

Ricardo Gurevitz Cunha Esposito

Modelagem numérica do processo de instalação e prova de carga em estacas usando elementos discretos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Eurípedes do Amaral Vargas Júnior Co-orientadora: Prof^a. Bernadete Ragoni Danziger

Rio de Janeiro Março de 2015

Ricardo Gurevitz Cunha Esposito

Modelagem numérica do processo de instalação e prova de carga em estacas usando elementos discretos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Eurípedes do Amaral Vargas Júnior Orientador Departamento de Engenharia Civil – PUC-Rio

> > Prof^a. Bernadete Ragoni Danziger

Co-orientadora Universidade do Estado do Rio de Janeiro

Prof^a. Raquel Quadros Velloso

Departamento de Engenharia Civil - PUC-Rio

Prof. George de Paula Bernardes

Universidade Estadual Paulista Julio de Mesquita Filho

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 26 de Março de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Gurevitz Cunha Esposito

Graduou-se em Engenharia Ambiental pela Pontifícia Universidade Católica do Rio de Janeiro em Julho de 2011. Ingressou no Mestrado em Engenharia Civil na Pontifícia Universidade Católica do Rio de Janeiro em Agosto de 2012, desenvolvendo a dissertação na área de métodos numéricos aplicados a fundações profundas.

Ficha Catalográfica

Esposito, Ricardo Gurevitz Cunha

Modelagem numérica dos processos de instalação e prova de carga em estacas / Ricardo Gurevitz Cunha Esposito ; orientador: Eurípedes do Amaral Vargas Júnior ; co-orientadora: Bernadete Ragoni Danziger. – 2015. 212 f. il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015. Inclui bibliografia

 Engenharia civil – Teses. 2. Modelagem numérica. 3. Fundações. 4. Instalações de estaca.
Prova de carga estática. 6. Método dos elementos discretos. 7. Particle Flow Code (PFC).
Acoplamento mecânico. I. Vargas Júnior, Eurípedes do Amaral. II. Danziger, Bernadete Ragoni. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

À minha família, pelo imenso amor e carinho incondicionais que me proporcionaram durante toda a minha vida, em especial à minha mãe pelo apoio e inestimável ajuda nesse processo e à minha avó Rachel, sem a qual não estaria aqui hoje.

À Júlia, pelos excelentes conselhos e maravilhosos momentos, acompanhados quase sempre de risadas histéricas pelos corredores da PUC.

Aos meus amigos e colegas, Nath, Adriano e Fernando, trio mágico da Geotecnia, pelo companheirismo e amizade que compartilhamos neste último ano. Alô, São Gonçalo.

Às meninas Rhaissa, Sandra, Amanda e Giobana, pelo excesso de brincadeira e falta de seriedade, extremamente necessários.

Ao Michel e Ian, grandes amigos e exemplos de Engenheiros e à *Cuzinha*, pela força e presença em todos os mais de vinte anos de amizade.

Aos Meus colegas de casa, João Marcos, Nucci e Fischer, pelo companheirismo, amizade e força, muito obrigado, irmãos.

Ao Professor Eurípedes do Amaral Vargas Júnior, pelas conversas e orientação no desenvolvimento da pesquisa.

À Professora Bernadete, pela inestimável ajuda em diversos momentos ao longo do último ano e orientação necessária no desenvolvimento da pesquisa.

À Professora Raquel, pelas valiosas conversas e prontidão em dar excelentes conselhos acadêmicos.

Ao Luís Arnaldo, Alonso e Silvestre, pelo apoio e companhia em diversos momentos ao logo do desenvolvimento deste trabalho.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio financeiro.

Ao Departamento de Engenharia Civil da PUC-Rio pela infraestrutura e suporte.

