, we intentionally did not mention the possibility

of specifying conflicting rules. We did not mention this because we wanted to

observe whether participants would be aware of possible conflicting rules. After

the lecture and before performing the first task, participants were allowed to

read the document describing the language without a limit of time. During the

tasks, the researcher only observed the participants and did not participate in

the task. Also, participants were not allowed to ask questions to the researcher

during the tasks.

Interview. The goal of the interview was to collect participants experiences’

and opinions in using the specification language. To help us in understanding

participants’ usage of the EPL language, we relied on a technology acceptance

model that try to explain the determinant factors of technology usage behavior.

We built our interview guide based on the Technology Acceptance Model

(TAM) (DAVIS, 1989). The TAM is one of the most used models for predicting

technology adoption, but in the context of this study this model was useful to

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 108

set up the theoretical background of our interview guide. The TAM considers

that two dimensions may influence the user behavior towards a technology:

“Perceived ease of use” and “Perceived usefulness”. The first dimension relates

to how much a user believes that using a given technology is free from e↵ort.

The second dimension relates to how much a user believes that using a given

technology is useful to support his tasks. Moreover, we structured our interview

guide as a semi-structured interview to have flexibility to explore unforeseen

information that could emerge during the interviews.

Data Collection and Analysis Method

There were three main data sources in this study: field notes taken dur-

ing the tasks performed by participants, the specifications produced by parti-

cipants during the tasks and the answers to the post-task interview. During

the observational study, the researcher took field notes about the specific oper-

ations that participants performed during each task. Examples of these notes

are “Participant highlighted the system documentation”, “Participant used the

search feature of the IDE”, etc. There were also notes with addiitonal questions

to be asked during the post-task interview.

The specifications produced by participants were saved at the end of each

task and later analyzed by the researchers. For each specification produced,

we computed its size in terms of the number of compartments and rules

specified. We also compared the specifications of each task in terms of how

compartments were defined and in terms of what rule types and exception

handling dependencies were used. We also assessed the specifications to check

whether they were consistent to the source code and documentation of the

target system. In particular, we checked if the exception types, compartments

names and exception handling dependencies specified by participants were

present or not in the source code and documentation of the target system.

The post-task interviews were recorded and later transcribed by the re-

searcher. The interviews were performed in Portuguese. The audio transcrip-

tions were also in Portuguese, but they were translated to English by the

researcher in order to report the results.

To analyze the interview transcriptions, we adopted an iterative coding

process. First, we extracted the main fragments of participants answers and

assigned a topic to each of these fragments. A topic refers to a name created

by the researchers for a common and recurring theme that clusters a set of

fragments. Next, we reexamined the assigned topics and further examined

the fragments and field notes to check whether new topics emerged. We also

checked the need to merge existing topics in more abstract topics. We repeated

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 109

these last steps until we reached saturation, i.e., until new topics did not emerge

and existing topics could not be merged in more abstract topics.

Target System

To produce the artifacts required to perform the study, we needed a

software system of which we had access to the source code and its intended

exception handling policy. We used the Mobile Media system as the target

system because it is a well documented system that has been used in previous

empirical studies that assessed its software architecture (ARCOVERDE et al.,

2013,MACIA et al., 2012,MACIA et al., 2012a) and its exception handling

implementation (CACHO et al., 2008, COELHO et al., 2008, SALES and

COELHO, 2011). Thus, there was su�cient information about Mobile Media

to infer its exception handling policy. The artifacts describing Mobile Media’s

exception hierarchy tree and responsibilities of components regarding exception

types did not exist prior to this study. The researcher produced them by

examining the source code and existing artifacts of Mobile Media.

Participants

The participants of our study were invited by email and voluntarily

accepted to participate on the study. We invited participants from di↵erent

organizations and with di↵erent levels of experience. Participants in our study

had their university education in di↵erent institutions in di↵erent cities.

Their experience ranged from very inexperienced, with less than one year

of experience in industry, to very experienced, with more than ten years

of experience in industry. They also had di↵erent backgrounds in terms of

their previous experience in performing relevant design decisions in software

projects.

To keep participants’ anonymity, we refer to each one of them with an Id,

as shown in Table 4.2. The table also presents the participants profiles in terms

of their years of development experience. It also describes the programming

languages that they use (or have already used) in their project activities.

All participants had previous experience with the use of exception handling

mechanisms in their projects and they all have di↵erent backgrounds in terms

of experience with programming languages. All participants worked with Java,

but also worked with other programming languages. Each participant had

already used at least two programming languages implementing exception

handling mechanisms with di↵erent characteristics. For instance, in Java,

the compiler automatically verifies whether there exist proper handlers for

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 110

Table 4.2: Participants Profile

Id
Experience in
Software Industry (in years)

Programming languages

P1 <1 Java, C, C++, C#
P2 10 Java, JavaScript, C#, PHP
P3 8 Java, JavaScript, PHP
P4 3 Java, C#
P5 3 Java, JavaScript, PHP
P6 10 Java, JavaScript
P7 8 Java, C++, C#
P8 6 Java, JavaScript, C#, VB.NET
P9 5 Java, JavaScript, C#, Delphi
P10 7 Java, C#, VB.NET

checked exceptions. In C#, JavaScript and PHP, on the other hand, there

exist exceptions, but no automatic verification for proper handlers.

4.3.2 Data Analysis and Results

This section presents the analysis of the collected data and the results

of our user-centric study. First, we present the analysis of the specifications

produced in each task of the observational study. Second, we present the

analysis of our observations on how developers used the language in each task.

Finally, we present the analysis of the interviews.

Artifacts Analysis

In this section, we present the analysis of the specifications produced by

participants during the observational study. Next, we detail the analyses of the

artifacts produced in each task of the observational study.

Specifications Produced During the First Task. Comparing the spe-

cifications produced during the first task, we could observe that participants

produced policy specifications with similar compartments, but with very dif-

ferent rules. As can be observed in Table 4.3, the number of specified com-

partments varied in a smaller range (minimum of 2, maximum of 6) than the

number of specified rules (minimum of 2, maximum of 30).

The source code used in the study comprised 5 high-level packages: Con-

troller, Screen, AlbumData, ImageAccessor and ImageUtil. We observed that

all participants defined compartments for the Controller and AlbumData pack-

ages. The packages ImageAccessor and ImageUtil were specified as compart-

ments by 5 participants; the other participants did not specify compartments

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 111

Table 4.3: Specifications Produced in the First Task
Compartments # Rules

Min 2 2
Max 6 30

Median 4 5

for these packages. Similarly, the Screen package was specified as a compart-

ment by 4 participants; the other participants did not specify compartments

for this package. Only participant P2 specified a compartment named Main

for the main class of the system.

In addition, most participants defined their compartments at the package

level with name patterns using the wildcard operator. Only participant P1

defined his compartments by listing all of its elements. It is worth mentioning

that the feature for specifying compartments in terms of subtype relations

was incorporated to EPL only after this observational study. For this reason,

participants did not use it in this study.

For the specified rules, one can observe in Table 4.3 that the maximum

number of rules specified in a specification was 30, which was produced by

participant P2; the other participants produced specifications with 2 to 9

rules. While participant P2 was performing the first task, we observed that

for the rules that could be specified using a list of exceptions, he specified

one rule for each exception in the list. The following code snippet exemplifies

what participant P2 did. Participant P2 specified a set of rules similar to the

following rules:

X must raise A;

X must raise B;

X must raise C;

Instead of specifying a single rule similar to the following rule:

X must raise A, B, C;

If participant P2 had defined rules using exception lists, his specification

would have 9 rules, instead of 30. It is worth noticing that what participant

P2 did is not an error in the language use, but rather an ine↵ective use. We

asked him why he adopted this approach and he answered:

P2: I thought that each rule had to have only one exception. Could

I have used a list here? (...) Well, now I can see here in the

examples (provided with the language documentation) that there

is an example with a comma and a list. That (using a list) would

decrease the number of lines (of the specification), because it is all

repeated in here.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 112

In terms of the exception handling dependencies used, some policy spe-

cifications produced in the first task were defined in terms of only one de-

pendency: participants P3 and P5 specified only rules of the Handle depend-

ency, whereas participant P7 specified only rules of the Raise dependency.

The specification produced by the participant P2 was the only one to cover

all the exception handling dependencies provided by EPL. The specifications

produced by the other participants comprised no more than two di↵erent ex-

ception handling dependencies, mostly Handle and Raise.

Similarly, in terms of the rule types used, some specifications were

defined in terms of only one rule type: participants P5 and P8 produced their

specifications using only rules of the May-Only type, whereas participants

P6 and P9 produced their specifications using only rules of the Must type.

There was no specification produced using only the Only-May type. The other

participants used more than one rule type to produce their specifications. It

is worth mentioning that the Cannot rule type was incorporated to EPL only

after this observational study, so participants did not use it in this study.

We also reviewed the specifications produced in the first task to check

if they were consistent with the exception handling code implemented in the

target system. That is, if the specified rules referred to source code elements,

exception handling dependencies and exception types that existed in the source

code. We observed that all rules specified by participants P2, P3, P4 and P7

were consistent with the source code. For the other participants, there were

both consistent and inconsistent rules in their specifications. There was no

participant that produced only inconsistent rules.

It is worth highlighting that inconsistent rules are not necessarily incor-

rect in this context. During this study, participants were free to produce their

specifications as they wanted to. We did not give any specific instruction of

how participants should produce their specifications. This means that some

participants may have produced an exception handling policy that directly

mirrors the information contained in the source code. That is, the specifica-

tion produced strictly describes what is implemented in the source code. On

the other hand, other participants may have considered that the source code

does not necessarily adhere to an exception handling policy. That is, they may

have produced an idealized exception handling policy that should have been

followed in the target system implementation, instead of strictly mirroring the

source code. For this reason, we did not consider the consistency between the

specification produced and the source code as an indicator of the correctness of

the specification. It only points to di↵erent approaches adopted by participants

in this task.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 113

Table 4.4: Specifications Produced in the Second Task
Compartments # Rules

Min 0 6
Max 4 21

Median 4 7

Specifications Produced During the Second Task. For the specifica-

tions produced in the second task, we can observe in Table 4.4 that there was

one specification without any compartment definition, which was produced by

participant P9. The other participants produced specifications with the num-

ber of compartments definitions ranging from a minimum of 3 and a maximum

of 4. While participant P9 was performing the second task, we observed that

he specified his rules without specifying any compartment. During the inter-

view we asked him why he did not specify compartments and participant P9

answered:

P9: Well, I think I forgot to specify them. Now that you’ve asked

me, I realized that I defined the rules using the names of the

components (in the diagram of the documentation).

We can also observe in Table 4.4 that the maximum number of rules

specified in the second task is 21. This specification was produced by parti-

cipant P2, who instead of specifying his rules using lists of exceptions, created

one rule for each exception in the list, as we previously discussed. The other

participants produced specifications with the number of rules ranging from a

minimum of 6 rules to a maximum of 9 rules.

In the system documentation provided in the second task, there were

5 exception handling requirements that could be specified by participants.

In general, participants specified more than 5 rules because they expressed

the same requirement more than once using di↵erent rule types. Consider the

following requirement that was present in the system documentation provided

to participants:

The following exceptions are raised by third party APIs and are

handled in the context of the Image Acessor component: Record-

StoreException, RecordStoreNotOpenException, IOException.

The previous requirement was specified as two rules by participants P2

and P4:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 114

only IMAGE_ACCESSOR may handle RecordStoreException ,

RecordStoreNotOpenException , IOException;

IMAGE_ACCESSOR must handle RecordStoreException ,

RecordStoreNotOpenException , IOException;

As one can observe in the previous specification, participants P2 and P4

expressed the previous requirement using rules Only-May and Must rules for

the same requirement. Both rules were consistent with the system document-

ation.

Participants P2, P3, P4 and P6 covered all exception handling require-

ments. They specified each requirement by using rules that were consistent with

the system documentation. Participants P1, P5, P7, P9 and P10 also specified

rules that covered all exception handling requirements, but each participant

specified one rule incorrectly. Curiously, they all mistook the specification of

a rule related to the same requirement; they forgot to specify some exceptions

in a given rule. This requirement was specified in two di↵erent parts of the

system documentation and participants seemed to miss the second part of the

requirement. Participant P8 completely missed one requirement, but specified

rules that were consistent with the documentation of the other requirements.

Moreover, only participant P5 created rules that were not related to any of

the exception handling requirements defined in the system documentation.

This participant specified two extra rules, which were both inconsistent with

the system documentation. In particular, participant P5 created two rules for

exceptions that were not defined in the system documentation and these excep-

tions did not seem to represent cases of other existing exceptions misspelled.

By comparing the specifications produced in the second task, we observed

that they were similar to each other. Except for the participant P9, who

forgot to specify the compartments, all the other participants grouped the

system components into compartments in the same way: they specified 4

compartments comprising the same components. In fact, we observed that

participants P4 and P8 initially specified 4 compartments, but they removed

the specification of one of their compartments at the end of the task. We asked

them why they removed it and they answered that, at the end of the task, they

realized that they had not produced any rule for that compartment, so they

opted to remove its definition. Moreover, all participants used at least three

dependency types (Handle, Raise, Re-map) to produce their specifications.

We could also observe that when the system documentation explicitly

used a modal verb to define a given exception handling requirement, all parti-

cipants produced the same rule type. For example, the system documentation

had one requirement explicitly using the modal verb must :

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 115

The exceptions raised by third party APIs do not leave the Image

Accessor component and must be remapped to the PersistenceMech-

anismException type.

For this requirement, all participants specified it as aMust rule. However,

when requirements in the system documentation did not explicitly use a modal

verb, participants specified the same requirement with di↵erent rule types. For

instance, the system documentation had one requirement stating the following:

The Image Accessor component raises the following exceptions:

NullAlbumDataException, ImageNotFoundException (...).

Participants P1, P3, P5 and P10 specified the previous requirement with

a May-Only-Raise rule, whereas participants P2, P4, P8 and P9 specified it

using a Only-May-Raise rule and participants P6 and P7 specified it using a

Must-Raise rule.

Finally, except for the lapse of participant P9 in the second task, we

did not observe any other serious mistakes in the specifications produced in

both tasks. The most recurring mistake observed was the lack of the “from”

keyword in the rules of the Re-map dependency type. A total of 6 out of the 10

participants forgot this keyword in an at least one rule in their specifications.

In addition, the other mistakes we found were minor syntax errors, such as a

missing semicolon or a misspelled keyword.

Observation Analysis

By observing how participants used the language during the observa-

tional study, distinct approaches in each task could be observed. Next, we

detail the approaches observed in each task of the study.

Approaches Adopted During the First Task. During the first task,

when participants had to inspect the source code to infer the exception hand-

ling policy, the approaches adopted by participants to produce the policy spe-

cification varied. We could observe that some participants adopted systematic

approaches to inspect the source code, whereas others seemed to inspect the

source code at random. We also observed that those who adopted systematic

approaches relied on search features of the IDE to assist them.

Participant P2 navigated through the packages of the system and found

the exception types defined by the application. Then, for each of these

exception types, he used the “References in Project” search feature of the

Eclipse IDE, which shows the places in the source code where a given

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 116

type is used. Participants P3 and P8 searched in the source code methods

matching the keyword “catch”. Similarly, participant P7 searched in the source

code methods matching the “throw new” keywords. Then, for each matching

method, participant P7 used the “Call Hierarchy Tree” view of the Eclipse

IDE, which shows the callers and callees of a given method.

Participant P6 followed a systematic approach during the first task, but

he did not use any search feature of the IDE. First, he defined one package of

the system as one compartment. Next, he opened each one of the classes of

this package and inspected its source code. When he finished inspecting the

classes of the first package, he repeated these steps for another package. For the

other participants, we could not observe any structured approach to inspect

the source code and produce the exception handling policy specification. They

also did not use any specific feature of the IDE, rather than those generally

used to navigate through the source code files.

The di↵erent approaches adopted in the first task may be one of the

reasons of why the specified rules produced in this task were so di↵erent,

as discussed in the previous section. Participants P3 and P7, for instance,

produced specifications with rules of only one exception handling dependency,

the Handle and Raise dependencies, respectively. This is actually aligned

with their systematic approach of searching for keywords related to specific

exception handling dependencies. Participant P2, on the other hand, was the

only participant to produce a specification covering all exception handling

dependencies provided by EPL. This is also aligned with his approach of

searching for all the references of a given exception type in the source code,

instead of searching for a specific dependency. In addition, participants P2, P3

and P7 produced policy specifications that were completely consistent with

the source code. So it might be the case that their systematic approaches were

employed to produce specifications that mirrored the information contained in

the source code.

Approaches Adopted During the Second Task. During the second

task, when participants had to produce the exception handling policy based on

the system documentation, we could observe that most participants followed a

similar approach. First, they specified the compartments of the system based

on the components diagram provided in the system documentation. Then, they

inspected the system documentation searching for requirements that could

be expressed as exception handling rules. For each requirement found, they

specified one or more rules. The only exception to this approach was the

participant P9, who forgot to specify his compartments, as discussed in the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 117

previous section. He specified his rules using the names of the components

shown in the system documentation, instead of the names of compartments.

The similarity in the approaches adopted by most developers in the

second task may be the reason why the specifications produced were so

similar. In particular, all participants defined their compartments matching

the architecture elements described in the system documentation. In terms of

how participants specified their rules, except for the case in which the modal

verb must was explicit in the text, as discussed in the previous section, we

could not distinct how each developer interpreted the system documentation

to produce their rules.

Interview Analysis

The analysis of the interview transcripts supported the answer to the

question of this study:

What are the factors that influence the acceptance of EPL?

In this study, we extracted 133 fragments from the interviews transcrip-

tions and a total of 6 topics emerged from these fragments. These topics point

to factors that seemed to influence the acceptance of EPL. The topics that

emerged, presented in order of largest number of associated fragments, were:

Perceived Usefulness (29 fragments), Expressiveness (26 fragments), Usabil-

ity (25 fragments), Impact on Performance and Productivity (22 fragments),

Learnability (16 fragments) and Comprehensibility (15 fragments). Next, we

present quotes that illustrate the participants’ reactions about di↵erent dimen-

sions of EPL captured by the six topics.

Perceived Usefulness. The Perceived Usefulness topic groups together

the fragments in which participants mention whether and in which ways

the EPL would be useful to them. Overall, all participants considered the

proposed language useful, but in di↵erent ways. Participant P10, in particular,

commented about the usefulness of expressing exception handling policies:

P10: I think that defining this (exception handling) policy is like de-

fining any other system requirement. If we don’t specify it, products

will have to conform to what? If this (exception handling policy) is

part of system’s specification, then we have to do it. Conformance

(to requirements) is part of the system’s quality.

Participants P1, P2, P7, P8 and P10 mentioned that using the language

would prevent the introduction and assist the detection of problems related to

exception handling in the source code:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 118

P1: It would help me to avoid bad programming practices and follow

the rules someone else specified, which would probably enhance my

knowledge about how exceptions have to be used. In fact, using this

language would help me or guide me on how exceptions must be

used, how things should be done.

P2: It would improve source code quality, because we wouldn’t make

many mistakes (related to exceptions), because there would be a

warning in my IDE “hey, look, you raised an exception in the wrong

place!” Then, in an inspection meeting there would be probably less

problems (related to exceptions) to find in the code.

P7: This is another way of checking documentation versus source

code. To check if what was specified is really implemented in terms

of exception handling. Specially in systems with complex exception

handling it is important to have this type of mechanism to avoid

problems.

P7: (It would be useful) Specially in languages without checked ex-

ceptions. With checked exceptions you kind of know where excep-

tions are, when you don’t (have checked exceptions) anything can

happen. So when you don’t have policies for exceptions, when they

are used randomly, it’s really easy to make things wrong. And it’s

really hard to find this later.

P10: When you define a policy you can check if code is correct. We

can even detect faults, like detecting that one exceptions is there

and nobody is catching it, you know? Besides defining policies, it

is also a way for detecting some faults in the code.

These comments made by participants P1, P2, P7, P8 and P10 are

aligned with the aim of EPL, which is defining and enforcing exception

handling policies as a means to detect exception handling violations in the

source code. Moreover, participant P3 introduced another perspective about

how the language can be useful. This participant considered that using the

language is useful because it would raise the awareness of a role required in

the development team in charge of managing exception handling in the software

project:

P3: I believe that using the language would be useful because we

would have a person to explicitly think about exception handling

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 119

policies. This is perhaps the main benefit: a person to define

and reason about the exception handling policy and the exception

handling rules.

Participant P6 also considered the language useful, but he showed

concerns about aligning this type of solution with the organizational objective:

P6: The language seems useful and I would like to see its practical

use. The problem is that in most cases there is no support from the

company administration to invest on this (type of solution). They

only focus on results. Apparently there is a barrier in using these

“auxiliary methods” because it seems a waste of time, a waste of

money. But I do like things aimed at improving software quality.

Finally, participants mentioned other reasons why they considered the

language useful, including: it may help improving system’s architecture by

defining exception handling responsibilities, it may support communication

about exception handling among members of a development team, it may

support system comprehension and it may support maintenance of legacy

systems.

Expressiveness. The Expressiveness topic groups together the fragments

in which participants commented on whether it was possible to express what

they wanted using the EPL language. Overall, all participants considered that

expressing exception handling policies with the proposed specification language

was easy. However, participants also mentioned issues with the language

that hindered its expressive power. In particular, six out of ten participants

mentioned the lack of a proper construct in the language to express negation.

About this matter, participant P1 said:

P1: During the second task I read in the documentation (of the

target system) “this compartment (Screen) does not raise any

exception”. But then I looked the language grammar and I couldn’t

find anything for that. There was no “not” to express “may not

handle” or “may not raise”.

Participants P2 and P4 mentioned that they could not express the rule

“Screen does not raise any exception”, but did not explicitly complain about

the lack of a specific construct for that. Instead, they tried to express it using

the Only-May rule. Participant P2 said:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 120

P2: If I specify that only compartment X may raise a given excep-

tion, then Screen is not allowed to raise that exception. That’s how

I tried to express this rule, using the only-may rule.

Even though the understanding of participant P2 about the Only-May

rule type is correct, his attempt to express the rule “Screen does not raise

any exception” using the Only-May rule had some unwanted side e↵ects in the

specification. Participant P2 tried to express the previous rule as follows:

only X may raise *;

In the previous rule, the wildcard operator was used to specify that the

compartment X is the only one allowed to raise any exception. As a con-

sequence, the Screen compartment is not allowed to raise any exception. This

specifies the intended exception handling rule for the Screen compartment,

but it may have some unwanted side e↵ects, since no other compartment is

allowed to raise any exception. In fact, participant P2 produced another rule

of the Raise dependency that conflicted with this one, although he seemed

not to realize that. For this reason, users may misuse the Only-May rule in

an attempt to compensate the lack of a negation construct in EPL, at the

risk of producing conflicting rules, which shows a design flaw of the proposed

specification language. When we first defined EPL, the negation construct was

actually not defined. We thought that compartments were supposed to be spe-

cified in terms what they should do, instead of in terms what they should

not do. It was only during the post-task interviews that we realized that the

negation construct was necessary in EPL. Hence, the negation construct is an

improvement that was incorporated a posteriori into EPL.

Usability. The topic Usability groups together the fragments in which

participants mentioned issues related to the practical use of EPL. Some of

the aspects about how participants used EPL were already described when

we discussed the artifact and observation analyses. During the interviews, all

participants considered EPL easy to use. However, some participants pondered

that reasoning about the exception handling policy was not easy, specially

during the first task. About this, participants P4 and P5 said:

P4: I think that it would be di�cult for a user to retrieve a set

of (exception handling) rules from the source code of a previously

implemented system. But I can’t think of an easy way of doing it.

I don’t think that the language itself can ease that.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 121

P5: Specifying it (the exception handling policy) was di�cult,

specially because I didn’t know the system. But if you know what

you have to specify, using the language for that is very simple.

Participant P3 mentioned that the complexity involved in extracting

exception handling rules from the source code relates to the amount of

information involved:

P3: (It is di�cult, but) Not because of the language, but because of

the huge amount of information (in the source code) that I had to

deal with.

Currently, EPL still does not support extracting exception handling rules

from the source code to support developers while they produce their policies.

There exist automated techniques that mine exception handling rules from the

source code (THUMMALAPENTA and XIE, 2009). Also, exception handling

policies are often aligned with architectural design rules, so techniques for

recovering architectural design rules from the source code (GARCIA et al.,

2013) can also assist developers in extracting exception handling policies from

the source code. These solutions could be used to extract exception handling

rules that express how exception handling is implemented in the source code.

