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Abstract

Lima, Guilherme Augusto Ferreira; Soares, Luiz Fernando Gomes (Advisor).
A synchronous virtual machine for multimedia presentations. Rio de
Janeiro, 2015. 134p. PhD Thesis. Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Current high-level multimedia languages are limited. Their limitation stems not
from the lack of features but from the complexity caused by the excess of them and,
more importantly, by their unstructured definition. Languages such as NCL, SMIL,
and HTML define innumerable constructs to control the presentation of audiovisual
data, but they fail to describe how these constructs relate to each other, especially in
terms of behavior. There is no clear separation between basic and derived constructs,
and no apparent principle of hierarchical build-up in their definition. Users may
not need such principle, but it is indispensable for the people who define and
implement these languages: it makes specifications and implementations manageable
by reducing the language to a set of basic (primitive) concepts. In this thesis, a set of
such basic concepts is proposed and taken as the language of a virtual machine for
multimedia presentations. More precisely, a novel high-level multimedia language,
called Smix (Synchronous Mixer), is presented and defined to serve as an appropriate
abstraction layer for the definition and implementation of higher level multimedia
languages. In defining Smix, that is, choosing a set of basic concepts, this work
strives for minimalism but also aims at tackling major problems of current high-level
multimedia languages, namely, the inadequate semantic models of their specifications
and unsystematic approaches of their implementations. On the specification side,
the use of a simple but expressive synchronous semantics, with a precise notion of
time, is advocated. On the implementation side, a two-layered architecture that eases
the mapping of specification concepts into digital signal processing primitives is
proposed. The top layer (front end) is the realization of the semantics, and the bottom
layer (back end) is structured as a multimedia digital signal processing dataflow.

Keywords

Smix; multimedia synchronization; synchronous languages; synchrony
hypothesis; multimedia dataflow; virtual machine; NCL; SMIL
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Resumo

Lima, Guilherme Augusto Ferreira; Soares, Luiz Fernando Gomes. Uma
máquina virtual síncrona para apresentações multimídia. Rio de Janeiro,
2015. 134p. Tese de Doutorado. Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

As linguagens multimídia de alto-nível atuais são limitadas. Suas limitações
decorrem não da ausência de funcionalidades mas da complexidade causada pelo
excesso delas e, especialmente, da sua definição não-estruturada. Linguagens como
NCL, SMIL e HTML definem diversas construções para controlar a apresentação
de dados audiovisuais, porém falham ao não descreverem precisamente como essas
construções relacionam-se umas com as outras, particularmente em termos de com-
portamento. Não há uma separação clara entre construções básicas e construções
derivadas; nem um princípio aparente de estruturação hierárquica na sua definição.
Usuários dessas linguagens podem dispensar tal princípio, mas ele é imprescindível
para as pessoas que definem e implementam essas linguagens: o princípio de estru-
turação hierárquica torna as especificações e implementações controláveis através
da redução da linguagem a um conjunto de conceitos básicos (primitivos). Nesta
tese, um conjunto de tais conceitos básicos é proposto e adotado como a linguagem
de uma máquina virtual para apresentações multimídia. Mais precisamente, uma
nova linguagem multimídia de alto-nível, chamada Smix (Synchronous Mixer), é
apresentada e definida de forma a servir como camada de abstração adequada para a
definição e implementação de linguagens multimídia de nível superior. Ao definir a
linguagem Smix, isto é, ao escolher um conjunto de conceitos básicos, este trabalho
visa o minimalismo mas ao mesmo tempo trata alguns dos principais problemas das
linguagens multimídia de alto-nível atuais, a saber, os modelos semânticos inadequa-
dos de suas especificações e as abordagens não-sistemáticas de suas implementações.
No lado da especificação, sustenta-se o uso de uma semântica síncrona simples
porém expressiva, com uma noção temporal precisa. No lado da implementação,
propõe-se uma arquitetura de duas camadas que facilita o mapeamento dos conceitos
da especificação em primitivas de processamento digital de sinais. A camada superior
(front end) é a realização da semântica e a camada inferior (back end) estrutura-se
como um dataflow para processamento digital de sinais multimídia.

Palavras-chave

Smix; sincronização multimídia; linguagens síncronas; hipótese síncrona;
dataflow multimídia; máquina virtual; NCL; SMIL
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There were once two Swiss watchmakers named Bios and Mekhos, who made very fine and
expensive watches. [. . . ] Although their watches were in equal demand, Bios prospered, while
Mekhos just struggled along; in the end he had to close his shop and take a job as a mechanic with
Bios. [. . . ] The people in town argued for a long time over the reasons for this development and each
had a different theory to offer, until a true explanation leaked out and proved to be both simple and
surprising.

The watches they made consisted of about one thousand parts each, but the two rivals had
used different methods to put them together. Mekhos had assembled his watches bit by bit—rather
like making a mosaic floor out of small coloured stones. Thus each time when he was disturbed in his
work and had to put down a partly assembled watch, it fell to pieces and he had to start again from
scratch.

Bios, on the other hand, had designed a method of making watches by constructing, for a start,
sub-assemblies of about ten components, each of which held together as an independent unit. Ten of
these sub-assemblies could then be fitted together into a sub-system of a higher order; and ten of these
sub-systems constituted the whole watch. This method proved to have two immense advantages.

In the first place, each time there was an interruption or a disturbance, and Bios had to put
down, or even drop, the watch he was working on, it did not decompose into its elementary bits;
instead of starting all over again, he merely had to reassemble that particular sub-assembly on which
he was working at the time; so that at worst (if the disturbance came when he had nearly finished the
sub-assembly in hand) he had to repeat nine assembling operations, and at best none at all. Now it is
easy to show mathematically that if a watch consists of a thousand bits, and if some disturbance occurs
at an average of once in every hundred assembling operations—then Mekhos will take four thousand
times longer to assemble a watch than Bios. Instead of a single day, it will take him eleven years.
[. . . ] A second advantage of Bios’ method is of course that the finished product will be incomparably
more resistant to damage, and much easier to maintain, regulate and repair, than Mekhos’ unstable
mosaic of atomic bits.

— A. Koestler [1, pages 45–47], elaborating on a parable by H. A. Simon.
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1
Introduction

Current high-level multimedia languages are limited. Their limitation stems not from
the lack of features but from the complexity caused by the excess of them and, more
importantly, by their unstructured definition. Languages such as NCL1, SMIL, and
HTML define innumerable constructs to control the presentation of audiovisual data,
but they fail to describe how these constructs relate to each other, especially in terms
of behavior. There is no clear separation between basic and derived constructs, and
no apparent principle of hierarchical build-up in their definition. Users may not need
such principle, but it is indispensable for the people who define and implement these
languages: it makes specifications and implementations manageable by reducing the
language to a set of basic (primitive) concepts.

In this thesis, a set of such basic concepts is proposed and taken as the language
of a virtual machine for multimedia presentations. More precisely, a novel high-level
multimedia language, called Smix (Synchronous Mixer), is presented and defined to
serve as an appropriate abstraction layer for the definition and implementation of
higher level multimedia languages. In defining Smix, that is, choosing a set of basic
concepts, this work strives for minimalism but also aims at tackling major problems
of current high-level multimedia languages, namely, the inadequate semantic models
of their specifications and unsystematic approaches of their implementations. On the
specification side, the use of a simple but expressive synchronous semantics, with
a precise notion of time, is advocated. On the implementation side, a two-layered
architecture that eases the mapping of specification concepts into digital signal
processing primitives is proposed. The top layer (front end) is the realization of
the semantics, and the bottom layer (back end) is structured as a multimedia digital
signal processing dataflow.

This thesis is organized as follows. Chapter 2 introduces the ideas that underlie
the design and implementation of Smix—a synchronous semantics in the front end
and a multimedia dataflow in the back end. Chapter 3 gives an overview of the
Smix language and describes its intuitive semantics. Chapter 4 presents the formal
semantics of Smix and derives its main properties. Chapter 5 introduces the Smix
interpreter, or Smix virtual machine, and details its architecture and implementation.
Chapter 6 discusses the conversion of NCL and SMIL into Smix. Finally, Chapter 7
draws the conclusions of this thesis.

1For simplicity, the definition of acronyms is often omitted. See page 12 for the complete list
acronyms together with their definitions.

15
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1.1 Preliminaries 16

The rest of this chapter discusses major problems of current high-level multi-
media languages and poses the question that guides this research. Before delving
into particular problems, though, some definitions are in order.

1.1
Preliminaries

A high-level multimedia language is a domain-specific language for the construction
of interactive multimedia presentations. Its programs describe how audiovisual data
should be presented and how external events, such as the passage of time or user
interaction, affect their presentation. This work is mainly concerned with media-
agnostic languages, such as NCL [2], SMIL [3], and to a lesser extent, HTML.2

These languages have constructs to describe how the combination of individual media
objects (texts, images, and videos) produces an interactive multimedia presentation,
but not to describe the objects themselves. Most of the proposals of this thesis,
however, can be adapted to more specialized languages, such as SVG [8], XMT [9],
and X3D [10], which also deal with the description of two-dimensional vector
graphics, in case of SVG, and three-dimensional objects, in case of XMT and X3D.

Other common characteristics of high-level multimedia languages are their
level of abstraction and intended users. Their programming constructs, usually declar-
ative, are modeled after high-level concepts of the application domain and their target
users have minimum knowledge of multimedia processing. When traditional comput-
ing functions are required, these languages can be used in conjunction with general
purpose scripting languages, such as Lua [11] or JavaScript (ECMAScript) [12].
Note that despite lacking general computing functions, high-level multimedia lan-
guages are considered full-fledged programming languages, as opposed to data
formats such as PDF [13] or ODF [14]. Their programs are flexible intermediate
representations that can be written and read by humans using plain text editors [15].

High-level multimedia languages are normally interpreted. Their implementa-
tions evaluate programs directly without previously compiling them into lower level
language programs. The interpreter (also called player or formatter—the latter in the
case of languages that use the term “document” to refer to their programs, such as
NCL, SMIL, and HTML) takes as input a high-level specification and produces as
output a corresponding multimedia presentation. More precisely, the interpreter maps
the high-level instructions of input programs into low-level digital signal processing

2NCL is the standard declarative language for interactive applications in the Brazilian digital
terrestrial television system [4] and an ITU-T recommendation for IPTV applications [5]. SMIL is a
widely adopted W3C recommendation [6] for interactive multimedia presentations. And HTML is a
W3C recommendation [7] (and core Web technology) for typesetting hyperlinked text together with
images, and more recently, audio and video.
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1.2 Specification problems 17

operations and applies these operations timely onto the input audiovisual signals to
produce the desired output, namely, the resulting audiovisual signal that constitutes
the multimedia presentation.

The requirement of time is particularly important for high-level multimedia
languages, so much that their interpreters are commonly regarded as soft real-time
systems: The correctness of their computation depends not only on the logical
correctness of the results produced but also on the time (deadline) at which these
results are produced [16]. On a hard real-time system, the failure to meet deadlines is
unacceptable since it may lead to catastrophic consequences—consider, for example,
the costs of failures in air-traffic or industrial-process control systems. On a soft real-
time system, which is normally the case of multimedia systems, meeting deadlines
is desirable but not mandatory, the main risk being that of frustrated users [17].

To do its job the interpreter must follow a precise specification. Unsurpris-
ingly, the specification of a high-level multimedia language is similar to that of
any formal language. It consists of two parts: syntax and semantics. The syntax
part defines the form of valid programs, that is, the properties that a string of text
must have to be considered a well-formed program of the language. The semantics
part defines how valid programs are evaluated, that is, the meaning (behavior) of
each syntactical construct of the language and how these can be combined into
meaningful programs. Besides syntax and semantics, some authors attach an extra
part to language specifications, called pragmatics, which alludes to the subjective
aspects of a programming language, for example, its utility, scope, psychological
effects on users, etc. This work is mainly concerned with syntax and semantics, but
issues of language pragmatics are also briefly discussed.

1.2
Specification problems

With the exception of HTML, all of the aforementioned high-level multimedia lan-
guages, namely, NCL, SMIL, SVG, XMT, and X3D, are XML-based [18] and thus
have a precise syntax, to the extent document type definitions (DTDs) and schema
languages, such as XML Schema [19, 20] or RELAX NG [21], are concerned. But
their semantics, that is, the meaning of their elements and attributes and how these
interact with each other to specify a multimedia presentation, is defined informally
via long runs of technical prose. As a consequence, their semantic specifications are
often incomplete or ambiguous, and in some cases, inconsistent. These are formal

problems in the sense that they arise from specifications’ form—in effect, from
loosely structured definitions and from the lack of formal semantic models endorsed
by the specifications.

DBD
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1.2 Specification problems 18

One can find in the literature many formal semantics for NCL and SMIL (but
not for HTML), for example, [22, 23, 24, 25, 26, 27, 28, 29, 30]. Most of these
works, however, are concerned not with the implementation of interpreters but with
static validation of program semantics, normally as a case study within a larger
system of formal verification. Their models are complex and impractical, especially
if real-time performance is needed. Moreover, since these formalizations are neither
maintained nor endorsed by the people who design and implement these languages,
they often contain false assumptions about program behavior and tend to become
obsolete as the official (informal) specification evolves. There is another common
problem related not to the form but to the content of such specifications: complexity.

Current specifications of high-level multimedia languages are complex. Most
of these languages are over-engineered; their specifications try to accommodate many,
sometimes conflicting, interests (read features). Take NCL, SMIL, and HTML, for
example. These are all international recommendations, defined by heterogeneous
groups of people, such as end-users, application programmers, browser vendors,
etc., whose vaguely related interests must somehow be condensed into a coher-
ent specification.3 As a rough measure of complexity, consider the size of such
specifications—keep in mind that these texts consist mostly of normative definitions.
The 2011 ITU-T recommendation for NCL [32], for example, has 112 pages, which
is a small number when compared to the 282 pages of the ABNT norm for NCL [4],
the 518 pages of the W3C recommendation for SMIL 3 [6], or the 1031 pages of the
W3C recommendation for HTML 5 [7].4

Two important sources of specification complexity are the unrestricted applica-
tion domain (scope) of the language and the undisciplined proliferation of concepts
in its semantic model. The tendency is to enlarge the application domain with
each new language version. Once old problems are solved new problems arise and
“must” be dealt with, which usually means the introduction of new constructs into
the language or, less often, of new concepts into its semantic model. If care is not
taken, especially if the domain boundaries are not precisely identified and respected,
and if the introduction of new constructs and concepts is not done in a structured,
controlled manner, what started as a small, coherent specification may end up as a
big lump of incompatible definitions. The specification becomes a burden for users
and implementors, causes programming errors, and leads to bloated, incomplete, and
unreliable implementations.5

3See [31] for an account of the tortuous standardization process of HTML 5 and its inevitably
complex result.

4Since the last two documents have no page boundaries, as they are plain HTML files, their page
counts were calculated assuming a ratio of 408 words per page, which is the average ratio of the first
two documents.

5The importance of manageable, unambiguous specifications cannot be overstated. In 1976,
E. W. Dijkstra [33, page 202] described what was then the “sad” state of programming systems:
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Another significant source of complexity is the nondeterminism induced by
some specifications. A system is said to be nondeterministic if when fed with the
same input it can produce different outputs. Nondeterminism is generally undesirable
and should not be enforced by specifications. First, as put by A. Benveniste and
G. Berry [34, page 1273], because “there is no reason the engineer should want [his
system] to behave in some unpredictable manner”; and second, because deterministic
systems decompose better and are much easier to specify, analyze, and debug than
nondeterministic ones [35]. Despite these advantages some specifications do induce
nondeterminism. In NCL 3.0, for instance, the order of evaluation of links and
parallel actions is necessarily nondeterministic: both depend on an arbitrary choice
by the interpreter.6

Sometimes nondeterministic behavior is caused not by an explicit requirement
in the specification, but by some unspecified or ill-defined behavior. Take, for exam-
ple, the notion of time, which is central to multimedia. Even on a conceptual level
most high-level multimedia languages treat time as something external to the system.
Its representation and manipulation can be influenced by physical phenomena, such
as processing or communication delays, which are unpredictable or implementation
dependent, and which can thus lead to nondeterministic behavior. In fact, nondeter-
minism is just one of the consequences of the use of an imprecise notion of time in
specifications. Another consequence is dyssynchrony—the interpreter’s inability to
maintain the temporal relations between audiovisual data, established intrinsically or
extrinsically by the input program, in the resulting multimedia presentation. Dyssyn-
chrony is partly a specification problem and partly an implementation problem.
Specifications cause dyssynchrony in implementations when they fail to answer what
time is and how the constructs of the language affect and are affected by it.

The use of imprecise time models also precludes the correct definition of
natural time operations, such as temporal jumps, playback speed changes, and
reverse playback, which despite being supported by most audio and video formats,
are unsupported by some high-level multimedia languages (for example, NCL) or
come with undesirable side-effects or limitations (for example in HTML 5, where

Since then [the time when specifications were unambiguous and understandable]
we have witnessed the proliferation of baroque, ill-defined and, therefore, unstable
software systems. Instead of working with a formal tool, which their task requires,
many programmers now live in a limbo of folklore, in a vague and slippery world, in
which they are never quite sure what the system will do to their program. Under such
regretful circumstances the whole notion of a correct program—let alone a program
that has been proved to be correct—becomes void. What the proliferation of such
systems has done to the morale of the computing community is more than I can
describe.

These words, written almost forty years ago, still ring true today—especially when one thinks of
contemporary high-level multimedia languages.

6This behavior was fixed in NCL 3.1 [36].
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they cannot be applied to compositions). Here SMIL is an exception. SMIL 3
supports temporal jumps, speed changes, and reverse playback of media objects
and compositions. Temporal jumps occur implicitly, as a consequence of hyperlink
traversal or synchronization constraints defined between objects and compositions,
while changes in playback speed or direction (forward or backward) can be requested
explicitly via time manipulation attributes. Moreover, SMIL 3 defines attributes that
hint to the interpreter the degree of synchronization that should be enforced when
playing a given object or composition. Although the specification of timing and
synchronization in SMIL 3 is extensive and certainly captures relevant scenarios,
at the same time this specification is unduly complex—it is not clear if it can
be implemented in a systematic way—and its model, namely, that of dynamic
constraint relations between time intervals, is subject to inconsistencies that may not
be detectable statically, that is, without simulating the program’s execution.

In sum, the specifications of current high-level multimedia languages have the
following problems:
• Incompleteness, ambiguity, and inconsistency (form);
• Complexity (content);
• Nondeterminism; and
• Inadequate notion of time.

1.3
Implementation problems

To a greater or lesser degree, each of the previous specification problems affects
the implementation of high-level multimedia language interpreters. Implementation
problems, however, begin long before coding. The first challenge is methodological:
How to map the high-level prescriptive rules of specifications into the low-level
digital signal processing concepts and operations offered by the target system?7

Here the usual answer is to push all language concepts into a monolithic layer of
code that handles the concept mapping in a single step. In Web browsers, such
as Mozilla Firefox [37] or Google Chrome [38], for example, this layer is called
rendering engine [39]; its input is an HTML document and its output is a series of
calls to sound, graphics, and windowing primitives through adapter APIs that hide
the idiosyncrasies of the platform. Besides rendering per se, the rendering engine is
also in charge of parsing HTML code into DOM [40], evaluating and propagating
CSS [41] rules, and dispatching the execution of JavaScript code [42].

7For justifiable reasons, such mapping is usually omitted from specifications. Specifications
should not impose a particular implementation; they must limit themselves to the description of valid
inputs and expected system behavior—a principle that is especially important in case of specifications
implemented by competing vendors trying to “add value” to their product by differentiation.
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A similar monolithic, single-step approach is used by PUC-Rio’s Ginga-NCL
NCL 3.0 player [43] and CWI’s Ambulant SMIL 3 player [44], the main implemen-
tations of NCL 3.0 and SMIL 3. The problem with this monolithic approach is that
it causes the migration of language concepts, even in cases where these concepts are
redundant or inadequate for the task at hand, to the model used by the interpreter
to render and control the presentation. For example, in PUC-Rio’s Ginga-NCL
code one can find classes that represent redundant constructs of the language, such
as the elements <region> and <descriptor>, which play no essential role from
a semantics point of view and which therefore could be safely removed from the
interpreter’s model if these were replaced by equivalent combinations of more basic
constructs, namely, <property> elements [45]. The result of this redundancy is
an increase in code complexity, which leads to code that is hard to understand and
maintain, and consequently, to inefficient and unreliable implementations.

A related problem is the inflexibility of current interpreter architectures. It
is hard to embed these interpreters into other programs, that is, to use them as
software libraries, and it is equally hard to support multiple languages, such as
NCL, SMIL, HTML, or dialects (profiles) of these languages, under a common
implementation. These difficulties can be attributed to (1) the monolithic nature
of current architectures, as discussed in the previous paragraph, (2) the lack of a
precise (sufficiently general and decoupled) definition of interpreter’s input and
output, and (3) a poor, or non-existent, approach to language integration—though
some of these languages (in particular, NCL) were explicitly designed to ease the
integration of multiple languages under a single system. Current approaches to
language integration are not integrative. Interpreters are often bundled together via
operating system mechanisms for inter-process communication. For instance, a
common technique used by the host interpreter to get the visual output of a guest
(embedded) interpreter is to trick the guest to render its visual output onto a hidden
OS window which is mapped into the host’s address space. In most cases both, host
and guest, share no code—they rely on completely separate software stacks for audio
and video processing—and synchronization between them is only tentative.

The implementation problems discussed so far, complexity and inflexibility,
have a static nature: they stem from static properties of the interpreter’s code, namely,
its structure and organization. The discussion now turns to two implementation
problems having a more dynamic nature: dyssynchrony and lack of advanced run-
time operations. As stated in Section 1.2, the notion of time is central to multimedia
systems. Still, high-level multimedia language interpreters often rely on physical
time values, such as those obtained through the POSIX clock_gettime function8,
to represent time and schedule timeouts. But physical time values are unreliable;

8The clock_gettime function returns the number of nanoseconds since some point in the past.
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processing and communication delays can influence them in unpredictable ways,
leading to dyssynchrony in both levels, logical and physical. Logical dyssynchrony
affects the model used by the interpreter to hold the presentation state, while physical
dyssynchrony affects the resulting presentation, that is, the audiovisual signal output
by the interpreter. Unsurprisingly, the former tends to cause the latter. Moreover,
logical dyssynchrony makes it difficult for programmers to reason about time and can
lead to nondeterminism, while physical dyssynchrony can render the presentation
unintelligible.9

To make matters concrete, consider the following example of logical dyssyn-
chrony. Let P be a program written in NCL, SMIL, or HTML, such that, as soon
as it starts, it runs n instances of a script that prints the total time passed since P

started.10 In principle, all n instances should execute simultaneously at instant 0,
each taking zero time to run and print its result, which is essentially what P’s code is
trying to achieve. Thus the printout should consist of n rows containing the number 0.
In practice, it is even conceivable that that can happen for a small n. As n gets
larger, however, chances are that numbers on consecutive rows start to diverge by
some unpredictable factor. Put another way, as n gets larger, each instance of the
script starts to perceive a slightly different global time and becomes dyssynchronized
in relation to the other instances. This happens because the code of each instance
takes a small but significant time to execute—time passes while each instance is
executing, so delays accumulate and instances that are executed later experience a
greater time skew. If the printout produced by the program is considered an output,
for example, if those time values are used to schedule the presentation of images,
then the dyssynchrony is not only logical but also physical since it reaches the output
devices and can be perceived by users.