Resumo

Esposito, Ricardo Gurevitz Cunha; Vargas Júnior, Eurípedes do Amaral; Danziger, Bernadete Ragoni. **Modelagem Numérica do Processo de Instalação e Prova de Carga em Estacas Usando Elementos Discretos.** Rio de Janeiro, 2015. 212p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

As alterações no solo decorrentes de um elemento de fundação profunda e seus desempenhos sob a aplicação de carga axial são processos há muito tempo estudados na engenharia civil. Diversos fatores como, método de instalação utilizado, formato da estaca, interações solo-estrutura, mecanismos de transferências de carga, movimentação do solo e alterações na compressibilidade e tensões do solo adjacente, apresentam desafios importantes que ainda não foram totalmente compreendidos nos fenômenos de penetração e capacidade de suporte em estacas. Diversos avanços foram realizados ao longo das últimas décadas para se investigar estes comportamentos, a partir procedimentos experimentais e novas formas de instrumentação, assim como ferramentas numéricas sofisticadas com o emprego de complexos modelos constitutivos em elementos finitos. Apesar destes avanços, a modelagem numérica dos processos citados, com todas as suas complexidades, ainda encontra alguns desafios. Devido a facilidade em lidar com simulações de grandes deformações e de captar o comportamento dilatante e nãolinear de solos granulares, o Método dos Elementos Discretos apresenta uma excelente ferramenta para investigar estes processos, sem grandes complicações. O presente trabalho procurou avaliar os comportamentos obtidos a partir de diferentes processos de instalação da estaca e seus efeitos nos resultados da prova de carga estática em solos granulares. As alterações de tensão e deslocamento foram avaliadas nos diferentes modelos e discutindo sobre uma metodologia básica para obter correspondências qualitativas e quantitativas com os diferentes comportamentos de campo e laboratório. Para este estudo foram utilizados os programas PFC, na versão 2D, e o programa UDEC, da Itasca co.

Palavras-chave

Modelagem Numérica; Fundações; Instalação de Estaca; Prova de Carga Estática; Método dos Elementos Discretos; Particle Flow Code (PFC); Acoplamento Mecânico.

Abstract

Esposito, Ricardo Gurevitz Cunha; Vargas Júnior, Eurípedes do Amaral (Advisor); Danziger, Bernadete Ragoni (Co-advisor). Numerical Modelling of Pile Installation and Pile Load Test Using Discrete Elements. Rio de Janeiro, 2015. 212p. MSc Dissertation – Departamento de Engenharia Civil. Pontifícia Universidade Católica do Rio de Janeiro.

The disturbances experienced by the soil owing to the load applied to a deep foundation and its relative behavior consist of long time studied phenomena in civil engineering. Several factors such as the installation methods, the pile geometry, the interactions between soil and structure, the load-transfer mechanisms, the soil movements and the disturbances in the stress and compressibility fields present major challenges that have not yet been completely understood. Numerous advances have been observed throw-out the last decades, in order to investigate these behaviors starting from the different pile instrumentations, the use of calibration cameras and centrifuges and most recently the measurement of the stress and strain fields inside the soil mass in model tanks. Despite the advances the numerical modelling of those processes still faces major challenges. Due to simplified approach used by the Discrete Element Method to simulate large deformation and the dilant non-linear behavior of granular soils, it presents as an excellent tool to investigate these processes without further complications. The present work proposed to evaluate the different behaviors obtained with the variations of installation methods investigated as well as their effects in the results of the Pile Load Test. The disturbances were also evaluated in the different models considered and a basic method to achieve qualitative and quantitative comparisons was discussed. These studies were made possible with the help of the PFC2D and UDEC programs developed by Itasca co.

Keywords

Numerical Modelling; Foundation; Pile Installation; Static Load-Test; Discrete Element Method; Particle Flow Code (PFC); Mechanical Coupling.

Sumário

1.	Introdução	17
1.1	Motivação e Objetivo	17
1.2	Estrutura da Pesquisa	18
2.	Revisão Bibliográfica	20
2.1	Instalação e capacidade de carga em fundações profundas	20
2.1.1	Instalação do elemento de fundação	21
2.1.2	Teoria da Capacidade de Carga	23
2.1.3	Prova de carga estática	32
2.2	Método dos Elementos Discretos	37
2.2.1	Introdução	37
2.2.2	O programa Particle Flow Code (PFC)	40
2.2.3	Formulação do método dos elementos discretos	41
2.2.4	Geração do modelo	60
2.2.5	Relação entre micro e macro parâmetros	69
2.2.6	Comparação entre as condições de 2 e 3 dimensões	71
2.3	Aplicações do DEM para os mecanismos de penetração e	
prova c	le carga	73
3.	Descrição do trabalho experimental de Bernardes (1989)	90
4.	Apresentação dos resultados	96
4.1	Introdução	96
4.2	Calibração do modelo e parâmetros de contato	97
4.2.1	Distribuição granulométrica	97
4.2.2	Geração das amostras	99
4.2.3	Simulação do Ensaio biaxial	105
4.2.4	Considerações Gerais	112