These rules would assist developers in reasoning how the source code is

currently implemented and how it should be implemented. Then, they would

be able to produce their policies without wasting much e↵ort in inspecting the

source code.

Finally, participants identified some usability aspects of the proposed

specification language that could be improved. Participant P1, in particular,

suggested the possibility of defining an alias for a list of exceptions:

P1: It would be great if we could define a name for a given list of

exceptions the same way we define a compartment. Without this,

I waste my time re-writing all exceptions over and over. It would

decrease the copy and paste and would be faster to specify.

Participant P3 also complained about having to re-write the same list of

exception names in di↵erent rules along the specification, even though she did

not suggest a possible solution. An alias construct for lists of exceptions was

not part of the first version of the language. We considered it a good suggestion

and added it to EPL, as previously described. Finally, it is worth noticing that

during the interviews no participant commented on the possibility of specifying

inconsistent rules, which reinforces the need for warning users about their

occurrence.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 122

Impact on Performance and Productivity. The topic Impact on Per-

formance and Productivity groups together the fragments in which participants

mention the impact that using EPL would have on their activities. Overall,

participants considered that the language would have a positive impact on

their performance and productivity. Most of the reasons given by participants

were already discussed in the topic Perceived Usefulness. Only participants

P1 and P3 showed some concerns about a possible negative impact on their

performance and productivity. About this matter, participant P3 said:

P3: For the person responsible for specifying the rules, it would be

very costly. Not because of the language, which is simple to use,

but as far as I know from the projects I’ve worked on, this concept

of “exception policy” is simply not defined. In most cases we only

handle exceptions locally, so it would be very hard to reason about

broader policies.

About the possible negative impact on performance and productivity,

participant P1 said:

P1: Using the language may decrease a bit our productivity, but

that’s because developers have bad (programming) habits. So it

would force us to adhere to the specified rules right from the start.

In this manner, if you are a programmer with bad (programming)

habits, then in the beginning it would take longer to get things done.

Participant P1 explained that developers with bad programming habits

would probably take longer to finish their implementation tasks. Later on,

during the interview, participant P1 pondered his previous comment:

P1: Maybe I would take longer to get things done, but that’s because

I have these bad (programming) habits. In the long term, using

the language would actually help me to adopt better (programming)

habits, then probably my productivity would be the same or better.

Learnability. The topic Learnability groups together the fragments in which

participants mentioned their experiences to learn EPL. Regarding the learning

of the specification language for exception handling policies, all but one par-

ticipant of the study considered it easy to learn. Participants that considered

the language easy to learn highlighted the conciseness of the language as the

main factor of why it was easy to learn. The following quote from participant

P2 summarizes this notion:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 123

P2: The grammar is very small, so we don’t have that high learning

curve, such as when we learn a language like Java, which has a

million di↵erent things to learn.

Only participant P10 did not consider the language easy to learn. He

considered that the time available was not enough to learn the language. He

also complained about the lack of more examples illustrating the use of the

language:

P10: With more detailed examples and with more time I think I

would learn it better.

Other than the issues related to the limited time and the lack of examples

mentioned by participant P10, we did not observe any language characteristic

that seemed to hinder its learning.

Comprehensibility. The topic Comprehensibility groups together the frag-

ments in which participants commented on whether and how well they under-

stood the elements of the EPL language. Regarding the comprehension of the

concepts provided by the language, participants considered them easy to un-

derstand. Participants highlighted the importance of using common exception

handling terms in the specification language. Participant P3 mentioned:

P3: Once you previously know basic exception handling concepts,

you can easily understand them (concepts of the proposed lan-

guage). (...) it was not di�cult to memorize the “keywords” of the

concepts, even in this short time of the task.

There was only one participant that had di�culties in understanding

the rule types. Participant P1, in particular, had di�culties in understanding

the di↵erences between the semantics of the rule types Only-May and May-

Only. When asked why he faced di�culties in understanding these rule types,

participant P1 said that the use of similar keywords for di↵erent rules confused

him:

P1: If you had used another name, then I would have known right

from the start “this one is this, that one is for that”; I would have

mentally separated them.

We intentionally designed these rules with similar keywords for the sake

of uniformity in the language design. That is, these rules express permissions,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 124

so we used similar keywords. Apparently, the uniformity in the design of the

rules created some confusion for participant P1. For this reason, when we added

the new rule type with the semantics of prohibition, which is the negation of a

permission, we opted to not use the keyword “May”. We tried to not overload

the keyword “May” and, consequently, hinder the comprehension of the rule

types. For this reason, we opted to express prohibition using the keyword

“Cannot” instead of “May-Not”.

4.3.3 Threats to Validity

This section discusses the study limitations based on the threats to the

study validity, presenting the measures took to mitigate these threats.

Construct Validity

Threats to construct validity relate to the way we investigated the accept-

ance of EPL. We are aware that innumerous factors influence users’ decisions

about why, how and when they will use specific technologies, most of which

were probably not covered in our study. We limited this threat by structuring

the interview guide based on the Technology Acceptance Model (TAM) (DAVIS,

1989), which is an empirically tested model to study factors that influence

technology adoption. This way, we tried to cover in our interview guide im-

portant factors that were tested in previous empirical studies. Moreover, we

organized semi-structured interviews, so that we could ask follow-up questions

and also questions that emerged during the observational study. Thus, we had

the flexibility to ask questions whenever participants were sharing interesting

information about topics not covered in our interview guide.

Internal Validity

A threat to the internal validity of the study relates to the target system

used in the observational study. Instead of asking developers to produce

exception handling policies for systems they already know, we asked them

to produce policies for a system that they did not know before. We did this to

avoid interference of the previous knowledge of each participant about its own

system. It would be possible that experienced participants know their systems

better than inexperienced participants that were working for less time in their

systems. Thus, using a common and unknown for all participants mitigated this

possible bias in the study, allowing that participants started the tasks in similar

positions. Another possible threat to the target system relates to its medium

size. However, we believe that this is not a major threat to our study. First,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 125

participants faced di�culties while inspecting the source code to extract the

exception handling rules. For this reason, using a larger system would probably

force developers to spend more time inspecting the source code. Thus, it would

hinder the goal of the tasks, which was to expose developers to the use of the

proposed language.

Another threat to internal validity is the possible cultural-related bias of

participants. To mitigate this possible threat, we selected participants from

di↵erent organizations and with di↵erent levels of experience. Participants

also had their university education in di↵erent institutions. The specific

organization culture or specific education training was not a significant threat

to our study validity.

External Validity

Our research method does not support the generalization of the results

to a general population of developers. Even so, with our user-centric study we

could observe how participants used EPL and also characteristics of the lan-

guage that seem to play important roles in developers usage. We could gather

interesting insights that inspired concrete improvements in the language, as

well as initial insights of possible approaches adopted by developers to produce

exception handling policies. We could also understand the trade-o↵s related

to di↵erent language design decisions based on concrete and well-documented

experiences reported by participants.

4.4 Case Study

After analyzing EPL from a user-centric perspective, we designed a study

to analyze it from another practical perspective. In particular, we designed a

study to investigate whether and how violations of exception handling policies

are related to exception handling faults. Next, Section 4.4.1 details the settings

of the study, Section 4.4.2 presents the analysis of the collected data and

Section 4.4.3 discusses the results and implications of this study.

4.4.1 Settings of the Study

This section describes the settings of the study conducted to analyze

EPL from the user perspective. First, we present the goal of the study and the

questions addressed. Then, we detail the design of the study.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 126

Goal and Questions

As previously discussed, EPL is a domain-specific language aimed at

supporting the checking of exception handling policies in the source code.

The support for checking exception handling policies is the second part of the

research question RQ1. The aim of checking exception handling policies in

the source code is detecting exception handling violations that might induce

system failures. In this context, the goal of this study is stated as follows:

Goal: Analyze EPL for the purpose of investigating the relations

between exception handling violations and exception handling faults

in the context of the source code of software systems.

In the study presented in Chapter 3, we observed that exception handling

violations caused faults in the analyzed systems. This motivated us to design

EPL so that violations of obligations and permissions pointed to potential

faults of omission and faults of commission, respectively. This study aims

at further investigating whether violations detected by EPL and exception

handling faults are indeed related. Thus, we refine the following questions

from the previous goal:

Do violations detected by EPL and exception handling faults co-

occur in the same methods?

Are the causes of violations detected by EPL related to the causes

of exception handling faults?

These questions aimed at investigating whether and how violations

detected by EPL are related to exception handling faults. In particular, to

investigate wheter they co-occured in the same places in the source code and

if their causes were related. This way, it is investigated wheter the violations

detected by EPL are indeed able to point to potential causes of failures.

Study Design

To answer the questions of this study, we employed EPL to specify and

verify exception handling policies of target systems and checked whether policy

violations and exception handling faults co-occurred in the same methods.

Then, we manually inspected the methods where violations and faults co-

occurred to check whether the causes of the violations were related to the

causes of the faults.

Next, the target systems selected for this study are presented. Then, the

procedures conducted to collect and analyze the data are described.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 127

Target Systems

To collect the data required for this study, it was necessary violations

of exception handling policies and exception handling faults. To collect data

related to violations of exception handling policies, first, it was necessary to

have systems with known exception handling policies. However, as previously

discussed, many software projects still do not explicitly define their exception

handling policies. To mitigate this limitation, we used as target systems in

this study well-documented projects, so that we could infer their exception

handling policies from this documentation.

The first target system of this study was the Apache Tomcat system.

We used Tomcat as the target system for two main reasons. First, Tomcat

is endorsed by Oracle as the reference implementation of the Java Servlet

and Java Server Pages technologies. These technologies are part of the Java

Enterprise Edition – JEE – architecture, which has a complete and public

available specification. Thus, we could extract exception handling-related

requirements from the JEE architecture specification to infer the exception

handling policy of the system. Second, Tomcat is a widely adopted open source

project with source code and bug report repositories publicly available. So

we could use EPL to check whether Tomcat implementation complies with

the exception handling requirements documented in the JEE architecture

specification and we could also check whether the violations observed were

related to reported faults of the system. Exception handling faults of this

system were collected in the study presented in Chapter 3. The study presented

in Chapter 3 also collected faults from the Hadoop system. We did not use

Hadoop in this study because this system did not have publicly available any

type of documentation describing its architecture, nor any other structural

aspect of the system. Thus, there was no su�cient information to infer an

exception handling policy for Hadoop.

The JEE architecture specification is described in the Java Specification

Request – JSR – number 342 (JSR-342). JSRs are descriptions and final

specifications for the Java platform. They are developed by expert members

a�liated to the Java Community Process (JCP), a community that comprise

commercial, educational and non-profit organizations, as well as Java User

Groups and individual Java users. After an initial proposal, JSRs are reviewed

by the Java community and a JCP Executive Committee. After this review

process, the leader of the experts group checks the reference implementation

and the JSR specification before sending them to the Executive Committee for

final approval. Once approved, the specification and reference implementation

are published. JSRs are developed by Java experts and are only published after

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 128

a thorough review and discussion process, so they can be trusted as reliable

specifications of Java technologies.

We also used as target systems in this study the Mobile Media and Health

Watcher systems. First, they are well documented systems that have been

used in previous empirical studies that assessed their software architecture

(ARCOVERDE et al., 2013,MACIA et al., 2012,MACIA et al., 2012a) and

their exception handling implementation (CACHO et al., 2008, COELHO et

al., 2008, SALES and COELHO, 2011). So there were su�cient information

about these systems to infer their exception handling policies. Second, faults

in these systems were assessed and reported in previous studies (BURROWS

et al., 2010,FERRARI et al., 2010). Thus, we could check whether violations of

the exception handling policies were related to these previously reported faults.

When compared to Tomcat, Mobile Media and Health Watcher have less strict

robustness requirements. Analyzing these systems allowed the investigation of

EPL in scenarios in which programs did not favor robustness in their early

versions, but are trying to improve it in later versions.

Data Collection and Analysis Method

In the context of Tomcat, we extracted exception handling-related re-

quirements from its architectural specification in order to infer its exception

handling policy. To extract these requirements from the architectural specific-

ation, we performed searches with keywords related to exception handling:

“exception”, “handling”, “catch”, “throw”, “raise” and “re-map”. We identi-

fied five di↵erent requirements related to exception handling. From these five

requirements, two were specified for modules implemented by Tomcat; the

other three were specified for modules of the JEE architecture that are not

implemented by Tomcat.

In the context of Mobile Media and Health Watcher, we relied on the

extensive documentation produced in previous empirical studies to infer their

exception handling policies. In particular, we relied on the documentation

produced in previous empirical studies that assessed their software architecture

(ARCOVERDE et al., 2013,MACIA et al., 2012,MACIA et al., 2012a) and

their exception handling implementation (CACHO et al., 2008, COELHO et

al., 2008,SALES and COELHO, 2011).

After producing the intended exception handling policy specification, we

used EPL to automatically verify whether the source code of the target systems

adhered or not to it. Then, we manually examined the policy violations to check

whether they co-occurred in the same methods where exception handling faults

were previously reported in the target systems. We also manually examined the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 129

methods where violations and faults co-occurred to check whether the causes

of the violations were related to the causes of the faults.

4.4.2 Data Analysis

This section presents the analysis of the data gathered in this study.

First, we present the analysis of the data collected in the context of Tomcat.

Then, we present the analysis of the data collected in the context of Mobile

Media and Health Watcher.

Tomcat Analysis

After inspecting the JEE architecture specification, we found two excep-

tion handling-related requirements for Tomcat. The first exception handling

requirement specified for modules present in Tomcat is:

Requirement 1: The container must throw the javax.naming.Op-

erationNotSupportedException from all the methods of the

javax.naming.Context interface that modify the environment nam-

ing context and its subcontexts. (JSR-342, pg. 78)

Notice that the previous exception handling requirement is expressed

in terms of an obligation that specific source code elements have to

comply. For the first requirement, specific methods of classes imple-

menting the javax.naming.Context interface are obligated to raise the

OperationNotSupportException type. This requirement is expressed in EPL

by defining one compartment and one rule, as shown in the following code

snippet:

define X.* as compartment CONTEXT where X is subtype of org.

apache.naming.Context;

CONTEXT must raise javax.naming.OperationNotSupportedException;

The elements of interest related to the Requirement 1 were specified

as the CONTEXT compartment, which was defined in terms of a subtype

relation, as shown in the previous code snippet. Then, the rest of the exception

handling requirement was specified with a single Must rule.

The second exception handling requirement extracted from the JSR-342

is the following:

Requirement 2: Web containers must throw a java.lang.IllegalAr-

gumentException if an object that is not one of the above types, or

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 130

another type supported by the container, is passed to the setAttrib-

ute or putValue methods of an HttpSession object corresponding to

a Java EE distributable session. (JSR-342, pg. 174)

The second exception handling requirement also expresses an obligation,

but in a di↵erent context and for a di↵erent exception. For the second require-

ment, the setAttribute and putValue methods of classes that implement the

HttpSession interface are obligated to throw the IllegalArgumentException

type. This requirement is also expressed in EPL with one compartment and

one rule definition:

define X.setAttribute , X.putValue as compartment SERVLET -

SESSION where X is subtype of javax.servlet.HttpSession;

SERVLET -SESSION must raise java.lang.IllegalArgumentException;

The elements of interest related to the second requirement were specified

as the SERVLET-SESSION compartment, which was also defined in terms

of a subtype relation. Then, the obligation imposed by the requirement was

expressed by means of a single Must rule. It is worth mentioning that the

feature in EPL for defining compartment in terms of subtype relations was not

in the first version of the language; it actually emerged during the execution

of this case study.

After specifying these requirements using EPL, we verified whether

Tomcat’s source code was adhering to the JEE specifications. We verified the

implementation of Tomcat version 7.0.0. In this version, the rule specified

for Requirement 2 was adhered to, whereas the rule for Requirement 1 was

violated. From the faults collected in the study presented in Chapter 3, there

was only one in the compartments specified. This fault was reported as a

critical bug and was related to the violation of the Requirement 1.1 This bug

was reported on August 30 of 2011. One developer reported the following

description for the bug:

The problem happens, if someone calls close() in the NamingCon-

text object.

When developers called the close method in the NamingContext object,

it raised an instance of NamingException. This caused a system failure by

abruptly terminating the system execution. Developers provided a first fix

on August 31 of 2011. However, on October 26 of 2011 the bug report was

reopened. The developer who reopened the bug report mentioned that he had

the same problem, but in another class implementing the Context interface:

1Available at: https://bz.apache.org/bugzilla/show_bug.cgi?id=51744

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 131

It appears that something is not quite right with this fix in 7.0.22.

The following worked just fine in 7.0.14 (and GlassFish, WebLogic

and WebSphere) and now fails on envCtx.close() with “Context is

read only” message.

On October 27 of 2011 one developer mentioned that those problems

were related to Tomcat not adhering to the JEE specification. He first quoted

the exception handling Requirement 1 in the bug report and then mentioned

the following:

I would argue that the close() method is a method that “modifies the

environment naming context” and therefore an exception should be

thrown here. Tomcat is, however, not throwing the right exception

in this case.

Moreover, this bug received a new fix on October 28 of 2011. However,

the same bug was once again reopened on June 21 of 2012 with the same

problem being reported for other Tomcat versions. Developers mentioned:

I just installed 7.0.23 and I still see “Context is read only” exception

thrown.

I’m using Tomcat 7.0.25 and am still seeing this same issue.

The bug report was finally closed on June 21 of 2012. The correct

understanding of the intended use of exceptions in this specific context of

Tomcat required discussions among 6 developers that lasted almost 10 months.

Even after discovering the exception handling requirement related to the bug,

developers faced di�culties in correcting the bug because it was repeated in

di↵erent classes and di↵erent versions of the system. This may explain why

the bug report was reopened twice and required new fixes in this period. Using

EPL we created a short specification of the exception handling requirements

defined for the JEE architecture and identified violations in the source code.

These violations pointed directly to the causes of the reported bug. Therefore,

Tomcat’s verifiable exception handling policy was able to detect a severe fault

in the exception handling code.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 132

Mobile Media Analysis

We defined Mobile Media’s exception handling policy aligned with its

architecture. The Mobile Media architecture adheres to the Model-View-

Controller (MVC) architecture pattern, so we defined one compartment for

each module of the MVC pattern. Each compartment has the following re-

sponsibilities. The Controller compartment centralizes the exception handling

by handling all exceptions. The Model module in Mobile Media’s architecture

comprises two sub-modules: Domain, responsible for abstracting the domain

concepts, and Data Access, responsible for accessing persistence APIs. In the

exception handling policy, Data Access is responsible for re-mapping API ex-

ceptions to application-defined exceptions. The Domain and View modules do

not handle or raise any exceptions. The complete exception handling policy

specification produced for Mobile Media v.9 comprised 5 compartments and

18 rules definitions.

From a total of 18 rules specified for the Mobile Media, 5 di↵erent rules

were violated in the source code. Moreover, each rule could be violated more

than once. The total number of violations observed in the source code is

presented in Table 4.5.

Table 4.5: Mobile Media’s Policy Violations

Site Type Total
With

Violations

Handling 63 27
Raising 9 2

Re-mapping 19 4

Table 4.5 presents the total number of handling, raising and re-mapping

sites that exists in the source code, as well as the corresponding number of

violations observed in each site type. A handling site is a method in the source

code that handles an exception. A violation observed in a handling site means

that a specific handling site violates a Handle rule. These definitions hold

similarly for the other site types. A total of 33 violations were observed in

Mobile Media. From this total, 27 violations were observed in handling sites,

4 in re-mapping sites and 2 in raising sites.

In addition, a total of 9 faults reported in the context of Mobile Media was

collected from previous empirical studies (BURROWS et al., 2010,FERRARI

et al., 2010). We manually reviewed these reports to check which faults were

related to exception handling. From the total of 9 reported faults, 5 faults were

related to exception handling.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 133

Next, we further detail these violations and their relationship with

exception handling faults, when existent.

Handling Site Violations. From the 27 violations in handling sites, 16

occurred in the View compartment, 6 in the Domain compartment and 5 in the

Data Access compartment. These violations were related to exceptions being

handled in the wrong place, since the Controller compartment was responsible

for handling all exceptions. Moreover, there were 4 co-occurrences of policy

violations and exception handling faults in the same method: 3 co-occurrences

in the Domain compartment, 1 in the Data Access compartment and 1 in the

View compartment. The following code snippet exemplifies one co-occurrence

of a policy violation and an exception handling fault observed in the View

compartment:

public void stopVideo () {

try {

if(player != null) player.stop();

} catch(Exception e) {

e.printStackTrace ();

}

}

The previous code snippet shows the stopVideo method extracted

from the PlayVideoScreen class of Mobile Media. The policy violation in

this method refers to the catch block declaring the generic exception type

Exception, which it is not allowed to do. The stop method is an imple-

mentation of the interface javax.microedition.media.Player and may raise

exceptions of the types javax.microedition.media.MediaException and

java.lang.IllegalStateException. The documentation of the stop method

specifies that exceptions of the MediaException type may be raised if the

Player cannot be stopped. The documentation also specifies that exceptions

of the IllegalStateException type may be raised if the Player is closed. The

fault reported in this method occurred when a MediaException was raised.

In this case, the generic catch block captured it and only printed its stack-

trace. As a consequence, the player was not actually stopped and the user of

the application was not informed about the problem. Then, the user of the

application observed a failure. Therefore, not only the policy violation and the

exception handling fault co-occurred in the same method, but the incorrect

and generic catch block was the cause of both the policy violation and the

exception handling fault. In this case, the MediaException was supposed to

be propagated to the controller module of Mobile Media, which is responsible

for centralizing exception handling.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 134

It is worth mentioning that from the 16 handling site violations in the

View compartment, 15 were related to generic catch blocks and 1 was related

to a catch block declaring the MediaException type. Also, all these catch

blocks were ignoring the captured exceptions, as depicted in the previous code

snippet. This way, although only one of these violations co-occurred with a

previously reported fault, it is possible that the other violations are related

to active faults that were not reported in previous studies. Similarly, it is also

possible that these violations are related to “dormant” faults, i.e., faults in the

source code that did not lead to a subsequent failure only because their source

code were not exercised yet.

Re-mapping Site and Raising Site Violations. There were 4 re-

mapping site violations in Mobile Media: 3 in the Domain compartment and 1

in the Data Access compartment. There were also 2 raising site violations, both

in the View compartment. None of the re-mapping and raising site violations

co-occurred with exception handling faults.

Health Watcher Analysis

We also defined Health Watcher’s exception handling policy aligned with

its architecture. The Health Watcher is a web-based system for registering

complaints about health units. The architecture of the Health Watcher system

is structured into multiple tiers, in which each of the following modules

correspond to one tier: GUI, Business and Persistence. It also has a module

named Façade that manages the communication between Business and GUI.

In Health Watcher’s exception handling policy, we defined one compart-

ment for each one of the previous modules. Also, we defined the following

responsibilities for each compartment:

– Persistence is responsible for re-mapping API-specific exceptions to the

application-specific PersistenceException type. It is also allowed to

raise instances of the PersistenceException type.

– Business is the only compartment allowed to raise exceptions of the

BusinessException type. It is also responsible for propagating excep-

tions of the PersistenceException type to Façade.

– Façade is responsible for propagating exceptions of the

BusinessException and PersistenceException types to GUI.

– GUI is responsible for handling instances of the BusinessException and

PersistenceException types.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 135

Table 4.6: Health Watcher’s Policy Violations

Site Type Total
With

Violations

Handling 197 26
Raising 99 65

Re-mapping 185 18

The complete exception handling policy specification produced for Health

Watcher (version 10) comprised 4 compartments and 13 rules. From a total of

13 rules specified, 7 di↵erent rules were violated in the source code. Table 4.6

details the policy violations observed in Health Watcher.

A total of 109 violations were observed in Health Watcher. From this

total, 65 were raising site violations, 26 were handling site violations and 18

were re-mapping site violations.

In addition, a total of 13 faults reported in the context of Health

Watcher was collected from previous empirical studies (BURROWS et al.,

2010, FERRARI et al., 2010). We manually reviewed these reports to check

which faults were related to exception handling. From the total of 13 reported

faults, 6 faults were related to exception handling.

Next, we further detail these violations and their relationship with

exception handling faults, when existent.