The second problem of dynamic nature of current interpreters is their poor
support for advanced run-time operations. Once the interpreter is started, it is difficult
to query or alter the state of the running program. Such queries and alterations are
essential for program monitoring (see [48]), debugging, live coding (on-the-fly
programming), and for implementing advanced operations such as program state
dumping and restoring. Although NCL, SMIL, and HTML define APIs for run-time
program manipulation, these APIs have limitations and are generally not exposed to
external programs—they are not an official part of the interpreter’s API. In SMIL
and HTML, for instance, one can use the document’s DOM to query and manipulate
the state of the running program, and in NCL 3.0, one can send commands to modify

9See [46] for a recent account of synchrony problems in implementations of HTML 5 video.
10In NCL, for example, these instances could be implemented as n media objects, each anchored

to the start of P’s body and each containing an NCLua [47] script that when started calls the function
event.uptime and prints its result. Similar solutions can be devised for SMIL and HTML using
JavaScript.
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the running program either via NCLua scripts or via the main transport stream (in
the case of digital television applications), but state queries are not supported. CWI’s
Ambulant SMIL player goes one step further and implement SMIL State, an API
that can be used by SMIL code and external programs to query and manipulate the
state of the presentation [49]. Similarly, some versions of PUC-Rio’s Ginga-NCL
player store the presentation state in a graph structure, called HTG, which allows for
some external control via state query and time manipulation APIs [50].

The current APIs for run-time program manipulation, however, are not flexible
enough. Take debugging, for example. Using these APIs it is impossible to imple-
ment classic debugging mechanisms, such as (1) source stepping, that is, advance
the presentation one step at a time while watching the results in real-time on screen;
(2) breakpoints and watchpoints, that is, install points in code or conditions that when
reached or satisfied make the interpreter halt and enter in debugging mode; (3) state
dumping and restoring, that is, dump at any moment the state of the presentation to a
file and later restore it from that file; or (4) event injection and logging, that is, simu-
late or log the occurrence of arbitrary events. There are also the problems induced by
self-modifying code, in case of APIs that allow for program code modification, such
as those of NCL, SMIL, and HTML. Self-modifying code makes the program logic
complex, increasing the probability of programming errors. Moreover, since code
can change at any time, it makes formal reasoning about program behavior harder, if
not impossible, which encumbers program verification and optimization. Note that
most of these limitations are caused by the lack of a precise notion of presentation
state and of expressive and well-defined operations to query and modify it.

In sum, the implementations of current high-level multimedia languages have
the following problems:
• Complexity;
• Inflexibility;
• Dyssynchrony; and
• Lack of advanced run-time operations.

1.4
Research question

Given the problems described in Sections 1.2 and 1.3,

How can one design and implement a high-level multimedia language

in a structured and controlled way while, at the same time, avoiding or

at least minimizing these problems?

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



1.4 Research question 24

More specifically,

How can one design an adequate semantics for a high-level multimedia

language, that is, one sufficiently expressive but also simple, unambigu-

ous, consistent, deterministic, and with a precise notion of time?

And, assuming an adequate semantics,

How can one realize it in a systematic way to overcome the faults and

limitations of current implementations, namely, complexity, inflexibility,

dyssynchrony, and poor support for run-time operations?

These are the questions that the rest of this thesis tries to answer. And by
answering them, even partially or idiosyncratically, this work aims to improve the
design and implementation of current (and future) high-level multimedia languages
and, consequently, to give to users of these languages better tools to represent and
communicate audiovisual ideas.
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2
Method

This thesis answer to the questions of Section 1.4 has two strands. On the spec-
ification side, the use of a simple but expressive synchronous formalism, with a
precise notion of logical time and well-defined time operations, is advocated. On
the implementation side, the use of a two-tiered architecture, with front and back
end parts, is proposed. The front end, or synchronous language kernel, is simply the
realization of the language semantics, while the back end, or multimedia rendering
engine, is structured as a multimedia digital signal processing dataflow. These ideas
are concretized in the design and implementation of Smix (Synchronous Mixer),
a simple, high-level declarative language1 for multimedia. Smix is the language
of a virtual machine for multimedia presentations—the Smix virtual machine, or
Smix VM, for short—whose goal is to serve as an abstraction layer for the definition
and implementation of higher level multimedia languages.

To demonstrate how this abstraction layer can be used to define and implement
language dialects, a user-friendlier dialect of Smix, called Plain Smix, is developed.
Plain Smix is basically Smix augmented with higher level constructs defined by
macro-expansion. One could say that Plain Smix is to Smix what Plain TEX is to
TEX [51], that is, an enhanced version of a more primitive language defined in terms
of that language. But the similarities stop there. While in TEX the interpreter itself
expands the macros of plain programs, in Smix this expansion is delegated to a
specialized conversion layer. This way conversion is decoupled from execution;
its methods need not be restricted to macro-expansion and it can run on a different
machine at a different time. Of course, not only dialects but also whole languages
can be integrated into the system, as discussed in Chapter 6.

The architecture of the Smix system is depicted in Figure 2.1. The system
consists of two layers. The converter layer, which converts programs written in
higher level languages to Smix, and the virtual machine layer, which takes as input a
Smix program and produces as output an interactive multimedia presentation. The
idea of a virtual (or abstract) machine for multimedia is not new. One can find at least

1In this thesis, the term “high-level multimedia language” is used to denote any language that uses
high-level concepts to describe a multimedia presentation or, more specifically, any language that can
be defined on top of Smix’s front end. In this sense, NCL, SMIL, HTML, Plain Smix (introduced in
this chapter), and Smix are all high-level multimedia languages. This of course does not mean that
they are at the same level of abstraction, only that their level of abstraction is above the threshold of
what here is considered high-level. Clearly, there is a hierarchy above this threshold: NCL and SMIL
are higher level than HTML—they deal with more abstract concepts—and these are all higher level
than Plain Smix and Smix.

25
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Language kernel

Multimedia engine

Smix VM

Converter

Figure 2.1. The architecture of the Smix system.

one reference to such concept in the literature, namely, that of T. K. Shih [52, 53].
Shih’s Multimedia Abstract Machine, however, is based on timed Petri nets, which
are essentially asynchronous, and it offers lower level programming constructs that
are quite different from the high-level abstractions used in Smix. One could also
argue that specialized scripting engines, such as the Adobe Flash player [54], are
in a sense multimedia virtual machines, but that is not the case. First, because their
languages are general purpose and imperative; second, because they have no support
for the integration of higher level languages into the system.

The next two sections, Sections 2.1 and 2.2, discuss the choices that permeate
the design of Smix, namely, the synchronous semantics in the front end and the
multimedia dataflow in the back end, and explain how these choices contribute
to grappling with the issues described in Chapter 1. This chapter’s last section,
Section 2.3, lays out the assumptions of this work: what Smix is and what it is not.

2.1
A synchronous semantics in the front end

In Chapter 1, page 16, the following definition of a high-level multimedia language
interpreter was presented:

[The] interpreter [is the program that] maps the high-level instructions
of input programs into low-level digital signal processing operations
and applies these operations timely onto the input audiovisual signals to
produce the desired output, namely, the resulting audiovisual signal that
constitutes the multimedia presentation.

This definition is correct but simplistic. It characterizes the high-level multimedia
language interpreter as a transformational system, that is, one whose inputs are avail-
able at the beginning of the execution and that deliver its outputs upon terminating.
Multimedia systems of the type here considered, however, are not transformational;
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they react to repetitive inputs from the environment (external source of events) by
sending outputs to it.

Non-transformational systems are usually classified into interactive systems
or reactive systems. Interactive systems communicate with the environment at their
own speed; they can synchronize with the environment making it wait. Reactive
systems, on the other hand, are input-driven and react to the environment at a speed
determined by the environment, not by the system [35, 55, 56]. As examples of inter-
active systems one can cite operating systems, databases, networking systems, and
distributed algorithms; and as examples of reactive systems one can cite industrial-
process control systems, audio or video protocols, bus interfaces, man-machine
interface drivers, and signal processing systems [57].

This thesis argues that a high-level multimedia language interpreter is, in great
part, a soft real-time reactive system, or that it can be adequately modeled as such;
that is, that a high-level multimedia language interpreter may be described as an
input-driven system with response-time constraints. To see why that is the case,
consider the mode of operation of its two major components, the language kernel
and the rendering engine2, and how these can be designed as reactive systems.

The language kernel is the part of the interpreter that maintains the program
state and logic. It receives input events from other components, processes these
events according to the program logic, updates the program state, and emits output
events to other parts of the system. Here the environment consists of the components
that use the language kernel API. The kernel itself is clearly input-driven. If there is
no input event—note that time can be considered an input event—the program state
should not change and no output event needs to be generated.

The rendering engine is the component that holds and updates the audiovisual
data of the presentation. It receives input events from the environment (other compo-
nents such as the language kernel or the master clock), computes the impact of these
events on its internal data, and emits the corresponding output events and output
audio and video samples back to the environment. By an audio sample, it is meant a
sample of raw audio, for example, a 16-bit PCM audio sample, which is essentially
a floating-point number; by a video sample, it is meant a sample of raw video, for
example, an 1920x1080 array of pixels encoded as RGB triples. The resulting audio
and video samples represent the presentation at that moment and should be promptly
sent to speakers and screen. Here again the process is clearly input-driven.

2In Section 1.3, page 20, the term “rendering engine” was used to denote not only the component
of the interpreter responsible for rendering the presentation, but also the component which parses the
program code and maintain its state and logic. From now on, these are considered three separated
components: (1) parser, which parses the program text, (2) language kernel, which maintains the
program state and logic, and (3) rendering engine, whose sole responsibility is to produce the
corresponding multimedia presentation.
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initialize memory
for each input event do

compute reaction
update memory

end

initialize memory
for each clock tick do

read inputs
compute reaction
update memory

end

Figure 2.2. Event-driven (left) and sample-driven (right) execution schemes.

A particularly interesting approach to the design of real-time reactive systems
is that taken by the synchronous languages. These languages were introduced in the
early 1980s for the trusted design of safe-critical embedded systems [34, 58, 59].
Their goals are to support functional concurrency in a safe and user-friendly way, to
have the simplest possible model to make formal reasoning practical, and to support
commonly used implementation schemes, namely, the event-driven or sample-driven
schemes (see Figure 2.2). In an event-driven system, an input event is required to
produce a reaction; in a sample-driven system, reactions are triggered by the ticks of
a global clock. Both schemes assume that the code for reading inputs, computing the
reaction, and updating memory takes bounded memory and time capacities [60].

The languages Esterel [57], Lustre [61], and Signal [62], developed in the first
half of 1980s by French research groups, are archetypes of synchronous program-
ming. Esterel is a control-oriented imperative language, while Lustre and Signal are
data-oriented declarative languages—the former is a functional language and the
latter is an equational language. As other examples of synchronous languages, one
can cite the imperative languages Reactive-C [63], Gentzen [64], Quartz [65], and
Céu [66]; the declarative languages Lucid [67] and Lucid Synchrone [68]; and the
graphical languages Statecharts [69], Argos [70], and SyncCharts [71].

The conspicuous feature of synchronous languages is that all of them assume
the synchrony hypothesis: On each reaction (input-output cycle), the outputs are
produced synchronously with inputs, that is, on the occurrence of input events the
system is assumed to always react fast enough to produce the corresponding output
events before acquiring the next input events. Or, as put by A. Gamatié [60, page 22]:

[Under the synchrony hypothesis, the] system is viewed through the
chronology and simultaneity of the observed events during its execution.
This is the main difference from classical approaches, in which the sys-
tem execution is considered under its chronometric aspect, i.e., [where]
duration has a significant role. According to such a picture, a system ex-
ecution is split into successive and nonoverlapping synchronized actions

or reactions.
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Thus the synchrony hypothesis induces a precise notion of logical time in which the
only relevant concepts are those of simultaneity and precedence between events.3, 4

In effect, in synchronous systems the logical notion of time supplants the
physical (chronometric) notion. Time is represented as an ordinary external event,
exactly as any other event coming from the environment. Statements “take time”
only if they say so and temporal statements mean exactly what they express [73]. In
Esterel, for instance, when one writes a statement such as

await 30 MILLISECOND

it lasts exactly 30 milliseconds, in the sense that the program will wait for 30
occurrences of the MILLISECOND event before consuming that instruction. Note
that the logical notion of MILLISECOND may or may not correspond to the physical,
chronometric notion. For example, if a MILLISECOND event is sent to the program
at a rate of approximately one event per millisecond, then that instruction will be
consumed after approximately 30 physical milliseconds; but if the rate is increased
to three MILLISECOND events per millisecond, then the await instruction will be
consumed after approximately 10 physical milliseconds, one-third of the previous
time. Therefore, by simply increasing or decreasing the rate at which time events
(clock ticks) are generated, the environment can, correctly and deterministically (if
the program is deterministic), speed up or slow down the program’s execution time
in relation to physical time—a characteristic that is particularly useful in multimedia
applications.

The synchrony hypothesis not only separates logical time from physical time,
but also allows for what is called a multiform notion of time [74]. Since time is an
event like any other, synchronous languages do not need special statements to deal
with it. Time events are handled by the same statements that handle ordinary events.
For instance, under the synchronous model, the statements “The program must
stop within 10 minutes” and “The program must stop within 100 meters” express,

3The previous execution schemes and an assumption similar to that of the synchrony hypothesis
are rather commonplace in practical embedded systems design. Though the assumptions are similar,
they are not exactly the same. As put by D. Potop-Butucaru [72]:

The synchronous [synchrony] hypothesis adds to this [the assumption of discrete
execution instants] the fact that, inside each instant, the behavioral propagation is
well-behaved (causal), so that the status of every signal or variable is established and
defined prior to being tested or used. This criterion, which may be seen at first as
an isolated technical requirement, is in fact the key point of the approach. It ensures
strong semantic soundness by allowing universally recognized mathematical models
such as Mealy machines and the digital circuits to be used as supporting foundations.

4In the semantics of Smix, for simplicity, the possibility of simultaneous events is ruled out: The
precedence relation between events is necessarily a relation of total order and not simply of partial
order, as in the case of some other synchronous languages such as Esterel. This and other design
choices are discussed in detail in Chapter 3.
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conceptually, constraints of the same nature. In the first case, the program will halt
after receiving the 10th MINUTE event; in the second case, it will halt after receiving
the 100th METER event. From the program’s point of view, both METER and MINUTE
are ordinary events; the fact that one measures time and the other measures distances
is irrelevant.

In practice, to say that a program operates under the synchrony hypothesis is
to say that it reacts rapidly enough to perceive all external events in the correct order.
This is a reasonable assumption when the program’s task is not computationally
demanding, as is the case of language kernels in high-level multimedia language
interpreters. However, even when the task at hand is demanding, as in the case
of multimedia rendering engines, which must deal with real-time audio and video
processing, one can still assume the synchrony hypothesis. First, because caching
techniques, such as data pre-fetching, pre-buffering, and pre-rendering, can be
used to alleviate the processing demand during playback. Second, because today
most systems—or at least those systems capable of running full-fledged high-level
multimedia language interpreters—come with specialized hardware for multimedia
processing, such as CPUs with multimedia extensions, dedicated GPUs, or hardware
decoders, designed to speed up the processing of audiovisual data. Finally, because as
a last resort, one can suspend temporally the requirement of real-time performance by
freezing the presentation and displaying a “buffering” message while the rendering
engine is allowed to catch up. Or as less drastic approaches, one can dynamically
re-sample (speed-up or slow down) the delayed streams so that the gap between them
eventually disappears, or even relax the requirement of strict synchrony between
them by permitting some degree of dyssynchrony. The last approach leads to the
problem of deciding what an acceptable degree of dyssynchrony is. This decision
can be made by the engine itself, heuristically, or by the application programmer, in
the case of languages with constructs that allow him to specify the degree of tolerable
dyssynchrony in a given presentation—which is the approach adopted by SMIL 3
via its synchrony behavior attributes.

2.2
A multimedia dataflow in the back end

That the synchrony hypothesis can be feasibly maintained in real-time multimedia
systems is demonstrated by the existence of specialized languages for real-time audio
and video processing that implicitly assume it.5 This implicit assumption is remarked
by K. Barkati and P. Jouvelot [76] when comparing the similarities between the time

5See [75] for an early account of the use of the synchrony hypothesis in distributed multimedia
applications.
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model of languages for digital audio processing and that of classical synchronous
languages: “Even though developed within a totally different research community,
music-specific languages also follow this synchrony hypothesis.”

A common characteristic of real-time multimedia digital signal processing
(DSP) systems is that most of them use the dataflow model of computation. In the
dataflow model, data is processed while “in motion”, flowing through a dataflow
network. The network is structured as a directed graph whose nodes are process-
ing elements (actors) that consume input from incoming arcs (ports) and produce
output to outgoing arcs [77, 78, 79]. Actors are activated by input arrivals; they
can run whenever the required piece of data is available on their incoming ports. A
pipeline dataflow is one in which data flow down the arcs in the exact order they
are produced [80]—in this thesis, unless otherwise stated, the terms “dataflow” and
“pipeline” are used interchangeably to mean a pipeline dataflow. The dataflow model
is particularly appealing to multimedia because it closely matches the conceptualiza-
tion of a multimedia processing system as a block diagram [81]. Moreover, it allows
for flexible and efficient implementations since the model is naturally parallel, modu-
lar, and scalable [82]—there is even a current trend to use it to structure specifications
as, for example, in the MPEG reconfigurable video coding standard [83].

The layout of a typical dataflow for multimedia processing is depicted in
Figure 2.3. In this case, the layout is that of a pipeline for real-time video playback
in the GStreamer multimedia framework [84]. Each node in the graph represents
an independent processing element and arcs represent the pipes through which data
(audio samples, video samples, or control information) flow. In GStreamer, elements
are classified according to how they process incoming data. Source elements generate
data for use by other elements. Filter, converter, muxer, demuxer, encoder, and
decoder elements operate on data received via their input ports (pads) and push the
results into output ports to be consumed by subsequent elements in the pipeline. Sink
elements are the end point of the pipeline; they consume data but produce nothing.
Elements can operate either in true parallel mode, for example, with each element
implemented by an OS-level process or thread, or in sequential mode, with their
execution scheduled by a global scheduler.

Figure 2.3. Example GStreamer pipeline [85].

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



2.3 What Smix is and what it is not 32

As examples of languages for real-time multimedia DSP one can cite
Max/MSP [86], SuperCollider [87], Pure Data [88], Csound [89], ChucK [90],
CLAM [91], and Faust [92]; and as examples of multimedia frameworks (software
libraries), one can cite GStreamer [84], Microsoft DirectShow [93], AviSynth [94],
and Cheops [95]. All of these implement the dataflow model of computation. Some,
such as ChucK and CLAM, deal only with audio while others, such as Pure Data
and GStreamer, deal with both audio and video.

Real-time multimedia DSP systems normally distinguish between two pro-
cessing rates: sample-rate and control-rate. The sample-rate is the rate at which
samples must be produced so that system can perform in real-time. Typical rates
are 44100Hz for audio samples and 30Hz for video frames. Thus to be processed and
presented in real-time, a typical audio sample must traverse the entire pipeline in less
than 22.67µs, while a video frame must cover the same course in less than 33.33ms.
The control-rate is the rate at which the program logic can actuate over the pipeline
to modify element parameters or the pipeline topology. Normally, the sample-rate,
especially in case of audio processing, is orders of magnitude higher than the control-
rate, but the exact number varies from system to system. For instance, in ChucK
the exact control-rate value varies from program to program and it may be even
higher than the sample-rate—thus programs are allowed to operate in sub-sample
intervals [96].

If the dataflow model is employed in the implementation of the rendering
engine, as proposed in this work, then it is natural to associate the notion of control-
rate to the rate at which the language kernel and the rendering engine communicate.
Ideally, this rate should be greater than or equal to the sample-rate—as it is achieved
by some of the cited DSP systems. But even if this sample-level synchrony cannot be
achieved, the strict separation of program logic from audiovisual rendering induced
by the proposed two-tiered architecture guarantees that the program logic will
always be correct, even if it is not instantaneously reflected in the resulting (physical)
presentation.

2.3
What Smix is and what it is not

Three priorities permeate the design of Smix: first comes logical correctness, then if
possible, physical correctness, and finally, real-time performance. Another keyword
is complexity. One effective way to avoid complexity is to not introduce it in the
first place, that is, to pull items from the language’s feature list. Currently, Smix is
solely concerned with representation and manipulation of media objects and events
(including time). It assumes a standalone presentation on a reasonably fast machine.
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The language is not concerned with distributed presentations, complex input devices
(such as gesture interfaces), or complex output devices (such as three-dimensional
displays). Note, however, that this is not to say that the Smix model precludes
such developments. In the case of distributed presentations, for instance, a possible
approach is that of Asynchronously Communicating Deterministic Reactive Systems,
an extension of C. A. R. Hoare’s Communicating Sequential Processes (CSP) [97]
discussed by G. Berry and G. Gonthier in [73]; another possibility is the use of a
Globally Asynchronous, Locally Synchronous (GALS) design [98].

Some complexity is unavoidable though—it is in the nature of the processes
involved. Where complexity is inevitable, this work selects approaches and models
that distribute it in a structured and controlled way throughout the system. What
this work does not do is claim that Smix’s approach is the answer to all problems
of current high-level multimedia languages or that, for instance, Smix is a magical
solution integrate NCL, SMIL, and HTML, with all their features, complexity, and
idiosyncrasies, under a common implementation; that would be a quixotic enterprise.
But it does offer an alternative path for the design and implementation of high-level
multimedia languages.

Concluding, it should be noted that Smix’s approach tackles each of the four
specification issues listed at the end of Section 1.2: (1) complexity is avoided by
restricting the language application domain and its vocabulary; (2) incompleteness,
ambiguity, and inconsistency of specifications are tackled by formalizing the lan-
guage semantics; (3) nondeterminism is avoided by requiring a deterministic model;
and (4) imprecise time notions are avoided by assuming the synchrony hypothesis
and by distinguishing between logical and physical time. As to the four implemen-
tation problems listed at the end of Section 1.3: (1) implementation complexity is
reduced by detaching the program logic from the rendering logic; (2) inflexibility
of current interpreter architectures is overcome by defining an abstraction layer for
language definition and by structuring the rendering engine as a multimedia dataflow
with sufficiently general and decoupled notions of input (user interaction) and output
(raw samples)6; (3) dyssynchrony is tackled by detaching logical time from physical
time and by making sure that all media object players share the same physical clock;
and (4) the lack of advanced run-time operations is supplanted by defining a precise
notion of program state and well-defined operations to query it and modify it.