4.3	Geração do modelo	114
4.3.1	Seleção do Volume Elementar Representativo	119
4.3.2	Avaliação dos diferentes modelos	122
4.3.3	Considerações gerais	128
4.4	Análise da instalação da estaca	130
4.4.1	Análise dos resultados da cravação	132
4.4.2	Condições antes dos ensaios de prova de carga	152
4.4.3	Considerações gerais	163
4.5	Prova de carga estática	166
4.5.1	Estaca rígida	168
4.5.2	Estaca Flexível	193
4.5.3	Considerações gerais	199
5.	Conclusões e sugestões para trabalhos futuros	202
5.1	Conclusões	202
5.2	Sugestões para trabalhos futuros	204
6.	Referências Bibliográficas	206

Lista de Figuras

Figura 2.1 - Esquema de equilíbrio de forças verticais para capacidade de	
carga axial última	25
Figura 2.2 – Superfícies de ruptura assumidas na base de fundações profundas	
(Vesic 1963)	29
Figura 2.3 – Valores de Nq para fundações profundas de seção circular ou	
quadrada (Vesic, 1975 Apud Décourt, 1998)	30
Figura 2.4 – Curvas de carga-tempo e recalque-tempo de diferentes	
procedimentos de carregamento em prova de carga (Velloso e Lopes 2010)	
- (a) Carregamento incremental lento (b) Carregamento incremental rápido	
(c) Velocidade de penetração constante (d) Método "do equilíbrio"	35
Figura 2.5 – Interpretação da curva carga-recalque – Critério da norma	
NBR 6122 (2010), adaptado de Velloso e Lopes (2010)	37
Figura 2.6 – Ciclo de Cálculo do PFC (adaptado de Itasca 2008)	42
Figura 2.7 - Notações de Contato (Itasca 2008)	44
Figura 2.8 - Determinação da direção normal do contato entre partícula e	
parede (Itasca 2008)	46
Figura 2.9 - Variação da densidade da amostra com número de tentativas de	
inserir partículas (adaptado de Cui e O'Sullivan 2003)	62
Figura 2.10 – Efeito do coeficiente de atrito entre estaca e partícula (Tanaka	
et al. 2000)	74
Figura 2.11 – Malha colorida observada nas análises de DEM (Jiang; Yu e	
Harris 2006)	76
Figura 2.12 – Campo de cinemático clássico (Jiang, Zhu e Harris 2008)	78
Figura 2.13 – Campo cinemático não-clássico (Jiang, Zhu e Harris 2008)	78
Figura 2.14 – Modelo de ensaio de resistência de fuste (Schmitt e Karzenbach	
2006)	79
Figura 2.15 – Rotação de partículas para estacas de ponta reta (obtido de	
Kinloch e O'Sullivan 2007) (a) – Condição perfeitamente rugosa (b) –	
Condição perfeitamente lisa	80