Raising Site Violations. From the 65 raising site violations in Health

Watcher, 64 occurred in the Persistence compartment and 1 in the GUI com-

partment. All raising site violations were related to methods raising an excep-

tion that should have been raised by the methods in the Business compart-

ment. Among the exception handling faults reported in Health Watcher, there

was no fault related to the raising of exceptions. Therefore, no co-occurrence

of policy violations and exception handling faults in raising sites was observed

in the context of Health Watcher.

Handling Site Violations. From the 26 handling site violations in Health

Watcher, there were 20 in the GUI compartment. All the handling site

violations in the GUI compartment were related to catch blocks declaring the

generic type Exception. None of these violations co-occurred with previously

reported exception handling faults.

Moreover, there were 6 in the Persistence compartment. All the handling

site violations in the Persistence compartment were related to catch blocks

capturing exceptions that should have been captured by methods in the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 136

Business compartment. From the 6 handling site violations in Persistence,

2 violations co-occurred with previously reported exception handling faults.

The following simplified code snippet exemplifies one of the co-occurrences

observed in the Persistence compartment:

void insertAnimal(Complaint complaint){

if (complaint.getAddress () != null) {

try {

insert(getAddress ());

} catch (ObjectNotValidException e){ }

}

insertAnimalComplaint(complaint);

}

The insertAnimal method in the previous code snippet implements

the logic that persists a complaint related to a given animal. First, if the

complaint has a valid address associated, it persists this address. Then, it

persists the complaint itself. If an ObjectNotValidException occurs when

trying to persist the address, then a catch block captures the exception and

ignores it with an empty catch block. Once the exception is handled, the normal

execution continues and the insertAnimalComplaint method is invoked.

When an ObjectNotValidException occurred while trying to persist

the address, the address was not persisted and the insertAnimal continued

its normal execution and persisted the complaint. That is, the complaint was

persisted in the system, but the corresponding address was not. This way,

ignoring the exception with an empty catch block caused a failure.

Re-mapping Site Violations. From the 18 re-mapping site violations

in Health Watcher, 14 occurred in the Business compartment and 4 in the

Persistence compartment. Moreover, from the 14 re-mapping site violations in

the Business compartment, 2 co-occurred with previously reported exception

handling faults. No violation in the Persistence compartment co-occurred with

previously reported exception handling faults. The 2 co-occurrences of policy

violations and exception handling faults in the Business were related to checked

exceptions being re-mapped to unchecked exceptions. The following simplified

code snippet exemplifies the co-occurrence of exception handling faults and

policy violations observed in the Business compartment:

private long writeTimeStamp(String tableName , String id) throws

PersistenceException{

try {

String sql = createSql(tableName , id);

PersistenceMechanism.executeQuery(sql);

(...)

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 137

return answer;

} catch (Exception ex) {

ex.printStackTrace ();

throw new RuntimeException(ex);

}

}

In the previous code snippet, the writeTimeStamp method is in the

Business compartment. The policy violation in this method refers to the re-

mapping from the Exception type to the RuntimeException type, which it

is not allowed to perform. The searchTimeStamp method retrieves a list of

complaints for a given health unit registered in Health Watcher. To do so,

it invokes the executeQuery method in the Persistence compartment. The

executeQuery method may raise exceptions of the SQLException type. When

these exception are raised, they are captured by subsumption by the generic

catch block implemented in the writeTimeStamp method. Then, the captured

exceptions are re-mapped to the RuntimeException type. The re-mapped

exceptions flow through the boundaries of the writeTimeStamp method and

are not captured by any method in Health Watcher, causing the system

termination due uncaught exceptions. Therefore, the incorrect re-mapping

performed is the cause of the policy violation and also of the fault in the

writeTimeStamp method.

The violation in the previous example seemed to be induced by another

violation in the same call-chain. The executeQuerymethod was expected to re-

map within its boundaries the SQLException to the PersistenceException

type. Then, the writeTimeStamp method was expected to only propagate the

PersistenceException. However, since the writeTimeStampmethod received

a SQLException, it would not be possible to propagate this exception without

modifying the exceptional interface of the method. Thus, the developer might

have opted to propagate the exception in a easy way by simply re-mapping

the SQLException to the RuntimeException type. Thus, it might be the case

that violations in the source code actually induce developers introducing other

violations. We observed a total of 17 call-chains containing more than one

violation in Health Watcher.

The other 2 re-mapping violations in Business were also related to

checked exceptions being re-mapped to unchecked exceptions. Although these

violation did not co-occur with previously reported faults, it is still possible

that these violations lead to subsequent failures, since there is no handler for

the RuntimeException. It might be the case that these violations were still

not exercised during program execution and remain dormant.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 138

4.4.3 Results and Discussions

This section presents the results of this study, as well as the discussion

of the implications of these results. First, the results that directly address

the questions of this study are presented. Next, other results and findings are

discussed.

Violations Point to the Causes of Exception Handling Faults

The co-occurrence analysis of the collected violations and exception

handling faults supports the answer to the questions of this study:

Do violations detected by EPL and exception handling faults co-

occur in the same methods?

Are the causes of violations detected by EPL related to the causes

of exception handling faults?

In this study, we observed that some policy violations co-occurred with

exception handling faults in methods of the target systems. In addition, we also

observed that in all co-occurrences of policy violations and exception handling

faults their causes were related. More specifically, the causes of the policy

violations were the same causes of the exception handling faults. In Tomcat, a

raising site violation was related to an “Incorrect raiser” fault. In Mobile Media

and Health Watcher, there were handling site violations related to “Incorrect

handler” faults. And in Health Watcher, there were also re-mapping site

violations related to “Incorrect re-mapper” faults. Therefore, policy violations

and exception handling faults co-occurred in the same methods in the target

systems analyzed and the causes of the policy violations were the same causes

of the reported faults.

Unrelated Faults and Policy Violations

Exception handling policy specifications define high-level decisions on

exception handling design that must be adhered in the source code. Policy

violations refer to the parts of the source code that deviate from the inten-

ded exception handling implementation. And these violations may point to

potential exception handling faults in the source code, as previously discussed.

However, there were reported exception handling faults that were not related

to any policy violations. For example, one exception handling fault in Mobile

Media was described as follows:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 139

Ignoring exception RecordStoreNotFoundException. This is hap-

pening when deleting all existing albums from record stores. The

application does not support 0 record stores and automatically cre-

ates the default album.

This fault in Mobile Media is related to low-level implementation details,

i.e., it is related to the lack of handling actions that should have been imple-

mented. Since policy specifications in EPL are focused on high-level design

decisions (e.g., which module is responsible for handling a given exception),

low-level implementation details are beyond the scope of EPL. Consequently,

policy violations cannot assist the identification of exception handling faults

related to low-level implementation details.

It is worth highlighting that not supporting the specification of low-level

implementation details was an intentional decision in the language design,

rather than an implementation limitation. We intentionally designed EPL not

to support the definition of low-level implementation details because specifying

these details would break the information hiding principle of modules. Also,

specifying this kind of information would make our language too complex,

given the high number of possible details related to the implementation of

exception handling. For example, one exception handler can log the exception,

release pre-allocated resources and then shut down the system. Specifying

which handling actions should be taken, how they are implemented and in

which order, would probably hinder one of the main design goals of domain-

specific languages, which is to keep the language concise. Participants of our

user-centric study appreciated the simplicity of EPL, so making the language

more complex could possibly have a negative impact on developers acceptance

towards the language.

There were also policy violations that were not related to reported

faults. We hypothesize the reasons why violations were not related to faults.

For Health Watcher and Mobile Media, there were few exception handling

faults reported, so it might be the case there were other unreported faults co-

occurring with violations, but we were not aware of the localization of these

faults. On the other hand, for Tomcat, there was little information about its

exception handling policy, so we may have missed violations in the source

code. Finally, the violations detected in the source code may actually not be

related to any fault. Yet, we believe that developers must treat each violation as

potential threats to software robustness and, therefore, they should be detected

and repaired.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 140

4.4.4 Threats to Validity

This section discusses the study limitations based on the threats to the

study validity, presenting the measures took to mitigate these threats.

Construct Validity

A first threat to the construct validity of this study concerns possible

biases in the ground truth of the exception handling faults used. To mitigate

this, we relied on exception handling faults that were reported in previous

empirical studies conducted by other researchers, in the case of Mobile Media

and Health Watcher, and in exception handling faults reported by the system’s

users and developers, in the case of Tomcat. Another threat concerns possible

biases in the exception handling policies produced. We limited this threat by

producing the exception handling policy for Tomcat based on its architectural

specification. Similarly, we produced the exception handling policies for Mobile

Media and Health Watcher aligned with their intended software architecture,

as described in previous empirical studies.

Internal Validity

Threats to the internal validity of this study refer to the limitations of

the EPL Verifier. As we discussed in Section 4.2, the type-inference algorithm

implemented by the EPL Verifier to determine the type of the raised exception

may produce imprecise results in specific scenarios. In particular, the type-

inference algorithm implemented by the EPL Verifier may produce imprecise

results when the type of the raised exception cannot be precisely determined

statically either because the type of the raised exceptions is inferred from

a conditional expression or from the returned type of a virtual method

invocation. For this reason, the type-inference algorithm implemented by the

EPL Verifier may interfere in the results related to raising and re-mapping site

violations. To assess to what extent the use of the EPL Verifier interfered the

results discussed, we assessed in how many cases the type-inference algorithm

produced imprecise results.

For the Mobile Media and Health Watcher target systems, there were

no cases in which the EPL Verifier found conditional expressions or method

invocations during its analyses. Therefore, the use of the EPL Verifier did not

interfere in the results discussed for these target systems. For the Tomcat target

system, all the throw statements within the compartments analyzed referred

to new instance creation expressions. Therefore, the type-inference algorithm

also did not introduce any imprecision in the analysis presented.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 141

Even so, we analyzed the source code of Tomcat to identify the cases

in which the EPL Verifier would have produced imprecise results. From the

total of 1880 throw statements in Tomcat, in 1582 cases the type of the

raised exceptions were inferred from new instance creation expressions, 152

cases were inferred from class cast expressions, 128 cases were inferred from

references to arguments of catch blocks, 17 case were inferred from virtual

method invocations and 1 case was inferred from a conditional expression.

We manually inspected the cases where the type of the raised exception

was inferred from virtual method invocations or conditional expressions to

assess if the EPL Verifier would have interfered in the analyses if these throw

statements were within the compartments analyzed. From the 17 cases where

the throw statement referred to virtual method invocations, 1 referred to an

API method invocation, so we could not inspect its source code. For the other

16 virtual methods declared in the application, we inspected their source code

and observed that all of them returned the same type declared in the method

signature. Therefore, the analysis of virtual method declarations would not

have interfered in the analysis.

In the context of the Tomcat target system, there was only one throw

statement referring to a conditional expression, as shown in the following code

snippet:

if (t instanceof InvocationTargetException) {

InvocationTargetException i=(InvocationTargetException)t;

throw i.getCause () != null ? i.getCause () : i;

}

In the previous code snippet, the throw statement refers to a conditional

expression. The then expression of the conditional expression refers to an in-

vocation to the getCause method, whereas the else expression refers to the

variable name it. The return type of the getCause method is the Throwable

type and the type of the variable it is the InvocationTargetException

type, which is inferred from the class cast expression. The EPL Verifier

considers that the previous code snippet raises the Throwable and the

InvocationTargetException types. In the previous code snippet, the possible

imprecision stem from the fact that the runtime type of the object returned

by the getCause may be a subtype of the Throwable type. However, the ana-

lysis performed by the EPL Verifier produces the same results produced by

the Java compiler. For the previous code snippet, the Java compiler requires

that the Throwable type is either handled locally, or declared in the method’s

exceptional interface, regardless of the exact type of the object returned by the

getCause method. Thus, the analysis performed by the EPL Verifier for throw

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 142

statements referring to method invocations is as conservative as the analysis

performed by the Java compiler.

External Validity

The main threat to external validity is related to the number of target

systems analyzed. To minimize these threats, we tried to use systems from dif-

ferent natures: Health Watcher is a web-based system, Mobile Media is a mobile

application and Tomcat is a web-server. This way, we tried to use systems with

di↵erent software architectures and with di↵erent exception handling policies.

Even so, we are aware that more studies involving a higher number of systems

should be performed in the future to promote the generalizability of the results

observed in this study.

4.5 Related Work

The proposed domain-specific language is a means for explicitly specify-

ing and automatically verifying exception handling policies. Similarly, solutions

aimed at assuring architecture quality by specifying and verifying architectural

design rules have been vastly explored in the software architecture community

in the last years. According to Knodel and Popescu (KNODEL and POPESCU,

2007) and Van Ommering, Krikhaar and Feijs (VAN OMMERING et al., 2001),

these architectural solutions can be divided in three main categories: (i) Re-

flexion Models, (ii) Relation Conformance Rules and (iii) Component Access

Models.

Reflexion Models compare high-level descriptions of the intended archi-

tecture of a system with its source code to detect divergences and absences. Di-

vergences occur when relations not prescribed in the intended architecture exist

in the source code, whereas absences occur when relations prescribed in the

intended architecture do not exist in the source code. Solutions based on Rela-

tion Conformance Rules specify design rules that express allowed or forbidden

relations between architectural elements. Finally, Component Access Models

solutions specify components interaction by means of specifying components

provided and required ports, as well as connection between ports. These solu-

tions are inspired by Architecture Description Languages (CLEMENTS, 1996).

Among these three categories, our proposed solution has more similarities with

those based on relation conformance rules. Table 4.7 presents a comparison of

EPL with related works based on Relation Conformance Rules (ABRANTES

and COELHO, 2015, EICHBERG et al., 2008,GURGEL et al., 2014, SALES

and COELHO, 2011,TERRA and VALENTE, 2009).

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 143

Table 4.7: Comparison of EPL with Related Works

Solutions
Semantics of
Rule Types

Supported Exception
Handling Dependencies

EPL
Obligation,
Permission,
Prohibition

Handle, Propagate,
Raise, Re-map,

Re-throw
Abrantes and
Coelho (2015)

Obligation Handle, Raise

Cacho et al. (2008) Obligation
Handle, Propagate,

Raise
Eichberg et al. (2008) Obligation Handle, Raise

Gurgel et al. (2014)
Obligation,
Permission,
Prohibition

Handle

Sales and
Coelho (2011)

Obligation Handle, Raise

Silva and
Castor (2013)

Obligation
Handle, Propagate,

Raise

Terra and
Valente (2009)

Obligation,
Permission,
Prohibition

Raise

As can be observed in Table 4.7, in terms of the semantics of the provided

rule types, EPL and the solutions proposed by Gurgel et al. (GURGEL et al.,

2014) and by Terra and Valente (TERRA and VALENTE, 2009) provide rule

types with the semantics of permission, prohibition and obligation. The other

solutions provide only rule types with the semantics of obligations.

In terms of the supported exception handling dependencies, EPL is

the only solution that supports all the “canonical” dependencies between

exceptions and code elements described in Chapter 2. The other solutions

only support the Handle, Propagate and Raise dependency. When compared

to these other solutions, the main contribution of EPL is to provide a wider

vocabulary of exception handling dependencies to specify and verify exception

handling policies. Next, we detail other similarities and di↵erences between

EPL and the other solutions.

The solution proposed by Abrantes and Coelho (ABRANTES and

COELHO, 2015) and by Sales and Coelho (SALES and COELHO, 2011) are

the most similar to ours. Their solution is aimed at specifying exception hand-

ling contracts, although they do not support all the “canonical” exception

handling dependencies. An exceptional contract specifies an intended excep-

tion propagation path, i.e., it specifies the specific places in the source code

where specific exceptions are raised and handled, and also which specific ex-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 144

ception types may flow between these places. Thus, their solution specifies ex-

ception handling policies in a level closer to the implementation level, whereas

our solution specifies policies in a level closer to the design level.

Another major di↵erence between our solutions is how we check the

source code conformance: we check it statically, while they check it dynam-

ically. Abrantes and Coelho use their exceptional contracts to monitor the

execution of a program. Sales and Coelho generate from their exceptional con-

tracts partial JUnit test cases to stimulate the exceptional behavior of the

system. Moreover, the solution proposed by Sales and Coelho requires the in-

tervention of developers to finish the implementation of the partially generated

test cases. In fact, testing exception handling code often requires extra e↵ort

of developers. It is often di�cult to set-up test scenarios that break the as-

sertions associated to exceptional conditions in software modules. Therefore,

the use of fault-injection mechanisms is often required to actually exercise

the exception handling code. Our solution is based on static analysis because

developers can detect exception handling violations in the source code early

in the development process, preventing them from remaining dormant in the

source code and cause failures. Moreover, the EPL Verifier requires only the

exception handling policy specification and the system source code. And writ-

ing policies can be assisted by mining exception handling rules from source

code (THUMMALAPENTA and XIE, 2009).

Although we have favored a solution based on static analysis, we believe

that it may be used in collaboration with dynamic analysis. In addition to using

the EPL Verifier to statically check the source code conformance, we could

extend the EPL tool apparatus to also generate partial test cases in order to

dynamically check the conformance of the source code in exceptional scenarios

that require more specific implementation details and, therefore, cannot be

described on a system-level specification language such as EPL. Similarly,

policy specifications in EPL could also be used to monitor the execution of

programs.

The solutions proposed by Eichberg et al. (EICHBERG et al., 2008),

Gurgel et al. (GURGEL et al., 2014) and Terra and Valente (TERRA and

VALENTE, 2009) specify architectural design rules aimed at detecting and

preventing architectural degradation problems. For this reason, these solutions

focus on expressing architectural design rules in terms of dependencies origin-

ated from source code elements accessing methods and fields, instantiating new

class instances, extending classes, implementing interfaces, among others. Not

all exception handling dependency are supported by their solutions. Eichberg

et al.considers the Handle and Raise dependencies as the generic dependency

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 145

named Use; Gurgel et al. supports only the Handle relation, whereas Terra

and Valente supports only the Raise relation.

Similarly to specifications in EPL, which are expressed in terms of

compartments, the solutions proposed by Eichberg et al., Gurgel et al.and

Terra and Valente are also defined in terms of abstractions that group together

elements of interest at the system implementation level. These abstractions

are also defined in terms of name patterns and subtype relations, just like the

definition of compartments in EPL. The solution proposed by Eichberg et al. is

the only solution that allows expressing design rules in terms of dependencies

combined with logic operators for conjunction, disjunction and negation. All

the other solutions, EPL inclusive, may only express their rules in terms of

atomic dependencies. Finally, the solution proposed by Gurgel et al. is the only

one that provides a compositional mechanism that allows the specialization and

reuse of abstract design rules in the context of di↵erent projects. So far, we did

not find evidences that the specification of exception handling policies requires

the combination of exception handling dependencies with logic operators nor

requires the specialization and reuse of abstract rules in di↵erent projects.

Still, these are investigation paths that we might explore in the near future as

possible improvements in EPL.

In the exception handling literature, there are works that extend ex-

ception handling mechanims of programming languages to support the expli-

cit specification of exception handling rules in the source code (CACHO et

al., 2008, SILVA and CASTOR, 2013). Cacho et al. (CACHO et al., 2008)

extended the exception handling mechanisms of AspectJ, whereas Silva and

Castor (SILVA and CASTOR, 2013) extended the mechanisms of Java, to

provide new language constructs to specify and verify the places in the source

code where exceptions are expected to be raised, propagated and handled.

These approaches mainly di↵er from ours because they specify parts of the

exception handling policy with the own programming language, whereas our

approach uses a domain-specific language. In this sense, when compared to

our solution, the solutions proposed by Cacho et al.and Silva and Castor have

the advantage of not requiring that developers learn a new language, although

developers still have to learn a few new language constructs. In order to ease

the learning and use of EPL, we designed it with a concise vocabulary of

terms similar to those used in exception handling mechanisms in program-

ming languages. We also designed it to produce readable specifications. The

observations of our user-centric study suggests that EPL is indeed easy to learn

and use, although more rigorous studies are needed to confirm that.

The solutions proposed by Cacho et al. and Silva and Castor have the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 146

main limitation of verifying only parts of the system that are implemented in

the programming language that they used to express their exception handling

rules. In multi-language systems, where exceptions may flow from a module

implemented in one language to a module implemented in another language,

the specified exception handling rules cannot be completely verified. So far,

EPL also has this limitation, since its verifier is implemented only for Java.

But since EPL is a specification language agnostic of programming language,

we plan as future work to implement EPL for other programming languages

and start to investigate how exceptions flow between modules implemented in

di↵erent programming languages and if exception handling rules are violated

in these scenarios.

Finally, in the exception handling literature there are also a few e↵orts

to support developers in properly designing exception handling of software

systems. Litke (LITKE, 1999) proposed a method to design fault tolerant

Ada systems. Litke’s method proposes exhaustive specification of exceptions

at modules boundaries by enumerating and defining the semantics of all

exceptions that cross these boundaries. Then, the method recommends the

automated verification of appropriated handlers for each exception specified in

module boundaries.

Robillard and Murphy (ROBILLARD and MURPHY, 2000) proposed

a method to design robust Java systems by adapting Litke’s method. These

methods provide good methodology for specifying exception handling in mod-

ule boundaries, but both lack an explicit definition of the intended exception

handling policy. They also lack tool support. Consequently, there is no way

to automatically check the source code conformance to the intended exception

handling policy.

Malayeri and Aldrich (MALAYERI and ALDRICH, 2006) extended

Java to support the specification and verification of exceptions at module

boundaries, as proposed by the method of Robillard and Murphy. Malayeri

and Aldrich specify and verify exceptional interfaces at the module level,

instead of at the method level, as performed by the Java compiler. However,

exceptional interfaces of modules specify only which exception can traverse

their boundaries. There is no way to express exception handling responsibilities

that comprise exception handling policies. Therefore, these solutions do not

provide proper support for specifying and automatically verifying exception

handling policies. The works from Litke and Robillard and Murphy provide

methods that could be adapted to assist developers during the specification

of their exception handling policies. Thus, we plan to elaborate guidelines to

help developers in how to specify their exception handling policies.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 147

4.6 Summary

In this chapter, we presented the second contribution of this thesis: EPL,

a domain-specific language to specify and verify exception handling policies

(Sections 4.1 and 4.2). The definition and enforcement of exception handling

policies allow the detection of exception handling violations in the source code,

achieving the first part of the goal of this thesis. All the results of this chapter

were reported in a paper accepted to be published (BARBOSA et al., 2015).

With our user-centric observational study (Section 4.3), we could better

understand the trade-o↵s related to di↵erent language design decisions based

on concrete and well-documented observations and experiences reported by

participants. We observed some language characteristics that hindered the

definition of exception handling policies. These observations motivated us to

add new language constructs to EPL. In addition, the participants of our user-

centric study recognized the importance of having explicit exception handling

policies in their projects. They also considered exception handling policies

expressed in EPL useful to support quality assurance practices. This was the

main reason why participants a�rmed that they would adopt the proposed

language in their activities. Participants also considered the language easy to

learn and to have potential to improve their performance and productivity,

although more rigorous studies must be conducted in the future to confirm

real gains in performance and productivity.

The results of our case study (Section 4.4) revealed that violations of

exception handling policies could help to directly detect causes of exception

handling-related failures. This could not be detected with the basic verification

performed by current exception handling mechanisms, such as those performed

by the Java compile for the checked exceptions. In addition, our results also

showed that the benefits of using our proposed language could be achieved

even when only parts of a system are specified and verified, such as we did

with Tomcat. There might be cases where specifying the exception handling

policy for the whole system is not practical. For example, the architect or the

lead developer might not have time to specify the whole system; he might have

time to specify only small, but critical, parts of the system.

Finally, both designers and developers can benefit from our specification

language for exception handling policies. Designers have at their disposal a

succinct and expressive language to explicitly define their intentions regarding

the use of exceptions within software projects. And with an explicit definition

about the intended use of exceptions, developers can readily consult the

specification to comprehend how they are supposed to maintain exception

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 4. Specifying and Verifying Exception Handling Policies 148

handling code. Both designers and developers can use the static analyzer to

detect violations in the source code. Once these violations are detected, they

must repair them. In the next chapter we present a recommender heuristic

strategy aimed at supporting the repair of exception handling violations.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

5
Repairing Violations in Exception
Handling

With the EPL language presented in the previous chapter, developers

can define their exception handling policies and detect exception handling

violations in the source code. After detecting exception handling violations,

developers must repair them to avoid potential failures caused by these vi-

olations. However, repairing exception handling violations is a di�cult and

error-prone task, specially when these violations are related to global excep-

tions. First, each repair requires understanding how exception handling should

be implemented, so that the source code where violations are located can be

modified to a version adhering to the intended implementation. Second, modi-

fications in the exception handling code usually require performing changes in

di↵erent parts of the program.