6The architecture is recursive. It is relatively easy to embed one interpreter instance into another
instance, for example, to implement a Smix program that contain a media object which is another
Smix program. This point is detailed in Chapter 5.
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3
The Smix language

3.1
Overview

Smix is a high-level declarative language for the construction of multimedia pre-
sentations. Its goal is to offer simple but expressive abstractions for the precise
representation of complex audiovisual ideas. The design of Smix was influenced
by NCL 3.0 and, consequently, by NCM [99], NCL’s conceptual model. Though
Smix’s model is far less elaborate than that of NCL, the motif of both languages is
essentially the same: they use synchrony relationships (links) between media object
events to describe a multimedia presentation. In effect, a Smix program is simply a
set of media object declarations together with a sequence of links.

A media object is a presentation atom, that is, a text, image, audio, video, other
Smix program, etc., and has the following data associated with it:

1. Identifier. A value that uniquely identifies the object in the program.
2. Content. A possibly empty sequence of samples. For instance, the content

of an image object is a single sample of visual data, the content of an audio
object is a sequence of audio samples, and the content of a video object is a
sequence of audiovisual samples comprising visual and audible data.

3. State. Either “occurring”, “paused”, or “stopped”. During program execution,
if a media object is in state occurring, then it is being presented, that is,
its content samples are being mixed with those of the other objects in state
occurring and the result is being sent to the corresponding output devices
(speakers and display). If a media object is in state paused then its content
samples do not advance, for example, in the case of video samples, the sample
that was being presented when the object was put in state paused is repeated
continuously until the object leaves this state. And if a media object is in state
stopped, then it is not being presented.

4. Time. A nonnegative integer that represents the object’s playback time—the
number of clock ticks to which the object was exposed while in state occurring.
As expected, the object’s time determines the sample of its content that is
currently being presented.

5. Properties. A list of variables associated with the object. The property list, or
property table, is structured as an associative array whose entries are pairs of
the form 〈k, v〉 where k is the name of a particular variable (property) and v
is its current value. Though most properties function as general variables,

34
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some properties are reserved. They expect values of a specific type and have
associated side-effects—their values may affect the presentation of the object’s
content.1 Table 5.2 in page 86 lists the names of the reserved properties of
Smix, their expected types, default values, and eventual side-effects.
In Smix, media objects are manipulated by actions. There are five possible

actions: start ( ), stop ( ), pause ( ), seek ( ), and set ( ). The first three actions,
start, stop, and pause, manipulate the object’s state; the last two, seek and set, operate
over the object’s time and property table. Actions have the following general form:

(predicate ? target : argument) .

The predicate is a propositional logic formula involving the state, time, or property
values of media objects; the target specifies the operation ( , , , , or ) and
main operand (media object or property) of the action; and the argument is an extra
operand (expression) required by seek and set actions.

The execution of an action is conditioned by the validity of its predicate.
To evaluate an action, the interpreter—more precisely, the language kernel—first
evaluates its predicate. If it is false, the action is discarded; otherwise, if it is true, the
kernel proceeds to execute the action: it evaluates the extra argument (if any) and tries
to execute the specified operation with the given operands. When writing actions,
the predicate, question mark, and parentheses are often omitted if the predicate is
assumed to be tautological (always true). Thus (1) an action of the form x, read
“start x”, when executed, puts x in state occurring; (2) an action of the form x, read
“pause x”, puts x in state paused; (3) an action of the form x, read “stop x”, puts x

in state stopped; (4) an action of the form x : e, read “seek x by e”, advances the
playback time of x by the number to which expression e evaluates; and (5) an action
of the form x.u : e, read “set x.u to e”, stores into property u of x the value to which
expression e evaluates.

The action x can only be executed if x is not in state occurring, the action x

can only be executed if x is in state occurring, and the remaining actions, x, x : e,
and x.u : e, can only be executed if x is not in state stopped. Moreover, an action x,
when executed, not only stops the presentation of x’s content but also resets its time
and property table to their initial values. See Table 3.1 for some example actions
and their intended readings. In the table, the symbols > and ⊥ denote the boolean
constants true and false, and the symbols ¬, ∧, and ∨ denote the boolean operations
of negation, conjunction, and disjunction.

1For instance, the value of property uri (normally, a locator) identifies the object’s content, and the
value of its transparency property (a number between 0 and 1) determines the transparency applied to
its visual samples when these are mixed with those of the other objects in the presentation.
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Table 3.1. Example actions and their intended readings.

action intended reading

(> ? x) start x unconditionally (abbreviated as x)
(⊥ ? x) do nothing (no-op)
(state(y) = state(z) ? x) pause x if y and z are in the same state
(time(x) ≥ 1 ∧ time(x) ≤ 5 ? x) stop x if its time is between 1 and 5 ticks
(prop(x, u) = 0 ∨ ¬(time(x) > 1) ? x:10) seek x by 10 ticks if its property u is 0 or if its time

is not greater than 1 tick
(time(x) = time(y) − 10 ? x.u: time(x) ÷ 2) set property u of x to the half of x’s time if its time

is equal that of y minus 10 ticks

A Smix program consists of two parts: a set of media object declarations and a
sequence of links. A media object declaration associates an object identifier with a
particular property initialization table. A link is a synchrony relationship:

a→ a1a2 . . . an ,

which establishes that whenever some action with target a is executed, actions a1,
a2, . . . , an shall also be executed, in this order. The action target a on the left-hand
side of symbol→ is called the head of the link, and the action sequence a1a2 . . . an

on its right-hand side is called the tail of the link.
To make matters concrete, consider the following Smix program.

Example 3.1. A simple Smix program:

λ→ (> ? x)

x→ (> ? y)(> ? z)

y→ (> ? z)

x→ (> ? λ)

This program has four links which operate on four media objects: the ordinary
objects x, y, and z, and the implicit object lambda (λ) which stands for the program
itself. The first link “ λ→ (> ? x)” establishes that when the program starts, media
object x shall be started; the second link “ x→ (> ? y)(> ? z)” establishes that
whenever x starts, object y shall be started and object z shall be stopped; the third
link “ y→ (> ? z)” establishes that whenever y starts, object z shall be started; and
the fourth link “ x→ (> ? λ)” establishes that when x stops the whole program
shall be stopped. This program is written in the symbolic (or abstract) syntax of
Smix, which is formalized in Chapter 4. In the abstract syntax, a Smix program is
represented by a sequence of links and media object declarations are omitted.2

2In practice, a Smix program is a Lua script that evaluates to a table (associative array) in a
particular format. Listing A.1 in page 117 depicts a concrete version of Example 3.1. The format of
this table and the mapping between both syntaxes are discussed in Chapter 5.
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To execute the program listed in Example 3.1, the language kernel uses an
event-driven approach. Two types of events are distinguished: input events and
output events. An input event (or input action) is an action to be executed; an output
event (or output action) is an action that was successfully executed. Given an input
action a, received from the environment, first the kernel tries to execute a. If it fails, a

is discarded and no output action is produced. Otherwise, if it succeeds, the kernel
checks if there is some link in the program whose head matches the target of a and,
if there is a match, it then proceeds to execute actions a1, a2, . . . , an in the tail of the
matched link. Each of these internal actions is evaluated in the same manner as the
original input action a—if they cannot be executed they are dropped, otherwise they
are executed and the links that depend on them (if any) are triggered. The process is
repeated until there are no more actions to be executed, at which point the kernel
emits the output actions, namely, all actions that were successfully executed, back
to the environment. The input-output cycle delimited by an initial input action a is
called a reaction and it is assumed to operate under the synchrony hypothesis, that
is, the output actions a1, a2, . . . , an are assumed to be produced synchronously with
input action a. Figure 3.1 illustrates a single kernel reaction from the point of view
of the environment.

kernel
a a1, a2, . . . , an

Figure 3.1. A language kernel reaction.

3.1.1
A question of order

The preceding description of the reaction process seems precise but it is incomplete.
An important piece of information is missing: link evaluation order. Although
in Example 3.1 the order of evaluation of links is irrelevant—any order leads to
the same result—this may not be true in cases where a single input action can
trigger multiple links, in effect, when multiple links have identical heads. Here one
possibility is to assume an arbitrary order, that is, to choose arbitrarily an ordering
among all possible link orderings. This is the approach adopted by NCL 3.0 and
its obvious consequence is the introduction of nondeterminism which, as discussed
in Chapter 1, is undesirable. Another possibility is to evaluate links with the same
head in concurrent threads: if two links have the same head, then the actions in
their tails are executed concurrently. This can lead to race conditions between the
threads—for instance, if both links operate over the same media objects—and, not
to say, nondeterminism, if the execution of interdependent actions is interleaved in
some unpredictable order.
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A related but subtler problem, also not addressed by the previous description
of program reaction, regards event ordering: Can events (actions) occur (be executed)
simultaneously or can one establish, for every two events, which precedes the other?
In other words, is the precedence relation between events a partial order or a total
order? The assumption of a partial order (the possibility simultaneous actions)
leads to race conditions and, when combined with the assumption of instantaneous
propagation, to causal paradoxes [100, 101, 102]. As an example of the latter,
consider the case where the execution of an action, say x, triggers the execution
of the opposite action, x; if event propagation is instantaneous and if actions can
be executed simultaneously then, in this case, one ends up trying to simultaneously
start and stop the same media object—a paradox.

In facing these questions, this thesis chooses the answers that conduct to a
simpler model. Thus in Smix links are evaluated in declaration order (from top to
bottom) and the precedence relation between events (action execution) is a total
order. With these assumptions established, the next section details the algorithm
used by the kernel to compute a reaction.

3.1.2
The reaction algorithm

Internally, the language kernel maintains five data structures:
1. input queue Qin;
2. output queue Qout;
3. link table `;
4. media memory θ; and
5. evaluation stack S .

The input queue Qin stores the input actions received from the environment.
The output queue Qout stores the actions that were executed during the reaction. The
link table ` maintains the links of the program. The media memory θ maintains
the data associated with each media object in the program, namely, its state, time,
and property table. And the evaluation stack S is an auxiliary memory used by the
kernel to compute the micro-steps in the reaction. As implied by their names, the
queues Qin and Qout are first-in-first-out lists accessed via enqueue and dequeue calls,
and the stack S is a last-in-first-out list accessed via push and pop calls.

The language kernel API consists the operations init, send, cycle, and receive.
The init operation takes a Smix program and initializes the link table ` and media
memory θ accordingly. The send operation enqueues an input action into Qin. The
receive operation dequeues an output action from Qout. And the cycle operation
computes a reaction, that is, it dequeues an action from Qin, computes its reaction
over θ, and enqueues the resulting actions into Qout.
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To execute a program the Smix interpreter first calls init to load it into the lan-
guage kernel and then periodically calls the following sequence of kernel operations:
(1) send, to submit an input action, (2) cycle, to compute the reaction, and (3) receive,
to collect the results. The first action submitted by the interpreter to the kernel is
the bootstrap action λ, which triggers the first reaction, called bootstrap reaction.
Initially, all media objects are assumed to be in state stopped, with playback time 0
and with all properties that were not explicitly initialized set to their default values.
After the bootstrap reaction, the interpreter submits periodically ordinary external
actions, such as clock ticks x : 1 or natural end of media objects x, to the kernel
until it receives back an action of the form λ, which signals the end of execution
and causes the interpreter to halt.

The procedure cycle implements the following algorithm, where ε denotes the
empty sequence.

procedure cycle ()
S B ε
push (S , dequeue (Qin))
while S , ε do

a B pop (S )
if the predicate of a is true in θ and a can be executed in θ then

execute a over θ
enqueue (Qout, a)
for i B 1 to the size of ` do

if `[i] ≡ a′ → a1a2 . . . an and the target of a matches a′ then
for j B n to 1 do

push (S , a j)
end

end
end

end
end

end

In Example 3.1 (page 36), for instance, the bootstrap reaction executes the
sequence:

(> ? λ)(> ? x)(> ? y)(> ? z)(> ? z) ,

and terminates with media objects λ, x, and y in state occurring. Table 3.2 presents
the steps of this reaction. Each line of the table captures the content of the evaluation
stack S , output queue Qout, and media memory θ (here simply the set of media
objects in state occurring) before a particular pass of the outermost loop of procedure
cycle. In columns S and Qout, the top-of-stack and queue head are the leftmost
actions. After the bootstrap reaction, Example 3.1 continues to execute until one of
the actions (> ? λ) or (> ? x) is received from the environment.

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



3.1 Overview 40

Table 3.2. The bootstrap reaction of Example 3.1.

pass S Qout θ

1 λ ε ∅
2 x λ {λ}
3 y z λ x {λ, x}
4 z z λ x y {λ, x, y}
5 z λ x y z {λ, x, y, z}
6 ε λ x y z z {λ, x, y}

One can easily see that the previous cycle algorithm exhibits the desired
properties regarding the order of evaluation of links and events. It guarantees that
links are evaluated in declaration order and that the precedence relation between
events (input and output actions) is a total order. In effect, these properties are mainly
a consequence of data structures used—the queues for communicating with the
environment and the stack for evaluating internal actions. Moreover, the algorithm is
clearly deterministic. At each step, only one instruction can be executed (no choice
is involved), and all instructions behave deterministically. Another characteristic
of the previous algorithm is that the execution of internal events follows a stack-
based policy: when an action a is executed, before considering the next action in
the sequence, the kernel first triggers all links that depend on a. Put another way,
whenever an action is executed, the kernel computes its full internal reaction before
proceeding to the next action in the sequence.3

3.1.3
Tight loops

One property that the algorithm of Section 3.1.2 does not guarantee, though, is
termination after a finite number of steps. For some combinations of input action,
media memory θ, and link table `, the evaluation stack S may never be emptied,
causing the “while” instruction to execute endlessly. Similar problems occur in
related languages, see, for example, the problem of cyclic dependencies in SMIL’s
timegraph [6] (the structure used by the SMIL interpreter to control the presentation),
or that of causality cycles in Esterel [104]. Here the problem is caused by infinite
feedback loops in link evaluation: a link (or group of links) triggers its reevaluation
endlessly. For instance, even simple single-link Smix programs such as “ x→ x x”
and “ x→ x : 1” are subject to this problem. Moreover, infinite feedback loops
(or tight loops, for short) can also involve links operating on multiple media objects,
as in the case of the following program.

3A similar execution policy is adopted by the synchronous language Céu [103].
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Example 3.2. A Smix program with a tight loop involving multiple media objects:

x→ y

y→ x

x→ y

y→ x

Table 3.3 depicts a pseudo-reaction triggered by the evaluation of input ac-
tion x in the above program.

Table 3.3. A pseudo-reaction of Example 3.2.

pass S Qout θ

1 x ε {λ, y}
2 y x {λ, x, y}
3 x x y {λ, x}
4 y x y x {λ}
5 x x y x y {λ, y}
6 y x y x y x {λ, x, y}

· · ·

A common approach to tackle tight loops is to impose a restriction that breaks
them. For example, one could establish an upper bound to the number of iterations
of the “while” instruction in the cycle procedure, or to the number of times the same
link (or action) can execute during a reaction. Though these simple restrictions
are reasonable, this thesis follows a more flexible path. Instead of adopting a
particular a priori restriction, this thesis introduces a linear format for programs,
which replaces the relational (or equational) format used thus far, and in which
reactions are guaranteed to execute in bounded time. Internally, the interpreter
(language kernel) deals only with linear programs. Thus before being executed, the
input programs written in the equational format are first compiled, or linearized, into
equivalent linear programs—and it is at this linearization stage that a restriction for
breaking tight loops is applied.

The main advantage of this two-step approach is that it decouples the logic of
reaction evaluation from a particular choice of restriction. As a result, linear pro-
grams can be analyzed, optimized, and debugged independently of the linearization
procedure (restriction) used to generate them. Moreover, one is free to experiment
with more sophisticated restrictions, which may produce better results than the
simpler ones mentioned earlier, or even vary this choice between program runs.
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3.1.4
Linear programs

The linearization procedure σ adopted by this thesis takes as input an equational
program P and an action a and outputs a linear program α that represents the
evaluation of a in P. The procedure σ is defined in terms of the graph of program P,
which is built by interpreting its links as an adjacency list.4 For instance, Figure 3.2
depicts the graph of Example 3.2. In the figure, nodes stand for action targets and
arcs represent the dependencies between targets, that is, the action that should be
executed whenever one “moves” between targets. The arc labels are pairs of the
form 〈n, a〉, where the first member n, called label number, determines the order in
which arcs leaving a node should be considered, and the second member a, called
label action, denotes the action associated with the arc.

x y

xy

0, (> ? y)

1, (> ? x)

2, (> ? y)

3, (> ? x)

Figure 3.2. Graph of Example 3.2.

By the figure, one can tell that the execution of an input action with target x

may trigger the execution of actions (> ? y), (> ? x), (> ? y), (> ? x), etc., in this
order. Note that a loop in the resulting graph indicates the possibility of a tight loop
during reaction evaluation, but it does not guarantee that it will occur—its occurrence
depends on the contents of the evaluation stack and media memory, both of which
cannot be known statically.

The algorithm to compute σ(P, a) is given by the following pseudocode, where
the dot symbol (·) denotes the operation of concatenation. The algorithm starts at the
node representing the target of action a and proceeds in depth-first fashion traversing
(marking) each reachable arc at most once. Its result is the linear program that
implements the execution of action a in program P. The algorithm’s running time is
bounded to the number of arcs reachable from its point of departure. Thus, in the
worst case, its running time complexity is O(n) where n is the number of arcs in the
graph of program P.

4The detailed algorithm for constructing the graph of a program is presented in Section 4.2.1.
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procedure σ (P, a)
let G be a global variable initialized with the graph of P
α B ε
v1 B the target of a
for each arc w = (v1, v2) in G (in increasing order of label number) do

if w is not marked then
mark w
a1 B the label action of w
α B α · σ(P, a1)

end
end
return a ·[·α ·]

end

Let P denote the program of Example 3.2 (page 40). Then, by applying
the procedure σ to P with initial action (> ? x), the following linear program is
obtained:

σ(P, (> ? x)) = (> ? x)[σ(P, (> ? y))]

= (> ? x)[(> ? y)[σ(P, (> ? x))]]

= (> ? x)[(> ? y)[(> ? x)[σ(P, (> ? y))]]]

= (> ? x)[(> ? y)[(> ? x)[(> ? y)[σ(P, (> ? x))]]]]

= (> ? x)[(> ? y)[(> ? x)[(> ? y)[ε]]]] ,

or in abbreviated form,

σ(P, (> ? x)) = x[ y[ x[ y]]] .

And by repeating the operation for the remaining actions in P,

σ(P, (> ? x)) = x[ y[ x[ y]]]

σ(P, (> ? y)) = y[ x[ y[ x]]]

σ(P, (> ? y)) = y[ x[ y[ x]]] .

3.1.5
The reaction algorithm for linear programs

With the introduction of linear programs, the cycle procedure presented in Sec-
tion 3.1.2 is replaced by the following pair of procedures. To compute a reaction,
cycle now dequeues an action from input queue Qin, uses procedure σ (and the link
table `) to compute its linear program, and calls the subroutine eval to evaluate the
resulting program over memory θ. Note that the evaluation stack S used by the
original cycle plays no role in the new procedure.
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procedure cycle ()
a B dequeue (Qin)
eval (σ (`, a))

end

procedure eval (α)
if α = ε then return end // nothing to do
let α ≡ a[α1]α2

if the predicate of a is true in θ and a can be executed in θ then
execute a over θ
enqueue (Qout,a)
eval (α1)

end
eval (α2)

end

Here the workhorse is subroutine eval which, after being called, evaluates the
input linear program one action at a time, from left to right. For instance, to evaluate
the linear program σ(P, (> ? x)) of Example 3.2, namely,

x[ y[ x[ y]]] ,

eval reads its leftmost action, x, and tries to execute it. If it succeeds, in this case,
if x can transition to state occurring in θ, it proceeds to evaluate the subprogram
that depends on x, namely, the subprogram immediately following it in square
brackets, y[ x[ y]]. Otherwise, eval skips the brackets altogether and proceeds to
evaluate the next subprogram, ε in this case. The procedure continues until there are
no actions left to be executed.

Table 3.4 depicts a reaction triggered by input action x in Example 3.2, now
computed with the cycle procedure that operates over linear programs. Note that
the same input data and memory state caused the original cycle procedure to enter
an infinite loop (see Table 3.3, page 41). As depicted in Table 3.4, the reaction
terminates after five recursive calls of eval, leaving memory θ unmodified—in the
same state it was at the beginning of the reaction.

Table 3.4. A reaction of Example 3.2.

call α Qout θ

1 x[ y[ x[ y]]] ε {λ, y}
2 y[ x[ y]] x {λ, x, y}
3 x[ y] x y {λ, x}
4 y x y x {λ}
5 ε x y x y {λ, y}

Clearly, the updated (linear) cycle procedure maintains the desired properties of
the original (stack-based) procedure: (1) program links are evaluated in declaration
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order, (2) the precedence relation between events (input and output actions) is a
total order, (3) the procedure is deterministic, and (4) action execution follows
a stack-based policy—the last property, however, is a side-effect of linearization
procedure σ. What distinguishes the linear algorithm from the stack-based one is that,
for any input, the former terminates in bounded time, or more precisely, after O(n)
operations, where n is the number of arcs in the graph of the input program. Though
the particular complexity measure depends on the choice of linearization procedure—
in effect, on the length of the generated linear programs—the property of termination
does not: Since, by definition, linear programs are finite and since each recursive
call to eval consumes at least one action of the program, the base case of program ε

is eventually reached and the evaluation terminates.
This pretty much concludes the overview of the Smix language. The next

section, Section 3.2, presents the Plain dialect of Smix, which is basically a set
definitions built upon the core language introduced in this section. The subsequent
section, Section 3.3, concludes the chapter with the discussion of some advanced
topics such as asynchronous actions and fast-forwarding and rewinding of reactions
and programs. Before moving on, though, a last example is in order.