Figura 2.16 – Modelo e penetrômetro utilizados para as análises (retirado de	
Butlanska et al. 2009)	82
Figura 2.17 – Comparação entre resistência de ponta corrigidas (DEM) com	
valores de resistência de uma câmara de calibração experimental (retirado de	
Arroyo et al. 2011)	83
Figura 2.18 – Deslocamento das partículas no processo de cravação	
(Butlanska et al. 2014)	84
Figura 2.19 – Segundo invariante de distorções no processo de cravação	
(Butlanska et al. 2014)	84
Figura 2.20 - Refinamento de partículas - (a) Antes da cravação e (b) após a	
cravação (Mcdowell, Falagush e Yu, 2012)	85
Figura 3.1 – Desenho esquemático do tanque de areia utilizado (Bernardes,	
1989)	90
Figura 3.2 – Características gerais da Areia Hokksund (Leahy, 1984 apud	
Bernardes, 1989)	92
Figura 3.3 – Disposição das estacas no tanque de areia (Bernardes, 1989)	93
Figura 3.4 – Instrumentação utilizada nas estacas modelo nas provas de carga	
estáticas	94
Figura 3.5 Curvas de carga, na ponta e no topo da estaca, por deslocamento	
vertical para Estaca 01 profundidade de 0,7m (Bernardes, 1989)	95
Figura 4.1 - Distribuição granulométrica do modelo discreto	99
Figura 4.2 – Diferentes aglomerados utilizados (a) angulosidade 0 - partícula	
circular (b) angulosidade 0.2 – 2 partículas (c) angulosidade 0.5 – 2	
partículas (d) angulosidade 1.0 – 2 partículas (e) angulosidade 1.0 –	
3 partículas	101
Figura 4.3 - Disposição dos círculos de medição na amostra do ensaio biaxial	101
Figura 4.4 - Variação de porosidade com o coeficiente de atrito	102
Figura 4.5 - Variação da porosidade com o coeficiente de atrito para os	
modelos de 3002 e 6132 partículas circulares	103
Figura 4.6 – Orientação dos contatos (a) partículas circulares (3002) (b)	
partículas circulares (6132) (c) aglomerados - 2 partículas ang. 0,2 (d)	
aglomerados - 2 partículas ang. 0,5 (e) aglomerados - 2 partículas ang. 1,0 (f)	
aglomerados - 3 partículas ang. 1,0	104
Figura 4.7 - Resultados de tensão e deformação dos ensaios biaxiais	106

Figura 4.8 - Curvas de tensão e deformação das amostras de partículas	
circulares	108
Figura 4.9 – Avaliação de (a) módulo do deslocamento e (b) rotação	
acumulada, do aglomerado de 2 partículas e angulosidade de 0,2	109
Figura 4.10 – Avaliação de (a) módulo do deslocamento e (b) rotação	
acumulada, do aglomerado de 2 partículas e angulosidade de 0,5	110
Figura 4.11 – Avaliação de (a) módulo do deslocamento e (b) rotação	
acumulada, do aglomerado de 2 partículas e angulosidade de 1,0	110
Figura 4.12 – Avaliação de (a) módulo do deslocamento e (b) rotação	
acumulada, do aglomerado de 3 partículas e angulosidade de 1,0	111
Figura 4.13 – Avaliação do módulo do deslocamento das amostras de	
partículas circulares (a) ~3000 Partículas (b) ~6000 Partículas	111
Figura 4.14 – Dimensões do modelo de referência e estaca utilizados	116
Figura 4.15 – Curvas granulométricas para a areia Hokksund experimental e	
nos modelos discretos	118
Figura 4.16 – Distribuição dos Círculos de Medição para a escolha do	
tamanho apropriado (a) – 10mm de raio e (b) 140mm de raio	120
Figura 4.17 - Valores normalizados dos parâmetros do Modelo 01	121
Figura 4.18 - Coeficiente de variação dos parâmetros do Modelo 01	121
Figura 4.19 - Valores normalizados dos parâmetros do Modelo 02	121
Figura 4.20 - Coeficiente de variação dos parâmetros do Modelo 02	121
Figura 4.21 - Valores normalizados dos parâmetros do Modelo 03	121
Figura 4.22 - Coeficiente de variação dos parâmetros do Modelo 03	121
Figura 4.23 – Distribuição dos Círculos de medição para avaliação dos	
modelos	122
Figura 4.24 – (a) Distribuição da porosidade normalizada e (b) orientação de	
contatos do Modelo 01	123
Figura 4.25 – (a) Distribuição da porosidade normalizada e (b) orientação de	
contatos do Modelo 02	124
Figura 4.26 – (a) Distribuição da porosidade normalizada e (b) orientação de	
contatos do Modelo 03	124
Figura 4.27 - Variações de Tensões e Coeficiente de Empuxo nos modelos	126
Figura 4.28 – Verificação do tamanho do CM nas tensões e coeficiente de	
empuxo dos modelos	127