In fact, due to the inherent global nature of exceptions, changes in the

exception handling code often have side-e↵ects in apparently unrelated parts

of the system. This way, while developers try to repair existing violations,

they can easily introduce others in the source code of the system. And these

violations may remain dormant in the source code until they are later exercised

during runtime, possibly leading to subsequent failures. Given the inherent

complexity in repairing exception handling violations, developers need proper

assistance to perform this task.

In this context, this chapter presents the proposed solution that addresses

the second research question of this thesis:

RQ2. How to support the repair of exception handling violations

in the source code?

In order to address the research question RQ2, we proposed RAVEN – a

heuristic recommender strategy for supporting the repair of exception handling

violations.1 RAVEN is the proposed solution that complements the work of

EPL. Once violations are detected, RAVEN can be employed to support their

1RAVEN is a loose acronym for RepAiring Violations in Exception haNdling.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 150

repair. Thus, by combining EPL and RAVEN, developers have proper support

for detecting and repairing exception handling violations, fulfilling the research

goal of this thesis.

Repairing exception handling violations requires global reasoning about

the impact that modifications in the exception handling have. For this reason,

the RAVEN strategy takes into account the global context of where exception

handling violations occur to provide global-aware recommendations. In the

case study presented in the previous chapter, we observed that some exception

handling violations co-occurred in the same call-chain (Section 4.4.2). And vi-

olations in the same call-chain seemed to be related. For this reason, RAVEN

analyzes the source code structure of all methods in the call-chain where vi-

olations are located. RAVEN uses information extracted from source code to

build the solution space from where it constructs its recommendations. In ad-

dition, when policy specifications are available, RAVEN uses them to adjust

its solution space in an attempt to produce more relevant recommendations.

Each recommendation produced by RAVEN consists of a sequence of modific-

ations that should be performed in the whole call-chain of methods where an

exception handling violation occurs. The recommended modifications serve as

a detailed blueprint of how exception handling violations can be removed from

the source code.

The RAVEN strategy was analyzed in an experiment that evaluated its

e↵ectiveness. The e↵ectiveness of RAVEN relates to its ability in producing re-

commendations able to repair exception handling faults. Moreover, the e↵ects

of using policy specifications in the e↵ectiveness of RAVEN was also analyzed.

The results of this experiment revealed that RAVEN produced relevant re-

commendations in approximately 70% of the cases. When policy specifications

were available, it produced relevant recommendations in 97% of the cases. The

results also showed that the benefits of using policy specifications to produce

recommendations could be achieved with partial specifications. Therefore, de-

velopment teams may benefit from the proposed recommender strategy, even

when exception handling policies are only partially documented in their pro-

jects.

The rest of this chapter is structured as follows. Section 5.1 presents

the proposed recommender heuristic and Section 5.2 describes the procedure

conducted to evaluate this heuristic. Section 5.3 analyzes the data collected in

the evaluation procedure, Section 5.4 presents the study results and Section

5.5 presents and discusses the threats to the study validity and the measures

taken to mitigate them. Section 5.6 compares the RAVEN strategy to related

works and Section 5.7 summarizes and concludes this chapter.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 151

5.1 The RAVEN Strategy

This section details RAVEN, a recommender heuristic strategy that

produces recommendations on how to repair exception handling violations.

As previously discussed, repairing exception handling violations is a complex

task that requires reasoning about the global context of exceptions. For this

reason, RAVEN takes into account the global context of where exception

handling violations occur to be aware of the impact that exceptions might

have. In particular, given a method m where a violation occurs, the RAVEN

strategy analyzes the whole call-chain of m to produce its recommendations.

A recommendation produced by RAVEN is a sequence of modifications to be

performed in the call-chain of m in order to repair the violation that occurs in

m.

The RAVEN strategy comprises three steps. In the first step, the solution

space where RAVEN produces its recommendations is built. This step is further

explained in Section 5.1.1. In the second step, the solution space is traversed

for constructing valid recommendations. This step is detailed in Section 5.1.2.

Finally, in the third step, the valid recommendations are ranked. This step is

detailed in Section 5.1.3.

5.1.1 Solution Space Construction

The first step in the RAVEN strategy is the solution space construction.

The solution spaces constructed by RAVEN are defined as follows. Let M
be the set of all methods in the system being implemented, D be the set of

exception handling dependencies (Handle, Raise, Propagate, Re-map and Re-

throw, as described in Chapter 2) and T be the set of all exception types in the

system being implemented. Then, given a method m where a violation occurs,

the solution space for this method – S(m) – is defined as:

S(m) = {(x, y, z) 2 M⇥ D⇥ T : x 2 Cm}

where Cm is the set of methods in the call-chain of m (m inclusive). A solution

space constructed by RAVEN comprises the tuples (x, y, z) that represent all

the exception handling dependencies y that the methods x in the call-chain of

m may establish with the exception types z.

The information used to construct the solution space is extracted from

the source code of the system. RAVEN analyzes the source code of the

methods in the call-chain of m and extracts information related to the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 152

exception handling dependencies already implemented by these methods. In

addition, RAVEN complements this information by leveraging on functional

similarity between methods. To do so, it is assumed that methods with similar

functionalities use exceptions similarly. In other words, it is assumed that if

a given method m establishes a given exception handling dependency d with

a given exception type t, then methods that are functionally similar to m are

likely to also establish a dependency d with t. This was inspired by source code-

based recommender systems for software engineering that employ functional

similarity to search for examples of APIs use (HOLMES and MURPHY,

2005,SAHAVECHAPHAN and CLAYPOOL, 2006,THUMMALAPENTA and

XIE, 2007). It is worth making it clear that RAVEN does not construct its

solution spaces by exhausting all possible combinations of exception handling

dependencies and exception types that the methods in the call-chain of m

may establish. The set of all exception types T comprises not only the

exception types defined in the context of the system being implemented, but

also the exceptions defined by third-party libraries. Given the large number

of possibilities, we opted to construct the solution spaces by leveraging on

functional similarity between methods.

To measure functional similarity between methods, we relied on the

combination of similarity metrics that presented the best results in a previous

empirical study performed by Higo and Kusumoto (HIGO and KUSUMOTO,

2014). In particular, we measured functional similarity (FS) between two

methods by combining measures for their structural similarity (SS) and their

vocabulary similarity (VS). The measurement for functional similarity relies

on the assumption that if two methods have similar internal structures and

they use similar sets of terms, then these methods are likely to have similar

functions. The functional similarity between two methods m1 and m2 is

computed as follows:

FS(m1,m2) = SS(m1,m2) + V S(m1,m2)

The measurement for structural similarity quantifies the similarity

between the internal syntactic structures of two methods. In the procedure

adopted by Higo and Kusumoto, the structural similarity between two meth-

ods m1 and m2 is measured by first producing token sequences S1 and S2

for each method. A token sequence Si is obtained from the declaration of a

method mi by replacing all tokens representing variable names, method names

and type names with special tokens. Keywords are preserved and white spaces,

tabs and new line characters are discarded. Thus, the syntactic structure of a

method is expressed in a simple yet representative string-based notation. After

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 153

producing the token sequences S1 and S2, the longest common subsequence

(LCS) between these sequences is computed. Finally, the structural similarity

is measured as:

SS(m1,m2) = min

✓
|LCS(S1, S2)|

|S1|
,
|LCS(S1, S2)|

|S2|

◆

where |S1| and |S2| represent the number of tokens in the token sequences S1

and S2, respectively, and |LCS| represents the number of tokens in the longest

common subsequence between the two token sequences. The higher the value

of SS is, the more similar are the internal structure of the two methods.

The measurement for vocabulary similarity quantifies how similar are

the sets of terms used by two methods. The vocabulary similarity between two

methods is measured by first producing the sets of vocabulary terms for each

method. Higo and Kusumoto considered the set of terms Vi of a given method

mi as the set of variable names, type names and method names invoked in

the context of mi. In addition to those terms used by Higo and Kusumoto, we

also considered as part of the set of terms of a method the names and types

of the parameters and the exception types declared in the signature of the

method. Thus, we take into account not only the vocabulary of terms used

within mi, but also the terms used in its signature, particularly the exception

types declared in its exceptional interface. Then, the vocabulary similarity

between two methods m1 and m2 is measured by computing the Jaccard index

between the sets V1 and V2, as shown in the next equation:

V S(mA,mB) =
|VA \ VB|
|VA [VB|

As shown in the previous equation, the vocabulary similarity between

two methods is defined as the size of the intersection divided by the size of the

union of the sets V1 and V2. The higher the value of VS is, the more similar

the vocabulary of terms of two methods are.

In this context, assuming that methods with similar functionalities use

exceptions in similar manners and considering a method m where a violation

occurs, the solution space for this method is constructed as follows. For each

method ci in the call-chain Cm of the method m, first extract from the

source code of ci the exception handling dependencies d that it implements

and the respective exception types t; then add the tuples (ci, d, t) to the

solution space. Next, search for methods that are functionally similar to ci

and let Sim(ci) be the set of methods that are functionally similar to ci. Then,

for each method sj in Sim(ci), analyze the source code of sj and extract

the exception handling dependencies that it implements and the respective

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 154

exception types. Let Tup(sj) be the set of tuples that represent the exception

handling dependencies extracted from the source code of the method sj. Then,

for each tuple (x, y, z) in Tup(sj), add (ci, y, z) to the solution space. Notice

that if the source code of the method ci is analyzed, the tuple (ci, y, z) is

not necessarily extracted from it. The exception handling dependency y with

the exception type z was originally extracted from the method sj, which is

similar to ci. Thus, functional similarity between methods allows expanding

the solution space with new tuples.

In addition to expanding its solution space by leveraging on functional

similarities between methods, RAVEN also adjusts its solution space when

policy specifications are available. Exception handling policies define the in-

tended exception handling dependencies that modules of a system are sup-

posed to implement with exception types. For example, according to the

exception handling policy of Health Watcher, the GUI tier is only allowed

to handle instances of the BusinessException and PersistenceException

types; handling exceptions of another type would be considered as viola-

tions of the intended policy. In this case, for all methods m that are part

of the GUI tier, RAVEN prunes from its solution space any existing tuple

of the form (m,Handle, t), where t is an exception type di↵erent from

BusinessException and PersistenceException. In addition, since meth-

ods that are part of the GUI tier are allowed to handle instances of the

BusinessException and PersistenceException types, RAVEN also adds to

its solution space tuples of the form (m,Handle, BusinessException) and

(m,Handle, PersistenceException). In summary, when policy specifications

are available, RAVEN adjusts its solution space by pruning prohibited tuples

and by adding allowed tuples. This way, the solution space contains only policy-

compliant tuples.

5.1.2 Constructing Recommendations

The second step in the RAVEN strategy is the construction of its recom-

mendations. RAVEN starts constructing its recommendations by computing

valid exception propagation paths that may be implemented in the context

of the call-chain of a method. Given a method m where a violation occurs,

RAVEN traverses the solution space ofm to construct valid exception propaga-

tion paths in the context of the call-chain of m. A valid exception propagation

path P produced by RAVEN has the following structure:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 155

P = (x1,Raise, z1)| {z }
Raising Site

· (xi, yj, zk)
⇤

| {z }
Intermediate Site

· (xn,Handle, zm)| {z }
Handling Site

A valid exception propagation path P produced by RAVEN is a sequence

of tuples that represents an exception propagation path from a raising site

to a handling site, possibly passing through intermediate sites that either

Propagate, Re-throw or Re-map the exception. These paths are constructed

by exploring the solution space S(m) of the method m with a backtracking

algorithm. The following constraints are used by the backtracking algorithm to

explore the solution space and construct the paths. In the following notation,

the underscore is used in the representation of some tuples to denote “any

value”, i.e., there is no specific restriction over this value.

1. A tuple in P has the Raise dependency if, and only if, it is the first tuple

in P

2. A tuple in P has the Handle dependency if, and only if, it is the last

tuple in P

3. A tuple of the form (xi, ,) is immediately succeeded by a tuple of the

form (xj, ,) in P if, and only if, the method xi is immediately succeeded

by the method xj in their call-chain of m

4. A tuple of the form (xi, ,) is immediately preceded by a tuple of the

form (xj, ,) in P if, and only if, the method xi is immediately preceded

by the method xj in their call-chain of m

5. A tuple of the form (,Raise, z) is in P if, and only if, it is immedi-

ately succeeded by a tuple of the form: (,Handle, z), (,Propagate, z),

(,Re-throw, z) or (,Re-map, z)

6. A tuple of the form (,Handle, z) is in P if, and only if, it is imme-

diately preceded by a tuple of the form: (,Raise, z), (,Propagate, z),

(,Re-throw, z) or (,Re-map, z)

7. A tuple with one of the forms (,Propagate, z),

(,Re-throw, z) or (,Re-map, (z,)) is in P if, and only if, it is im-

mediately preceded by a tuple of the form: (,Raise, z), (,Propagate, z),

(,Re-throw, z) or (,Re-map, z)

8. A tuple with one of the forms (,Propagate, z),

(,Re-throw, z) or (,Re-map, (z,)) is in P if, and only if, it is immedi-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 156

ately succeeded by a tuple of the form (,Handle, z), (,Propagate, z),

(,Re-throw, z) or (,Re-map, z)

Constraints 1 and 2 guarantee that valid paths have an exception raiser

and an exception handler in the beginning and in the end of an exception

propagation path. Constraints 3 and 4 guarantee that valid paths have its

tuples defined for methods in the same order as they relate in the call-

chain of m. The other constraints guarantee that every tuple in the exception

propagation path is correctly chained from the exception raiser to the exception

handler. For example, the Constraint 5 guarantees that if a given method raises

an exception of type z, then the next method in the exception propagation path

must either handle, propagate, re-throw or re-map this exception. Similarly,

Constraint 7 guarantees that in a valid path, if a given method propagates,

re-throws or re-maps a given exception of type z, then the previous method

in the path must have either raised, propagated, re-thrown or re-mapped an

exception of type z. If a given exception propagation path P satisfies all the

constraints listed before, then it is considered a valid path.

The valid exception propagation paths are then used by RAVEN to

construct its recommendations. RAVEN constructs its recommendations by

comparing valid paths to the call-chain of a method where a violation occurs.

To depict how RAVEN constructs its recommendations, consider the following

call-chain Cmi where a violation in localized in a method mi handling an

exception of type t1 that it is not allowed to:

Cmi = · · · (mi�2)| {z }
(mi�2,Raise, t1)

` (mi�1)| {z }
(mi�1,Propagate, t1)

` (mi)|{z}
(mi,Handle, t1)

· · ·

In the previous notation, ↵ ` � means that a method ↵ is immediately

succeeded by a method � in a call chain. The text under the braces represents in

the form of tuples the exception handling dependencies implemented by each

method. The method mi�2 raises an exception of type t1, the method mi�1

propagates an exception of type t1 and the method mi handles an exception

of type t1.

Now also consider the following exception propagation path P1 as one of

the valid paths produced by RAVEN:

P1 = (mi�2,Raise, t1) · (mi�1,Re-map, (t1, t2))·

(mi,Propagate, t2) · (mi+1,Handle, t2)

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 157

In the path P1: method mi�2 raises an exception of type t1, method

mi�1 re-maps an exception of type t1 to an exception of type t2, method mi

propagates an exception of type t2 and method mi+1 handles an exception of

type t2. It is worth noticing that in the previous notation used to depict P1,

the third value of the tuple (mb,Re-map, (t1, t2)) is defined in terms of the pair

(t1, t2). This notation is only used for the Re-map dependency and means that

the method mb re-maps an exception of type t1 to an exception of the type t2.

So given the previous call-chain Cm and the valid exception propagation

path P1, RAVEN produces a recommendation R1 by comparing the exception

handling dependencies implemented by the methods in the call-chain Cm with

the list of tuples in P1. RAVEN tries to find a set of modifications that if

implemented in Cm would transform its exception propagation path to a path

equivalent to P1. Since P1 is a valid exception propagation path, RAVEN

speculates that by modifying Cm so that its exception propagation path

becomes equivalent to the valid path P1 it is possible to repair the violation

in m. This sequence of modifications serves as a recommendation on how an

exception handling violation in a method may be repaired.

RAVEN compares the tuples for the same method. If both tuples are

equal, then it considers that it is not necessary to perform any change in the

call-chain. If the tuples di↵er only in the exception type, then RAVEN considers

that the exception handling dependency in that method must be changed by

only modifying the exception type. If the tuples di↵er in the exception handling

dependency, RAVEN considers that the dependency in the call-chain must be

removed and the dependency in the tuple of the exception propagation path

must be added.

For the previous example, Table 5.1 depicts the tuples of the call-chain

Cm (left column) and the tuples of the valid path P1 (right column). Since the

method mi+1 was not shown on the previous representation of the call-chain,

consider that it does not implement any exception handling dependency. In

other words, consider that the set of exception handling dependencies extracted

from this method is empty (this is represented using the symbol ?).

Table 5.1: Comparison Between Tuples
Cm P1

(mi�2,Raise, t1) (mi�2,Raise, t1)
(mi�1,Propagate, t1) (mi�1,Re-map, (t1, t2))

(mi,Handle, t1) (mi,Propagate, t2)
? (mi+1,Handle, t2)

By comparing the tuples in Cm to the tuples in P1, RAVEN produces

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 158

the following recommendation R1:

1. Remove: (mi�1,Propagate, t1),

2. Add: (mi�1,Re-map, (t1, t2)),

3. Remove: (mi,Handle, t1),

4. Add: (mi,Propagate, t2),

5. Add: (mi+1,Handle, t2).

As one can observe in Table 5.1, the first pair of tuples are equal. That

is, the first tuple in Cm is equal to the first tuple in P1. For this comparison,

RAVEN does not recommend any modification. For the second and third pairs

of tuples, the tuples di↵er in the exception handling dependency. By comparing

the second pair of tuples, RAVEN recommends that method mi�1 should not

propagate the exception of type t1 (Item 1 in R1); instead, method mi�1 should

re-map from the type t1 to the type t2 (Item 2 in R1). And by comparing the

third pair of tuples, RAVEN recommends that method mi should not handle

the exception of type t1 (Item 3 in R1); instead, method mi should propagate

the exception of type t2 (Item 4 in R1). By comparing the last pair of tuples,

RAVEN recommends that a handler for exceptions of the type t2 should be

added to the method mi+1 (Item 5 in R1). Finally, notice that if we apply these

changes to the call-chain Cm, then the violation in mi is repaired, since it no

longer handles the exception of type t1.

In the previous example, there is no case where the tuples di↵er only in

the exception type. So, consider the following exception propagation path P2

as another valid path produced by RAVEN:

P2 = (mi�2,Raise, t2) · (mi�1,Propagate, t2) · (mi,Handle, t2)

In this case, RAVEN performs the following comparisons:

Cm P2

(mi�2,Raise, t1) (mi�2,Raise, t2)
(mi�1,Propagate, t1) (mi�1,Propagate, t2)

(mi,Handle, t1) (mi,Handle, t2)

By comparing the tuples of the call-chain Cm and of the valid path P2,

one can observe that only the exception types change. For this reason, RAVEN

produces the following recommendation R2:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 159

1. Change: (mi�2,Raise, t1) ! (mi�2,Raise, t2)

2. Change: (mi�1,Propagate, t1) ! (mi�1,Propagate, t2)

3. Change: (mi,Handle, t1) ! (mi�1,Handle, t2)

Similarly to the previous recommendation, if we apply these modifica-

tions to the call-chain Cm, then the violation in the method mi is repaired,

since it no longer handles the exception of type t1. Moreover, notice that a dif-

ference between exception handling dependencies results in recommendations

for two modifications (Add and Remove), as occurred in the production of the

recommendation R1. On the other hand, di↵erences between exception types

results in a recommendation for one modification (Change), as occurred in the

production of the recommendation R2. This decision will become clearer in

the next section when the ranking scheme of recommendations implemented

by RAVEN is discussed.

5.1.3 Ranking Recommendations

The third step in the RAVEN strategy is the ranking of the recommend-

ations constructed during the second step. RAVEN ranks its recommendations

by favoring those that require performing fewer modifications. The rationale

behind this ranking scheme is that if a recommendation requires fewer modi-

fications to repair a violation, then it is probably easier to implement it than

one that requires more changes. Therefore, they should appear in the topmost

positions of the list of recommendations, where they can be readily found by

developers.

In this context, every list of recommendations L produced by RAVEN

satisfies the following relation:

8 Ri,Rj | Ri,Rj 2 L : |Ri| < |Rj|) rank(Ri) < rank(Rj)

where |R| refers to the number of modifications in a recommendation and

rank(R) refers to the position of a recommendation in the list of recommend-

ations. The lower the value of rank(R), the closer R is to the first positions of

the list of recommendations.

For the recommendations presented in the previous section, the following

rank is computed:

|R2| = 3 < |R1| = 5) rank(R2) < rank(R1)

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 160

That is, the recommendation R2 will appear closer to the first positions

of the list of recommendations than the recommendation R1. For these re-

commendations, in particular, it seems easier to change only the type of the

exception, as in the case of the modifications recommended in R2, than chan-

ging exception handling dependencies, as in the case of the modifications re-

commended in R1. Moreover, changing one exception handling dependency is

considered more di�cult than changing only the exception type of an existing

dependency. That is why changing an exception handling dependency results

in two distinct modifications (Add and Remove), whereas changing an exception

type results in a single modification (Change). Thus, the ranking scheme im-

plemented by RAVEN incorporates this assumption about which modifications

are more di�cult than others.

5.2 Settings of the Evaluation Procedure

This section describes the settings of the procedure conducted to evaluate

the RAVEN strategy. In particular, Section 5.2.1 presents the goals of the

study, the questions addressed and the metrics employed in the evaluation

procedure. Next, Section 5.2.2 details the design of the study and presents its

hypothesis. Finally, Section 5.2.3 details the procedure followed to prepare the

environment where the evaluation procedure was conducted.

5.2.1 Goals, Questions and Metrics

To structure the methodology of the procedure conducted to evaluate

the RAVEN strategy, the Goal-Question-Metric (GQM) method formulated by

Basili et al. (BASILI et al., 1994) was used. As previously discussed, RAVEN

is the solution that addresses the second research question of this thesis (RQ2).

The RAVEN strategy is aimed at providing recommendations of how to repair

exception handling violations. In this context, the first goal of this study is

stated as follows:

Goal 1: Evaluate the RAVEN strategy in terms of its e↵ectiveness.

This study aims at evaluating if the strategy implemented in RAVEN is

e↵ective, i.e., whether it is indeed able to produce relevant recommendations.

We focused on assessing RAVEN’s e↵ectiveness because it positively influences

other dimensions related to the adoption of recommendation-based assisting

tools (AVAZPOUR et al., 2014). That is, users find no reasons for learning

or using tools that are not e↵ective. The RAVEN strategy provides its

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 161

recommendations as ranked lists. This way, the e↵ectiveness of RAVEN is

defined in this study based on a standard quality model for ranking schemes

of information retrieval systems (MANNING et al., 2008). In this quality

model, e↵ectiveness is characterized in terms of two properties: (i) the ability

to produce relevant items and (ii) the ability to rank these items in the

topmost positions of the returned list. In the context of RAVEN, relevant

recommendations are those able to repair exception handling violations.

In addition, as discussed in Section 5.1, when explicit policy specifications

are available, the RAVEN strategy uses them to adjust its solution space. By

adjusting its solution space, the RAVEN strategy aims at augmenting the

chances of producing relevant recommendations. In this context, the second

goal of this evaluation procedure is stated as follows:

Goal 2: Evaluate the RAVEN strategy in terms of the e↵ects of

using policy specification in its e↵ectiveness.

In this context, the following questions are refined from the goals:

- Does RAVEN produce relevant recommendations?

- Does RAVEN rank relevant recommendations in topmost posi-

tions?

- Is the e↵ectiveness of RAVEN a↵ected by the use of policy

specifications?

The first two questions are refined from the first goal. These questions are

aimed at characterizing the e↵ectiveness of RAVEN according to the adopted

quality model. In particular, the first question addresses the first property that

characterizes the e↵ectiveness of RAVEN and the second question addresses

the second property. The third question is refined form the second goal and

it is aimed at investigating the e↵ects of using explicit policy specifications in

the e↵ectiveness of RAVEN.

To quantify the e↵ectiveness of RAVEN, a suite of standard metrics used

in the evaluation of ranking schemes of information retrieval systems is used.

In particular, the Hit, Hit@10 and Reciprocal Rank metrics are employed.