3.1.6
A last example

Example 3.3 depicts a Smix implementation of an interactive slideshow in which
three images, x, y, and z, are presented in a cycle. During the slideshow, each image
is displayed for 10s and at any time the user can request (by pressing key “right”)
that the current image be skipped and the next image be displayed.5

Example 3.3. An interactive slideshow in Smix:

λ→ (> ? x)

x→ (time(x) = 10s ? x)

x.input→ (x.input = “right” ? x)

x→ (> ? y)

y→ (time(y) = 10s ? y)

y.input→ (y.input = “right” ? y)

y→ (> ? z)

z→ (time(z) = 10s ? z)

z.input→ (z.input = “right” ? z)

z→ (> ? x)

5A concrete version of this example is presented in Listing A.2, page 117.
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In the example, property input is assumed to hold the last input data (in this
case, key press) associated with a given media object—in Plain Smix, presented
in the next section, there is a special select (�) action for this purpose. Table 3.5
depicts a possible run of Example 3.3. In the table, each line represents a reaction
from the point of view of the kernel’s environment. The column “time” contains
the logical time (in seconds) at which the reaction took place. The column “input”
contains the input action sent to the kernel at the beginning of the reaction. The
column output contains the output actions received from the kernel at the end of
the reaction. And the column θ captures the contents of the kernel’s memory at the
end of reaction; in this case, the set of media objects that were being presented and
their playback time—the number of clock ticks (“seek by 1” actions) to which the
object was exposed. In this particular run, ticks are assumed to be generated by the
environment at a rate of one tick per second for every media object in state occurring;
needless to say, time is assumed to be discrete. For simplicity, the state of object λ
and tick actions targeting it are omitted.

Table 3.5. Possible execution history of Example 3.3.

time input output θ

0s (> ? λ) (> ? λ)(> ? x) {x[0]}
1s (> ? x:1) (> ? x:1) {x[1]}
2s (> ? x:1) (> ? x:1) {x[2]}
3s (> ? x:1) (> ? x:1) {x[3]}

· · ·

9s (> ? x:1) (> ? x:1) {x[9]}
10s (> ? x:1) (> ? x:1)(time(x) = 10s ? x)(> ? y) {y[0]}
11s (> ? y:1) (> ? y:1) {y[1]}
12s (> ? y:1) (> ? y:1) {y[2]}
12s (> ? y.input:“right”) (> ? y.input:“right”)(y.input = “right” ? y)(> ? z) {z[0]}
13s (> ? z:1) (> ? z:1) {z[1]}
14s (> ? z:1) (> ? z:1) {z[2]}
15s (> ? z:1) (> ? z:1) {z[3]}

· · ·

21s (> ? z:1) (> ? z:1) {z[9]}
22s (> ? z:1) (> ? z:1)(time(z) = 10s ? z)(> ? x) {x[0]}
23s (> ? x:1) (> ? x:1) {x[1]}

· · ·

According to Table 3.5, at instant 0s, the bootstrap reaction is initiated with
the environment submitting action (> ? λ) to the kernel. This action is executed
and, since it matches the head of the first link in the program, the tail of this link,
(> ? x), is executed and media object x starts its presentation with playback time 0.

At instant 1s, the environment sends a clock tick to object x, that is, it “ticks”
object x by posting an action (> ? x:1) to the kernel. The execution of this action
increments x’s playback time but triggers no link in the program. Similar reactions
take place until the tenth (> ? x:1) action is submitted to the kernel.
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The submission of the tenth action (> ? x:1), at instant 10s, triggers the
second link in the program and, consequently, causes the execution of actions
(time(x) = 10s ? x) and (> ? y), in this order. Thus, after instant 10s, the program
state depicted in column θ consists solely of media object y whose playback time is 0
ticks. At this point, media object λ is also in state occurring with playback time 10s,
but this is not showed in the table.

At instant 11s, object y is ticked and no links are triggered.
At instant 12s, two reactions take place. The first reaction is triggered by a

clock tick; it ticks object y and terminates. The second reaction is triggered by a
key press—the user has pressed key “right”. Here the key press is represented by an
action (> ? y.input:“right”) which attributes the name of the pressed key, “right”, to
property input of the object to which the key press was addressed, namely, y.6 The
attribution of property input of y triggers the third link in the program, which causes
the execution of actions (y.input = “right” ? y) and (> ? z), and leaves column θ
consisting solely of object z with playback time 0.

The subsequent reactions follow a similar pattern: The current image is stopped
and the next started whenever the tick count of the current image reaches 10s or
when key “right” is pressed by the user.

3.2
Plain Smix

Plain Smix is a user-friendlier dialect of Smix built upon the basic language. Three
kinds of extensions are available in Plain Smix: additional actions, conditional-multi-
head links, and a limited if-else format for actions. These extensions are all defined
by macro-expansion from basic Smix constructs. Additional actions are extra actions
derived from the basic actions. Conditional links are links whose triggering depends
on the validity of an associated predicate; multi-head links are links whose head
consists of a list of action targets sharing a common tail—the link is triggered when
any of its heads is matched. And the limited if-else construct is an if-else-like format
for actions derived from two features of basic Smix which were not discussed in
Section 3.1, namely, pinned-down actions (actions that do not trigger links) and
limited iteration.

3.2.1
Additional actions

Select action. In basic Smix, the last input data (key press or release data, mouse
motion coordinates, etc.) associated with a particular media object is stored in its

6Input keys addressed to no particular object are delivered to object λ, as detailed in Chapter 5.
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input property. For instance, if user presses a key and this key is assumed to be
addressed to a particular object, then the key name is recorded into the object’s input

property, overwriting its previous content (if any). Plain Smix introduces a new
action, called select ( ), and a new query expression, called input, to represent such
selection events. The select action and its associated query expression are defined as
follows:

input(x)
def
≡ prop(x, “input”)

(p ? x:e)
def
≡ (p ? x.input:e) ,

where the symbol
def
≡ can be read as “expands to”.

Speed action. Another Plain Smix construct defined in terms of a basic Smix
property is the speed action ( ). In basic Smix, the speed property expects a number
that determines the object’s playback speed, that is, the rate at which its content
samples advance in relation to its time. For instance, a value of 1 indicates that
content samples advance in normal (expected) speed; a value of 0.5 indicates they
advance in half of the normal speed; and a value of 2 indicates they advance two
times faster than they normally would. A value of 0 indicates that the samples do
not advance at all (the same sample is presented continuously) and negative values
indicate that they advance in reverse order. The speed action and its homonymous
query expression are defined as follows:

speed(x)
def
≡ prop(x, “speed”)

(p ? x:e)
def
≡ (p ? x.speed:e) .

The intuition of symbol is that it is an hourglass that controls that rate at which
content samples (sand grains) advance (fall) in relation to time.

Weak actions. The versions of the seek and set actions presented in Section 3.1
are called strong seek and strong set as they operate over media objects in either
state, occurring or paused. Plain Smix provides weaker versions of these actions, in
symbols x̂ : e and x̂.u : e (note the hat over the target object), which only operate
over objects in state occurring; that is, when applied to objects in state paused or
stopped these weak actions are simply discarded (not executed). The weak seek and
weak set actions are defined as follows:

(p ? x̂:e)
def
≡ (state(x) = “occurring” ∧ p ? x:e)

(p ? x̂:e)
def
≡ (state(x) = “occurring” ∧ p ? x:e) .
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Plain Smix also defines a weaker version of the start action which simply
“resumes” a given media object without starting it if it is not in state paused. The
weak start, and the analogous weak stop, actions are defined as follows:

(p ? x̂)
def
≡ (state(x) = “paused” ∧ p ? x)

(p ? x̂)
def
≡ (state(x) = “paused” ∧ p ? x) .

3.2.2
Conditional-multi-head links

In Plain Smix, one can write a multi-head link of the form:

a′1a′2 . . . a
′
m → a1a2 . . . an ,

which is expanded by the converter into the following m basic links:

a′1 → a1a2 . . . an

a′2 → a1a2 . . . an

...

a′m → a1a2 . . . an .

Thus the link is triggered when any of its heads is matched. Note that the order in
which targets a′1, a′2, . . . , a′m are listed in the multi-head link determines the order in
which the resulting single-head links are generated.

Plain Smix also introduces a conditional format for links in which the link is
triggered only if an associated predicate evaluates to true. A conditional link of the
form:

(a′, p)→ α ,

is expanded by the converter into the following pair of basic Smix links:

a′ → (p ? λ.u:ℵ)

λ.u→ α ,

where u is a property of media object λ not accessible by other actions in the program,
and symbol ℵ denotes the null value, that is, a value that stands for the absence of
value.

Both concepts, conditional links and multi-head links, can be used together.
For instance, consider a Plain Smix link of the form:

(a′1, p1)(a′2, p2) . . . (a′n, pn)→ α .
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To translate this link into basic Smix, the converter first expands each of its heads
into a conditional link:

(a′1, p1)→ α

(a′2, p2)→ α

...

(a′n, pn)→ α .

Then, it expands each conditional link into a pair of basic Smix links:

a1 → (p1 ? λ.u1:ℵ)

λ.u1 → α

a2 → (p2 ? λ.u2:ℵ)

λ.u2 → α

...

an → (pn ? λ.un:ℵ)

λ.un → α ,

where u1, u2, . . . , un are properties of λ not accessible by other actions in the program.

3.2.3
Limited if-else

Sometimes one may want to execute a sequence of actions repeatedly within a
reaction. For this purpose, basic Smix (not Plain Smix) provides the following
construct for limited iteration:

{e ∗ a1a2 . . . an} ,

which prior to be executed is expanded by the kernel (not the converter) into:

a1a2 . . . an . . . a1a2 . . . an︸                               ︷︷                               ︸
m times

,

where m is the number to which expression e evaluates in the current memory.
If m ≤ 0 then the iteration construct (together with its content) is simply discarded.

Another common situation is when one needs to execute an action but does
not want to trigger the links that depend on it. In this case, basic Smix (again, not
Plain Smix), provides pinned-down versions of ordinary actions, in symbols ˚, ˚, ˚,
˚, and ˚, whose execution does not trigger links. In practice, the pin above the action
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hints to the linearization procedure that it should mark the corresponding pinned arc
in the program graph as visited but not proceed to evaluate its neighbors.

In Plain Smix, limited iteration and pinned actions are used to define a limited
form of if-else conditional for actions, namely,

(p ? a1 | a2 ) ,

which establishes that if predicate p holds, then å1 is executed; otherwise, å2 is
executed. The limited if-else construct is defined as follows:

(p ? a1 | a2 )
def
≡ (> ? λ.u:−1)(p ? λ.u:1){prop(λ, u) ∗ å1}{−1 × prop(λ, u) ∗ å2} ,

where u is a property of media object λ not accessible by other actions in the program,
and å1 and å2 denote the pinned versions of actions a1 and a2.

For instance, an action of the form (p ? x | x : 3) is translated by the Plain
Smix converter into the sequence:

(> ? λ.u:−1)(p ? λ.u:1){prop(λ, u) ∗ (> ? ˚ x)}{−1 × prop(λ, u) ∗ (> ? ˚ x:3)} .

The above gymnastics is necessary to ensure that predicate p is evaluated only
once prior to the execution of å1 or å2. The naive solution

(p ? å1 )(¬p ? å2 )

does not work as the execution of å1 may cause ¬p to evaluate to true.

3.3
Advanced topics

3.3.1
Asynchronous actions

Asynchronous actions are actions whose internal reaction cannot be immediately
computed by the kernel. These actions are used to implement requests whose
fulfillment may fail or take too long to be practical. In Smix, asynchronous actions
are represented by the symbols , , , , and , and can only appear on the right-
hand side of links. For instance, an action of the form (p ? x) is evaluated in almost
the same manner as its synchronous counterpart. The only difference is that the
requested operation is not immediately performed by the kernel—it is delegated
to the environment, which is not constrained by the synchrony hypothesis. That
is, if predicate p is true and if x is not in state occurring, the kernel simply inserts
action (p ? x) in its output queue without executing it. Later, after the environment
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processes this action, it eventually submits it back to the kernel in the form of an
ordinary synchronous action. A common application to such actions is in the control
of remote media objects whose execution need not be strictly synchronized with that
of the objects running on the local machine.

3.3.2
Fast-forward and rewind

Consider the following link:

x→ (time(x) = 11 ? a1 )(time(x) = 10 ? a2 ) ,

and suppose x’s playback time is 9. If the kernel receives and executes an ac-
tion (> ? x:3), then the above link is triggered but neither action a1 nor a2 is
executed, as their predicates evaluate to false. In the same situation, suppose the
input action is changed to the following sequence of actions:

(> ? x:1)(> ? x:1)(> ? x:1) .

This sequence gives rise to three reactions (one per action); in all of them the link is
triggered. In the first reaction, action a2 is executed; in the second reaction, action a1

is executed; and in the third reaction, neither a1 nor a2 is executed.
The above example illustrates the dual nature of the seek action: While a

single seek action functions as an ordinary temporal jump, a sequence of unitary
seek actions effectively advances the program logic. In practice, the latter property is
explored by the Smix interpreter to fast-forward the program; that is, the interpreter
can simulate a future program state by generating the number of clock ticks (unitary
seeks) required to reach that state—and this can be done independently of the back
end, if necessary.

The same technique can be used internally by the program to fast-forward
itself. For instance, suppose the following link is added to the slideshow program of
Example 3.3 (page 45):

λ→ {10s ∗ (> ? x:1)(> ? y:1)(> ? z:1)} .

Here the expression “10s” is assumed to evaluate to the number of ticks that corre-
spond to ten physical seconds, that is, ten times the rate (in hertz) at which clock
ticks are generated. The above link establishes that whenever object λ is selected, the
whole presentation, in this case the slideshow, will advance by 10s. To see why that
is the case, suppose that ticks are generated by the environment at a fixed rate of 1Hz,
and assume that the above link is triggered when the time of media object x is 5s.
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Then after five actions (> ? x:1) are successfully executed, x is stopped, since its
time has reached 10s, and object y is started; and after five more actions (> ? y:1),
the reaction terminates with objects x and z in state stopped and y in state occurring
with a playback time of 5s. Notice further that the playback time of object λ is
unaffected by the above link, and it is thus assumed to hold the “real” running time
of the presentation.

Though, at least in theory, advancing the program logic is a relatively simple
operation, the problem of retrogression is a far more complicated. To rewind the
logic of a program, one has to be capable of reversing its reactions. Note that this
cannot be done by simply looking at the reaction’s input and output actions—some
actions are not reversible, for instance, it is impossible to reverse an action x.u : 10
without knowing the previous value of property u of x. One way to cope with this
limitation is to log, for each reaction, along with the input-output actions, additional
information that makes it possible for the kernel to revert the reaction—an approach
similar to that used by reverse debuggers [105]. Although the problem of reverting
reactions is anticipated here, the investigation of data structures and algorithms
necessary to implement such support is left to future work.
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Formal semantics

This chapter formalizes intuitive semantics of Smix discussed in Chapter 3. The chap-
ter is divided into two sections. Section 4.1 formalizes the semantics of equational
programs—programs whose links are interpreted as a system of recurrence relations.
And Section 4.2 formalizes the semantics of linear programs—programs whose links
are interpreted as simple imperative programs that always terminate. Both formaliza-
tions follow the operational approach to semantics in which the meaning of programs
is defined in terms of their execution steps in an abstract machine [106, 107, 108].
The particular style used is that of big-step (as opposed to small-step) structural
operational semantics (SOS) [109, 110]. In big-step SOS, each program reaction
(input-output cycle) is described by an evaluation relation (⇒) between initial and
final configurations of the abstract machine [111].

The evaluation relation⇒ is defined inductively by a set of rules of the form:

premise1 premise2 · · · premisen
condition .

conclusion

Each rule establishes that the conclusion (below the line) follows from the set of
premises (above the line) possibly under control of a condition (on the right-hand
side) that restricts the application of the rule. If the number of premises is zero, the
line is omitted and the rule is called an axiom. In both formalisms, equational and
linear, the premises and the conclusion are statements of the form C ⇒ C′, where C

is an initial configuration, that is, a program fragment together with a snapshot of
the machine’s memory, and C′ is a final (irreducible) configuration, that is, either a
resulting value or memory state.

For simplicity, and without loss of generality, both formalisms deal only with
integer values, and the machine configurations they use capture only input events
(actions to be executed) and memory contents—output events (actions that were
executed during the reaction) are not represented1. Moreover, both formalisms
restrict themselves to the representation of actions start ( ), pause ( ), stop ( ),
seek ( ), and set ( ), and the limited iteration operator (∗). Though the behavior of
pinned actions and asynchronous actions is not formalized, the extensions needed
to support these features are straightforward, and their definition does not affect the
results obtained, as will become clear by the end of the chapter.

1In practice, each action executed during the reaction is recorded in an output queue and emitted
back to the environment at the end of the reaction. This point is detailed in Chapter 5.

54
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4.1
Equational semantics

4.1.1
Abstract syntax

Smix has nine syntactic sets:
1. numbers N (positive and negative integers with zero);
2. truth values T = {>,⊥};
3. media object identifiers Media;
4. property identifiers Prop;
5. expressions Expr;
6. predicates Pred;
7. action atoms ActAtom;
8. action sequences ActSeq; and
9. link sequences LinkSeq.

The following convention for metavariables is assumed: n ranges over N; t ranges
over T; x, y, and z range over Media; u ranges over Prop; e ranges over Expr; p

ranges over Pred; a ranges over ActAtom; α ranges over ActSeq; and L and P

range over LinkSeq. Whenever necessary, the set of metavariables is extended by
appending primes or numerical subscripts to the previous letters. Thus, for example,
the metavariables n, n′, n1, n′1, etc., all stand for numbers.

The abstract syntax of Smix is given by the following grammar, where the
symbolF can be read as “decomposes into” and the symbol | can be read as “or”.2, 3

e ∈ ExprF n | state(x) | time(x) | prop(x, u) | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2

p ∈ PredF > | ⊥ | e1 = e2 | e1 < e2 | ¬p1 | p1 ∨ p2 | p1 ∧ p2

a ∈ ActAtomF (p ? x) | (p ? x) | (p ? x) | (p ? x:e) | (p ? x.u:e)

α ∈ ActSeqF ε | aα1 | {e ∗ α1}α2

L ∈ LinkSeqF ε | x→ αL1 | x→ αL1 | x→ αL1 | x→ αL1 | x.u→ αL1

2The grammar can be interpreted as a context-free grammar if one ignores the use of the infinite
sets N, Media, and Prop, and the subscripts in metavariables. It can also be considered unambiguous
if one assumes usual rules of operator precedence and adds parentheses where necessary [107].

3The term “abstract syntax” is used here in the sense introduced by J. McCarthy [112]:

[The abstract syntax] differs from the Backus normal [Naur] form in two ways. First,
it is analytic rather than synthetic; it tells how to take a program apart, rather than how
to put it together. Second, it is abstract in that it is independent of the notation used to
represent, say sums, but only affirms that they can be recognized and taken apart.
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Two members of the same syntactic set s1 and s2 are said to be equal, in
symbols s1 ≡ s2, if and only if (iff) s1 and s2 are identical, that is, iff both have the
same abstract syntax tree.

4.1.2
Media memory

In Smix, the program state is represented by a media memory which maintains the
data associated with each media object in the program, namely, its state, playback
time, and property table. More formally, a media memory is a total function θ that
maps a media object identifier x to a memory cell 〈n1, n2, ρ〉, where n1, n2 ∈ N
are numbers representing the object’s state and time, and ρ : Prop → N is a total
function from Prop to N that represents its property table. The set of all property
tables is denoted by symbol P and the set of all media memories by symbolM.

Memory cells can be read and written. Given a memory θ and an object x:
• θ(x) denotes the cell associated with x in θ,
• θs(x) denotes the state of x in θ,
• θt(x) denotes the playback time of x in θ,
• θρ(x, u) denotes the value of property u of x in θ,
• θ[X ⊃ x] denotes the memory obtained by replacing θ(x) by X,
• θ[n ⊃s x] denotes the memory obtained by replacing θs(x) by n,
• θ[n Et x] denotes the memory obtained by incrementing θt(x) by n, and
• θ[n ⊃ρ x.u] denotes the memory obtained by replacing θρ(x, u) by n.

More precisely,

θs(x) = proj1(θ(x)) θt(x) = proj2(θ(x)) θρ(x, u) = proj3(θ(x))(u) ,

and

θ[X ⊃ x](y) =

X if y = x

θ(y) otherwise

θ[n ⊃s x]s(y) =

n if y = x

θs(y) otherwise

θ[n Et x]t(y) =

max(0, θt(y) + n) if y = x

θt(y) otherwise

θ[n ⊃ρ x.u]ρ(y) =

n if y = x

θρ(y, u) otherwise ,

where proji is a function that returns its ith argument and max is a function that
returns its largest argument.

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



4.1 Equational semantics 57

The empty memory cell φ is the cell in which the object state is stopped, its
playback time is zero, and all its properties are undefined. By “undefined”, it is
meant that their value is null—a value that stands for the absence of value. The
Hebrew letter aleph ℵ is used to denote null, and the symbols , , and , stand
for the states occurring, paused, and stopped. The empty memory cell is thus a
tuple 〈 , 0, ρℵ〉, where ρℵ denotes the empty property table—a constant function that
returns ℵ for any argument. Finally, letter Φ is used to denote the empty memory,
that is, the memory in which all cells are empty.

4.1.3
Evaluation of expressions

An expression configuration is a pair 〈e, θ〉 that represents the situation of expres-
sion e waiting to be evaluated in memory θ. The actual evaluation is determined by
relation⇒ ⊆ Expr ×M × N such that 〈e, θ〉 ⇒ n iff e evaluates to number n in θ.
The evaluation relation for expressions is defined inductively as follows.

Atomic expressions. For all n ∈ N, u ∈ Prop, x ∈Media, and θ ∈ M:

〈n, θ〉 ⇒ n(Rn)

〈state(x), θ〉 ⇒ θs(x)(Rs)

〈time(x), θ〉 ⇒ θt(x)(Rt)

〈prop(x, u), θ〉 ⇒ θρ(x, u) .(Rρ)

Rule Rn states that a number always evaluates to itself, and rules Rs, Rt, and Rρ

establish that the query expressions state(x), time(x), and prop(x, u) evaluate to the
state of x, time of x, and the value of property u of x in memory θ.

Compound expressions. Let ? denote one of the symbols +, −, ×, or ÷,
and let f? denote the corresponding arithmetic operation on N, namely, addition,
subtraction, multiplication, or division. Then, for all e1, e2 ∈ Expr, n, n1, n2 ∈ N,
and θ ∈ M:

(R?) 〈e1, θ〉 ⇒ n1 〈e2, θ〉 ⇒ n2 with n ≡ f?(n1, n2) .
〈e1 ? e2, θ〉 ⇒ n

Rule R? states that the compound expression e1 ? e2 evaluates to n ≡ f?(n1, n2)
iff subexpression e1 evaluates to n1 and subexpression e2 evaluates to n2. For simplic-
ity, the above definition assumes that division by zero produces the special numeric
value NaN (not a number) instead of a run-time error.

The next two theorems establish that the evaluation of expressions is determin-
istic and that it always terminates (yields a result).
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Theorem 4.1. For all e ∈ Expr, θ ∈ M, and n1, n2 ∈ N:

〈e, θ〉 ⇒ n1 and 〈e, θ〉 ⇒ n2 implies n1 ≡ n2 ,

that is, the evaluation of expressions is deterministic.

Proof. By induction on the structure of expressions. See page 119.

Theorem 4.2. For all e ∈ Expr and θ ∈ M, there is an n ∈ N such that

〈e, θ〉 ⇒ n ,

that is, the evaluation of expressions always terminates.