Figura 4.29 - Orientação dos contatos do Modelo 03 com partículas menores	128
Figura 4.30 – Distribuição dos Círculos de Medição para (a) início da	
instalação da estaca e (b) profundidade de 700 mm	131
Figura 4.31 - Divisão do domínio para análise	132
Figura 4.32 - Curva de resistência de ponta do ensaio de referência	135
Figura 4.33 - Curva de resistência de fuste do ensaio de referência	136
Figura 4.34 - Variação da tensão horizontal nas bordas do ensaio de	
referência	137
Figura 4.35 - Variação da tensão vertical no fundo do modelo do ensaio de	
referência	137
Figura 4.36 – Distribuição de porosidade no modelo após a instalação	138
Figura 4.37 - Razão da porosidade na zona 4 do modelo de referência	138
Figura 4.38 - Deslocamento horizontal das partículas no ensaio de referência	140
Figura 4.39 - Deslocamento vertical das partículas no ensaio de referência	140
Figura 4.40 - Deslocamento vertical binário das partículas no ensaio de	
referência	141
Figura 4.41 - Comparação da resistência de ponta na cravação - Rotação das	
partículas	142
Figura 4.42 - Comparação do atrito lateral na cravação - Rotação das	
partículas	143
Figura 4.43 - Comparação da variação de tensão horizontal na Zona 4	
- Rotação das partículas	144
Figura 4.44 - Comparação da variação porosidade na Zona 4 - Rotação das	
partículas	144
Figura 4.45 - Comparação da resistência de ponta – Velocidade de cravação	145
Figura 4.46 - Comparação do atrito lateral – Velocidade de cravação	146
Figura 4.47 - Comparação da resistência de ponta na cravação – Atrito	
Estaca-Solo	147
Figura 4.48 - Comparação da resistência de ponta na cravação – Tamanho da	
partícula	149
Figura 4.49 - Comparação do atrito lateral na cravação – Tamanho	
da partícula	150
Figura 4.50 – Deslocamento vertical das partículas – Modelo 03 – 30D	150

Figura 4.51 – Deslocamento vertical binário das partículas - Modelo 03 - 30D	151
Figura 4.52 – Influência da velocidade de descarregamento no valor de carga	
total inicial	153
Figura 4.53 – Valor do critério de equilíbrio para cada velocidade de	
descarregamento	153
Figura 4.54 – Estado de tensões na Zona 4 do modelo após o equilíbrio de	
forças (a) Tensão Média (b) Tensão Desviadora	156
Figura 4.55 – Estado de tensões na Zona 5 do modelo após o equilíbrio de	
forças (a) Tensão Média (b) Tensão Desviadora	156
Figura 4.56 – Alteração da orientação dos contatos devida a instalação da	
estaca (a) partículas com rotação (b) partículas sem rotação	157
Figura 4.57 – Perfil de variação da tensão média nas diferentes formas de	
instalação - Zona 4	158
Figura 4.58 – Perfil de variação da tensão média nas diferentes formas de	
instalação - Zona 5	159
Figura 4.59 – Perfil de variação de porosidade nas diferentes formas de	
instalação - Zona 4	160
Figura 4.60 – Perfil de variação de porosidade nas diferentes formas de	
instalação - Zona 5	160
Figura 4.61 – Perfil de variação de porosidade nas diferentes formas de	
instalação - Zona 1	161
Figura 4.62 – Variação da tensão desviadora para diferentes condições de	
atrito estaca – partículas	162
Figura 4.63 – Influência da velocidade na simulação do ensaio de prova de	
carga – Resistência de ponta	166
Figura 4.64 – Influência da velocidade na simulação do ensaio de prova de	
carga – Resistência de fuste	167
Figura 4.65 – Curva de resistência de ponta da simulação numérica e	
resultado experimental	169
Figura 4.66 Curva de resistência de fuste da simulação numérica e resultado	
experimental	170
Figura 4.67 – Influência da rotação na curva de resistência de ponta	171
Figura 4.68 – Influência da rotação na curva de resistência de fuste	172