In this evaluation procedure, the Hit metric is computed in the context

of a set of exception handling violations. For a given set of exception handling

violations, the Hit metric computes the percentage of violations for which a

relevant recommendation is produced.

The Hit@10 metric is a variant of the Hit metric. For a given set of

exception handling violations, the Hit@10 metric computes the percentage of

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 162

violations for which a relevant recommendations is ranked within the top 10

positions of the list of recommendations. The Hit@10 metric, in particular, is

computed for a list of 10 items due to the default size of items returned by

most information retrieval systems (e.g. Google, Bing).

The Reciprocal Rank (RR) metric is computed in the context of a single

violation. For a given violation, the Reciprocal Rank metric is computed for

the respective list of recommendations L produced for this violation as follows:

RR(L) = 1

rank(R)

where rank(R) is the position of the first relevant recommendation R in the

list of recommendations L. If no relevant recommendation is found in the list

of recommendations L, then the RR score equals to 0. The Reciprocal Rank

metric is quantified based on the actual number of items a user has to inspect

before finding a relevant item in the list. Therefore, by using this metric, it is

possible to measure an indicator of the underlying e↵ort spent by users to find

relevant items.

Finally, the first two questions are addressed based on the analysis of the

data collected for the Hit and Hit@10 metrics, respectively. The third question

is addressed by analyzing the data collected for the metrics Hit, Hit@10 and

Reciprocal Rank metrics.

5.2.2 Study Design and Hypothesis

To achieve the goals and answer the questions defined in the previous sec-

tion, a laboratory experiment was conducted to employ RAVEN in controlled

scenarios of use where exception handling violations needed to be repaired. In

particular, a paired comparison experiment (JURISTO and MORENO, 2013),

also known as within-subject experiment, was conducted. In this experimental

design, the experimental units are exposed to di↵erent treatments and each

experimental unit serves as its own control. In the context of this evaluation

procedure, an experimental unit was the source code of a target system contain-

ing an exception handling violation, the independent variable was the use of

explicit policy specifications and the dependent variables were the metrics that

quantified the e↵ectiveness of RAVEN. Thus, each violation was exposed to

two di↵erent “treatments” (“RAVEN with policy specifications” and “RAVEN

without policy specifications”) and the e↵ectiveness of RAVEN was quantified

under each treatment. In addition, the e↵ectiveness of RAVEN under each

treatment was compared and the e↵ects of using explicit policy specifications

were evaluated by testing the following hypotheses:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 163

Null Hypothesis H0: The e↵ectiveness of RAVEN is not a↵ected

by the use of policy specifications.

Alternative Hypothesis H1: The e↵ectiveness of RAVEN is

a↵ected by the use of policy specifications.

In the next section, we present the procedure conducted to prepare the

controlled environment in which RAVEN was evaluated.

5.2.3 Preparation Procedure

As discussed in Section 5.2.1, the e↵ectiveness of RAVEN relates to its

ability in producing recommendations able to repair exception handling viol-

ations. In order to assess if RAVEN produces recommendations that actually

repairs violations, first, it was necessary to have the exception handling policy

of a program. Unfortunately, most software projects still do not have their ex-

ception handling policies explicitly specified. To overcome this limitation, the

following controlled environment was set-up to employ RAVEN in scenarios of

use where exception handling violations needed to be repaired.

For a given target system, its exception handling policy was inferred

from the source code. Then, its source code was adjusted to make it policy-

compliant. This version of the target system is called the “policy-compliant

version”. To specify and verify the exception handling policy of the target

systems EPL was used. This language was used because it supports the

specification of exception handling rules for all the “canonical” exception

handling dependencies typically supported by exception handling mechanisms

in programming languages, as described in Chapter 2. Then, violations of

the specified policy were injected in the source code of the policy-compliant

version. This version of the target system with violations is called the “violating

version”.

After producing the violating versions, the following procedure was

conducted. First, let the exception handling policy produced by analyzing the

source code of the target system be called “original policy”. Based on the

original policy specification, di↵erent specifications are produced as follows.

From the original policy specification Pn, one of its rules is randomly removed

to create the specification Pn�1. Next, from the specification Pn�1, one of its

rules is randomly removed to create the specification Pn�2. This is repeated

until no rules are left and the empty specification P0 is produced. This way, the

coverage of the policy specification is randomly varied. By employing RAVEN

with di↵erent policy specifications, di↵erent scenarios of use are modeled.

These scenarios of use range from a scenario where the development team does

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 164

not use explicit policy specifications (equivalent to the treatment “RAVEN

without policy specification), to a scenario where the development team makes

an e↵ort to produce a policy specification that covers a wide spectrum of

exception handling design rules (equivalent to the treatment “RAVEN with

policy specifications”). The variation of the coverage of the policy specification

between these two extreme scenarios of use allows the observation of the e↵ects

of di↵erent policy specifications in the e↵ectiveness of RAVEN.

Finally, for each violating version and for each di↵erent policy specific-

ation available, RAVEN was used and the recommendations produced were

inspected to check if they were able to repair the violation injected in the

respective violating version. If the modifications of a given recommendation

were applied to the violating version and these modifications reverted the viol-

ating version to the policy-compliant version, then it was considered that the

recommendation was able to repair the violation introduced. Thus, the policy-

compliant versions were used as the “oracles” for the relevance judgment of

the recommendations.

Next, we present the target systems used in the evaluation procedure.

We also detail how how the exception handling violations were injected in the

target systems.

Target Systems

Target systems were necessary to conduct the evaluation procedure. In

particular, target systems with their source code and their intended exception

handling policies publicly available. Unfortunately, the vast majority of soft-

ware projects with publicly available source code do not have their intended

exception handling policies available. To overcome this limitation, open-source

software projects with stable architectures from which an exception handling

policy could be inferred were selected as the target systems.

Thus, three open-source projects were used as target systems: FreeCol,

jEdit and Weka. Details of these projects are depicted in Table 5.2. FreeCol

is a turn-based strategy game, jEdit is a text editor and Weka is a suite

of machine learning tools. All these projects are implemented in Java and

are currently hosted in public repositories at Source Forge, where they are

amongst the most popular projects in this portal. Moreover, they have been

developed for a long period (> 10 years). In addition, these projects are from

di↵erent domains. Therefore we covered a wide spectrum of how exception

handling is typically implemented in real software development environments.

In particular, the FreeCol system implements a client-server architecture,

so the exception handling responsibilities is divided between the client and

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 165

Table 5.2: Target Systems

Project Description Version KLOC

FreeCol Game 11.5 137
jEdit Text Editor 5.2.0 109

Weka
Suite of Machine
Learning Tools

3.6.0 284

server modules. The jEdit system implements a multi-tier architecture, so its

exception handling responsibilities are distributed in each tier. And the Weka

system has an architecture with many independent modules and a central

module that moderates communication and error handling amongst these

modules.

Injection of Exception Handling Violations

To employ RAVEN in the controlled environment described in Section

5.2.2, it was necessary to inject exception handling violations in the source

code of the target systems. The violations were manually injected in the source

code of the target systems. The e↵ect of violations was isolated by injecting

individual violations in the source code of the target systems. For each violation

injected, a new version of the source code of the target system was created.

Eventually, the injection of a violation in the source code created com-

pilation errors caused by unreachable catch blocks or by uncaught checked

exceptions. When compilation errors were caused by unreachable catch blocks,

these blocks were removed from the source code. When the compilation errors

were caused by an uncaught exception, then this exception was propagated

from the place where it was created to the nearest enclosing try block. If this

exception reached a try block and no catch block captured it, then a new catch

block declaring the same type of the exception was added to this try block.

If this exception reached the program entry point (the main method), then

the exception was propagated and left uncaught. Moreover, if this exception

reached a method that could not have its signature changed (e.g., a method

overriding a virtual method of an interface), then the exception was handled

in this method with a catch block declaring the same type of the exception.

In this study, a total of 26 di↵erent types of violations were used in the

evaluation procedure. These violations were defined based on the study about

exception handling faults presented in Chapter 3. In particular, we introduced

exception handling violations that simulated faults of commission and faults

of omission. We simulated faults of commission by introducing new exception

handling dependencies in the source code and also modifying existing ones.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 166

Faults of omission were simulated by removing existing dependencies from the

source code. The detailed description of each violation is presented next. The

violations are presented in terms of the exception handling dependency that

they are related to. They are clustered in Handling Sites Violations, Raising

Sites Violations, Re-Mapping Violations and Re-Throwing Violations.

Handling Sites Violations Handling sites violations were introduced by

modifying or removing existing handlers and also by introducing new handlers

to the source code. A total of 7 di↵erent violations in handling sites were used

in our evaluation procedure. Next, each one of these violations is detailed.

Added Generic Handler This violation introduces a try-catch block to

a method through which exceptions traverse. In particular, the catch block

introduced declares the generic exception type java.lang.Exception. The

following code snippet exemplifies how this violation is introduced in the source

code. In the following notation, the code snippet on the left represents the

source code before the violation is introduced and the code snippet on the

right represents the source code after the violation is introduced.

void foo() throws T{
S

}

void foo(){
try{ S }
catch(Exception) { }

}

In the previous code snippet, the declaration of the foo method encloses

a set of statements S. The try block is introduced in a manner that it guards S.

The try block introduced guards all statements of the method declaration. The

catch block declaring a generic exception type captures all exceptions flowing

out of the try block. For this reason, the throws clause becomes unnecessary

and is removed. Moreover, the catch block introduced is left empty when the

return type of the method is void. When the return type of the method is

not void, the catch block implements a return statement that returns a mock

value. In particular, it returns null when the return type is an object, false

when is boolean, ‘\u0000’ when is char and zero when is a numeric primitive

type (byte, short, int, long, float or double).2

Added Specific Handler This violation introduces a try-catch block to a

method through which exceptions traverse. Di↵erently from the violation “Ad-

ded Generic Handler in Existing Flow”, this violation introduces a catch block

2The character ‘\u0000’ is the Unicode representation for the null character.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 167

declaring a specific exception type. The following code snippet exemplifies how

this violation is introduced in the source code.

void foo() throws T1, T2{
S

}

void foo() throws T1{
try{ S }
catch(T2) { }

}

In the previous code snippet, the try block introduced guards all state-

ments of the method declaration. Moreover, the catch block captures all ex-

ceptions subtypes of T2 flowing out of the try block. This way, the inserted

catch block interrupts only the propagation of exceptions of a specific type.

And for this reason, this type is removed from the throws clause. Exceptions

of another types continue to flow out of this method. Also, the catch block

introduced is either empty or it implements the return statement the same

manner as implemented by the violation “Added Generic Handler”.

Removed Handler This violation removes an existing catch block from

a method. The exception that was previously captured by the catch block is

now propagated out of the method. The following code snippet exemplifies

how this violation is introduced in the source code.

void foo(){
try{ S }
catch(T) {(...)}

}

void foo() throws T{
S

}

In the previous code snippet, the catch block is removed and the

respective exception type is declared in the throws clause of the method. The

exception that was previously captured by the catch block flows out of the

method.

Changed Handler to Re-Map to Generic Exception This violation in-

troduces a throw statement into an existing catch block. The exception that

was previously captured by the catch block is now re-mapped to another type

and flows out of the method. In particular, the exception is re-mapped to the

generic type java.lang.Exception. The following code snippet exemplifies

how this violation is introduced in the source code.

In the previous code snippet, a throw statement that instantiates the

generic exception type java.lang.Exception is introduced in the existing

catch block. Also, the generic exception type is declared in the throws clause

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 168

void foo(){
try{ S }
catch(T) {

(...)
}

}

void foo() throws Exception{
try{ S }
catch(T) {

(...)
throw Exception;

}
}

of the method. The exception caught by the catch block is not only re-mapped

to the generic type, but it also flows out of the method.

Changed Handler to Re-Map to Unchecked Exception This violation

also introduces a throw statement into an existing catch block. Di↵erently

from the violation “Changed Handler to Re-Map to Generic Exception”, in

this violation, the exception captured by the catch block is re-mapped to the

unchecked type java.lang.RuntimeException. The following code snippet

exemplifies how this violation is introduced in the source code.

void foo(){
try{ S }
catch(T) {

(...)
}

}

void foo() {
try{ S }
catch(T) {

(...)
throw RuntimeException;

}
}

In the previous code snippets, a throw statement that instantiates

the unchecked exception type java.lang.RuntimeException is introduced in

the existing catch block. The exception captured by the catch block is re-

mapped to the unchecked type. Moreover, since unchecked exceptions are

automatically propagated by the Java exception handling mechanism, the re-

mapped exception is propagated out of the method without need for changing

its signature.

Changed Handler to Re-Throw Exception This violation also introduces

a throw statement into an existing catch block. But di↵erently from the

previous violations that re-mapped the exception caught by the catch block to

another type, in this violation, the caught exception is re-thrown. The following

code snippet exemplifies how this violation is introduced in the source code.

In the previous code snippet, a throw statement that re-throws the caught

exception is introduced in the existing catch block. In addition, the type of the

exception re-thrown is added to the exceptional interface of the method. The

exception is not only re-thrown, but it is also propagated out of the method.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 169

void foo(){
try{ S }
catch(T t) {

(...)
}

}

void foo() throws T{
try{ S }
catch(T t) {

(...)
throw t;

}
}

Changed Handler to Catch Generic Exception This violation modifies

the exception type declared as the argument of an existing catch block. In

particular, the exception of the existing catch block is replaced by the generic

type java.lang.Exception. The following code snippet exemplifies how this

violation is introduced in the source code.

void foo() throws T1{
try{ S }
catch(T2) {

(...)
}

}

void foo() {
try{ S }
catch(Exception) {

(...)
}

}

In the previous code snippet, the existing catch block is modified by

replacing the type of its argument by the generic type java.lang.Exception.

The generic catch block captures exceptions that were previously flowing out

of the try block. For this reason, the exceptional interface of the method is

modified to remove the exceptions that are not propagated out of the method

anymore.

Raising Sites Violations Raising sites violations were introduced by

modifying or removing existing throw statements and also by introducing new

throw statements to the source code. A total of 6 di↵erent types of violations

in raising sites were used in our evaluation procedure. Next, each one of these

violations is detailed.

Added Generic Raiser This violation adds a new throw statement to

the source code of a method. In particular, a throw statement that raises

an exception of the generic type java.lang.Exception. The following code

snippet exemplifies how this violation is introduced in the source code:

In the previous code snippet, the body of the foo method is composed

of a set of statements Si. Thus, a new throw statement raising an instance of

the generic type java.lang.Exception is added to the body of the method.

In addition, the exceptional interface of the method is modified in order

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 170

void foo(){
S0

...
Sn

}

void foo() throws Exception {
S0

...
throw Exception;
...
Sn

}

to propagate to out of the method the exception raised by the new throw

statement introduced.

Added Unchecked Raiser This violation adds a new throw state-

ment to the source code of a method. In particular, it is added a

throw statement that raises an instance of the unchecked exception type

java.lang.RuntimeException. The following code snippet exemplifies how

this violation is introduced in the source code:

void foo(){
S0

...
Sn

}

void foo() {
S0

...
throw RuntimeException;
...
Sn

}

In the previous code snippet, a new throw statement raising an instance

of the unchecked type java.lang.RuntimeException is added to the body

of an existing method. In addition, the exception raised by the new throw

statement is not handled within the method; it flows to the callee methods.

Removed Raiser This violation removes an existing throw statement

from the source code of a method. The following code snippet exemplifies how

this violation is introduced in the source code:

void foo() throws E{
S0

...
throw E;
...
Sn

}

void foo(){
S0

...
Sn

}

In the previous code snippet, the existing throw statement is removed

from the body of an existing method. In addition, the exceptional interface of

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 171

the modified method is updated by removing the exception that was previously

raised and propagated by the method.

Changed Raiser to Raise Generic Exception This violation changes the

exception type of an existing throw statement. In particular, this violation

modifies the exception type of an existing throw statement to the generic

exception type java.lang.Exception. The following code snippet exemplifies

how this violation is introduced in the source code:

void foo() throws T{
S0

...
throw new T();
...
Sn

}

void foo() throws Exception{
S0

...
throw new Exception ();
...
Sn

}

In the previous code snippet, the existing throw statement is mod-

ified by changing the type of the exception raised to the generic type

java.lang.Exception. In addition, the signature of the method is also mod-

ified by updating its exceptional interface.

Changed Raiser to Raise Unchecked Exception This violation mod-

ifies an existing exceptional flow by changing the exception type of an

existing throw statement. In particular, this violation modifies the excep-

tion type of an existing throw statement to the unchecked exception type

java.lang.RuntimeException. The following code snippet exemplifies how

this violation is introduced in the source code:

void foo() throws E{
S0

...
throw new E();
...
Sn

}

void foo() {
S0

...
throw new RuntimeException ();
...
Sn

}

In the previous code snippet, the existing throw statement is modi-

fied by changing the type of the exception raised to the unchecked type

java.lang.RuntimeException. In addition, the signature of the method is

also modified by removing its exceptional interface, since unchecked excep-

tions are not required to be declared in exceptional interfaces.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 172

Re-Mapping Sites Violations Re-mapping sites violations were intro-

duced by modifying or removing existing catch blocks that re-mapped excep-

tions and also by introducing new catch blocks re-mapping exceptions. A total

of 8 di↵erent types of violations in re-mapping sites were used in our evaluation

procedure. Next, each one of these violations is detailed.

Added Re-mapper Raising Generic Exception This violation introduces

a new catch block that captures an exception and re-maps it to the generic

exception type java.lang.Exception. The following code snippet exemplifies

how this violation is introduced in the source code:

void foo() throws E{
S

}

void foo() throws Exception{
try{ S }
catch(E){

throw Exception;
}

}

In the previous code snippet, the set of statements S of an existing

method foo is guarded by a try block. A catch block is added to capture

exceptions subtypes of E. These exceptions were previously propagated by the

method. Also, this catch block re-maps the caught exception to the generic

exception type java.lang.Exception. The signature of the method is also

modified by declaring the generic exception type in its exceptional interface,

so that the re-mapped exception is propagated to out of the method.

Added Re-mapper Raising Unchecked Exception This violation intro-

duces a new catch block that captures an exception and re-maps it to the

unchecked exception type java.lang.RuntimeException. The following code

snippet exemplifies how this violation is introduced in the source code:

void foo() throws E{
S

}

void foo(){
try{ S }
catch(E){

throw RuntimeException;
}

}

In the previous code snippet, the set of statements S of an existing

method foo is guarded by a try block. A catch block is added to capture

exceptions subtypes of E. These exceptions were previously propagated by the

method. Also, this catch block re-maps the caught exception to the generic

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 173

exception type java.lang.RuntimeException. The signature of the method

is also modified by removing its exceptional interface.

Removed Re-Mapper This violation removes an existing catch block

that performs a re-mapping. The following code snippet exemplifies how this

violation is introduced in the source code:

void foo() throws E2{
try{ S }
catch(E1){

throw E2;
}

}

void foo() throws E1{
S

}

In the previous code snippet, the try-catch block that performs a re-

mapping is removed from an existing method foo. Also, the exception that was

previously captured by the catch block is propagated to out of the method.

For this reason, the exceptional interface of the method is updated by adding

this exception to its exceptional interface.

Changed Re-Mapper to Catch Generic Exception This violation mod-

ifies an existing catch block that performs a re-mapping by changing the

type of the declared argument o the catch block to the generic type

java.lang.Exception. The following code snippet exemplifies how this vi-

olation is introduced in the source code:

void foo() throws T1, T2{
try{ S }
catch(E1){

throw T2;
}

}

void foo() throws T2{
try{ S }
catch(Exception){

throw T2;
}

}

In the previous code snippet, by modifying the type of the argument of

the catch block to the generic type java.lang.Exception, this catch block

captures exceptions subtypes of T1, which were previously propagated to out

of the method. As a consequence, exceptions subtypes of T1 are also re-mapped

to the type T2. For this reason, exceptions of the type T1 are not propagated

anymore, so the exceptional interface of the method is updated by removing

this exception.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 174

Changed Re-Mapper to Re-Map to Generic Exception This violation

modifies an existing catch block that performs a re-mapping by changing the

type of the raised exception to the generic type java.lang.Exception. The

following code snippet exemplifies how this violation is introduced in the source

code:

void foo() throws T2{
try{ S }
catch(T1){

throw T2;
}

}

void foo() throws Exception{
try{ S }
catch(T1){

throw Exception;
}

}

In the previous code snippet, the throw statement within the catch block

is modified to raise the generic type java.lang.Exception. Moreover, the

raised exception is propagated to out of the method. For this reason, the

exceptional interface of the method is updated by modifying the previous

exception type to the generic exception type.

Changed Re-Mapper to Re-Map to Unchecked Exception This vi-

olation modifies an existing catch block that performs a re-mapping

by changing the type of the raised exception to the unchecked type

java.lang.RuntimeException. The following code snippet exemplifies how

this violation is introduced in the source code:

void foo() throws T2{
try{ S }
catch(T1){

throw T2;
}

}

void foo() {
try{ S }
catch(T1){

throw RuntimeException;
}

}

In the previous code snippet, the throw statement within the catch block

is modified to raise the generic type java.lang.RuntimeException. Moreover,

the exceptional interface of the method is updated to remove the previously

propagated exception.

Changed Re-Mapper to Re-throw Exception This violation modifies an

existing catch block that performs a re-mapping by re-throwing the exception

caught by the catch block, instead of raising another exception. The following

code snippet exemplifies how this violation is introduced in the source code:

In the previous code snippet, the throw statement within the catch block

is modified to raise the exception caught by the catch block. Moreover, the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 175

void foo() throws T2{
try{ S }
catch(T1){

throw T2;
}

}

void foo() throws T1{
try{ S }
catch(T1 t){

throw t;
}

}

exceptional interface of the method is updated to propagate the re-thrown

exception.

Changed Re-Mapper to Handle Exception This violation modifies an

existing catch block that performs a re-mapping by removing the throw state-

ment. The following code snippet exemplifies how this violation is introduced

in the source code:

void foo() throws T2{
try{ S }
catch(T1){

throw T2;
}

}

void foo() {
try{ S }
catch(T1){

(...)
}

}

In the previous code snippet, catch block is modified so that it handles the

exception, instead of re-mapping it to another type. Moreover, the exceptional

interface of the method is updated to remove the exception that was previously

propagated.

Re-Throwing Sites Violation Re-throwing sites violations were intro-

duced by modifying or removing existing catch blocks that re-throw exceptions

and also by introducing new catch blocks re-throwing exceptions. A total of

6 di↵erent types of violations in re-throwing sites were used in our evaluation

procedure. Next, each one of these violations is detailed.

Added Re-Thrower This violation introduces a new catch block that

captures an exception, re-throws it and propagates it to out of the method.

The following code snippet exemplifies how this violation is introduced in the

source code:

In the previous code snippet, the set of statements S of an existing

method foo is guarded by a try block. Also, a catch block captures the

exception of type E, re-throws it and propagates it to the out of the method.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 176

void foo() throws E{
S

}

void foo() throws E{
try{ S }
catch(E e){

throw e;
}

}

Removed Re-Thrower This violation removes an existing catch block

that captures and re-throws an exception to out of the method. The following

code snippet exemplifies how this violation is introduced in the source code:

void foo() throws E{
try{ S }
catch(E e){

(...)
throw e;

}
}

void foo() throws E{
S

}

In the previous code snippet, the try-catch block that guards the set of

statements S is removed. No other changes are required.

Changed Re-Thrower to Catch Generic Exception This violation mod-

ifies an existing catch block that re-throws an exception by changing the

type of the argument declared by the catch block. In particular, the type

of the argument declared by the catch block is modified to the generic type

java.lang.Exception. The following code snippet exemplifies how this viol-

ation is introduced in the source code:

void foo() throws T1{
try{ S }
catch(T1 t){

(...)
throw t;

}
}

void foo() throws Exception {
try{ S }
catch(Exception){

throw t;
}

}

In the previous code snippet, the catch block is modified so that it

captures the generic type java.lang.Exception. Moreover, the exceptional

interface of the method is updated to propagate the generic exception.

Changed Re-Thrower to Re-Map to Generic Exception This violation

modifies an existing catch block that re-throws an exception by changing the

type of the raised exception to the generic type java.lang.Exception. The

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 177

following code snippet exemplifies how this violation is introduced in the source

code:

void foo() throws T1{
try{ S }
catch(T1 t){

throw t;
}

}

void foo() throws Exception {
try{ S }
catch(T1){

throw new Exception ();
}

}

In the previous code snippet, the throw statement within the catch block

is modified so that it raises the generic type java.lang.Exception. Moreover,

the exceptional interface of the method is updated to propagate the generic

exception to out of the method.