Proof. By induction on the structure of expressions. See page 119.

4.1.4
Evaluation of predicates

A predicate configuration is pair 〈p, θ〉 that represents the situation of predicate p

waiting to be evaluated in memory θ. The evaluation of predicates is determined by
relation⇒ ⊆ Pred ×M × T such that 〈p, θ〉 ⇒ t iff predicate p evaluates to truth
value t in memory θ. The evaluation relation for predicates is defined inductively as
follows.

Atomic predicates. For all n1, n2 ∈ N, t ∈ T, e1, e2 ∈ Expr, and θ ∈ M:

〈>, θ〉 ⇒ >(R>)

〈⊥, θ〉 ⇒ ⊥(R⊥)

〈e1, θ〉 ⇒ n1 〈e2, θ〉 ⇒ n2 with t ≡ f?(n1, n2) ,
〈e1 ? e2, θ〉 ⇒ t

(R?)

where ? denotes one of the symbols = or <, and f? : N × N → T denotes the
characteristic function of the corresponding relation on N, namely, the “equal to” or
“less than” relation.4

Rules R> and R⊥ state that a truth value always evaluates to itself. Rule R?

states that an atomic predicate of the form e1?e2 evaluates to true if the test performed
by operator ? over the numbers to which expressions e1 and e2 evaluate is successful,
otherwise the predicate evaluates to false.

4More precisely,

f=(n1, n2) =

> if n1 is equal to n2

⊥ otherwise
or f<(n1, n2) =

> if n1 is less than n2

⊥ otherwise .
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Compound predicates. For all t, t1, t2 ∈ T, p, p1, p2 ∈ Pred, and θ ∈ M:

〈p, θ〉 ⇒ t1 with t ≡ f¬(t1)
〈¬p, θ〉 ⇒ t

(R¬)

〈p1, θ〉 ⇒ t1 〈p2, θ〉 ⇒ t2 with t ≡ f∧(t1, t2)
〈p1 ∧ p2, θ〉 ⇒ t

(R∧)

〈p1, θ〉 ⇒ t1 〈p2, θ〉 ⇒ t2 with t ≡ f∨(t1, t2) ,
〈p1 ∨ p2, θ〉 ⇒ t

(R∨)

where f¬, f∧, and f∨ denote the boolean operations of negation, conjunction, and
disjunction on T.

By rule R¬, the negation of predicate p evaluates to true iff p evaluates to false;
by rule R∧, the conjunction of predicates p1 and p2 evaluates to true iff both p1 and p2

evaluate to true; and by rule R∨, the disjunction of predicates p1 and p2 evaluates to
true iff some p1 or p2 evaluate to true.

The following theorems assert that the evaluation of predicates is deterministic
and always terminates.

Theorem 4.3. For all p ∈ Pred, θ ∈ M, and t1, t2 ∈ T:

〈p, θ〉 ⇒ t1 and 〈p, θ〉 ⇒ t2 implies t1 ≡ t2 ,

that is, the evaluation of predicates is deterministic.

Proof. By induction on the structure of predicates. See page 120.

Theorem 4.4. For all p ∈ Pred and θ ∈ M, there is a t ∈ T such that

〈p, θ〉 ⇒ t ,

that is, the evaluation of predicates always terminates.

Proof. By induction on the structure of predicates. See page 121.

4.1.5
Link function

In the abstract syntax of Smix, defined in Section 4.1.1, a program is represented
by a sequence of links, each of which relates an action target (its left-hand side, or
head) to a sequence of actions to be executed (its right-hand side, or tail). Since, in
the same program, the same head may appear in multiple links, the link relation is
clearly not functional. But that does not mean that it cannot be made into such. In
fact, as links are evaluated in declaration order, one can easily transform the link
relation into a function by collapsing occurrences of links with the same head into a
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single link. In this case, the tail of the resulting link is obtained by concatenating
the tails of the original links, with these considered in declaration order (from top to
bottom).

To access the links of a program, a function ` : LinkSeq×ActAtom→ ActSeq
is defined. This function receives as arguments a Smix program P and an action
atom a, and returns the action sequence α associated with the execution of a in P.
Function ` is defined by recursion on the structure of program P in terms of function τ
that returns the target of a given action atom a. Both functions τ and ` are defined as
follows:

τ(a) =



x if a ≡ (p ? x)

x if a ≡ (p ? x)

x if a ≡ (p ? x)

x if a ≡ (p ? x:e)

x.u if a ≡ (p ? x.u:e) ,

and

`(ε, a) = ε

`(a′ → αL, a) =

α`(L, a) if τ(a) ≡ a′

`(L, a) otherwise ,

where a′ denotes a member of the range of function τ, that is, a string of the
form x, x, x, x, or x.u, for some x ∈Media and u ∈ Prop. Since only action
targets influence link evaluation, sometimes the notation `(P, x) is used to denote
the sequence associated with an action of the form (p ? x) in P. Moreover, the
parameter P is omitted if it is clear from the context.

4.1.6
Evaluation of action sequences

A sequence configuration is a triple 〈α, P, θ〉 that represents the situation of action
sequence α waiting to be evaluated over program P in memory θ. The evaluation
of action sequences is determined by relation⇒ ⊆ ActSeq × LinkSeq ×M ×M
such that 〈α, P, θ〉 ⇒ θ′ iff action sequence α, when executed over program P in
memory θ, evaluates to an updated memory θ′. Since program P remains fixed
throughout the evaluation, the simpler notation 〈α, θ〉 ⇒ θ′ is often used, with
references to an implicit program P made when necessary. The evaluation relation
for action sequences is defined inductively in terms of the link function and the
relations for evaluation of expressions and predicates as follows.
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Empty sequence. For all θ ∈ M:

(Rε) 〈ε, θ〉 ⇒ θ .

The empty sequence ε does nothing and leaves the memory unchanged.
Start, pause, and stop actions. For all x ∈ Media, p ∈ Pred, α ∈ ActSeq,

P ∈ LinkSeq, and θ, θ′ ∈ M:

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θ[ ⊃s x]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) = ∧ p, θ〉 ⇒ > 〈`(P, x)α, θ[ ⊃s x]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) = ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θ[φ ⊃ x]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

By rule R+, if the first action of the sequence is (p ? x) and if it can be executed
in state θ, that is, if media object x is in state paused or stopped and predicate p

evaluates to true in θ, then the configuration evaluates to the result of evaluating action
sequence `(P, x)α in θ[ ⊃s x]; otherwise, by rule R−, the configuration evaluates
to the result of evaluating α in θ. Simply put, if action (p ? x) can be executed,
media object x transitions to state occurring and the links of program P that depend
on target x are triggered by prefixing `(P, x) to the original sequence5; otherwise,
action (p ? x) is dropped and the next action of the sequence is considered.

Rules R+, R−, and R− operate similarly. If the first action of the sequence can
be executed, x transitions to the corresponding state and the links that depend on the
action target are triggered; otherwise, the action is dropped and the next action of the
sequence is considered. Rule R+ is also similar, but besides transitioning x to state
stopped, it replaces the cell of x in θ by the empty cell φ, which effectively resets x’s
state, time, and property table—although here the property table is reset to the empty
table ρℵ, in practice, when the object is stopped, each of its properties is reset to its
initial value, or to its default value in case the property was not explicitly initialized.

5In the equational formalism, the sequence α plays the same role as stack S in the cycle algorithm
of Section 3.1.2. In effect, to prefix `(P, x) to α corresponds to pushing into stack S the tail of all
links in P whose head is x, with the links considered in declaration order.
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Seek action. For all n ∈ N, x ∈ Media, p ∈ Pred, α ∈ ActSeq, P ∈ LinkSeq
and θ, θ′ ∈ M:

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x)α, θ[n Et x]〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R−)

By rule R+, if the first action of the sequence is (p ? x:e) and if it can be
executed in θ, that is, if media object x is not in state stopped and predicate p

evaluates to true in θ, then x’s playback time is incremented by the number to which
expression e evaluates in θ, and the links of program P that depend on target x are
triggered; otherwise, by rule R−, action (p ? x:e) is dropped and the next action of
the sequence is considered. Note that by definition of memory writes (Section 4.1.2),
the playback time of x is reset to 0 if θt(x) + n < 0; thus the resulting playback time
is always a nonnegative integer.

Set action. For all n ∈ N, u ∈ Prop, x ∈ Media, α ∈ ActSeq, P ∈ LinkSeq,
and θ, θ′ ∈ M:

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x.u)α, θ[n ⊃ρ x.u]〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R−)

By rule R+, if the first action of the sequence is (p ? x.u:e) and if it can be
executed, that is, if media object x is not in state stopped and predicate p evaluates
to true in θ, then property u of x is set to the number to which expression e evaluates
in θ, and the links of program P that depend on target x.u are triggered; otherwise,
by rule R−, action (p ? x.u:e) is dropped and the next action of the sequence is
considered.

Limited iteration. For all n ∈ N, e ∈ Expr, α1, α2 ∈ ActSeq, and θ, θ′ ∈ M:

〈e, θ〉 ⇒ n 〈α1{n − 1 ∗ α1}α2, θ〉 ⇒ θ′
if n > 0

〈{e ∗ α1}α2, θ〉 ⇒ θ′
(R+
∗ )

〈e, θ〉 ⇒ n 〈α2, θ〉 ⇒ θ′
if n ≤ 0

〈{e ∗ α1}α2, θ〉 ⇒ θ′
(R−∗ )

By rule R+
∗ , if the sequence is of the form {e ∗ α1}α2 and if the number n to

which e evaluates in θ is greater than zero, the configuration evaluates to the result
of evaluating α1 once, followed by {n − 1 ∗ α1} and α2. In other words, the loop is
unfolded once and the number of remaining iterations is decremented. If, however,
n is less than or equal to 0, by rule R−∗ , the subsequence delimited by left and right
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braces is dropped and the next action of the sequence is considered. Note that the
original expression e is evaluated only once, in the first iteration.

Example 4.1 depicts a derivation that establishes that the bootstrap reaction
of Example 3.1 (page 36) in the initial (empty) memory Φ terminates with media
objects λ, x, and y in state occurring. In symbols:

〈 λ, P,Φ〉 ⇒ θ ,

where P denotes the program of Example 3.1 and θ is a memory obtained from Φ by
the following sequence of writes:

θ = Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z][ ⊃s z] .

Example 4.1. The bootstrap reaction of Example 3.1:

〈ε,Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z][ ⊃s z]〉 ⇒ θ
R+

〈 z,Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z]〉 ⇒ θ
R+

〈 z z,Φ[ ⊃s λ][ ⊃s x][ ⊃s y]〉 ⇒ θ
R+

〈 y z,Φ[ ⊃s λ][ ⊃s x]〉 ⇒ θ
R+

〈 x,Φ[ ⊃s λ]〉 ⇒ θ R+

〈 λ,Φ〉 ⇒ θ

The above derivation is constructed from the axiom instance

〈ε,Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z][ ⊃s z]〉 ⇒ θ

by an application of rule R+ followed by four applications of rule R+. For simplicity,
actions are depicted in abbreviated form and the leftmost premise of each rule
instance is omitted.

To compute (find) a derivation, one usually proceeds in a bottom-up manner.6

For instance, let us retrace the steps used to compute the above derivation. In this
case, the point of departure is the question, “What is the final memory to which
configuration 〈(>?λ), P,Φ〉 evaluates?”, in symbols:

(d) 〈(> ? λ),Φ〉 ⇒ ?

Since predicate > is true in Φ and media object λ is not in state occurring in Φ,
or more formally, since there is a derivation d1 (also constructed from the bottom up)

6A similar algorithm would be used by an equational kernel to compute a reaction.
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such that

(d1)

〈state(λ),Φ〉 ⇒ 〈 ,Φ〉 ⇒
R=

〈state(λ) = ,Φ〉 ⇒ ⊥
R¬

〈¬(state(λ) = ),Φ〉 ⇒ > 〈>,Φ〉 ⇒ >
R∧

〈state(λ) , ∧ >,Φ〉 ⇒ >

and since the leftmost action of pseudo-derivation d is a start action, then the only
rule that can be applied to d is R+, and its application results in the following
pseudo-derivation:

(d′) d1 〈`(P, (> ? λ)) = (> ? x),Φ[ ⊃s λ]〉 ⇒ ? R+

〈(> ? λ),Φ〉 ⇒ ?

The question is now updated to, “What is the final memory to which configu-
ration 〈(>?x), P,Φ[ ⊃s λ]〉 evaluates?” Again, only rule R+ can be applied, and its
application results in the following pseudo-derivation:

(d′′) d1

d2 〈`(P, (> ? x)) = (> ? y)(> ? z),Φ[ ⊃s λ][ ⊃s x]〉 ⇒ ?
R+

〈`(P, (> ? λ)) = (> ? x),Φ[ ⊃s λ]〉 ⇒ ? R+

〈(> ? λ),Φ〉 ⇒ ?

where d2 is a derivation of the form:

(d2)
· · ·

〈state(x) , ∧ >,Φ[ ⊃s λ]〉 ⇒ >

Similar steps take place until a pseudo-derivation of the following form is
reached:

d1

d2

d3

d4

d5 〈ε,Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z][ ⊃s z]〉 ⇒ ?
R+

〈(> ? z),Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z]〉 ⇒ ?
R+

〈(> ? z)(> ? z),Φ[ ⊃s λ][ ⊃s x][ ⊃s y]〉 ⇒ ?
R+

〈(> ? y)(> ? z),Φ[ ⊃s λ][ ⊃s x]〉 ⇒ ?
R+

〈`(P, (> ? λ)) = (> ? x),Φ[ ⊃s λ]〉 ⇒ ? R+

〈(> ? λ),Φ〉 ⇒ ?

for some d3, d4, and d5, obtained similarly to d1 and d2. At this point, by rule Rε,

? = θ = Φ[ ⊃s λ][ ⊃s x][ ⊃s y][ ⊃s z][ ⊃s z] .

Thus a derivation is obtained by simply replacing θ for the occurrences of symbol ?
on the right-hand side of symbol⇒ in the above pseudo-derivation.

Before moving to the main result of this section, a formal characterization of
the notion of derivation, so far discussed intuitively, is in order. By a rule instance it
is meant a rule in which metavariables are replaced by actual terms or values. Each
rule instance is a pair 〈X, y〉 where X is a finite set of premises and y is a conclusion.

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



4.1 Equational semantics 65

If R is a set of rule instances, then d is said to be an R-derivation of y, in sym-
bols d R y, iff either d = 〈∅, y〉, for some axiom 〈∅, y〉 ∈ R, or d = 〈{d1, . . . , dn}, y〉,
for some rule instance 〈{y1, . . . , yn}, y〉 ∈ R such that di R yi with 1 ≤ i ≤ n. And y
is said to be derived from set R, in symbols R y, iff there is a derivation d such
that d R y. Set R is omitted if it is clear from context.

The height h(d) of a derivation d is the greatest number of rule applications
in d. Thus axioms have height 0. For instance, the height of the derivation depicted
in Example 4.1 is eight—five applications of state manipulation rules plus the three
rule applications contained in its subderivation d5.

If d and d′ are derivations, d′ is said to be an immediate subderivation of d, in
symbols d′ ≺1 d, iff d = 〈X, y〉 with d′ ∈ X. And d′ is said to be proper subderivation
of d, in symbols d′ ≺ d, iff d′ ≺+

1 d where ≺+
1 denotes the transitive closure of

relation ≺1. Since derivations are finite, both relations ≺1 and ≺ are well-founded:
Every nonempty subset of the set of all derivations has a minimal element d0 such
that d0 ≺ d, for all d , d0 in the subset [113]. Moreover, if d′ ≺ d then h(d′) < h(d).

4.1.7
Determinism

The next theorem establishes that the evaluation of action sequences is deterministic.

Theorem 4.5. For all α ∈ ActSeq, θ, θ1, θ2 ∈ M:

〈α, θ〉 ⇒ θ1 and 〈α, θ〉 ⇒ θ2 implies θ1 = θ2 ,

that is, the evaluation of action sequences is deterministic.

Proof. By induction on the structure of derivations. See page 122.

4.1.8
Non-convergence

Though the evaluation of action sequences is deterministic, as discussed in Sec-
tion 3.1.3, under the equational semantics some evaluations may not converge (yield
a result). More precisely, the evaluation relation (⇒) for equational programs may
be undefined for some combinations of program-configuration. The next proposition
establishes that the evaluation of action x in memory Φ with P ≡ x→ x x does
not converge.

Proposition 4.6. Let P denote the following Smix program:

x→ (> ? x)(> ? x) .

Then there is no θ ∈ M such that 〈(> ? x), P,Φ〉 ⇒ θ.
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Proof. By contradiction on the assumption of minimality of a hypothetical derivation
d  〈(> ? x), P,Φ〉 ⇒ θ. See page 124.

4.1.9
Program equivalence

The relation⇒ for evaluation of action sequences determines a natural equivalence
relation ∼ between programs (members of LinkSeq).

Definition 4.1. For all P1, P2 ∈ LinkSeq, α ∈ ActSeq, and θ, θ′ ∈ M:

P1 ∼ P2 iff
(
〈α, P1, θ〉 ⇒ θ′ iff 〈α, P2, θ〉 ⇒ θ′

)
,

that is, two programs (link sequences) P1 and P2 are equivalent iff they evaluate
to the same final memory θ′ when fed with the same action sequence α and initial
memory θ.

Since equivalence proofs are much simpler in the linear formalism, their
presentation is deferred to Section 4.2.6.

4.2
Linear semantics

In the linear semantics, links and action sequences are replaced by equivalent linear
programs that always terminate. The abstract syntax of linear programs is mostly
identical to that of equational programs presented in Section 4.1.1. The only dif-
ference is the substitution of sets ActSeq and LinkSeq by the set ActLine of linear
programs defined as follows:

α ∈ ActLineF ε | a[α1]α2 | {e ∗ α1}α2 .

Here metavariable α is assumed to range over ActLine. Though the same metavari-
able is used to denote action sequences (members of ActSeq), care is taken not to
mix the uses so that the correct denotation can always be inferred from the context.

The semantics described in this section is only concerned with the behavior of
linear programs (members of ActLine). In practice, however, linear programs do not
occur in isolation: they are obtained from equational programs by a process called
linearization. The particular linearization procedure σ adopted here—essentially
the same σ listed in Section 3.1.4—operates over the graph of an input equational
program P. Its result is a linear program that implements the execution of a given
input action a over P. Before defining σ, the procedure for obtaining the graph, or
more precisely, the directed multigraph7, of an equational program is detailed.

7In a directed multigraph two nodes may be connected by more than one arc.
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4.2.1
Program graph

A program graph G is a pair 〈V,W〉 where V is a set of nodes and W is a set of arcs.
Each node v ∈ V is either an action target or the string ∗n for some n ∈ N, and each
arc w ∈ W is a 5-tuple 〈v1, v2, n, a, e〉 where v1, v2 ∈ V are the source and destination
nodes of the arc, n ∈ N is its number, a ∈ ActAtom∪ {ε} is its associated action, and
e ∈ Expr∪{ε} is its associated expression. The last two fields are mutually exclusive,
that is, when one is set the other is empty (ε). The function g that computes the
graph of a given equational program is defined as follows:

procedure g (P)
V B ∅
W B ∅
i B 0 // arc counter
j B 0 // iteration node counter
for each link s→ α in P (in declaration order) do

V B V ∪ {s}
g′(V,W, i, j, s, α) // V, W, i, and j are passed by reference

end
return 〈V,W〉

end

procedure g′ (V,W, i, j, s, α)
while α . ε do

if α ≡ aα1 then
V B V ∪ {τ(a)}
W B W ∪ {〈s, τ(a), i, a, ε〉}
i B i + 1
α B α1

else // α ≡ {e ∗ α1}α2

V B V ∪ {∗ j}

W B W ∪ {〈s, ∗ j, i, ε, e〉}
i B i + 1
j B j + 1
α B α2

g′(V,W, i, j, ∗ j, α1)
end

end
end

Table 4.1 in page 69 depicts the execution history of function g when applied to
Example 3.2 (page 40). In the table, each line captures the content of parameters V ,
W, s, and α of auxiliary function g′ at the moment immediately before each pass of
its outermost loop. The dotted lines delimit external calls of g′ by g, and the numbers
in the leftmost column identify a particular pass the outermost loop—nested calls
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of g′ are represented by nested numbers. Figure 3.2 (page 42) depicts the resulting
program graph.

For a less trivial example, consider the equational program of Example 4.2.
The execution history of g when applied to this program is depicted in Table 4.1 and
the resulting graph in Figure 4.1.