Figura 4.69 – Análise do perfil de tensão horizontal	173
Figura 4.70 – Influência do atrito entre estaca e partículas na curva de	
resistência de ponta	174
Figura 4.71 – Influência do atrito entre estaca e partículas na curva de	
resistência de fuste	174
Figura 4.72 – Curva de resistência de fuste do modelo com velocidade de	
instalação de 2cm/s	176
Figura 4.73 – Disposição das partículas quando do recalque de 5mm	
- Acréscimo de força vertical no fuste de 0,0 kN	177
Figura 4.74 – Disposição das partículas quando do recalque de 6mm	
- Acréscimo de força vertical no fuste de 0,16 kN	177
Figura 4.75 – Curvas de resistência de ponta – Métodos de instalação	178
Figura 4.76– Curvas de resistência de fuste - Métodos de instalação	179
Figura 4.77 – Influência dos modelos com rotação livre e inibida na	
instalação nas curvas de resistência de ponta	180
Figura 4.78 – Influência dos modelos com rotação livre e inibida na	
instalação nas curvas de resistência de fuste	181
Figura 4.79 – Influência do atrito de instalação nas curvas de resistência de	
ponta	182
Figura 4.80 – Influência do atrito de instalação nas curvas de resistência de	
fuste	183
Figura 4.81 – Comparação dos demais fatores nas curvas de resistência de	
ponta	184
Figura 4.82 – Comparação dos demais fatores nas curvas de resistência	
de fuste	184
Figura 4.83 – Curvas de resistência de ponta - simulação de prova de carga	
até 15mm de recalque	187
Figura 4.84 – Curva de resistência de ponta com rotação livre – 15mm de	
recalque	187
Figura 4.85 - Escala de cores utilizada na avaliação do módulo de	
deslocamento	188
Figura 4.86 - Avaliação dos deslocamentos do Ensaio de Referência	
(a) Módulo de deslocamento 2mm(b) Vetor de deslocamento 15mm	189

Figura 4.87 - Avaliação dos deslocamentos do ensaio PL-PL-PL	
(a) Módulo de deslocamento 2mm(b) Vetor de deslocamento 15mm	190
Figura 4.88 - Avaliação dos deslocamentos do modelo com rotação inibida	
na instalação(a) Módulo de deslocamento 2mm(b) Vetor de deslocamento	
15mm	191
Figura 4.89 - Avaliação dos deslocamentos do ensaio com rotação livre (a)	
Módulo de deslocamento 2mm(b) Vetor de deslocamento 15mm	192
Figura 4.90 - Malha do programa UDEC	194
Figura 4.91 - Curvas de resistência com acoplamento mecânico	
(a) Resistência de ponta (b) Resistência de fuste	196
Figura 4.92 - Curvas de compressão da estaca	197
Figura 4.93 – Análise da condição quasi-estática (a) Força vertical resultante	
(b) Diferença entre as velocidades de topo e base	198

Lista de Tabelas

Tabela 2.1 – Resumo dos trabalhos considerados	87
Tabela 3.1 - Propriedades da areia obtida com o orifício de 16 mm	91
Tabela 3.2 – Resumo das propriedades da Estaca modelo	92
Tabela 4.1 - Comparação entre os Coeficientes de uniformidade	99
Tabela 4.2 - Características de geração das amostras do ensaio biaxial	102
Tabela 4.3 - Parâmetros de contato utilizados no processo de calibração e	
parâmetros de resistência das amostras	107
Tabela 4.4 - Parâmetros de contato finais da amostra de partículas circulares	113
Tabela 4.5 - Parâmetros de contato utilizados nas paredes dos modelos	115
Tabela 4.6 – Dimensões do modelo	116
Tabela 4.7 - Tempo de geração dos modelos considerados	118
Tabela 4.8 – Resumo das características dos diferentes modelos considerados	119
Tabela 4.9 - Porosidade média de cada modelo	125
Tabela 4.10 - Resumo das propriedades da estaca rígida	130
Tabela 4.11 - Resumo das condições de instalação com velocidade constante	
analisadas	133
Tabela 4.12 - Tempo de simulação para diferentes velocidades	154
Tabela 4.13 – Tensões residuais antes dos ensaios de prova de carga	163
Tabela 4.14 – Resumo das influências das condições analisadas no processo	
de instalação da estaca	164
Tabela 4.15 – Resultados da retroanálise de resistência de fuste	175
Tabela 4.16 – Comparação da tensão horizontal média nas estacas escavadas	
e Modelo de referência antes da simulação de prova de carga	179
Tabela 4.17 – Comparação da tensão horizontal média nas estacas dos	
modelos com e sem rotação livre antes da simulação de prova de carga	181
Tabela 4.18 – Comparação do tempo computacional da simulação de prova	
de carga considerando o acoplamento	195