Changed Re-Thrower to Re-Map to Unchecked Exception This vi-

olation modifies an existing catch block that re-throws an exception

by changing the type of the raised exception to the unchecked type

java.lang.RuntimeException. The following code snippet exemplifies how

this violation is introduced in the source code:

void foo() throws T1{
try{ S }
catch(T1 t){

throw t;
}

}

void foo() {
try{ S }
catch(T1){

throw new RuntimeException ();
}

}

In the previous code snippet, the throw statement within

the catch block is modified so that it raises the unchecked type

java.lang.RuntimeException. Moreover, the exceptional interface of the

method is updated to remove the previously propagated exception.

Changed Re-Thrower to Handle Exception This violation modifies an

existing catch block that re-throws an exception by removing the throw state-

ment. The following code snippet exemplifies how this violation is introduced

in the source code:

In the previous code snippet, the throw statement within the catch block

is removed. The exception is not re-thrown to out of the block. Moreover,

the exceptional interface of the method is updated to remove the previously

propagated exception. And a return statement is introduced in the catch block

in the same manner as implemented by the violation “Added Generic Handler”.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 178

void foo() throws T1{
try{ S }
catch(T1 t){

throw t;
}

}

void foo() {
try{ S }
catch(T1){
}

}

5.3 Data Analysis

This section presents the analysis of the data collected in the evaluation

procedure described in Section 5.2. In particular, Section 5.3.1 provides an

overview of the data collected for the metrics defined in Section 5.2.1 and

Section 5.3.2 presents the statistical test for the hypothesis presented in Section

5.2.2.

5.3.1 Overview of Collected Data

This section provides an overview of the data collected for the metrics

defined in Section 5.2.1. First, the data collected for the Hit and Hit@10

metrics is presented. Then, the data collected for the Reciprocal Rank metric

is presented.

Hit and Hit@10 Metrics

The Table 5.3 displays the collected data for the Hit and Hit@10 metrics.

Each row in Table 5.3 corresponds to a target system and the last row

summarizes the data considering all systems together. The values in the

column labelled “N” represent the quantity of violating versions produced for

each target system. Moreover, the values of the Hit and Hit@10 metrics are

presented in terms of the scenarios in which the policy specification was not

used (columns labelled “w/o”, i.e.,“without policy”) and in which it was used

(columns labelled “w/”, i.e., “with policy”).

Table 5.3: Values of the Hit and Hit@10 Metrics

Target System N
Hit Hit@10

w/o w/ w/o w/

FreeCol 100 0.44 0.97 0.23 0.67
jEdit 98 0.67 1.00 0.44 0.73
Weka 197 0.83 0.96 0.53 0.91

All 395 0.69 0.97 0.43 0.81

For the scenario in which RAVEN was employed without using explicit

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 179

policy specifications, the value of the Hit metric was 0.69 and the value of the

Hit@10 metric was 0.43, considering all target systems. That is, without using

explicit policy specifications, RAVEN produced relevant recommendations for

69% of the violating versions used in the evaluation procedure and ranked rel-

evant recommendations within the top 10 items of the list of recommendations

in 43% of the cases. Among the target systems, the highest values for the Hit

and Hit@10 metrics were observed in the context of the Weka system: 0.83

and 0.53, respectively. The lowest values for the Hit and Hit@10 metrics were

observed in the context of FreeCol: 0.44 and 0.23, respectively.

For the scenario in which explicit policy specifications were available,

RAVEN produced relevant recommendations for 97% of the cases and ranked

relevant recommendations within the top 10 items of the list of recommenda-

tions in 81% of the cases. Among the target systems, the highest values for the

Hit metric was observed in the context of jEdit (Hit equals to 1.00), whereas

the highest value for the Hit@10 metric was observed in the context of Weka

(Hit@10 equals to 0.81). The lowest values for the Hit metric was observed

in the context of Weka (Hit equals to 0.96), whereas the lowest value for the

Hit@10 metric was observed in the context of FreeCol (Hit@10 equals to 0.67).

Comparing the values of the metrics observed in each scenario of use of

RAVEN, one can observe that for all target systems there is an increase in the

values of the metrics Hit and Hit@10 when explicit policy specifications are

available. Considering all target systems, there is an increase of 41% for the

Hit metric and of 88% for the Hit@10 metric. Among all target systems, the

highest increase for the Hit and Hit@10 metrics were observed in the context

of the FreeCol system. For this system, we observed an increase of 120% for the

Hit metric and of 191% for the Hit@10 metrics. The lowest increase for the Hit

metric was observed in the context of Weka (increase of 16%) and the lowest

increase for the Hit@10 metric was observed in the context of jEdit (increase

of 66%).

The charts depicted in Figure 5.1 present how the values of the metrics

Hit and Hit@10 vary according to the di↵erent policy specifications used in

the context of a each target system. The x-axis in the charts represents the

% of rules of the original policy specification used to run RAVEN. The y-axis

represents the values of the metrics.

The charts presented in Figure 5.1 depict that as the coverage of the

policy specification used to run RAVEN increases, the values of the Hit and

Hit@10 metrics tend to increase. There were no cases where an increase in the

size of the policy specification was accompanied by a decrease in the values of

the Hit and Hit@10 metrics. This tendency was observed in all target systems.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 180

5.1(a): FreeCol 5.1(b): jEdit

5.1(c): Weka

Figure 5.1: Hit and Hit@10 Metrics v.s. Coverage of Policy Specification

For all target systems, the Hit metric reached its maximum value with

partial policy specifications. For jEdit, for example, the Hit metric reached

the maximum value of 1.0 at the 50% point. This means that it was possible

to produce relevant recommendations for all violating versions of jEdit with

a policy specification containing 50% of the rules of the original policy. For

FreeCol, the Hit metric reached its maximum value of 0.97 at the 95% point.

For Weka, the value of the Hit metric reached its maximum value of 0.96 at

the 70% point.

The Hit@10 metric reached its maximum value with partial policy

specifications for only one target system: Weka. For the Weka target system,

the Hit@10 metric reached its maximum value of 0.91 at the 85% point. For

FreeCol and jEdit, the values of the Hit@10 metric reached their maximum of

0.67 and 0.73, respectively, at the 100% point.

By observing the the trends of both metrics in each chart, it is possible to

observe that after the point where the Hit metric reaches its maximum value

and stays constant, the Hit@10 metric continues to increase. For FreeCol, the

Hit metric reached its maximum value of 0.97 at the 95% point and after this

point the Hit@10 metric increased from 64% to 67%. For jEdit, the Hit metric

reached its maximum value of 1.0 at the 50% point and after this point the

Hit@10 metric increased from 66% to 73%. For Weka, the Hit metric reached

its maximum value of 0.96 at the 70% and after this point the Hit@10 metric

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 181

 200

 100

0

100

200

0.00 0.25 0.50 0.75 1.00
Reciprocal.Rank

co
un

t

Scenario of Use With Policy Without Policy

All Target Systems

Figure 5.2: Histograms for All Target Systems Together

increased from 82% to 91%.

Reciprocal Rank Metric

The charts displayed in Figures 5.2 and 5.3 present the histograms for

the values of the Reciprocal Rank metric. The chart displayed in Figure 5.2

presents the histogram for the data considering all target systems together,

whereas the charts displayed in Figure 5.3 presents the histogram for the data

in the context of each target system. Each chart contains two histograms, where

each histogram presents the values computed in one of the scenarios of use of

RAVEN: “With Policy” and “Without Policy”. The histogram for the scenario

“With Policy” displays its values above the x-axis, whereas the histogram for

the “Without Policy” scenario displays its values below the x-axis.

Moreover, Table 5.4 presents the descriptive statistics for the Reciprocal

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 182

FreeCol jEdit Weka

 50

0

50

100

150

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Reciprocal.Rank

co
un

t

Scenario of Use With Policy Without Policy

Figure 5.3: Histograms per Individual Target System

Rank scores in each scenario of use: columns labelled “w/o” refer to the

scenario of use “Without Policy” and columns labelled “w/” refer to the

scenario of use “With Policy”. The row labelled “All” present the descriptive

statistics of the Reciprocal Rank scores considering all target systems together,

whereas the other rows present the stastistics for each target system. Table 5.5

shows the frequency of the Reciprocal Rank scores in each scenario of use. Each

row corresponds to a specific value for the Reciprocal Rank metric (R.R.) and

each cell correspond to the number of times a given score occurred.

All Target Systems Together. Consider for now the data collected con-

sidering all target systems together. In this case, considering only the scenario

of use “Without Policy”, one can observe in the respective histogram shown

in Figure 5.2 that most measurements of the Reciprocal Rank metric occurred

either around the value 0.0 or around the value 1.0, but mostly around 0.0.

In fact, as shown in Table 5.4, the most frequent score – the mode – was 0.0.

One can observe in Table 5.5 that there were 121 cases in which the value of

the Reciprocal Rank metric was equal to 0.0 (column “All - w/o”, row “R =

0.000”), which is approximately 31% of the total. And there were 103 cases in

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 183

Table 5.4: Descriptive Statistics for the Reciprocal Rank Scores

Target Systems
Mean R.R. Median R.R. Mode R.R.
w/o w/ w/o w/ w/o w/

FreeCol 0.14 0.38 0.00 0.20 0.00 1.00
jEdit 0.29 0.49 0.06 0.33 0.00 1.00
Weka 0.42 0.83 0.13 1.00 1.00 1.00

All 0.32 0.63 0.05 1.00 0.00 1.00

Table 5.5: Frequency of the Reciprocal Rank Scores

R.R.
All FreeCol jEdit Weka

w/o w/ w/o w/ w/o w/ w/o w/
R.R. = 0.000 121 10 56 3 32 0 33 7

0.000 <R.R. <0.100 104 67 7 30 23 26 60 11
R.R. = 0.100 5 5 5 0 1 1 2 4
R.R. = 0.111 4 4 4 1 1 2 3 1
R.R. = 0.125 4 5 4 3 3 2 1 0
R.R. = 0.143 1 5 1 1 1 3 0 1
R.R. = 0.167 5 12 2 7 1 5 2 0
R.R. = 0.200 6 9 2 8 5 1 0 0
R.R. = 0.250 8 10 1 7 1 3 2 0
R.R. = 0.333 20 19 5 4 4 8 16 7
R.R. = 0.500 14 33 4 12 3 11 7 10
R.R. = 1.000 103 216 9 24 23 36 71 156

which the value of the Reciprocal Rank metric was equal to 1.0 (column “All

- w/o”, row “R = 1.000”), which is approximately 26% of the total.

Considering only the scenario of use “With Policy”, it is possible to ob-

serve in the respective histogram shown in Figure 5.2 that most measurements

of the Reciprocal Rank metric occurred around the value 1.0. In fact, as shown

in Table 5.4, the mode Reciprocal Rank score was 1.0. One can observe in Table

5.5 that there were 216 cases in which the value of the Reciprocal Rank metric

was equal to 1.0 (column “All - w/”, row “R = 1.000”), which is approximately

55% of the cases.

Comparing both histograms shown in Figure 5.2, one can observe that

they have di↵erent shapes. The values in the histogram for the scenario of use

“With Policy” are more concentrated to the right, whereas the values in the

histogram for the scenario of use “Without Policy” are more concentrated

to the left. This tendency can also be observed in Table 5.5. There is a

decrease of approximately 92% in the number of occurrences of the values

of the Reciprocal Rank equal to 0.0 (column “All”, row “R = 0.000”) and

an increase of approximately 110%in the number of occurrences of the values

of this metric equal to 1.0 (column “All”, row “R=1.000”). For the mean

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 184

Reciprocal Rank, there is an increase of approximately 97%.

Individual Target Systems. Consider for now the data collected in the

context of each target system. In this context, considering the “Without

Policy” scenario, one can observe in the histograms shown in Figure 5.3 that

most values of the Reciprocal Rank metric occurred around the value 0.0 for

the FreeCol and jEdit target systems. As shown in Table 5.4, the most frequent

score – the mode – for these systems was 0.0. One can observe in Table 5.5

that for FreeCol there were 56 cases in which the value of the Reciprocal Rank

metric was equal to 0.0, which accounts for 56% of the total. For jEdit, there

were 32 cases equal to 0.0, which is approximately 33% of the total. For the

Weka system, most values occur either around the 0.0 value or the 1.0 value,

but mostly around 1.0, as can be observed in the respective histogram shown

in Figure 5.3. In fact, for Weka the mode Reciprocal Rank score was 1.0. As

shown in Table 5.5, there were 71 cases equal to 1.0, which is approximately

36% of the total. And there were 33 cases equal to 0.0, which is approximately

17% of the total.

Considering the “With Policy” scenario, one can observe in the respective

histograms shown in Figure 5.3 that for all target systems most values occurred

around the value 1.0. In fact, as shown in Table 5.4, the mode score for all

target systems was 1.0. As shown in Table 5.5, for FreeCol there were 24 cases

in which the value of the Reciprocal Rank metric was equal to 1.0, which

accounts for 24% of the total. For jEdit, there were 36 cases equal to 1.0,

which is approximately 37% of the total. And for Weka, there were 156 cases

equal to 1 .0, which accounts for approximately 79% of the total.

Comparing both scenarios of use, one can observe in the histograms

shown in Figure 5.3 a similar trend in all target systems. There is a tendency

to decrease the number of values equal to 0.0 accompanied by a tendency to

increase the number of values equal to 1.0. As one can observe in Table 5.5, for

FreeCol andWeka the number of values equal to 0.0 decreased in approximately

95% and 79%, respectively, whereas for jEdit all values equal to 0.0 vanished

away in the scenario “With Policy”. Moreover, for FreeCol, jEdit and Weka

the number of values equal to 1.0 increased in approximately 166%, 56% and

120%, respectively, and the mean Reciprocal Rank increased in approximately

191%, 66% and 72%, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 185

5.3.2 Hypothesis Testing

The hypothesis presented in Section 5.2.2 states about the e↵ectiveness

of RAVEN. To test the hypothesis, the e↵ectiveness of RAVEN was quantified

using the Reciprocal Rank metric. The reasons why this metric was used

to quantify the e↵ectiveness of RAVEN in the context of this hypothesis

testing were twofold. First, the Reciprocal Rank metric embodies the two

properties that characterizes the e↵ectiveness of RAVEN, as defined in Section

5.2.1. That is, lists of recommendations containing relevant recommendations

will have a higher Reciprocal Rank score than lists that do not contain

relevant recommendations. Also, lists of recommendations that have a relevant

recommendation in the topmost positions will have higher Reciprocal Rank

scores than those that have a relevant recommendation only in the bottommost

positions. Second, the Reciprocal Rank metric is computed in the context of

a single violation. This way, each violation used in the evaluation procedure

can be exposed to di↵erent “treatments” (“RAVEN using policy specifications”

and “RAVEN not using policy specifications”) and the e↵ectiveness of RAVEN

under each “treatment” can be quantified and compared, as designed in Section

5.2.2.

Initially, the collected data for the Reciprocal Rank metric was tested

for normality with the Shapiro-Wilk test and for homogeneity of variance with

the Levene test. The assumptions about the normality and the homogeneity

of variance were rejected. With their rejection, one alternative to meet these

assumptions is the transformation of the data. Since the collected data is posit-

ive, we transformed the collected data by applying logarithm and squared root

transformations, as recommended by Field (FIELD, 2009). The tests for nor-

mality and homogeneity of variance were repeated after each transformation.

But once again, the assumptions about the normality and the homogeneity of

variance were rejected.

Given the rejection of the assumptions about the normality and the

homogeneity of variance of the collected data, parametric tests were not

adequate to test the hypothesis of this study. For this reason, we employed

a non-parametric test for repeated measures. In particular, we employed the

Wilcoxon signed rank test.3 We compared the e↵ectiveness of RAVEN in both

“treatments” in the context of each target system, so that the data collected

in the context of one target system do not influence the overall result. The

results of the Wilcoxon signed rank test are presented in Table 5.6.

3All the statistical tests presented in this section were performed using the software IBM
SPSS Statistics Desktop version 22.0.0 for Mac OS X

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 186

Table 5.6: Result of the Hypothesis Testing

Target
System

N
Median

(w/o Policy)
Median

(w/ Policy)
Z p r

FreeCol 100 0,00 0,20 6,792 <0.01 0,68
jEdit 98 0,06 0,33 6,033 <0.01 0,61
Weka 197 0,13 1,00 8,958 <0.01 0,64

The result of the Wilcoxon signed rank test elicited that the e↵ectiveness

of RAVEN using policy specifications was significantly di↵erent from the

e↵ectiveness of RAVEN not using policy specifications for all target systems.

Therefore, the e↵ectiveness of RAVEN, as measured by the Reciprocal Rank

metric, is indeed a↵ected by the use of policy specifications. In fact, the increase

in the medians indicates that the e↵ectiveness of RAVEN is improved when it

uses policy specifications. We further discuss this in Section 5.4.

5.4 Results and Findings

This section presents how the data analysis described in Section 5.3

lends support to answer the research questions defined in Section 5.2.1. In

particular, Sections 5.4.1, 5.4.2 and 5.4.3 presents the results of the data

collected to answer research questions of each one of the three questions of

this study, respectively. In addition, during the analysis of the collected data,

other findings were also observed. These findings are discussed in Sections 5.4.4

and 5.4.5.

5.4.1 RAVEN Produces Relevant Recommendations

The analysis of the data collected for the Hit metric supports the answer

to the first question of this study:

Does RAVEN produce relevant recommendations?

To answer this question, first, consider the scenario of use in which

RAVEN was employed without using policy specifications. In this scenario,

considering all target systems together, the data presented in the last row

of Table 5.3 shows that the value of the Hit metric is 0.69. This means that

RAVEN was able to produce relevant recommendations in 69% of all violations

analyzed. In the context of the target systems FreeCol, jEdit and Weka the

values of the Hit metric were 0.44, 0.67 and 0.83. That is, in the scenario of use

“Without Policy”, RAVEN produced relevant recommendations in the context

of all target systems.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 187

Consider now the scenario of use in which RAVEN was employed using

policy specifications. In this scenario, considering all target systems together,

the data presented in the last row of Table 5.3 shows that the value of the

Hit metric is 0.97. This means that RAVEN was able to produce relevant

recommendations in 97% of all violations analyzed when policy specifications

were available. In the context of the target systems FreeCol, jEdit and Weka

the values of the Hit metric were 0.97, 1.0 and 0.96. That is, in the scenario of

use “With Policy”, RAVEN produced relevant recommendations in the context

of all target systems. In particular, in the context of the jEdit target system,

RAVEN was able to produce relevant recommendations for all violations.

In addition, one can observe in the charts in Figure 5.1 that the maximum

value of the Hit metric was reached with partial policy specifications in all

target systems. For jEdit, for example, the Hit metric reached the maximum

value of 1.0 at the 50% point for the jEdit target system. This means that it was

possible to produce relevant recommendations for all violating versions of jEdit

with a policy specification containing 50% of the rules of the original policy.

For FreeCol and Weka, the values of the Hit metric reached their maximum

values – 0.97 and 0.96, respectively – at the 95% and 70% point, respectively.

This result suggests that RAVEN is able to produce relevant recommendations

even with partial policy specifications.

In summary, the RAVEN strategy is indeed able to produce relevant re-

commendations, even with partial policy specifications. In particular, RAVEN

produced relevant recommendations in 69% of the cases when no policy spe-

cifications were available and in 97% of the cases when policy specifications

were available. The di↵erence between these two scenarios of use of RAVEN

suggests that relevant recommendations are more likely to be produced when

policy specifications are available than when these specifications are not avail-

able. A more in-depth analysis about the e↵ects of using policy specifications in

RAVEN’s ability to produce relevant recommendations is presented in Section

5.4.3.

5.4.2 RAVEN Ranks Relevant Recommendations in
Topmost Positions

The analysis of the data collected for the Hit@10 metric supports the

answer to the second research question of this study:

Does RAVEN rank relevant recommendations in topmost positions?

To answer this question, first, consider the scenario of use in which

RAVEN was employed without using policy specifications. In this scenario,

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 188

considering all target systems together, the data presented in the last row

of Table 5.3 shows that the value of the Hit@10 metric is 0.43. This means

that RAVEN was able to rank a relevant recommendations within the top 10

positions of the list of recommendations in 43% of all violations analyzed. In

the context of the target systems FreeCol, jEdit and Weka the values of the

Hit metric were 0.23, 0.44 and 0.53. That is, in the scenario of use “Without

Policy”, RAVEN ranked relevant recommendations within the top 10 positions

of the list of recommendations in the context of all target systems.

Consider now the scenario of use in which RAVEN was employed using

policy specifications. In this scenario, considering all target systems together,

the data presented in the last row of Table 5.3 shows that the value of the

Hit@10 metric is 0.81. This means that RAVEN was able to rank a relevant

recommendations within the top 10 positions of the list of recommendations in

83% of all violations analyzed when policy specifications were available. In the

context of the target systems FreeCol, jEdit and Weka the values of the Hit

metric were 0.67, 0.73 and 0.91. That is, in the scenario of use “With Policy”,

RAVEN ranked relevant recommendations within the top 10 positions of the

list of recommendations in the context of all target systems.

Di↵erently from the Hit metric, the Hit@10 metric reached its maximum

value with partial specifications in only one of the target systems analyzed. For

the Weka target system, the maximum value reached by the Hit@10 metric was

0.91 at the 85% point. This means that using a list containing 85% of the rules

contained in the original policy, RAVEN ranked relevant recommendations

amongst the top 10 positions of the list of recommendations in 91% of the cases.

For FreeCol and jEdit, the values of the Hit@10 metric reached their maximum

of 0.67 and 0.73 only at the 100% point. One can observe in the charts in

Figure 5.1 that after the point where the Hit metric reaches its maximum

value, the Hit@10 metric continues to increase its value. This results suggests

that the information extracted from policy specifications plays an important

role in ranking relevant recommendations in the topmost positions of the list

of recommendations.

In summary, the RAVEN strategy is able to rank relevant recommenda-

tions within the top 10 positions of the list of recommendations. The RAVEN

strategy ranked relevant recommendations within the top 10 positions of the

list of recommendations in 43% of the cases when policy specifications were

not available and in 83% of the cases when policy specifications were available.

This di↵erence observed between the two scenarios of use of RAVEN provides

evidence that the use of policy specifications raises the chance of ranking relev-

ant recommendations in the topmost positions of the list of recommendations.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 189

The e↵ects of using policy specifications in RAVEN’s ability to rank relevant

recommendations in topmost positions of lists of recommendations is presented

in Section 5.4.3.

5.4.3 E↵ectiveness of RAVEN Improves with Policy Spe-
cifications

The paired analysis of the collected data in each scenario of use of

RAVEN supports the answer to the third research question of this study:

Is the e↵ectiveness of RAVEN a↵ected by the use of policy specific-

ations?

To answer this question, first, consider the data collected for the Hit

metric. Comparing the scenario “Without Policy” versus the “With Policy”

scenario and considering all target systems, the data presented in the last row

of Table 5.3 shows that there is an increase of 41% in the value of the Hit

metric when policy specifications are available. In the context of the target

systems FreeCol, jEdit and Weka there is an increase of 120%, 49% and 16%,

respectively, in the values of the Hit metric when policy specifications are

available.

Consider now the data collected for the Hit@10 metric. Comparing the

scenario “Without Policy” versus the “With Policy” scenario and considering

all target systems, the data presented in the last row of Table 5.3 shows that

there is an increase of 88% in the value of the Hit@10 metric when policy

specifications are available. In the context of the target systems FreeCol, jEdit

and Weka there is an increase of 191%, 66% and 72%, respectively, in the

values of the Hit@10 metric when policy specifications are available.

Consider now the data collected for the Reciprocal Rank metric. Com-

paring the scenario “Without Policy” versus the “With Policy” scenario and

considering all target systems, the data presented in the last row of Table 5.4

shows that there is an increase of approximately 97% in the mean Reciprocal

Rank score. An increase is also observed for the median Reciprocal Rank and

the mode Reciprocal Rank. In fact, the hypothesis testing performed in terms

of the Reciprocal Rank metric (Section 5.2.2) elicited a significant di↵erence

in the e↵ectiveness of RAVEN when policy specifications are available.