Example 4.2. An equational program with a nontrivial graph:

x→ (p1 ? x){e1 ∗ (p2 ? z)(p3 ? y)}(p4 ? y)

y→ (p5 ? z)(p6 ? x)

z→ {e2 ∗ {e3 ∗ (p7 ? z)(p8 ? z)}}

4.2.2
Linearization function

The linearization function σ takes as input an equational program P and an action a

and returns a linear program implements the execution of a in P. The algorithm
described here starts at the node representing the target of the initial action a and
traverses the graph of P in depth-first order, selecting arcs in increasing order of arc
number. Function σ is defined as follows:8

procedure σ (P, a)
return a ·[·σ′(proj2(g(P)),∅, τ(a)) ·]

end

procedure σ′ (W,M, s) // W and M are received by reference
α B ε
W ′B {w ∈ W : proj1(w) = s}
for each w ∈ W ′ (in increasing order of arc number) do

if w < M then
M B M ∪ {w}
if proj4(w) , ε then

α B α · proj4(w) ·[·σ′(W,M, proj2(w)) ·]
else

α B α ·{· proj5(w) · ∗ ·σ′(W,M, proj2(w)) ·}
end

end
end
return α

end

8This procedure is essentially the same presented in Section 3.1.4. The main difference is that,
besides actions, the above procedure also handles iteration nodes—but it does not handle pinned
actions. As discussed in Section 3.2.3, to handle pinned actions, procedure σ′ must be updated so
that when it encounters a pinned arc it marks it as visited but does not proceed to visit its neighbors;
that is, it appends the action to the resulting program but does not call itself recursively on this action.
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Table 4.1. Execution history of g over Example 3.2.

pass V W s α

1 { x} ∅ x (> ? y)
2 V ∪ { y} W ∪ {〈 x, y, 0, (> ? y), ε〉} x ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 V ∪ { y} W y (> ? x)
2 V ∪ { x} W ∪ {〈 y, x, 1, (> ? x), ε〉} y ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 V ∪ { x} W x (> ? y)
2 V ∪ { y} W ∪ {〈 x, y, 2, (> ? y), ε〉} x ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 V ∪ { y} W y (> ? x)
2 V ∪ { x} W ∪ {〈 y, x, 3, (> ? x), ε〉} y ε

Table 4.2. Execution history of g over Example 4.2.

pass V W s α

1 { x} ∅ x (p1 ? x){e1 ∗ (p2 ? z)(p3 ? y)}(p4 ? y)
2 V ∪ { x} W ∪ {〈 x, x, 0, (p1 ? x), ε〉} x {e1 ∗ (p2 ? z)(p3 ? y)}(p4 ? y)
2.1 V ∪ {∗0} W ∪ {〈 x, ∗0, 1, ε, e1〉} ∗0 (p2 ? z)(p3 ? y)
2.2 V ∪ { z} W ∪ {〈∗0, z, 2, (p2 ? z), ε〉} ∗0 (p3 ? y)
2.3 V ∪ { y} W ∪ {〈∗0, y, 3, (p3 ? y), ε〉} ∗0 ε
3 V W x (p4 ? y)
4 V ∪ { y} W ∪ {〈 x, y, 4, (p4 ? y), ε〉} x ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 V ∪ { y} W y (p5 ? z)(p6 ? x)
2 V ∪ { z} W ∪ {〈 y, z, 5, (p5 ? z), ε〉} y (p6 ? x)
3 V ∪ { x} W ∪ {〈 y, x, 6, (p6 ? x), ε〉} y ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 V ∪ { z} W z {e2 ∗ {e3 ∗ (p7 ? z)(p8 ? z)}}
1.1 V ∪ {∗1} W ∪ {〈 z, ∗1, 7, ε, e2〉} ∗1 {e3 ∗ (p7 ? z)(p8 ? z)}
1.1.1 V ∪ {∗2} W ∪ {〈∗1, ∗2, 8, ε, e3〉} ∗2 (p7 ? z)(p8 ? z)
1.1.2 V ∪ { z} W ∪ {〈∗2, z, 9, (p7 ? z), ε〉} ∗2 (p8 ? z)
1.1.3 V ∪ { z} W ∪ {〈∗2, z, 10, (p8 ? z), ε〉} ∗2 ε
1.2 V W ∗1 ε
2 V W z ε

x ∗0 y

y z ∗1

∗2

0, (p1 ? x)

1, e1

2, (p2 ? z)

3, (p3 ? y)

4, (p4 ? y)

5, (p5 ? z)

6, (p6 ? x)

7, e2

8, e3
9, (p7 ? z)

10, (p8 ? z)

Figure 4.1. Graph of Example 4.2.
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In the auxiliary procedure σ′, set W contains the arcs of the program graph,
set W ′ contains the arcs in W whose source is node s, and set M contains the arcs
visited so far. In the worst case, procedure σ′ has to visit all arcs of the graph;
thus its running time complexity, and consequently that of σ, is linear—or more
precisely, O(|W |), where |W | is the cardinality of set W. A linear complexity is good
enough if one is interested in computing the linear program of a single action. In
practice, however, one is usually interested in pre-computing the linear programs of
all possible nontrivial action targets, that is, those targets that appear as nodes in the
program graph. In this case, the naive approach of repeating the above algorithm to
each target (node) leads to a complexity of O(|V |×|W |), which is probably not optimal
but is nevertheless acceptable for our current use, namely, the offline compilation of
equational programs. The investigation of better linearization algorithms (with lower
complexities) and alternative restrictions are left to future work.

Figure 4.2 depicts the history of calls resulting from the initial call σ(P, (>?x)),
where P denotes the program of Example 4.2. In the figure, only the last parameter
of each call to σ′ is showed.

σ(P, (> ? x))

= (> ? x)
[
σ′( x)

]
= (> ? x)


(p1 ? x)[σ′( x)]
{e1 ∗ σ

′(∗0)}
(p4 ? y)[σ′( y)]


= (> ? x)


(p1 ? x)[ε]
{e1 ∗ (p2 ? z)[σ′( z)](p3 ? y)[σ′( y)]}
(p4 ? y)[(p5 ? z)[σ′( z)](p6 ? x)[σ′( x)]]


= (> ? x)


(p1 ? x)[ε]
{e1 ∗ (p2 ? z)[{e2 ∗ σ

′(∗1)}](p3 ? y)[ε]}
(p4 ? y)[(p5 ? z)[ε](p6 ? x)[ε]]


= (> ? x)


(p1 ? x)[ε]
{e1 ∗ (p2 ? z)[{e2 ∗ {e3 ∗ σ

′(∗2)}}](p3 ? y)[ε]}
(p4 ? y)[(p5 ? z)[ε](p6 ? x)[ε]]


= (> ? x)


(p1 ? x)[ε]
{e1 ∗ (p2 ? z)[{e2 ∗ {e3 ∗ (p7 ? z)[σ′( z)](p8 ? z)[σ′( z)]}}](p3 ? y)[ε]}
(p4 ? y)[(p5 ? z)[ε](p6 ? x)[ε]]


= (> ? x)


(p1 ? x)[ε]
{e1 ∗ (p2 ? z)[{e2 ∗ {e3 ∗ (p7 ? z)[ε](p8 ? z)[ε]}}](p3 ? y)[ε]}
(p4 ? y)[(p5 ? z)[ε](p6 ? x)[ε]]


Figure 4.2. Call history of σ over Example 4.2.
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4.2.3
Evaluation of linear programs

A program configuration is a pair 〈α, θ〉 that represents the situation of linear pro-
gram α waiting to be evaluated in memory θ. The evaluation of linear programs
is determined by relation⇒ ⊆ ActLine ×M ×M such that 〈α, θ〉 ⇒ θ′ iff linear
program α when executed in memory θ evaluates to an updated memory θ′. The
relation⇒ for the evaluation of linear programs is defined inductively in terms of
the relations for evaluation of expressions and predicates (presented in Sections 4.1.3
and 4.1.4) by the following thirteen rules.

For all n ∈ N, x ∈ Media, e ∈ Expr, p ∈ Pred, α1, α2 ∈ ActLine, and θ,
θ′ ∈ M:

〈ε, θ〉 ⇒ θ(Rε)

〈state(x) , ∧ p, θ〉 ⇒ > 〈α1α2, θ[ ⊃s x]〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R−)

〈state(x) = ∧ p, θ〉 ⇒ > 〈α1α2, θ[ ⊃s x]〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) = ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈α1α2, θ[φ ⊃ x]〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈α1α2, θ[n Et x]〉 ⇒ θ′

〈(p ? x:e)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x:e)[α1]α2, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈α1α2, θ[n ⊃ρ x.u]〉 ⇒ θ′

〈(p ? x.u:e)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x.u:e)[α1]α2, θ〉 ⇒ θ′
(R−)

〈e, θ〉 ⇒ n 〈α1{n − 1 ∗ α1}α2, θ〉 ⇒ θ′
if n > 0

〈{e ∗ α1}α2, θ〉 ⇒ θ′
(R+
∗ )

〈e, θ〉 ⇒ n 〈α2, θ〉 ⇒ θ′
if n ≤ 0

〈{e ∗ α1}α2, θ〉 ⇒ θ′
(R−∗ )
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Each of the previous rules behaves similarly to its counterpart in the equational
semantics. Three general behaviors are possible:

1. If the input program α is empty (ε), then the configuration evaluates to the
current memory θ, leaving it unchanged.

2. If the input program α is of the form a[α1]α2 and if action a can be exe-
cuted in θ, then a is executed and the configuration evaluates to the result of
evaluating subprogram α1 followed by α2 in the updated memory; otherwise,
subprogram a[α1] is discarded and the configuration evaluates to the result of
evaluating subprogram α2 in θ.

3. If the input program α is of the form {e ∗ α1}α2 and if the number n to which
expression e evaluates in θ is greater than zero, then the configuration evaluates
to the result of evaluating α1{n− 1 ∗α1}α2 in θ; otherwise, subprogram {e ∗α1}

is discarded and the configuration evaluates to the result of evaluating α2 in θ.
As in the equational semantics, rule R+ resets the object’s state, time, and

property table; rule R+ resets object’s playback time to 0 if θt(x)+n < 0; and rules R+
∗

and R−∗ and evaluate the original expression e only in the first iteration.

4.2.4
Determinism

The next theorem establishes that the evaluation of linear programs is deterministic.

Theorem 4.7. For all α ∈ ActLine, θ, θ1, θ2 ∈ M:

〈α, θ〉 ⇒ θ1 and 〈α, θ〉 ⇒ θ2 implies θ1 = θ2 ,

that is, the evaluation of linear programs is deterministic.

Proof. By induction on the structure of derivations. See page 124.

4.2.5
Convergence

Lemma 4.8. For all α1, α2 ∈ ActLine, and θ, θ′, θ′′ ∈ M:

〈α1α2, θ〉 ⇒ θ′′ iff
(
〈α1, θ〉 ⇒ θ′ and 〈α2, θ

′〉 ⇒ θ′′
)
.

Proof. By induction on the structure of derivations. See page 126.

The next theorem establishes that the evaluation of linear programs always
terminates. Its proof depends on Lemma 4.8.

Theorem 4.9. For all α ∈ ActLine and θ ∈ M, there is a θ′ ∈ M such that

〈α, θ〉 ⇒ θ′ ,
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that is, the evaluation of linear programs always terminates.

Proof. By induction on the structure of linear programs. See page 129.

A consequence of Theorem 4.9 is the Turing-incompleteness of the computa-
tional model of linear Smix programs. One requirement for Turing-completeness is
the ability to express indefinite iteration, but Theorem 4.9 restricts this ability, so the
resulting model is not Turing-complete [114]. This means that there are computable
functions (that is, functions that can be computed by a Turing machine or equivalent
computational model) which cannot be expressed by linear Smix programs. That
said, Smix’s model is intentionally restricted: it aims to ease the description of inter-
active multimedia presentations, as opposed to the description of general algorithms.
Moreover, if general computing functions are required, one can resort to external
scripts, which can be embedded in the program as media objects containing Lua
code, as discussed in Chapter 5.

4.2.6
Program equivalence

The relation⇒ for evaluation of linear programs determines a natural equivalence
relation ∼ between linear programs (members of ActLine).

Definition 4.2. For all α1, α2 ∈ ActLine and θ, θ′ ∈ M:

α1 ∼ α2 iff
(
〈α1, θ〉 ⇒ θ′ iff 〈α2, θ〉 ⇒ θ′

)
,

that is, two linear programs α1 and α2 are equivalent iff they evaluate to the same
final memory θ′ when fed with the same initial memory θ.

The next three propositions establish basic substitution rules for program
fragments. Only the last, Proposition 4.12, is proved. Similar propositions can be
obtained by varying the constructs involved.

Proposition 4.10. For all p1, p2 ∈ Pred, and x ∈Media:

if p1 ∼ p2 then (p1 ? x) ∼ (p2 ? x) .

Proof. By the form of derivations.

Proposition 4.11. For all a1, a2 ∈ ActAtom, and α1, α2 ∈ ActLine:

if a1 ∼ a2 then a1[α1]α2 ∼ a2[α1]α2 .

Proof. By the form of derivations.
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Proposition 4.12. For all e1, e2 ∈ Expr and α ∈ ActLine:

if e1 ∼ e2 then {e1 ∗ α} ∼ {e2 ∗ α} .

Proof. By the form of derivations. See page 130.

The next three propositions give rise to corresponding procedures for program
reduction. Again, only the last one, Proposition 4.15, is proved. Proposition 4.15 is a
conditional stated in terms of the potential function π such that

π(α) =


∅ if α ≡ ε

{τ(a)} ∪ π(α1) ∪ π(α2) if α ≡ a[α1]α2

π(α1) ∪ π(α2) if α ≡ {e ∗ α1}α2 .

Thus π(α) denotes the set of all action targets potentially executed by linear pro-
gram α. Again, similar propositions can be obtained by varying the constructs
involved.9

Proposition 4.13. For all n1, n2 ∈ N, and α ∈ ActLine:

{n1 ∗ α}{n2 ∗ α} ∼ {n1 + n2 ∗ α} .

Proof. By the form of derivations.

Proposition 4.14. For all n1, n2 ∈ N, and α ∈ ActLine:

{n1 ∗ {n2 ∗ α}} ∼ {n1 × n2 ∗ α} .

Proof. By the form of derivations.

Proposition 4.15. For all p1, p2 ∈ Pred, x ∈ Media, and α1, α2, α3, α4 ∈

ActLine:

if π(α1)∩ { x, x} = ∅ then (p1 ? x)[α1(p2 ? x)[α2]α3]α4 ∼ (p1 ? x)[α1α3]α4 .

Proof. By the form of derivations. See page 130.

9Equivalences involving the limited iteration operator can be tricky. For instance, despite the
results of Propositions 4.13 and 4.14,

{e1 ∗ α}{e2 ∗ α} / {e1 + e2 ∗ α} and {e1{e2 ∗ α}} / {e1 × e2 ∗ α} .
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Consider the strong potential function Π defined in terms of the potential
functions Π0 for expressions, Π1 for predicates, and Π2 for action atoms as follows:

Π0(n) = ∅

Π0(state(x)) = {x}

Π0(time(x)) = {x}

Π0(prop(x, u)) = {x}

Π0(e1 ? e2) = Π0(e1) ∪ Π0(e2)

Π1(t) = ∅

Π1(e1 ? e2) = Π0(e1) ∪ Π0(e2)

Π1(¬p1) = Π1(p1)

Π1(p1 ? p2) = Π1(p1) ∪ Π1(p2)

Π2((p ? x)) = Π1(p) ∪ {x}

Π2((p ? x)) = Π1(p) ∪ {x}

Π2((p ? x)) = Π1(p) ∪ {x}

Π2((p ? x:e)) = Π1(p) ∪ {x} ∪ Π0(e)

Π2((p ? x.u:e)) = Π1(p) ∪ {x} ∪ Π0(e)

Π(ε) = ∅

Π(a[α1]α2) = Π2(a) ∪ Π(α1) ∪ Π(α2)

Π({e ∗ α1}α2) = Π(α1) ∪ Π(α2) .

Thus Π(α) denotes the set of all media object identifiers referenced in program α.
The next proposition uses function Π to establish a general condition under

which subprogram execution may be safely interleaved.

Proposition 4.16. For all α1, α2 ∈ ActLine:

if Π(α1) ∩ Π(α2) = ∅ then α1α2 ∼ α2α1 .

Proof. By the form of derivations. See page 133.
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5
The Smix virtual machine

The Smix virtual machine, or Smix VM, is a software component that given an
input program together with a sequence of input events plus a monotonic clock
source produces a sequence of output events plus audio and video samples. The
machine behaves as the implicit media object λ, which represents the program (whole
presentation) itself. The input and output events it receives and emits are Smix actions
targeting λ and the samples it produces correspond to the final composition of the
samples of all media objects being presented at a particular time (expressed in terms
of the input clock stream). Figure 5.1 depicts the general input-output behavior of
the Smix VM after some program is loaded into it.

Smix VM

input events

clock

output events

samples

Figure 5.1. The Smix VM input-output behavior.

The Smix VM is assumed to operate under the synchrony hypothesis. Its output
events are produced synchronously with input events, and each machine reaction
(input-output cycle) is explicitly requested by the environment. Here the environment
is application-level code that uses the Smix VM API to run Smix programs and
collect the resulting events and samples. The obvious use of a Smix VM is to
construct a Smix interpreter—a standalone program that runs Smix programs and
displays the produced samples in real-time. Though other uses are possible.

The virtual machine API is similar to that of the language kernel (discussed
in Chapter 3). It consists, basically, of the four operations init, send, cycle, and
receive, plus the operation sample, which is used to obtain the resulting samples.
The init operation receives a Smix program together with a clock source and ini-
tializes the virtual machine accordingly. The send and receive operations behave
similarly to those of the language kernel, but deal only with actions targeting me-
dia object λ (or λ-actions, for short). By calling send, the environment submits
a λ-action to be executed, and by calling receive, it collects the λ-actions that were
executed during the reaction. Finally, the cycle operation computes a single machine
reaction: it processes the input actions, querying the current clock value when neces-
sary, and generates the corresponding output actions and resulting samples. Using
these operations, the environment drives the Smix VM step-by-step, more precisely,
reaction-by-reaction, to create a presentation (as detailed in Section 5.1.1).

76

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



5.1 Architecture 77

5.1
Architecture

The Smix VM consists of three components:
1. language kernel,
2. multimedia engine, and
3. scheduler.

The language kernel maintains the logic and state of the running program; the
multimedia engine synthesizes the corresponding audio and video samples; and
the scheduler coordinates the execution of the previous components and handles
most communication with the environment (application-level code). Figure 5.2
depicts the overall architecture of the Smix VM. As shown in the figure, both the
language kernel and the multimedia engine are completely independent modules;
their execution is coordinated by the scheduler, but they share no data and do not
communicate with each other.

Scheduler

Language
Kernel

Multimedia
Engine

API

cl
oc

k

in
pu

t

sa
m

pl
es

ou
tp

ut

Figure 5.2. The Smix VM architecture.

During its life-cycle, a Smix VM instance can be in one of the following phases:
initialization, execution, or finalization. In the initialization phase, triggered by an
init call, the scheduler receives a Smix program and initializes the kernel and engine
components accordingly. More precisely, the scheduler passes the input program to
the kernel, which compiles it into a linear program and allocates a corresponding
media memory. Both the resulting linear program and media memory are maintained
internally by the kernel and cannot be accessed directly by the scheduler. After the
kernel is initialized, the scheduler proceeds to initialize the multimedia engine: it
uses the engine’s API to construct the multimedia digital signal processing dataflow
that will render the input program. More precisely, for each media object in the
program, the scheduler allocates and interconnects a corresponding set of nodes in
the engine’s dataflow graph (as discussed in Section 5.2). The mapping between
media objects in the program and a particular set of nodes in the graph is maintained
internally by the scheduler.
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After the virtual machine is initialized, the environment submits the bootstrap
action λ and calls cycle for the first time, which causes the VM to enter execution
phase. The machine stays in execution phase until the program that it is running ter-
minates, that is, until action λ is executed, at which point it proceeds to finalization
phase. In the finalization phase, the scheduler releases the resources allocated by the
kernel and the engine together with those used by the scheduler itself.

5.1.1
Smix VM reaction

While in execution phase, each call to cycle by the environment triggers a new
reaction and makes the scheduler execute the following sequence of steps:

1. Check if there are pending events in the multimedia engine that must be passed
to the kernel and, if that is the case, send the corresponding actions to the
kernel.1

2. Remove all λ-actions from the scheduler’s input queue and send them to the
kernel. (At this point, select actions targeting λ are propagated to the media
objects that declare themselves as input handlers.2)

3. If the time since the last scheduler cycle is greater than or equal to the period
of a logical clock tick (defined in initialization phase), send the corresponding
number of clock tick (seek by 1) actions to each media object in state occurring
in the kernel (including object λ).3

4. Cycle the kernel once for each action in its input queue.
5. Receive all actions output by the kernel and apply the corresponding operations

onto the engine’s dataflow graph.4

6. Of the actions output by the kernel, insert into the scheduler’s output queue
those targeting object λ. (At this point, if an action λ is received from the
kernel, the execution is halted by the scheduler.)

7. Cycle the multimedia engine once. That is, request the production of new
audio and video samples which, when completed, are inserted into an internal

1An example of such an event is the “natural end” of a media object. When the dataflow subgraph
corresponding to media object x exhausts its samples it generates an end-of-stream event which is
caught by the scheduler and sent to the kernel in the form of a stop action, x in this case.

2A media object is considered an input handler if its property handle_input is set to a value that
evaluates to true, as discussed in Section 5.2. Thus if the scheduler receives a select action λ from
the environment and if media objects x1, x2, . . . , xn are input handlers, the scheduler sends to the
kernel the actions λ, x1, x2, . . . , xn.

3Physical time values are always relative to the input clock source. Moreover, to avoid gratuitous
nondeterminism, after object λ is ticked, the remaining media objects are ticked in alphabetical order
of identifier. In effect, the same order is used in any case where actions targeting object λ must be
propagated to ordinary objects, as in footnote 2 above.

4For instance, if an action (> ? x.transparency:.5) is received from the kernel, the scheduler
identifies the node in the dataflow graph responsible for mixing the video samples of x with those of
the other objects and sets the amount of transparency to be applied to 50%. The mapping of Smix
actions into dataflow operations is implementation-dependent and is therefore detailed in Section 5.2.
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sample queue maintained by the engine. A sample is removed from this queue
whenever operation sample is called by the environment.
The previous algorithm describes the real-time mode of operation of the

Smix VM. In real-time mode, the machine is synchronized with the input clock
stream, logical ticks are generated automatically by the scheduler, and output samples
are made available to application code at the correct physical presentation (PTS)
time. Besides real-time mode, the Smix VM supports a lock-step mode of operation.
In lock-step mode, the environment is responsible for generating logical ticks (via a
specific API call) and for handling the synchronization of the output samples, which
are time-stamped correctly but produced as fast as possible. In both modes, if the
environment is only interested in the logical execution state of the program, it may
request that the generation of samples be temporarily disabled.

5.1.2
State dumping, restoring, and debugging

In the previous architecture, the presentation state is completely characterized by
the contents of the kernel’s media memory. In effect, based solely on this memory,
one can reconstruct the dataflow graph that renders the presentation at the particular
point denoted by the memory. The reconstruction algorithm is straightforward. It
takes as input a media memory and outputs a sequence of actions that when applied
to the initial dataflow graph (the graph allocated in initialization phase) results in the
graph that renders the given memory.

For instance, consider the memory depicted in Table 5.1. In the table, each
line denotes a memory cell; column “cell” contains the identifier of the media
object to which the cell is mapped, column “state” contains the state of the object,
column “time” contains its time (in logical ticks), and column “properties” contains
its property table—here depicted as a set of ordered pairs in which only non-null
properties are represented.

Table 5.1. A snapshot of a media memory.

cell state time properties

λ 45 {〈width, 800〉, 〈height, 600〉}
x 30 {〈uri, “x.png”〉, 〈z, 1〉}
y 99 {〈uri, “y.ogv”〉, 〈z, 2〉}
z 0 {∅}

To reconstruct the dataflow graph of the above memory, one first allocates
an initial graph containing the subgraphs of x, y, and z, and then applies to it the
dataflow operations corresponding to the following sequence of Smix actions:
• State: (> ? λ), (> ? x), (> ? y), (> ? z);
• Time: (> ? λ:45), (> ? x:30), (> ? y:99);
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• Properties: (> ? λ.width:800), (> ? λ.height:600), (> ? x.uri:“x.png”),
(> ? x.z:1), (> ? y.uri:“y.ogv”), and (> ? y.z:2).

Here properties width and height of λ determine the dimensions of the video sample
resulting from the composition of the samples of objects x, y, and z; property uri of x

and y identifies the source of samples for these objects; and property z of x and y
determines the z-order position of their video samples in the final composition.

The ability to reconstruct the presentation from a given media memory is used
by the Smix VM to implement the operations dump and restore. The dump operation
dumps the content of the media memory to a string or file. The restore operation
takes a media memory dump (from a string or file) and initializes the virtual machine
accordingly, that is, loads the memory into the kernel and uses the previous algorithm
to compute the corresponding dataflow graph.

The dump and restore operations are part of the Smix VM debug API. Along
with these operations, the debug API provides functions to query and manipulate
the contents of the action queues, media memory, and dataflow graph. These
debugging functions bypass the protection of the basic API and expose internal data
to application-level code, which can use (or modify) them to implement advanced
features such as real-time program monitoring (logging) or step-wise debugging
(with the machine operating in lock-step mode) with support for the addition and
removal of breakpoints and watchpoints at run-time.

5.1.3
Optimization

At least three types of implementation-agnostic optimization techniques can be
applied to the preceding architecture: program reduction, output sequence reduction,
and reaction caching.

The first optimization technique, program reduction, consists in replacing
a sequence of instructions by a simpler but equivalent sequence that executes in
fewer steps than the original one. Some basic reduction techniques for linear Smix
programs were presented in Section 4.2.6. Of course, not only program instructions
but also expressions and predicates can be optimized (reduced). In the preceding
architecture, program reduction techniques can be applied in initialization phase by
the kernel when the input equational program is linearized. Since at this point the
presentation has not started, the costs of running the reduction procedures impact
only its bootstrapping time, not its run-time performance.

The second optimization technique, output sequence reduction, is simply pro-
gram reduction applied at run-time. By output sequence, it is meant the sequence of
actions output by the language kernel after each reaction. As these action sequences
are valid linear Smix programs, techniques similar to those applied to reduce pro-
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grams can be used to trim action sequences and, consequently, diminish the amount
of processing performed by the scheduler. Though the techniques are similar, the
algorithms they use may be different, since the requirements are not the same—at
the time output sequence reduction is performed the presentation is running and the
delay introduced by the optimization procedure may outweigh possible gains.

The third optimization technique, reaction caching, can be used by the kernel
to avoid computing parts of a reaction. For instance, during initialization phase, the
kernel can analyze the program code and establish that a given input action a, when
executed, can only result in an output sequence α. By repeating this analysis for
all possible action targets, the kernel can build an internal shortcut cache that maps
an input action to an output action sequence, which it uses in execution phase to
skip the computation of parts of a reaction or, in some cases, the whole reaction. Of
course, the same caching technique can be extended to expressions and predicates.

The previous techniques are starting-points, but more advanced optimization
techniques are also possible. For instance, as suggested by Proposition 4.16, one
possibility is to identify the reactions whose computation can be safely interleaved
and to execute them in parallel (by concurrent threads of execution). Other possibility
is using techniques which are commonplace in the microprocessor design, such as
instruction pipelining and branch prediction [115]. Though these possibilities are
anticipated here, the investigation of such methods is left to future work.

5.1.4
Program composition

In programming language theory, the term “program composition” refers to the ability
to combine independent, self-contained subprograms to build a larger program.
In Smix, program composition is achieved by embedding into a (host) program
media objects whose uri property points to other (guest) Smix programs. The only
restriction is that the composition relation @ between programs be acyclic. More
precisely, relation @ must be irreflexive and its transitive closure @+ antisymmetric:
For every Smix program P, P a P, and for every pair of Smix programs P1 and P2,
if P1 @+ P2 and P2 @+ P1 then P1 = P2.

In Smix, a host program “communicates” with each of its guests via their
lambda interfaces. From the point of view of the host, each guest behaves as an
ordinary media object and is manipulated by ordinary actions. From the point of
view of each guest, the host is simply invisible: the actions it addresses to the guest
are interpreted as λ-actions originating from the environment.

There are at least two approaches to the implementation of composite Smix
programs. The first approach is using a recursive architecture: each guest program
runs in an independent Smix VM that is embedded as a source node (that is, a node
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that produces samples) in the dataflow graph of the host program’s VM. In this
case, the host redirects its clock source to the guests, so that all VMs share the
same clock stream, and cycles them whenever it is cycled by the environment. The
advantage of this approach is its simplicity—its implementation is straightforward.
Its disadvantage is that it tends to lead to inefficient implementations since each
embedded guest VM maintains separate instances of the scheduler and multimedia
engine components.

An alternative approach is running the host and guests in separate kernels that
are coordinated by a single scheduler and share a same multimedia engine. Figure 5.3
depicts the layout of a Smix VM with multiple kernels. In this case, the scheduler is
responsible for translating the actions that circulate up and down the hierarchy of
kernels K1, K2, . . . , Kn. An action addressed by a host to a guest via its particular
identifier in the host, say x, must be translated to an equivalent action addressed to λ
and sent to the guest kernel. Conversely, λ-actions addressed by a guest kernel to the
environment must be translated to equivalent actions addressed to object x and sent
to the host kernel. Though the use of multiple kernels avoids the duplication of logic
incurred by the last approach, it increases the scheduler complexity considerably.5

Scheduler

K1 K2 · · · Kn Engine

Figure 5.3. A multi-kernel Smix VM.

5.2
Implementation

The Smix VM is implemented as a library, called libsmix, written in a mixture of
Lua [116] and clean C [117] (the common subset of C and C++). The scheduler
and language kernel are implemented in Lua and the multimedia engine is mostly
implemented in C using the GStreamer multimedia framework [84]. Lua is a fast and
lightweight, dynamic scripting language, which can be easily used in conjunction
with C. And GStreamer is an industry-grade multimedia framework that supports a
wide range digital signal processing operations and multimedia formats. Both Lua
and GStreamer are open-source projects—the former under the MIT and the latter
under the LGPL license. Similarly, the Smix source code is intended to be released

5The implementation discussed in Section 5.2 does not support composite programs. The investi-
gation of algorithms and data structures to implement such support is listed in Chapter 7 as future
work related to this thesis.
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under the LGPL license. Along with libsmix, the Smix software distribution [118]
includes a simple command-line tool that uses libsmix and the GTK+ [119] toolkit
to run Smix programs.6

5.2.1
Smix programs as Lua tables

A Smix program is a Lua script that when executed evaluates to a table in a specific
format. In Lua, a table is an associative array which can be indexed with any value,
except nil and NaN (not a number). The syntax of table constructors (expressions
that evaluate to a table) is given by the following extended BNF grammar:7

tableF ‘{’ [fieldlist] ‘}’

fieldlistF field {fieldsep field} [fieldsep]

fieldF ‘[’ expr ‘]’ ‘=’ expr | name ‘=’ expr | expr

fieldsepF ‘,’ | ‘;’

The nonterminal expr is either a nil value, boolean constant (true or false), nu-
meral, literal string, arithmetic expression, string expression, function call, function
constructor, or table constructor. And the nonterminal name is an identifier—any
string of letters, digits, and underscores, not beginning with a digit. A field of the
form [expr1]=expr2 adds to the table an entry with key expr1 and value expr2. A
field of the form name=expr is equivalent to ['name']=expr. Finally, fields of
the form expr are equivalent to [i]=expr, where i are consecutive integers starting
with 1. Fields in the other formats do not affect this counting.

A Smix program is any Lua table generated by the constructors specified by
the following grammar:

programF ‘{’ mediatab ‘,’ {link} ‘}’

linkF ‘{’ acttarget ‘,’ {actatom} ‘}’ ‘,’

acttargetF ‘{’ actcode ‘,’ actoperand ‘}’

actatomF ‘{’ expr ‘,’ actcode ‘,’ actoperand ‘,’ expr ‘,’ [acttype] ‘}’
| ‘{’ ‘'iter'’ ‘,’ expr ‘,’ {actatom} ‘}’

actoperandF mediaid ‘,’ [propid]

actcodeF ‘'start'’ | ‘'pause'’ | ‘'stop'’ | ‘'seek'’ | ‘'set'’

6The specific versions used are Lua 5.2, GStreamer ≥ 1.5, and GTK+ ≥ 3.4.
7Here terminal symbols appear in bold font and single quotes, and the symbolsF and | can be

read as “is composed of” and “or”. As usual in extended BNF, {A} means zero or more occurrences
of A, and [A] means an optional occurrence of A.
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The nonterminal mediatab is a table mapping a media object identifier (mediaid,
a name) to a property initialization table—a table whose keys are property names
(propid, a name) and values are their initial values (expr). In actatom, the nonterminal
acttype is an optional string that determines if the action atom is a normal (nil or
'normal'), pinned ('pinned'), or asynchronous ('async') action. Still in the
definition of actatom, the leftmost expr denotes the predicate associated with the
action atom, that is, the expression to which the execution of the atom is conditioned.
The other occurrences of expr, from left to right, denote the argument of seek or set
actions, and the expression associated with the limited iteration construct. In run-
time, the Smix VM evaluates expr as follows: If expr is not a function, it evaluates
to itself, otherwise, it evaluates to the value returned by the function when called
with the current media memory (also a table) as argument.

The media memory is represented by a read-only table. Its keys are media
object identifiers and its values are memory cells, that is, tables containing the
following entries:
• 'state': either 'occurring', 'paused', or 'stopped';
• 'time': an integer that represents the object’s playback time;
• 'prop': the current property table of the object.

To make matters concrete, consider the following abstract Smix program:

λ→ (> ? ˚ x)

y→ (state(x) , ? x:30s){4 ∗ (> ? y)}

x→ (time(x) = 15s ? y.width: time(x))

A concrete version of this program is given by the following Lua script, which simply
constructs and returns a Lua table (Smix program) before terminating.

1 return {
2 {[lambda] = {transparency=.5},
3 x = {uri='x.ogv'},
4 y = {uri='y.vp8'},
5 },
6 {{'start', lambda},
7 {true, 'start', 'x', nil, nil, 'pinned'},
8 },
9 {{'pause', 'y'},

10 {function (m) return m.x.state ~= 'paused' end,
11 'seek', 'x', nil, seconds (30)},
12 {'iter', 4,
13 {true, 'start', 'y', nil, nil, 'async'}},
14 },
15 {{'seek', 'x'},
16 {function (m) return m.x.time == seconds (15) end,
17 'set', 'y', 'width', function (m) return m.x.time end},
18 },
19 }
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In the script, lambda and seconds are global variables implicitly defined
by the Smix VM. The former contains the identifier of media object λ and the
latter contains a function that returns the number of logical ticks corresponding to a
given number of seconds. Note that expressions containing state, time, or property
queries are implemented via anonymous functions with read-only access to the media
memory (argument m).

The preceding table format represents equational Smix programs which are
passed to the Smix VM by the environment. A similar table format is used internally
by the language kernel to represent linear programs.

5.2.2
Reserved properties

In Smix, the reserved properties of media objects are classified into three groups:
content behavior, audio knobs, and video knobs. Table 5.2 in page 86 presents the
complete list of reserved Smix properties. In the table, column “group” denotes the
group of the property, column “name” denotes its name, column “type” denotes its
expected type (in the BNF notation used in Section 5.2.1), column “default” denotes
its default initial value, and column “description” gives its associated side-effect. The
default initial values listed in the table are used only if the property is not explicitly
initialized. Note that, by default, a media object has no content (its uri property is
nil). In this case, the object functions as a lightweight timer.

5.2.3
Error handling

Though reserved properties expect values of a given type, the properties themselves
do not have a type; only their values do.8 As a result, it is possible to attribute a
value of an unexpected type to a property. Such improper attributions are regarded
as run-time errors. Other instances of run-time errors are mixing values of wrong
types in arithmetic or string operations, or attempting to call non-function values.
These are run-time language errors, but Smix programs are also subject to run-time
errors in the multimedia dataflow; for instance, an URI may become invalid prior to
being loaded by the engine.

Smix adopts the following “parachute” policy for handling non-critical run-
time errors: (1) in case of property attribution errors, the last valid value of the
property is assumed; (2) in case of run-time language errors, the action that triggered
the error is silently discarded; and (3) in case of multimedia engine errors, the media
object associated with the subgraph that triggered the error is silently stopped, that

8Values can have one of the following Lua types: nil, boolean, number, string, function, userdata,
thread, or table.
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Table 5.2. Complete list of reserved media object properties.

group name type default description (side-effect)

content
behavior

uri [string] nil The URI of the content samples.
speed number 1 Speed-up factor applied to the rate at which

content samples advance in relation to time.
Negative values indicate that samples advance
in reverse order.

handle_input boolean false True if object handles input; false otherwise.
input [table] nil Last input data addressed to the object.a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
audio
knobs

volume number 1 Volume amplification factor applied to all audio
channels: [0, 10].

equalization [table] nil An array {low,medium,high} that specifies
the gain of low (100Hz), medium (1100Hz),
and high (11KHz) frequency bands of all au-
dio channels. Allowed values for low, medium,
high: [−24, 12] dB.

panorama number 0 Stereo psycho-acoustic panning applied to all
audio channels: [−1, 1]; left is -1 and right is 1.

scale_tempo boolean false If true and speed , 1, scale tempo while main-
taining the pitch of all audio channels.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
video
knobs

x number 0 The x-coordinate position of video samples.b

y number 0 The y-coordinate position of video samples.
z number 0 The z-order position of video samples.
width number naturalc Width (in pixels) of video samples.
height number natural Height (in pixels) of video samples.
brightness number 0 Brightness of video samples: [−1, 1].
contrast number 1 Contrast of video samples: [0, 2].
hue number 0 Hue of video samples: [−1, 1].
saturation number 1 Saturation of video samples: [0, 2].
transparency number 1 Transparency of video samples: [0, 1]; 0 is fully

transparent and 1 is fully opaque.
crop [table] nil An array {top,left,width,height} that speci-

fies that video samples are cropped according
to the rectangle given by top, left, width, and
height (all in pixels).

flip [table] nil An array {horiz,vert} that specifies that video
samples are flipped horizontally (horiz is true)
or vertically (vert is true).

aKey data: a table {class='key',type=type,key=key}, where type is 'press' or 'release',
and key is the key name. Pointer data: a table {class='pointer',type=type,x=x,y=y}, where
type is 'move', 'press', or 'release', and x and y are the current coordinates of the pointer.

bThe coordinate system origin, coordinate (0, 0), is at the top-left corner of the video samples
of object λ, whose default position is set by the Smix VM. Coordinates are given in relation to the
top-left corner of the video samples of the object being positioned.

cThe natural defaults for width and height refer to the dimensions of the raster video samples of
the media object. If the object’s video samples are not raster images, as in case of an SVG image,
then its default width and height are equal to those of media object λ, whose default dimensions are
set by the Smix VM.
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is, a pinned stop action targeting the object is immediately submitted to the kernel.
In the three cases, a warning is generated to the environment.

The rationale behind the parachute policy is to avoid interrupting the process-
ing flow, which is usually what is desirable in real-time operation [120]. While
developing a Smix program, however, this policy is harmful since it tends to hide
programming errors. For this reason, the environment can instruct the VM to adopt
a no-parachute policy. In this case, all errors are treated as critical failures—the
machine generates a critical error to the environment which, if not treated, causes
the VM to abort.

The previous policies apply only to run-time errors. Compile-time errors are
caused by invalid programs and are, therefore, always critical.

5.2.4
Multimedia engine

The multimedia engine is implemented as a thin layer of C-to-Lua code over the
custom GStreamer elements smixmedia and smixscene, which are installed along
libsmix by the Smix software distribution. To describe the behavior of these elements,
which are essentially nodes in the digital signal processing (DSP) pipeline, some
GStreamer concepts need to be introduced. GStreamer [121, 122] is a C library for
creating streaming media applications. Its design comes mainly from InfoPipes [123],
an abstraction for multimedia streaming that uses plumbing metaphors, such as pipes,
sources, sinks, pumps, etc., to represent a multimedia DSP pipeline.

In GStreamer, the processing nodes of the pipeline are called elements. Ele-
ments are linked through their interfaces, called pads. There are two types of pads:
source pads, which produce data, and sink pads, which consume data. Pads have
associated capabilities (caps), which determine the type of data they can produce
or consume. One constructs a pipeline by linking source pads in one element to
compatible sink pads in another element. Figure 5.4 depicts a GStreamer pipeline
for playing an Ogg [124] file. The pipeline consists of six elements: filesrc,
oggdemux, vorbisdec, theoradec, alsasink, and ximagesink. All of these are
pre-installed by the GStreamer software distribution.

vorbisdec

theoradec

alsasink

ximagesink

oggdemuxfilesrc

pipeline

A

V

Figure 5.4. A GStreamer pipeline for playing an Ogg stream.
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The elements depicted in Figure 5.4 operate as follows:
• filesrc: reads an Ogg file from the file system and writes the resulting

bitstream into its source pad;9

• oggdemux: reads an Ogg stream from its sink pad, demultiplexes it, and writes
the resulting Vorbis (audio) and Theora (video) streams into two separated
source pads (in the figure, the audio source pad is labeled A and the video
source pad is labeled V);
• vorbisdec: reads a Vorbis stream from its sink pad, decodes it, and writes

the raw, uncompressed audio stream into its source pad;
• theoradec: reads a Theora stream from its sink pad, decodes it, and writes

the raw, uncompressed video stream into its source pad;
• alsasink: reads a raw PCM audio stream from its sink pad and writes its

samples into the speaker devices using the ALSA [127] library; and
• ximagesink: reads a raw RGB video stream from its sink pad and writes its

frames onto the screen device using the X11 [128] library.
The element filesrc is called a source element, as its only task is to generate

data for use by other elements. The elements alsasink and ximagesink are called
sink elements. They consume data but produce nothing (from the point of view of the
pipeline). Element oggdemux is called a demultiplexer. And elements vorbisdec
and theoradec are called decoders. Both demultiplexers and decoders operate on
data received via their sink pads and push the results into their source pads to be
consumed by subsequent elements in the pipeline.

In GStreamer, the pipeline itself is implemented as an element—an element
that contains other elements but has no pads. Such container elements are called bins.
Usually, but not necessarily, the child elements of a bin are synchronized to a single
clock source, provided by the bin itself. For the most part, the data in the pipeline
flows one way from source elements to sink elements. These data are composed of
chunks that can be of two kinds: buffers or events. A buffer carries segments of the
stream content (audio or video samples) between pads, while an event carries control
information about the stream flowing between pads. For instance, the end-of-stream
event indicates the end of a media stream, the seek event seeks in the stream, and
the flush event flushes internal element caches. Most of the time, events are passed
between elements in parallel to buffers; that is, conceptually, the links between
element pads may be viewed as consisting of two channels, one unidirectional
channel (from source to sink) for buffers, and one bidirectional channel for events.

9Ogg is a container format for multiplexing independent streams of audio, video, and text
data. Here the Ogg file is assumed to contain two streams: one of audio data, encoded in the
Ogg Vorbis [125] format, and one of video data, encoded in the Theora [126] format.
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Before data can flow in the pipeline, its child elements must be initialized
and their pads interconnected. Then the pipeline can be started, that is, it can
transition to state playing. An element (including the pipeline itself) can be in one
of four states: null, ready, paused, or playing. In the initial state null, the element
allocates no resources. In state ready, the element allocates global resources which
are independent of the stream it will process. In state paused, the element allocates
the resources that depend on the stream it will process, and gets ready to process it.
Finally, in state playing the element processes the incoming buffers.

Pipeline state changes, requested by an application, are propagated to its
children in a downstream-to-upstream order. For instance, if the pipeline is in state
null (and consequently its child elements are in state null), and the application
requests it transitions to state playing, the following sequence of steps is executed.

1. Starting from the sinks and proceeding to upstream elements, each child
element is put in state ready, and when all elements are ready, the pipeline
itself transitions to state ready.

2. Again, from downstream to upstream, each child element is put in state paused,
and when all elements are paused, the pipeline transitions to state paused.

3. Finally, from downstream to upstream, each child element is put in state
playing, and when all elements are playing, the pipeline transitions to state
playing, and buffers start to flow through it.

During each state change, and while the pipeline is playing, the behavior of its
elements is determined by the events that traverse the pipeline and by the value of
the elements’ properties.

In GStreamer, each element maintains a list of properties that can be used by
the application to control its behavior. For instance, the location of the file read by
the filesrc element in Figure 5.4 is given by the value of its location property. If
no location is set, the element produces no data; otherwise, when put in state paused,
the file pointed by its location property is opened, and when the element transitions
to state playing, the file content is read.

The bulk of the Smix multimedia engine code consists of two custom
GStreamer elements, smixmedia and smixscene.10 The former represents an
ordinary Smix media object; the latter represents media object λ, which stands for
the program itself. The smixscene element is a bin to which smixmedia elements
are added. The final pipeline consists of a single smixscene element connected to
two sink elements (GStreamer’s appsink elements), one for audio and one for video,
which deliver the resulting samples to application-level code. Figure 5.5 in page 90
depicts the internal layout of example smixmedia and smixscene elements.

10These elements are implemented as GStreamer plugins (exported by libgstsmix) and loaded
dynamically, at run-time by the GStreamer library.
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Figure 5.5. Example smixmedia and smixscene elements. From top to bottom: (1) a smixmedia
containing a static image; (2) a smixmedia containing an audio stream; (3) a smixmedia contain-
ing a video stream; (4) a smixmedia containing an audio and a video stream; (5) a smixscene
containing five smixmedia and one smixscene element.
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In Figure 5.5, the dashed box (1) depicts the layout of a smixmedia that
renders a static image file. Its leftmost child, uridecodebin, is a multi-format
decoder, provided by GStreamer, that takes an URI, via its uri property, resolves it,
and sets an internal sub-pipeline to decode its content. In this case, uridecodebin
produces a single sample of raw, uncompressed video data (the image), which is
fed into element imagefreeze. As implied by its name, imagefreeze takes a
single video sample and produces a still frame video stream. This stream is fed
into a sub-pipeline labeled video knobs, which implements most of the graphic
operations required by the Smix video knob properties. The layout of the video

knobs sub-pipeline will be detailed in a moment. For now, consider the layout of the
smixmedia element depicted in dashed box (4) in Figure 5.5.

The smixmedia element (4) renders a stream of multiplexed audio and video
data. It is, in a sense, a generalization of the smixmedia elements depicted in
boxes (2) and (3) above it.11 Each raw stream output by the uridecodebin element
is fed into a corresponding converter element, audioconvert or videoconvert,
which converts the incoming raw stream to the format required by subsequent
elements.12 The resulting audio stream is fed into an audio knobs sub-pipeline,
which implements most audio operations required by Smix audio knob properties.
And, as in case (1), the resulting video stream is fed into a video knobs sub-pipeline.

The last dashed box in the picture, smixscene element (5), renders a complete
Smix program. It contains five smixmedia elements, each representing an ordinary
media object, and one smixscene element, which represents an embedded Smix pro-
gram.13 In the parent smixscene, the audio streams output by all child smixmedia
and smixscene elements are redirected to an audiomixer element, which mixes
them into one stream and then feeds it to an audio knobs sub-pipeline. Similarly,
the video streams output by all child smixmedia and smixscene elements are redi-
rected to a compositor element, which composes them into one stream and then
feeds it to a video knobs sub-pipeline.