One can observe in the charts in Figure 5.1 some intervals where an

increase in the coverage of the policy specification does not a↵ect the values

of the Hit and Hit@10 metrics. In some cases, this occurred because the

increase in the coverage of the specification moved the position of the first

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 190

relevant recommendation between two positions out of the top 10 positions. For

example, in one of the cases for the FreeCol system, an increase in the coverage

of the specification moved a relevant recommendation from the 24th position

to the 19th. In this case, no new relevant recommendation was produced, nor

a new relevant recommendation reached the top 10. Therefore, the values of

the Hit and Hit@10 metrics did not change.

However, there were also cases that an increase in the coverage of the

specification did not move the position of the first relevant recommendation,

nor produced new relevant recommendations. In these cases, it was observed

that the rules added were redundant for the solution space of RAVEN. That

is, these rules were used to adjust the solution space by adding information

that was already extracted from the source code, or by removing information

that was not extracted from the source code. That is, RAVEN tried to

add information already present in the solution space, or tried to remove

information that was not present in the solution space. Therefore, in these very

specific cases, changing the policy specification does not a↵ect the e↵ectiveness

of RAVEN.

The results of the paired analysis presented in this section shows that

when policy specifications are available, there is an increase in the scores of

the metrics that quantify both properties that characterize the e↵ectiveness of

RAVEN (see Section 5.2.2). That is, when policy specifications are available,

(i) RAVEN’s ability to produce relevant recommendations – as measured by

the Hit metric – increases in 41% and (ii) RAVEN’s ability to rank relevant

recommendations in the topmost positions of the lists of recommendations –

as measured by the Hit@10 metric – increases in 88%.

Moreover, the e↵ectiveness of RAVEN measured by the Reciprocal Rank

metric also increases when policy specifications are available. In particular, the

median Reciprocal Rank increased in the context of all target systems. And the

hypothesis testing performed shows that the observed di↵erence is statistically

significant. Therefore, the results presented in this section provides evidence

that the e↵ectiveness of RAVEN is improved by the use of policy specifications.

5.4.4 Mitigating the Cold Start Problem

The results showed that even without using policy specifications, RAVEN

produces relevant recommendations. For the Weka system, for example,

RAVEN produced relevant recommendations in 83% of the cases without using

policy specifications. In this scenario of use, there were su�cient information

in the source code to build a solution space that enables the construction of rel-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 191

evant recommendations. However, there might be cases in which there is little

information available in the source code. Then, the solution space constructed

by RAVEN may be too narrow, which may ultimately hinder the construction

of relevant recommendations. For the FreeCol system, for example, RAVEN

produced relevant recommendations in 44% of the cases without using policy

specifications, which is almost half of the score achieved for Weka. Cases in

which there exist little information in the source code may occur when the

system is still in its early versions or when a new exception type is used for

the first time in the system (e.g., a new third-party library is incorporated a

posteriori to the system along its evolution). This type of problem caused by

insu�cient information is commonly referred as the “cold start problem” in

recommender systems (JANNACH, 2010).

RAVEN is able to mitigate the cold start problem by complementing

the information extracted from the source code with information extracted

from policy specifications. Therefore, development teams keen on benefitting

from the recommendations of RAVEN in software projects which are still in

their early versions, or in cases where exceptions are used for the first time

in their projects, should pay more attention to the specification of exception

handling policies. In particular, they should focus on the specification of rules

that state what exception types their modules are allowed to use because this

type of rule is used to add information to the solution space of RAVEN. This

way, even when there is few or none information in the source code about how

an exception is used, RAVEN will be aware of its intended use. And if the

developer uses this exception type in a unintended way, RAVEN will be able

to guide him/her in repairing the violation and using the exception type as

intended.

5.4.5 Potential Threats in Using Policy Specifications

In this study, we have not observed cases in which an increase in the

coverage of the policy specification hindered the e↵ectiveness of RAVEN by

either reducing the number of relevant recommendations produced, or by

reducing the number of relevant recommendations ranked within the topmost

positions of the lists of recommendations. However, we hypothesized the cases

in which policy specification may hinder the e↵ectiveness of RAVEN. Thus,

software designers and developers can be aware of these cases and consider

them while defining their policies.

As discussed in Section 5.1.1, when policy specifications are available,

RAVEN uses them to adjust its solution space by pruning and adding tuples.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 192

By adding new tuples to the solution space, RAVEN complements the in-

formation extracted from the source code. This way, it has a wider space of

possibilities to build relevant recommendations, some of which could not be

constructed solely with the information extracted from the source code. But

if too many tuples are added to the solution space, this might lead to an

overinflated solution space. As a consequence, this might lead to the creation

of more irrelevant recommendations. And this e↵ect may move away relevant

recommendations from the topmost positions of the returned list.

Similarly, by pruning tuples from the solution space, RAVEN narrows

down the information extracted from the source code. Thus, it is possible to

discard irrelevant recommendations that could be built with the information

extracted from the source code. But if too many tuples are removed from the

solution space, this might lead to a solution space so narrow that no relevant

recommendation can be built.

Due to the aforementioned reasons, overly detailed policy specifications

may impose some threats to the e↵ectiveness of RAVEN. Therefore, policy

specifications must be specified focusing on the main exception handling design

decisions of a software project. That is, they must focus on the design rules

that govern the global exceptions of a program.

Finally, it is worth highlighting that RAVEN takes as input valid policy

specifications, but these specifications may be infeasible in the source code.

And using infeasible policies may hinder the e↵ectiveness of RAVEN. Consider

for example the case of Health Watcher. In Health Watcher, GUI and Business

communicate exclusively through Façade. If one policy specification defines

that Business may only raise BusinessException and that only GUI is

allowed to handle BusinessException, it is implicit that these exceptions will

have to flow through Façade. For this reason, if this same policy specification

defines that Façade is not allowed to propagate BusinessException, then

it will not be possible to construct a policy-compliant exception propagation

path from Business to GUI passing through Façade. Therefore, in the cases

where RAVEN takes as input infeasible specifications, it will not be able

to construct recommendations. So far, EPL and RAVEN do not check if

policy specifications are feasible in the source code. This is still a developers’

responsibility. When RAVEN’s algorithm is not able to produce any policy-

compliant exception propagation path in a call-chain, this might be a symptom

that the specification is not feasible in the source code. We plan to further

investigate this hypothesis in future works in order to provide support for

checking if policy specifications are feasible in the source code.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 193

5.5 Threats to Validity

This section discusses the study limitations based on the threats to the

study validity, presenting the measures taken to mitigate these threats.

5.5.1 Construct Validity

In Section 5.2.2, the e↵ectiveness of RAVEN was characterized based on

a quality model typically employed to evaluate ranking schemes of information

retrieval systems. This quality mode characterizes e↵ectiveness in terms of the

ability to produce relevant items and the ability to rank relevant items in the

topmost positions of the returned list. In our evaluation procedure, the Hit

and Hit@10 metrics directly quantify these characteristics in the context of

sets of exception handling violations. In addition, the Reciprocal Rank metric

quantifies if relevant recommendations are produced and also scores higher

values when relevant recommendations are in the topmost positions of the

returned list. That is, the Reciprocal Rank metric quantifies in the context of a

single violation both characteristics used to define the e↵ectiveness of RAVEN.

Therefore, we mitigate the threats to the construct validity by employing a

standard quality model and suite of metrics to quantify the e↵ectiveness of the

proposed recommender heuristic.

5.5.2 Internal Validity

The e↵ectiveness of RAVEN was assessed and compared in di↵erent scen-

arios of use. We mitigated the threats to the internal validity of our study by

controlling the settings in which RAVEN was employed and had its e↵ective-

ness measured. In the experimental design adopted – the paired comparison

experiment – each experimental unit serves as its own control, so the measure-

ments and comparisons were performed between paris of homogeneous exper-

imental units. For this reason, the only di↵erence between the scenarios of use

of RAVEN was the variation in the policy specification. This way, we mitigate

the threats to the internal validity of our study by minimizing the influence of

extraneous variables in the study.

Another threat relates to the relevance judgment used to assess the

recommendations produced. We used the policy-compliant versions of the

target systems as the “oracles” for the relevance judgment. These versions were

produced by the researcher, so they might be a possible bias in the experiment.

Without the “oracle”, we would not have one “expected version” to check if the

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 194

recommendations were properly repairing the violations or not. The relevance

of the recommendations would have to be assessed based on opinions of users

of RAVEN. Therefore, we are aware of the possible biases in using the “oracle”,

but we chose to assess the relevance of the recommendations using consistent

and objective criteria, rather than based on subjective opinions of users.

5.5.3 External Validity

The sample of target systems focused on open-source projects. To mit-

igate this threat, we used as target systems projects from di↵erent domains,

in order to cover a wide spectrum of how exception handling is typically used

in real software development environments. In particular, each target system

had a di↵erent exception handling design, as discussed in Section 5.2.3.

Another threat to the external validity of this study is the fact that all

target systems were implemented in Java. Therefore, the results cannot be

extrapolated to projects implemented in other programming languages, spe-

cially those with exception handling mechanisms with di↵erent characterist-

ics. The automatic reliability checks for checked exceptions is the main dif-

ference between the exception handling mechanism implemented by Java and

those implemented by other mainstream programming languages. The Java

unchecked exceptions, on the other hand, have characteristics similar to those

exception handling mechanisms implemented in other mainstream program-

ming languages, like C++ and C#, for example. To mitigate this threat, we

employed RAVEN in circumstances similar to those present in other program-

ming languages. In particular, some of the violations introduced in the target

systems were related to the use of unchecked exceptions. And no specific dif-

ferences were observed in the e↵ectiveness of RAVEN for the violating versions

where these types of violations were introduced.

5.6 Related Work

As discussed in Section 2.3, current solutions aimed at assisting de-

velopers in implementing and maintaining exception handling are focused on

support for program comprehension (Section 2.3.1), specification and verifica-

tion of exception handling properties (Section 2.3.2) and recommendations for

implementation of catch blocks (Section 2.3.3). There is still no solution aimed

at assisting developers in repairing exception handling violations. Therefore,

RAVEN is the first solution to assist developers in this task.

In the software architecture literature, there is one research work pro-

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 195

posing a solution aimed at assisting developers in repairing architectural vi-

olations by means of recommendations. The work of Terra et al. (TERRA et

al., 2015) proposes ArchFix, a recommendation engine that provides refact-

oring guidelines to assist developers in repairing architectural violations. In

particular, ArchFix provides a set of 32 pre-defined architectural refactoring

recommendations triggered when specific architectural violations are detected

in the source code. The architectural violations supported by this solution stem

from dependency relations, such as: access, creation, declaration or derivation

of specific types; use of specific annotations and propagation of specific ex-

ception types. The only types of exception handling violations supported by

ArchFix are related to a given method propagating an exception that it is

prohibited to propagate, or to a given method not propagating an exception

that it is expected to propagate. That is, for the exception handling relations

described in Chapter 2, the solution proposed by Terra et al. takes into ac-

count only the exception handling dependency relation Propagate. Thus, their

solution provides only limited support for exception handling violations.

More important than that, the major di↵erence between RAVEN and

ArchFix is how the recommendations are produced. The RAVEN strategy

leverages on the global context of where exception handling violations occur

to construct its recommendations. The ArchFix solution constructs its recom-

mendations by matching pre-defined patterns in the source code. If a given

violation is found in the source code and a set of pre-condition is met, then

a pre-defined refactoring guideline is recommended. The main limitation of

this solution when employed for repairing exception handling violations is its

unawareness of the global impact that exceptions might have. Unaware of the

global e↵ect of exceptions, the proposed refactoring recommendations may be

able to locally repair a given exception handling violation, but the changes

performed may actually introduce other violations in the source code. For

example, when a method propagates an exception that it is prohibited to,

ArchFix recommends to handle the exception in the context of this method.

If the repair of this violation requires changing the type of the exception by

either changing the type of the exception raised by the throw statement, or by

re-mapping this exception to another type, then ArchFix is not able to provide

recommendations on how to repair the violation. Therefore, when the repair

of exception handling violations require global reasoning about the context of

the violation, ArchFix is not able to provide recommendations on how to re-

pair them. This is a major limitation, since most exception handling violations

are related to global exceptions and, consequently, require global reasoning to

repair them.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 5. Repairing Violations in Exception Handling 196

5.7 Summary

This chapter presented the third contribution of this thesis: RAVEN, a

recommender heuristic strategy able to produce recommendations of how to

repair exception handling violations. RAVEN produces its recommendations

by analyzing the whole call-chain of methods where violations are located.

Thus, it considers the global impacts that changes in exception handling code

might have in other parts of the program. In addition, RAVEN leverages

on information extracted from exception handling policies to improve its

e↵ectiveness. The RAVEN strategy supports the repair of exception handling

violations in the source code, achieving the second part of the goal of this thesis.

Therefore, the cooperation of EPL and RAVEN fulfills our goal of supporting

the detection and repair of exception handling violations.

The RAVEN strategy was evaluated in a paired comparison experiment,

where it was employed in two di↵erent conditions: “Without Policy Specifica-

tions” and “With Policy Specifications”. The results of this evaluation proced-

ure showed that RAVEN is able to produce relevant recommendations in both

conditions. RAVEN is also able to rank relevant recommendations within the

topmost positions of the lists of recommendations, even with partial specific-

ations. In fact, the information extracted from the policy specifications seems

to play an important role in ranking the relevant recommendations within the

topmost positions of the lists of recommendations. The results also showed

that the use of policy specifications improved the e↵ectiveness of RAVEN. Fi-

nally, RAVEN is the first solution to provide support to the repair of exception

handling violations. And the violations in which RAVEN was assessed are sim-

ilar to the faults observed in the study presented in Chapter 3. Therefore, the

results of our evaluation provide initial evidence that RAVEN is a promising

solution to support developers in repairing exception handling violations that

are potential causes of failures.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

6
Conclusion

The development of robust systems requires structuring their internal

modules with well-defined exception handling responsibilities. In other words,

modules must be structured for detecting runtime errors and for signaling

exceptions upon the detection of these errors. Modules must also be structured

for detecting exceptions and for implementing actions to respond to these

exceptions. In particular, modules should be structured for taking actions

for confining the consequences of errors, allowing the system to remain in

operation.

Currently, most programming languages provide built-in exception hand-

ling mechanisms to support the construction of robust software systems. How-

ever, despite being aimed at improving software robustness, the design and

implementation of exception handling are often simplified. Worse than that, vi-

olations of exception handling policies in the source code are common causes of

failures in software systems. To avoid decreases in software robustness caused

by failure-causing exception handling violations, developers must be able to

detect and repair these violations in the source code. Otherwise, the excep-

tion handling code will actually compromise software robustness, instead of

improving it.

In this context, the goal of this thesis was to support developers in de-

tecting and repairing exception handling violations in the source code. Two

solutions were proposed to fulfill this goal: EPL (Chapter 4) and RAVEN

(Chapter 5). EPL is a domain-specific language aimed at assisting the detec-

tion of exception handling violations by defining explicit exception handling

policies and enforcing them in the source code. RAVEN is a heuristic strategy

aimed at supporting the repair of exception handling violations by means of re-

commendations. EPL and RAVEN are complementary solutions. If policies are

documented in EPL, developers have support to detect violations in the source

code. Once violations are detected, RAVEN supports their repair. In addition,

the RAVEN strategy also benefits from documented policies and leverages on

them to improve its e↵ectiveness. Therefore, ,developers would be better-o↵ if

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 198

they combine them.

6.1 Revisiting the Thesis Contributions

Initially, this thesis aimed at supporting the detection and repair of

exception handling faults. For this reason, we conducted an empirical study to

investigate what types of exception handling faults occur (Chapter 3). In this

study, exception handling faults collected from two open-source projects were

investigated. In particular, the fault reports and the modifications performed

in the source code to repair the respective fault were analyzed. The exception

handling faults were analyzed under two perspectives: the exception handling

dependencies implemented and the fault types, i.e., if the faults occurred due

to an incorrect dependency (faults of commission), or due to the lack of a

dependency (faults of omission).

As the result of the analysis of the exception handling faults, 9 di↵erent

categories of exception handling faults emerged from the data. In this context,

the first contribution of this thesis was:

1st Contribution. Classification of exception handling faults.

By better understanding what types of exception handling faults occur,

we initially aimed at laying the foundations for investigating proper support

for detecting and repairing these faults. However, we observed in this empirical

study that most exception handling faults were not related to specific source

code patterns, such as empty catch blocks or generic catch blocks. Therefore,

it would be di�cult to support their detection by only analyzing the source

code structure. We also observed that exception handling faults occurred due

to violations of implicit exception handling policies. These results motivated

us to move our goal towards the investigation of means to support detecting

and repairing violations of exception handling policies.

In this context, we investigated means to support the detection of

exception handling violations in the source code. In this direction, we proposed

EPL, a domain-specific language for exception handling policies of software

systems (Chapter 4). Exception handling policies are expressed in EPL in

terms of constraints over the exception handling dependencies that methods

in the source code establish with exceptions. In particular, these constraints are

expressed in terms of permissions and obligations that software modules have

to comply. And violations to permissions and obligations point to potential

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 199

faults of commission and faults of omission. Therefore, these violations can

point to potential sources of failures in the source code.

Both designers and developers can benefit from EPL. Designers have

at their disposal a language to explicitly define their intentions regarding the

exception handling implementation for their software projects. With an explicit

definition about the intended exception handling implementation, developers

can readily consult the specification to comprehend how they are supposed

to implement the exception handling code. This way, they can prevent the

introduction of exception handling violations in the source code. Also, both

designers and developers can use the static analyzer to detect exception

handling violations in the source code. And by detecting and locating these

violations, they can identify parts of the exception handling code that may

ultimately lead to subsequent failures.

In this context, the second contribution of this thesis was:

2nd Contribution. Domain-specific language for specifying

and verifying exception handling policies that supports the de-

tection of exception handling violations.

With EPL, we achieved the first part of the goal of this thesis, which

is supporting the detection of exception handling violations. The remaining

part of the goal of this thesis was supporting the repair of these violations.

In this direction, we proposed RAVEN, a recommender heuristic strategy for

assisting the repair of exception handling violations (Chapter 5). The RAVEN

strategy provides recommendations of how a given exception handling violation

can be repaired. To do so, the heuristic is aware of the global impact of

exceptions by taking into account the whole context of where a given exception

handling violation is localized. This way, these recommendations serve as

detailed blueprints of how developers should modify the source code in order to

repair exception handling violations. In addition, the violations that RAVEN

is able to repair are similar to the faults observed in the study presented in

Chapter 3. Therefore, RAVEN is a promising solution to support developers

in repairing exception handling violations that are potential causes of failures.

In this context, the third contribution of this thesis was:

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 200

3rd Contribution. Recommender heuristic strategy that sup-

ports the repair of exception handling violations.

Finally, to facilitate future references to works that resulted from this

thesis, Table 6.1 presents the papers produced in the context of this thesis and

the respective chapters to which they relate.

Table 6.1: Papers Produced in the Context of this Thesis
Paper Chapter

E. A. Barbosa and A. Garcia. Categorizing Faults in Exception Hand-
ling: A Study of Open Source Projects. In Proceedings of the 28th Brazilian
Symposium on Software Engineering (SBES’14), 2014.

3

E. A. Barbosa. Improving exception handling with recommendations. In
Companion Proceedings of the 36th International Conference on Software
Engineering - Doctoral Symposium (ICSE’14), 2014.

4, 5

E. A. Barbosa. Mastering Global Exceptions with Policy-Aware Recom-
mendations. In Companion Proceedings of the 37th International Confer-
ence on Software Engineering - ACM Research Competition (ICSE’15),
2015.

4, 5

E. A. Barbosa, A. Garcia, M. Robillard and B. Jakobus. Enforcing
exception handling policies with a domain-specific language. In IEEE
Transactions on Software Engineering, Dec., 2015.

4

N. Cacho, E. A. Barbosa, T. Cesar, T. Filipe, E. Soares, A. Cassio, R.
Souza, I. Garcia and A. Garcia. Trading Robustness for Maintainability:
An Empirical Study of Evolving C# Programs. In Proceedings of the 36th
International Conference on Software Engineering (ICSE’14), 2014.

2

N. Cacho, E. A. Barbosa, J. Araujo, F. Pranto, A. Garcia, T. Cesar, A.
Cassio, E. Soares, T. Filipe and I. Garcia. How Does Exception Handling
Behavior Evolve? An Exploratory Study in Java and C# Applications. In
Proceedings of the 30th International Conference on Software Mainten-
ance and Evolution (ICSME’14), 2014.

2

B. Jakobus, A. Garcia, E. A. Barbosa and C. J. Lucena. Contrasting
exception handling code across languages: An analysis of 50 open source
projects. In 26th International Symposium on Software Reliability Engin-
eering (ISSRE’15), 2015.

2

6.2 Future Work

Along the studies conducted in the context of this thesis, new challenges

have emerged. Next, further directions for future works are presented.

Further Investigation in Other Programming Languages. The stud-

ies conducted in the context of this thesis were focused on the exception hand-

ling mechanisms of the Java programming language. In fact, most empirical

studies conducted to analyze exception handling in software systems were con-

ducted in the context of Java programs. Recently, we conducted empirical

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 201

studies in collaboration with Cacho et al. and with Jakobus et al. to further in-

vestigate exception handling implementation in other programming languages.

In particular, the study conducted in collaboration with Cacho et al. invest-

igated the impact of exception handling in software robustness in Java and

C# programs. And the study conducted with Jakobus et al. assessed the use

of exception handling mechanisms in Java, C#, C++, PHP and JavaScript

programs. Even so, studies still need to be conducted to further investigate

exception handling in other programming languages.

In addition, no work has analyzed exception handling in the context of

multi-language systems. That is, there is still no empirical knowledge about

how exception handling is designed and implemented in the context of software

systems with modules written in di↵erent programming languages. It seems

interesting to investigate how the responsibilities of exception handling are de-

signed and implemented among the modules written in di↵erent programming

languages.

As a starting point for these future works, the studies conducted in the

context of this thesis could be replicated to analyze multi-language systems.

This way, it could be investigated what kinds of exception handling faults

occur when the exception handling responsibilities are divided among modules

written in di↵erent programming languages. Also, how exception handling

policies can be defined and enforced in multi-language systems. And how to

support the detection and repair of exception handling violations in multi-

language systems.

Recover Exception Handling Policy from the Source Code. It would

be interesting to provide support for recovering an exception handling policy

from the exception handling code already implemented in the system. This

would be useful in scenarios where the system is already in production, but

without an exception handling policy. This way, the development team can

start the definition of the exception handling policy by first recovering a policy

from the source code. And then, they can refine this policy to reflect their

intentions regarding the exception handling implementation.

One first di�culty in recovering a policy expressed as obligations and

permissions from the source code is how to infer the semantics of constraints

over the exception handling dependencies directly from the source code.

For example, given one method that raises a given exception, it is not

straightforward to define if this should be expressed as an obligation or

a permission. One possible support for recovering an exception handling

policy from the source code could be defined as follows. First, the developer

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 202

defines the compartments of his policy. Then, a supporting tool extracts

the exception handling dependencies and the respective exception types that

each compartment establishes in the source code. The supporting tool would

only present to developer a summary of the implemented exception handling

dependencies in each compartment. The developer would be responsible for

defining the semantics of the intended constraints over each exception handling

dependency. This way, this supporting tool would only assist the developer in

recovering the exception handling policy from the source code. It would not

be able to actually recover it.

Another possible support for recovering an exception handling policy

from the source code is to try to infer the semantics of the constraints by

analyzing the source code evolution history. This possible support could be

defined as follows. First, the developer defines the compartments of his policy.

Then, the supporting tool would analyze the version history of the system to

recover the rules of the policy. If a given exception handling dependency exists

in the source code and the exception type used was modified in a previous

version, then this might indicate that the compartment is not allowed to relate

to the previous exception type. It might also indicate that the compartment

is allowed, or obligated, to relate to the current exception type. Similarly, if a

given exception handling dependency is removed from a method along software

evolution and the respective compartment does not establish this dependency

anymore, then this might indicate that the respective compartment is not

allowed to establish this dependency. This way, these heuristic strategies could

be further developed and tested in future works to assess if they are able to

automatically recover exception handling policies from the version history of

a system.

Improved Tool Support for the Recommendations. The recommend-

ations produced by the RAVEN strategy are sequences of modifications that

should be performed in the source code to repair exception handling violations.

One first improvement necessary to make RAVEN usable in practice is to in-

corporate it to mainstream IDEs, such as Eclipse and NetBeans. This way, it is

expected that developers incorporate RAVEN to their development activities

more easily than if RAVEN was provided as a stand-alone application inde-

pendent of their IDEs. We believe that incorporating RAVEN to Eclipse can

be achieved in a short-term future work, since it was already implemented as

an Eclipse plugin. So to actually incorporate RAVEN to Eclipse is necessary

to create a graphical user interface and integrate it to the RAVEN plugin.

It would also be interesting to combine the recommendations provided

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Chapter 6. Conclusion 203

by RAVEN with tools for automating modifications in the source code. These

tools would be similar to automated refactoring tools provided in mainstream

IDEs, such as Eclipse and NetBeans. Thus, developers could choose one

recommendation and part of the recommended modifications in the source

code would be automated. One major challenge in automating modifications

in the exception handling code would be to define the proper level to which

try blocks would be applied. In most mainstream programming languages,

like Java, C#, JavaScript, and the like, try blocks are attached to blocks of

statements. This means that try blocks may guard only one statement, but

also all statements of a method. Therefore, there are many di↵erent ways in

which try blocks can be added to source code and these di↵erences may have

impact in the program behavior. The proper way of automatically modifying

exception handling code without introducing any negative side-e↵ect in the

program is still to be investigated.

Even More Global Recommender Heuristics. The recommendations

provided by RAVEN are produced by taking into account the global context

of exception handling violations. More specifically, RAVEN analyzes the whole

call-chain of the method where a violation occurs. One possible evolution

for RAVEN would be investigating means to provide support for repairing

all exception handling violations in the context of a compartment, or even

the whole system, for example. A starting point for this alternative could be

investigating whether for di↵erent exception handling violations occurring in

the same compartment the recommendations provided by RAVEN conflict with

each other. In other words, if one repairing modification recommended for one

violation conflicts with the modifications recommended for other violations.

This way, an improved version of RAVEN could favor recommendations that do

not conflict with repairing modifications of other violations. Thus, future works

may further investigate even more global recommender heuristic strategies for

repairing multiple exception handling violations in the source code at once.

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography

ABRANTES and COELHO, 2015. J. Abrantes and R. Coelho. Specifying

and dynamically monitoring the exception handling policy. In Proc.

of the 27 International Conference on Software Engineering and Knowledge

Engineering (SEKE), 2015. 1.1.1, 1.1.2, 2.3.2, 4.5, 4.5

ARCOVERDE et al., 2013. R. Arcoverde, E. Guimarães, I. Macia, A. Garcia

and Y. Cai. Prioritization of code anomalies based on architecture

sensitiveness. In Software Engineering (SBES), 2013 27th Brazilian Sym-

posium on, pages 69–78. IEEE, 2013. 4.3.1, 4.4.1, 4.4.1

AVAZPOUR et al., 2014. I. Avazpour, T. Pitakrat, L. Grunske and J. Grundy.

Dimensions and metrics for evaluating recommendation systems. In

Recommendation Systems in Software Engineering, pages 245–273. Springer

Berlin Heidelberg, 2014. 5.2.1

AVIZIENIS et al., 2004. A. Avizienis, J.-C. Laprie, B. Randell and

C. Landwehr. Basic concepts and taxonomy of dependable

and secure computing. IEEE Transactions on Dependable and Secure

Computing, 1(1):11–33, Jan. 2004. 1, 2.1

BACHMANN and BERNSTEIN, 2009. A. Bachmann and A. Bernstein.

Data retrieval, processing and linking for software process data

analysis. Technical report, University of Zurich, 2009. 3.1.2

BARBOSA and GARCIA, 2011. E. A. Barbosa and A. Garcia. Analyzing

Exceptional Interfaces on Evolving Frameworks. In 2011 Fifth Latin-

American Symposium on Dependable Computing Workshops, pages 17–20.

IEEE, Apr. 2011. 4.2.1

BARBOSA et al., 2012. E. A. Barbosa, A. Garcia and M. Mezini. A recom-

mendation system for exception handling code. In Proceedings of the

5th International Workshop on Exception Handling (WEH), pages 52–54.

IEEE, June 2012. 1.1.2, 2.3.3

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 205

BARBOSA et al., 2012a. E. A. Barbosa, A. Garcia and M. Mezini. Heuristic

Strategies for Recommendation of Exception Handling Code. In

Proceedings of the 2012 26th Brazilian Symposium on Software Engineering

SBES ’12, pages 171–180, Washington, DC, USA, Sept. 2012. IEEE. 1.1.2,

2.3.3

BARBOSA et al., 2014. E. A. Barbosa, A. Garcia and S. D. J. Barbosa.

Categorizing Faults in Exception Handling: A Study of Open

Source Projects. In Proceedings of the XXVIII Brazilian Symposium on

Software Engineering (SBES’14), 2014. 3.6

BARBOSA et al., 2015. E. A. Barbosa, A. Garcia, M. Robillard and B. Jako-

bus. Enforcing exception handling policies with a domain-specific

language. Accepted to appear in IEEE Transactions on Software Engineer-

ing, 2015. 4.6

BASILI et al., 1994. V. Basili, G. Caldiera and D. H. Rombach. The goal

question metric approach. Encyclopedia of Software Engineering, 1994.

5.2.1

BLOCH, 2008. J. Bloch. E↵ective java. The Java Series. Prentice Hall,

2008. 2.1.2

BRITO et al., 2009. P. H. S. Brito, R. Lemos, C. M. F. Rubira and E. Martins.

Architecting Fault Tolerance with Exception Handling: Verification

and Validation. Journal of Computer Science and Technology, 24(2):212–

237, Apr. 2009. 4.3.1

BROOKS, 1983. R. Brooks. Towards a theory of the comprehension

of computer programs. International journal of man-machine studies,

18(6):543–554, 1983. 2.3.1

BRUTNIK et al., 2006. M. Bruntink, A. Van Deursen and T. Tourwé. Dis-

covering faults in idiom-based exception handling. In Proceedings of

the 28th international conference on Software engineering, pages 242–251.

ACM, 2006. 1.2, 3, 3.3.2, 3.5, 3.6

BUHR, 2000. P. A. Buhr and W. Y. R. Mok. Advanced Exception Hand-

ling Mechanisms. IEEE Transactions on Software Engineering, 26(9):820,

2000. 1, 2.1.1

BURROWS et al., 2010. R. Burrows, F. C. Ferrari, O. A. Lemos, A. Garcia

and F. Taiani. The impact of coupling on the fault-proneness of

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 206

aspect-oriented programs: an empirical study. In Software Reliability

Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages

329–338. IEEE, 2010. 4.4.1, 4.4.2, 4.4.2

BUSE and WEIMER, 2008. R. P. Buse and W. R. Weimer. Automatic

documentation inference for exceptions. In Proceedings of the 2008

international symposium on Software testing and analysis, pages 273–282.

ACM, 2008. 1.1.1, 4

CABRAL and MARQUES, 2007. B. Cabral and P. Marques. Exception

handling: A field study in java and .net, volume 4609 of Lecture Notes

in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

2.2.1

CABRAL and MARQUES, 2008. B. Cabral and P. Marques. A case for

automatic exception handling. In Proceedings of the 2008 23rd

IEEE/ACM International Conference on Automated Software Engineering,

pages 403–406. IEEE Computer Society, 2008. 2.3.3

CACHO et al., 2008. N. Cacho, F. Castor, A. Garcia and E. Figueiredo.

EJFlow : Taming Exceptional Control Flows in Aspect-Oriented

Programming. In Proceedings of the 7th International Conference on

Aspect-Oriented Software Development, pages 72–83, 2008. 1, 1.1.1, 1.1.2,

2.3.2, 4.3.1, 4.4.1, 4.4.1, 4.5

CACHO et al., 2009. N. Cacho, F. Dantas, A. Garcia and F. Castor. Excep-

tion Flows Made Explicit: An Exploratory Study. In Proceedings of

the 2009 XXIII Brazilian Symposium on Software Engineering, pages 43–53,

2009. 1, 1.1.2

CACHO et al., 2014a. N. Cacho, E. A. Barbosa, J. Araújo, F. Pranto, A. Gar-

cia, T. César, A. Cassio, E. Soares, T. Filipe and I. Garcia. How Does Ex-

ception Handling Behavior Evolve? An Exploratory Study in Java

and C# Applications. In Proceedings of the 30th International Conference

on Software Maintenance and Evolution, 2014. 1, 1.1, 1.1, 1.1.1, 1.1.2, 2.2.2,

2.3.2, 2.3.3, 2.4, 3.5, 4.2.1

CACHO et al., 2014b. N. Cacho, E. A. Barbosa, T. César, T. Filipe, E. Soares,

A. Cassio, R. Souza, I. Garcia and A. Garcia. Trading Robustness for

Maintainability: An Empirical Study of Evolving C# Programs. In

Proceedings of the 36th International Conference on Software Engineering,

pages 584–595, New York, New York, USA, 2014. ACM. 1, 1.1, 1.1, 1.1.1,

1.1.2, 2.2.2, 2.3.2, 2.3.3, 2.4, 3.5

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 207

CHANG et al., 2001. B.-M. Chang, J.-W. Jo, K. Yi and K.-M. Choe. Inter-

procedural exception analysis for Java. In Proceedings of the 2001 ACM

symposium on Applied computing - SAC ’01, pages 620–625, New York, New

York, USA, Mar. 2001. ACM Press. 1.1.2, 2.3.1

CHELLAS, 1980. B. F. Chellas. Modal logic: an introduction, volume

316. Cambridge Univ Press, 1980. 4

CLEMENTS, 1996. P. C. Clements. A Survey of Architecture Descrip-

tion Languages. In Proceedings of the 8th International Workshop on Soft-

ware Specification and Design, page 16. IEEE Computer Society, Mar. 1996.

4.5

COELHO et al., 2008. R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho,

U. Kulesza, A. Staa and C. Lucena. Assessing the Impact of Aspects

on Exception Flows: An Exploratory Study, volume 5142 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg,

July 2008. 1, 1.1, 1.1.1, 1.1.2, 2.2.2, 3.5, 4.3.1, 4.4.1, 4.4.1

CRISTIAN, 1989. F. Cristian. Exception Handling. In Dependability of

Resilient Computers, pages 68–97, 1989. 1, 2.1.1

DAGENAIS and ROBILLARD, 2011. B. Dagenais and M. P. Robillard. Re-

commending Adaptive Changes for Framework Evolution. ACM

Transactions on Software Engineering and Methodology, 20(4):1–35, Sept.

2011. 3.1.2

DAVIS, 1989. F. D. Davis. Perceived usefulness, perceived ease of use,

and user acceptance of information technology. MIS quarterly, pages

319–340, 1989. 4.3.1, 4.3.3

DELEMOS and ROMANOVSKY, 2001. R. de Lemos and A. Romanovsky.

Exception Handling in the Software Lifecycle. International Journal

of Computer Systems Science and Engineering, Mar. 2001. 1.1.1, 4, 4.3.1

EBERT and CASTOR, 2013. F. Ebert and F. Castor. A Study on De-

velopers’ Perceptions about Exception Handling Bugs. In 2013 IEEE

International Conference on Software Maintenance, pages 448–451. IEEE,

Sept. 2013. 1.1.1, 4

EBERT et al., 2015. F. Ebert, F. Castor and A. Serebrenik. An exploratory

study on exception handling bugs in java programs. Journal of

Systems and Software, 106:82–101, 2015. 1.1.1, 1.1.2, 3.5, 4

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 208

EICHBERG et al., 2008. M. Eichberg, S. Kloppenburg, K. Klose and

M. Mezini. Defining and continuous checking of structural program

dependencies. In Proceedings of the 13th international conference on Soft-

ware engineering - ICSE ’08, page 391, New York, New York, USA, May

2008. ACM Press. 4.5, 4.5

FERRARI et al., 2010. F. Ferrari, R. Burrows, O. Lemos, A. Garcia,

E. Figueiredo, N. Cacho, F. Lopes, N. Temudo, L. Silva, S. Soares et al. An

exploratory study of fault-proneness in evolving aspect-oriented

programs. In Proceedings of the 32nd ACM/IEEE International Confer-

ence on Software Engineering-Volume 1, pages 65–74. ACM, 2010. 4.4.1,

4.4.2, 4.4.2

FIELD, 2009. A. Field. Discovering statistics using spss. Sage publica-

tions, 2009. 5.3.2

FU et al., 2005. C. Fu, A. Milanova, B. G. Ryder and D. G. Wonnacott.

Robustness testing of java server applications. Software Engineering,

IEEE Transactions on, 31(4):292–311, 2005. 1.1.1, 1.1.2, 3.3.1, 4

FU and RYDER, 2007. C. Fu and B. G. Ryder. Exception-Chain Ana-

lysis: Revealing Exception Handling Architecture in Java Server

Applications. In Proceedings of the 29th international conference on Soft-

ware Engineering, pages 230–239. IEEE, May 2007. 1.1.1, 1.1.2, 2.3.1, 2.3.2

GARCIA et al., 2001. A. F. Garcia, C. M. Rubira, A. Romanovsky and J. Xu.

A comparative study of exception handling mechanisms for build-

ing dependable object-oriented software. Journal of Systems and Soft-

ware, 59(2):197–222, Nov. 2001. 1, 2.1.1

GARCIA et al., 2013. J. Garcia, I. Ivkovic and N. Medvidovic. A compar-

ative analysis of software architecture recovery techniques. In Auto-

mated Software Engineering (ASE), 2013 IEEE/ACM 28th International

Conference on, pages 486–496. IEEE, 2013. 4.3.2

GOODENOUGH, 1975. J. B. Goodenough. Exception handling: issues

and a proposed notation. Communications of the ACM, 18(12):683, 1975.

1, 2.1.1

GURGEL et al., 2014. A. Gurgel, I. Macia, A. Garcia, A. von Staa, M. Mezini,

M. Eichberg and R. Mitschke. Blending and reusing rules for architec-

tural degradation prevention. In Proceedings of the 13th international

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 209

conference on Modularity - MODULARITY ’14, pages 61–72, New York,

New York, USA, Apr. 2014. ACM Press. 4.5, 4.5

HIGO and KUSUMOTO, 2014. Y. Higo and S. Kusumoto. How Should

We Measure Functional Sameness from Program Source Code?

– An Exploratory Study on Java Methods. In 22nd ACM SIGSOFT

International Symposium on the Foundations of Software Engineering (FSE

2014). ACM Press, 2014. 5.1.1

HOLMES and MURPHY, 2005. R. Holmes and G. C. Murphy. Using struc-

tural context to recommend source code examples. In Proceedings

of the 27th international conference on Software engineering, pages 117–125.

ACM, 2005. 5.1.1

IEEE, 1990. IEEE Computer Society. IEEE Standard Glossary of Soft-

ware Engineering Terminology, Dec. 1990. 1, 2.1

JSL-6. Oracle. The java language specification: Java se 6 edition.

https://docs.oracle.com/javase/specs/jls/se6/html/j3TOC.html, September

2015. 2.1.2, 2.1.2, 2.1.2, 2.1.2, 2.1.2, 2.1.2, 4.2.1, 4.2.1

JSR-342. JCP. Jsr 342: Java platform enterprise edition 7 specifica-

tion. https://jcp.org/en/jsr/detail?id=342. 4.4.1, 4.4.2, 4.4.2

JAKOBUS et al., 2015. B. Jakobus, A. Garcia, E. A. Barbosa and C. J.

Lucena. Contrasting exception handling code across languages: An

analysis of 50 open source projects. In 26th International Symposium

on Software Reliability Engineering (ISSRE 2015), 2015. 1, 2.1.1, 2.2.1, 2.4

JANNACH, 2010. D. Jannach, M. Zanker, A. Felfernig and G. Friedrich.

Recommender systems: an introduction. Cambridge University Press,

2010. 5.4.4

JURISTO and MORENO, 2013. N. Juristo and A. M. Moreno. Basics of

software engineering experimentation. Springer Science & Business

Media, 2013. 5.2.2

KIENZLE, 2008. J. Kienzle. On exceptions and the software develop-

ment life cycle. In Proceedings of the 4th international workshop on Ex-

ception handling - WEH ’08, pages 32–38, New York, New York, USA, Nov.

2008. ACM Press. 1.1.1, 4, 4.3.1

KNODEL and POPESCU, 2007. J. Knodel and D. Popescu. A Comparison

of Static Architecture Compliance Checking Approaches. In 2007

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 210

Working IEEE/IFIP Conference on Software Architecture (WICSA’07),

pages 12–12. IEEE, Jan. 2007. 4.5

KULESZA et al. 2006. U. Kulesza, C. Sant’Anna, A. Garcia, R. Coelho,

A. Staa and C. Lucena. Quantifying the E↵ects of Aspect-Oriented

Programming: A Maintenance Study. In 2006 22nd IEEE International

Conference on Software Maintenance, pages 223–233. IEEE, Sept. 2006. 1.1

LEE and ANDERSON, 1990. P. A. Lee and T. Anderson. Fault tolerance:

Principles and practice. Springer-Verlag, 1990. 1, 2.1, 2.1.1, 2.1.1

LITKE, 1999. J. D. Litke. A systematic approach for implementing

fault tolerant software designs in Ada. In Proceedings of the conference

on TRI-ADA ’90 - TRI-Ada ’90, pages 403–408, New York, New York, USA,

Dec. 1990. ACM Press. 4.5

MACIA et al., 2012. I. Macia, R. Arcoverde, A. Garcia, C. Chavez and A. von

Staa. On the Relevance of Code Anomalies for Identifying Archi-

tecture Degradation Symptoms. In 2012 16th European Conference on

Software Maintenance and Reengineering, pages 277–286. IEEE, Mar. 2012.

4.3.1, 4.4.1, 4.4.1

MACIA et al., 2012a. I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Med-

vidovic and A. von Staa. Are automatically-detected code anomalies

relevant to architectural modularity? In Proceedings of the 11th annual

international conference on Aspect-oriented Software Development - AOSD

’12, page 167, New York, New York, USA, Mar. 2012. ACM Press. 4.3.1,

4.4.1, 4.4.1

MALAYERI and ALDRICH, 2006. D. Malayeri and J. Aldrich. Practical

Exception Specifications. In Advanced Topics in Exception Handling

Techniques, pages 200–220. Springer, 2006. 4.5

MANNING et al., 2008. C. D. Manning, P. Raghavan, H. Schütze et al. In-

troduction to information retrieval, volume 1. Cambridge university

press Cambridge, 2008. 5.2.1

MARINESCU, 2011. C. Marinescu. Are the classes that use exceptions

defect prone? In Proceedings of the 12th international workshop and the 7th

annual ERCIM workshop on Principles on software evolution and software

evolution - IWPSE-EVOL ’11, page 56, New York, New York, USA, Sept.

2011. ACM Press. 1, 2.2.2

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 211

MARINESCU, 2013. C. Marinescu. Should We Beware the Exceptions?

An Empirical Study on the Eclipse Project. In 2013 15th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing,

pages 250–257. IEEE, Sept. 2013. 1, 2.2.2

RAHMAN and ROY, 2014. M. M. Rahman and C. K. Roy. On the use

of context in recommending exception handling code examples.

In 14th International Working Conference on Source Code Analysis and

Manipulation, pages 285–294. IEEE Computer Society, 2014. 1.1.2, 2.3.3

ROBILLARD and MURPHY, 1999. M. P. Robillard and G. C. Murphy. Ana-

lyzing Exception Flow in Java Programs, 1999. 1, 1.1.2, 2.3.1

ROBILLARD and MURPHY, 2000. M. P. Robillard and G. C. Murphy.

Designing robust Java programs with exceptions. In Proceedings of

the 8th ACM SIGSOFT international symposium on Foundations of software

engineering: twenty-first century applications, pages 2 – 10, 2000. 4.5

ROBILLARD and MURPHY, 2003. M. P. Robillard and G. C. Murphy.

Static analysis to support the evolution of exception structure in

object-oriented systems. ACM Transactions on Software Engineering and

Methodology (TOSEM), 12(2):191–221, 2003. 1, 1.1.2, 2.3.1

ROBILLARD et al., 2010. M. Robillard, R. Walker and T. Zimmermann.

Recommendation Systems for Software Engineering. IEEE Software,

27(4):80–86, July 2010. 2.3.3

SAHAVECHAPHAN and CLAYPOOL, 2006. N. Sahavechaphan and

K. Claypool. Xsnippet: mining for sample code. ACM Sigplan

Notices, 41(10):413–430, 2006. 5.1.1

SALES and COELHO, 2011. R. Sales, RJ; Coelho. Preserving the excep-

tion handling design rules in software product line context: A prac-

tical approach. In Dependable Computing Workshops (LADCW), 2011

Fifth Latin-American Symposium on, pages 9–16. IEEE, 2011. 1.1.1, 1.1.2,

2.3.2, 4.3.1, 4.4.1, 4.4.1, 4.5, 4.5

SAWADPONG et al., 2012. P. Sawadpong, E. B. Allen and B. J. Williams.

Exception Handling Defects: An Empirical Study. In 2012 IEEE 14th

International Symposium on High-Assurance Systems Engineering, pages 90–

97. IEEE, Oct. 2012. 1, 2.2.2

SHAH, GÖRG and HARROLD, 2008a. H. Shah, C. Görg and M. J. Harrold.

Visualization of exception handling constructs to support program

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 212

understanding. In Proceedings of the 4th ACM Symposium on Software

Visualization, page 19, New York, New York, USA, 2008. ACM Press. 1.1.2,

2.3.1

SHAH et al., 2010. H. Shah, C. Görg and M. Harrold. Understanding

Exception Handling: Viewpoints of Novices and Experts. IEEE

Transactions on Software Engineering, 36(2):150–161, Mar. 2010. 1.1.1

SILVA and CASTOR, 2013. T. B. L. Silva and F. Castor. New exception

interfaces for Java-like languages. In Proceedings of the 28th Annual

ACM Symposium on Applied Computing - SAC ’13, pages 1661–1666, New

York, New York, USA, Mar. 2013. ACM Press. 1.1.1, 1.1.2, 2.3.2, 4.5

SINHA and HARROLD, 2000. S. Sinha and M. J. Harrold. Analysis and

Testing of Programs with Exception Handling Constructs. IEEE

Transactions on Software Engineering, 26(9):849, 2000. 1.1.1, 1.1.2, 3.3.1, 4,

4.2.1

SOARES et al. 2002. S. Soares, E. Laureano and P. Borba. Implementing

distribution and persistence aspects with aspectJ. ACM SIGPLAN

Notices, 37(11):174, Nov. 2002. 1.1

SWAIN and GUTTMANN, 1983. A. D. Swain and H. E. Guttmann. Hand-

book of human reliability analysis with emphasis on nuclear power

applications. Technical report, Sandia National Laboratories, 1983. 3.1.1

TERRA and VALENTE, 2009. R. Terra and M. T. Valente. A dependency

constraint language to manage object-oriented software architec-

tures. Software—Practice & Experience, 39(12):1073–1094, Aug. 2009. 4.5,

4.5

TERRA et al., 2015. R. Terra, M. T. Valente, K. Czarnecki and R. S. Bigonha.

A recommendation system for repairing violations detected by

static architecture conformance checking. Software: Practice and

Experience, 45(3):315–342, 2015. 1.1.2, 5.6

THUMMALAPENTA and XIE, 2007. S. Thummalapenta and T. Xie.

Parseweb: a programmer assistant for reusing open source code

on the web. In Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, pages 204–213. ACM, 2007.

5.1.1

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

Bibliography 213

THUMMALAPENTA and XIE, 2009. S. Thummalapenta and T. Xie. Min-

ing exception-handling rules as sequence association rules. In Pro-

ceedings of the 31st International Conference on Software Engineering, pages

496–506. IEEE Computer Society, 2009. 1.1.1, 4, 4.3.2, 4.5

VANDEURSEN et al., 2000. A. van Deursen, P. Klint and J. Visser.

Domain-specific languages: an annotated bibliography. ACM SIG-

PLAN Notices, 35(6):26–36, June 2000. 1.2, 4

VAN OMMERING et al., 2001. R. van Ommering, R. Krikhaar and L. Feijs.

Languages for formalizing, visualizing and verifying software archi-

tectures. Computer Languages, 27(1-3):3–18, Apr. 2001. 4.5

ZHAO and ELBAUM, 2003. L. Zhao and S. Elbaum. Quality assurance

under the open source development model. Journal of Systems and

Software, 66(1):65–75, Apr. 2003. 3.1.2

FOWLER, 2010. M. Fowler. Domain-specific languages. Pearson Educa-

tion, 2010. 1.2, 4

DBD
PUC-Rio - Certificação Digital Nº 1212398/CA