With the exception of properties speed and input, which are mapped to pipeline
events, and of property handle_input, which is treated by the Smix VM scheduler,
both elements smixmedia and smixscene implement exactly the same properties
listed in Table 5.2—using GStreamer data types instead of Lua data types. Thus, apart
from data-format conversion, the mapping between Smix media object properties and
smixmedia and smixscene properties is direct. In a smixscene element, the value

11A layout similar that of (3) is used by smixmedia to render NCLua scripts [47]. The only
difference is that, in this case, element uridecodebin is replaced by element nclua, which is
provided by PUC-Rio’s NCLua distribution [129].

12The smixmedia element (1) does not need a videoconvert because imagefreeze already
outputs frames in the required colorspace.

13Though the possibility of using nested smixscene elements to represent nested Smix programs
is illustrated here, currently, the implementation does not support nested programs.
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of property volume of child smixmedia or smixscene elements, determines the vol-
ume amplification factor applied by the audiomixer element to the corresponding
audio streams; and the value of their x, y, z, width, height, and transparency proper-
ties determines how the compositor arranges the corresponding video streams in
the final composition. In a smixmedia element, the property uri is mapped to the
homonymous property of its child uridecodebin element. And in both smixscene
and smixmedia the remaining properties are mapped into corresponding properties
of elements in their audio knobs or video knobs sub-pipelines.

The layout of the audio knobs and video knobs sub-pipelines is depicted
in Figure 5.6. The mapping of smixmedia and smixscene properties into ele-
ments of these sub-pipelines is straightforward. The Smix properties equalization,
panorama, and scale_tempo are mapped to corresponding properties of elements
equalizer-3bands, audiopanorama, and scaletempo. And the Smix proper-
ties crop and flip are mapped into corresponding properties of videocrop and
videoflip elements, while properties brightness, contrast, hue, and saturation are
mapped to those of element videobalance.

equalizer-3bands audiopanorama scaletempo

audio knobs

A A

videocrop videoflip videobalance

video knobs

V V

Figure 5.6. The layout of sub-pipelines audio knobs and video knobs.

Though the preceding mapping works reasonably well, currently, the synchro-
nization between a property change and its effect is only tentative: the implementation
does not guarantee that the change is immediately reflected on next sample produced.
For instance, property changes have no effect on samples that have already been
processed but are still in the multimedia engine’s queue, waiting to be fetched by the
environment. In fact, not only property changes, but also most pipeline operations
(topology changes, state changes, etc.) incur in the same problem. The investigation
of techniques to minimize the delays between such changes and their effectuation is
left to future work.
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6
From NCL and SMIL to Smix

This chapter gives an overview of the conversion of NCL [5] and SMIL [6] programs
into equivalent Smix programs. The conversion procedures presented here are
incomplete. They assume “micro” versions of NCL and SMIL in which only the
prominent features of these languages are considered. Moreover, no attempt is
made to preserve the state of the original programs, only the resulting presentations.
In this sense, an NCL (or SMIL) program and a Smix program are equivalent if
their resulting presentation is indistinguishable for any possible sequence of input
events—key presses or releases, pointer clicks or motions, and clock ticks.

6.1
From NCL to Smix

As Smix, NCL uses links between media object events to describe the behavior
of a multimedia presentation. But unlike Smix, NCL defines numerous constructs
to ease the specification of common synchronization situations, and foster code
reuse and modularization. In this section, a restricted form of NCL programs, called
Micro NCL, is considered. A Micro NCL (or µNCL) program is an NCL program
containing only media objects, properties, and links, and in which links are in a
restricted (basic) format. More precisely, a µNCL program is an NCL 3.0 Raw
Profile [130, 131] program with neither content anchors nor contexts (the structuring
concept of the language) and whose link-connector pairs are in the first normal form
defined in [132].1, 2

The next section, Section 6.1.1, defines the µNCL language, and the subsequent
section, Section 6.1.2, details the conversion of µNCL programs to Plain Smix. An
approach to the conversion of NCL temporal anchors and contexts is discussed
briefly in Sections 6.1.3 and 6.1.4.

1The NCL Raw Profile is a trimmed-down version of NCL 3.0 EDTV Profile (the main profile
of the language) that, despite having fewer elements and attributes, preserves the expressiveness
of EDTV and is, at the same time, compatible with it. As a result, every Raw NCL program is by
definition a valid EDTV program, and for every EDTV program there is an equivalent Raw program
that produces the same presentation.

2The first normal form theorem for link-connector pairs in NCL 3.0, established in [132], states
that for any NCL 3.0 program P there is an equivalent program P′ such that (1) each connector
element in P′ is referenced by exactly one link element, and (2) all link-connector pairs of P′ are in
the specific format adopted here.

93
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6.1.1
Micro NCL

The abstract syntax of µNCL is given by the following grammar:

C F onBegin x | onPause x | onResume x | onEnd x | onAbort x

| onSelect x | onSet x.u

AF start x | pause x | resume x | stop x | abort x

| select x | set x.u B e

LF ε | C, P→ A L1 | C, P→ A1, A2 L1

S F ε | port x S 1

U F µNCL x S L

A µNCL program µNCL x S L consists of a program identifier x followed by a
possibly empty sequence of ports S and a possibly empty sequence of links L. Each
port port x establishes that media object x shall be started when the program starts.
And each link

C, P→ A or C, P→ A1, A2 ,

establishes that whenever the event waited by condition C occurs and predicate P

evaluates to true, the events denoted by actions A1, . . . , An are generated one after
another.

A µNCL predicate P (or assessment statement, in NCL terminology) is a
propositional logical formula involving the state or property values of media objects.
As µNCL predicates are almost identical to Smix predicates, neither their structure
nor their mapping into Smix predicates is detailed here. Similarly, the structure of
media object declarations and the mapping of NCL properties into Smix properties
are deliberately omitted.3

In µNCL, as in NCL, a media object has a presentation event which may be
in one of three possible states: occurring, paused, or sleeping (the initial state).
If the object presentation event is in state occurring, then the object’s content is
being presented. If the object presentation event is in state paused, then its content
is paused. Finally, if the object presentation event is in state sleeping, then its
content is not being presented and its properties assume their initial values. The
transitions between presentation event states are commanded by actions and trigger

3While some reserved NCL properties can be simulated by Smix properties, others cannot—at
least currently. For instance, the NCL properties left, top, and zIndex correspond to Smix properties x,
y, and z; properties right and bottom can be simulated via Smix properties x and width, and y and
height; but properties rgbChromaKey, fontColor, fontFamily, etc., have no Smix counterpart.
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corresponding conditions. More specifically:
• Action start x transitions the presentation event of media object x from state

sleeping to state occurring and triggers condition onBegin x.
• Action pause x transitions the presentation event of x from state occurring to

state paused and triggers condition onPause x.
• Action resume x transitions the presentation event of x from state paused to

state occurring and triggers the condition onResume x.
• Action stop x transitions the presentation event of x from state occurring or

paused to state sleeping and triggers condition onEnd x.
• Action abort x transitions the presentation event of x from state occurring or

paused to state sleeping and triggers condition onAbort x.
Besides the presentation event, each media object defines a selection event

and, for each its properties, an attribution event. The selection event represents the
selection of the object by the user and the attribution event represents the attribution
of a value to an object property. In NCL, the selection and attribution events are
analogous to the presentation event: both define three states and five associated
action-condition pairs. However, for simplicity, µNCL assumes a single action-
condition pair for each of these events, which behave as follows.
• Action select x triggers condition onSelect x.
• Action set x.u B e attributes the value to which expression e evaluates to

property u of x and triggers condition onSet x.u. (In both, general NCL and
µNCL, expression e is either a string value or the name of a property; in the
latter case expression e evaluates to the value of that property.)
As in Smix, in µNCL some actions are generated implicitly by the environment.

There three cases in which such implicit actions are generated:
1. When the program starts, an action start x is generated to all objects x such

that there is port port x in the program.
2. When object x is selected by the user, an action select x is generated.
3. After the last content sample of object x is presented, an action stop x is

generated.
Moreover, when the last object is stopped, that is, when there is no object whose
presentation event is in state occurring or paused, the program terminates.

To make matters concrete, consider the following µNCL program.

Example 6.1. A simple µNCL program.

µNCL x
port x1

onBegin x1,> → start x2, start x3

onEnd x2,> → stop x1

onSelect x3,> → abort x3
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The program of Example 6.1 has a port and three links which operate over
media objects x1, x2, and x3. The port port x1 establishes that when program x

starts, media object x1 shall be started. In the links, symbol > denotes a tautological
predicate. Thus the first link “onBegin x1,> → start x2, start x3” establishes that
whenever media object x1 starts, objects x2 and x3 shall be started. The second link
“onEnd x2,> → stop x1” establishes that whenever media object x2 stops, object x1

shall be stopped. Finally, the third link “onSelect x3,> → abort x3” establishes that
whenever media object x3 is selected by the user, object x3 itself shall be aborted.

6.1.2
From µNCL to Plain Smix

The mapping of a µNCL program into an equivalent (Plain) Smix program is given
by function h, which is defined inductively as follows.

h(µNCL x S L) = h(S ) h(L)ϕ

h(ε) = ε

h(port x S ) = λ→ (> ? x) h(S )

h(C, P→ A L) = (h(C), h(P))→ h(A) h(L)

h(C, P→ A1, A2 L) = (h(C), h(P))→ h(A1) h(A2) h(L)

h(onBegin x) = x

h(onPause x) = x

h(onResume x) = λ.xr

h(onEnd x) = x

h(onAbort x) = λ.xa

h(onSelect x) = x

h(onSet x.u) = x.u

h(start x) = (> ? x̂)

h(pause x) = (> ? x)

h(resume x) = (state(x) = ? λ.xr f : 1 | λ.xr f : 0)
(prop(λ, xr f ) = 1 ? ˚ x)(prop(λ, xr f ) = 1 ? λ.xr:ℵ)

h(stop x) = (> ? x)

h(abort x) = (state(x) , ? λ.xa f : 1 | λ.xa f : 0)
(prop(λ, xa f ) = 1 ? ˚ x)(prop(λ, xa f ) = 1 ? λ.xa:ℵ)

h(select x) = (> ? x)

h(set x.u B e) = (> ? x.h(u):h(u, e))
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In the previous mapping, symbol ϕ stands for the following Plain Smix link:

( x1, ψ)( λ.x1a, ψ)( x2, ψ)( λ.x2a, ψ) . . . ( xn, ψ)( λ.xna, ψ)→ λ ,

where x1, x2, . . . , xn are the identifiers of all media objects in the input µNCL
program, and ψ is a predicate of the form:

state(x1) = ∧ state(x2) = ∧ · · · ∧ state(xn) = .

Thus link ϕ establishes that whenever an object xi is stopped or aborted (target λ.xia),
if all objects of the program are stopped, then the program terminates.

The conversion procedure implemented by h uses the Smix media object λ to
represent the state of the whole µNCL input program. Each µNCL port becomes a
link that starts the mapped object when λ starts, and each µNCL link is translated
into a conditional Plain Smix link (see Section 3.2.2). With the exception of con-
ditions “onResume” and “onAbort” and actions “resume” and “abort”, the µNCL
conditions and actions are mapped to homonymous Plain Smix targets and actions.
The resuming and abortion of a media object x are simulated via the attribution of the
private properties xr and xa of λ. An attribution to λ.xr means that object x was re-
sumed, while an attribution to λ.xa means that x was aborted. Note that, as discussed
Section 6.1.1, the definition of function h omits the mappings of predicates h(P),
properties h(u), and expressions h(u, e). Finally, also note that number of links in
the generated Smix program is O(n), where n is the number of ports and links in the
original µNCL program.

By applying function h to the µNCL program of Example 6.1, the following
Plain Smix program is obtained:

λ→ (> ? x1)

x1 → (> ? x̂2)(> ? x̂3)

x2 → (> ? x1)

x3 → (state(x3) , ? λ.x3a f : 1 | λ.x3a f : 0)
(prop(λ, x3a f ) = 1 ? ˚ x3 )(prop(λ, x3a f ) = 1 ? λ.x3a f :ℵ)

ϕ

where ϕ is the program termination link discussed earlier.

6.1.3
Temporal anchors

In NCL, a temporal anchor denotes a temporal segment of a media object presenta-
tion. Each temporal anchor defines a partially independent presentation event, whose
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state transitions can be manipulated by ordinary conditions and actions. More specif-
ically (in µNCL-like notation), actions start x.w, pause x.w, resume x.w, stop x.w,
and abort x.w, respectively, starts, pauses, resumes, stops, and aborts the presentation
event of temporal anchor w of media object x, and, consequently, trigger the con-
ditions onBegin x.w, onPause x.w, onResume x.w, onEnd x.w, and onAbort x.w.
Each anchor w defines a begin time wb and an end time we that when reached trig-
ger the implicit generation of corresponding start x.w and stop x.w actions by the
environment.

There are two common uses for temporal anchors in NCL. The first common
use is to schedule an action or sequence of actions to execute when the object’s
presentation reaches a particular time, which is either the begin time or end time of
the anchor. In this case, one writes a link of the form:

onBegin x.w, P→ A1, . . . , An or onEnd x.w, P→ A1, . . . , An ,

which can be translated to Plain Smix as follows:

( x, time(x) = wb)→ h(A1), . . . , h(An) or ( x, time(x) = we)→ h(A1), . . . , h(An) ,

where wb and we denote the begin and end time of anchor w of x, and h stands for
mapping function presented in Section 6.1.2.

The second common use for temporal anchors is to present just a segment of
the object’s content, that is, start the object presentation from the anchor begin time
and stop it when the anchor end time is reached. In this case, one writes a link of the
form:

C, P→ A1, . . . , Ai, start x.w, Ai+2, . . . , An ,

which can be translated into following sequence of Plain Smix links:

(h(C), h(P))→ h(A1) . . . h(Ai)(state(x) = ? λ.xw:ℵ)h(Ai+2) . . . h(An)

λ.xw → (> ? ˚ x)(> ? x:wb)

( x, time(x) = we)→ x

where wb and we denote the begin and end time of anchor w of x, and h is the mapping
function presented in Section 6.1.2.

Although when considered in isolation the above translations are correct, in
general, to avoid undesired interactions with other program links, it may be necessary
to use internal timer objects to represent the temporal anchors of a particular object.
In this case, instead of operating directly on the object, the previous translations must
be updated to operate on the timer that represents the anchor. A similar approach
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based on lightweight timers can be used to implement the NCL attributes delay,
which specifies that an action should take effect only after a certain amount of time,
and explicitDur, which attributes an explicit duration to the object presentation.

6.1.4
Contexts

An NCL context combines a sequence of ports, a set of properties, a set of compo-
nents (media objects or other contexts), and a sequence of links into a group. The
context itself is a self-contained module which interacts with the environment (exter-
nal components) only through its ports. Each port exposes an internal component to
the environment, allowing it to be manipulated by the environment. Thus once an
internal component is mapped by a context port, the environment can submit actions
(“start, “stop”, “pause”, etc.) to it or listen for its conditions (“onBegin”, “onEnd”,
“onPause”, etc.).

Besides ports, the environment can also address the context as a unit. For
instance, if x is a context and if the environment submits an action start x to it,
then this action is propagated to all components xi such that there is a port of the
form port xi in context x. The exact behavior of external actions over the context unit
depends on the action type and on the state of the context presentation event. Every
context maintains a presentation event and, for each of its properties, an attribution
event; these events are analogous to those of media objects.

The procedure to translate contexts and their components into Smix is a
generalization of procedure h presented in Section 6.1.2. In the procedure for
contexts, however, instead of using Smix media object λ to represent the whole
program, the context (which from the point of view of its components is the whole
program) is represented by a timer media object, which acts as a proxy for the
context events. Similarly, context properties and ports are mapped into (simulated
by) properties of the proxy object. Though the general approach is anticipated here,
the definition of the precise translation procedure is left to future work.

6.2
From SMIL to Smix

The SMIL language uses constraint relationships between media object presentation
intervals to describe a multimedia presentation. A manifest difference between NCL
(Smix) programs and SMIL programs is that while in NCL (Smix) the program
code does not change during execution (only parts of it are activated by incoming
events), in SMIL the program code is “consumed” while the execution progresses—a
behavior similar to that observed in imperative languages. Thus in SMIL one can
(and should) normally read the code in a top-to-bottom fashion. In this section, a
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restricted version of SMIL, called Micro SMIL, is considered. A Micro SMIL (or
µSMIL) program is a SMIL program containing only media object declarations and
the time containers seq, for sequential presentation, and par, for parallel presentation,
with the further restriction that the arity of both seq and par is two. More precisely, a
µSMIL program is a program in the SMIL 3.0 Tiny Profile [133] with media object
and layout declarations omitted and in which every container is binary.

The abstract syntax of µSMIL is given by the following grammar:

PF x | seq c P1; P2 | par c P1 ‖ P2

A µSMIL program is either (1) a single media object declaration x, (2) the
sequential composition of two subprograms seq c P1; P2, or (3) the parallel com-
position of two subprograms par c P1 ‖ P2. In the first case, media object x is the
program itself; its presentation starts when the program starts, and its termination
ends the program. In the second case, when the sequential composition c starts,
subprogram P1 is started; when P1 ends, subprogram P2 is started; when P2 ends, the
whole composition c is terminated. In the third case, when the parallel composition c

starts, subprograms P1 and P2 are started simultaneously; when the last of them ends,
the whole composition c is terminated.

The mapping of a µSMIL program into an equivalent Smix program is given by
function h, which is defined in terms of the auxiliary functions h0 and h1 as follows.

h0(P) =

x if P ≡ x

c if P ≡ seq c P1; P2 or P ≡ par c P1 ‖ P2

h1(x) = ε

h1(seq c P1; P2) = c→ h0(P1)

h0(P1)→ h0(P2)

h0(P2)→ c

h1(P1) h1(P2)

h1(par c P1 ‖ P2) = c→ h0(P1) h0(P2)

h0(P1)→ (state(h0(P2)) = ? c)

h0(P2)→ (state(h0(P1)) = ? c)

h1(P1) h1(P2)

h(P) = λ→ h0(P)

h1(P)

h0(P)→ λ
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The conversion procedure implemented by h maps each sequential or parallel
composition in the input µSMIL program into a homonymous timer object. This
timer object captures the state of the composition and coordinates the execution of its
subprograms. Here subprograms are either other compositions, that is, other timers,
or ordinary Smix media objects to which the media object declarations in the input
µSMIL program were mapped.

The definition of µSMIL assumed in this section is clearly preliminary—it
captures just a fraction of the language. An obvious extension is the inclusion of
the begin and dur attributes of general SMIL, which can be mapped into Smix seek
actions and time queries. The introduction of such extensions and the investigation
of their precise mapping into Smix is left to future work though.
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7
Conclusion

7.1
Contributions

This thesis addresses major shortcomings of current high-level multimedia languages
by rethinking their design and implementation from the bottom up. The contributions
of this work include the following.

1. An alternative approach to the design and implementation of a high-level

multimedia language. The proposed approach borrows ideas from the syn-
chronous languages and multimedia DSP languages to tackle major problems
of current high-level multimedia languages. From synchronous languages,
this thesis borrows the requirement of determinism, the reliance on formal
methods for semantic specification, and the strict separation of logical time
from physical time, induced by the synchrony hypothesis. From the multime-
dia DSP languages, this thesis borrows the method of structuring a real-time
multimedia processing system as a dataflow of multimedia operators.

2. A two-tiered architecture for a high-level multimedia language interpreter. The
architecture consists of independent front end (language kernel) and back end
(multimedia engine) parts whose execution is coordinated by a scheduling layer.
The language kernel maintains the program state and logic, while the multime-
dia engine maintains the dataflow that synthesizes the multimedia presentation.
Both the kernel and the engine components, and the macro-component result-
ing from their combination (the virtual machine), have sufficiently general
and decoupled input and output formats, which make the overall architecture
flexible and self-contained. Moreover, the architecture includes provisions for
implementing advanced debugging and optimization techniques, which are
uncommon in the domain of high-level multimedia languages.

3. A new synchronous multimedia language and its formal semantics. More
precisely, the formal specification and implementation of a novel high-level
multimedia language, called Smix. Most ideas behind Smix originated in
the search for an adequate (back-to-basics) semantic model for NCL. The
structural operational semantics introduced in Chapter 4 not only defines the
behavior of Smix programs—and does it in a way that reflects the back-to-
basics mentality—but also gives a precise receipt for their practical evaluation.
Moreover, with the introduction of linear programs, the formal semantics
also solves the longstanding problem of tight loops, which affect most NCL

102
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implementations, and makes the investigation of general program optimization
techniques (via equivalence proofs) viable.

4. An approach to the integration of high-level multimedia languages by con-

version to a target virtual machine. This thesis proposes that high-level
multimedia languages be constructed (defined and implemented) in a bottom-
up manner, from a primitive but sufficiently expressive base language. Though
uncommon in the domain of high-level multimedia languages, the hierarchical
build-up of languages is a recurrent theme in computing. For instance, one
builds up an imperative language from von Newmann primitives (memory
locations, instructions, and control-flow), a functional language from combina-
tors, and a relational query language from relational algebra. But what about
high-level multimedia languages? What are their building blocks? This thesis
offers one possible set of such blocks, Smix, and presents preliminary map-
pings from NCL and SMIL into this set. However, this thesis does not claim
that this set is sufficient or adequate to express all features of these languages,
nor it aims to evaluate the sufficiency and adequacy questions—though the
similarities between Smix and NCL are obvious (and intentional).

7.2
Future work

The potential future work related to this thesis can be classified in three broad
categories: open problems, new (Smix) language features, and optimization. Each of
these categories is detailed next.

Open problems

• Distributed presentations. Currently, the Smix VM is only concerned with the
orchestration of local, standalone multimedia presentations. The asynchronous
actions, discussed in Section 3.3.1, are an initial step towards the support to dis-
tributed presentations, but there is still much to be done. A possible approach
to a real distributed solution is the use of a globally asynchronous, locally
synchronous (GALS) design. For instance, multiple synchronous VMs could
exchange asynchronous messages to coordinate a distributed presentation.
• Reaction reversal. The Smix virtual machine can fast-forward programs by

simply increasing the rate of the logical clock. The problem of rewinding
reactions, however, is harder. Some preliminary techniques for reverting
reactions (and consequently, programs) are discussed in Section 3.3.2, but the
required data-structures and algorithms still have to be defined.
• Normal forms for Smix programs. The problem of normal forms for Smix

programs needs to be investigated. Frequently, the existence of normal forms
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simplify proofs, which end up dealing with fewer combinations, and can
lead to important insights about general program behavior. Moreover, such
forms are particularly helpful when mapping one language into another, as
exemplified by the use of the first normal form for NCL programs in Chapter 6.
• Composite virtual machines. Two approaches for the implementation of com-

posite Smix programs are briefly discussed in Section 5.1.4. The first approach
uses a recursive architecture in which a host Smix VM runs subprograms on
nested VMs. The second approach uses a multi-kernel architecture in which
subprograms run on independent kernels that are coordinated by a single
scheduler and share the same dataflow graph. These approaches need to be
evaluated and implemented.
• NCL and SMIL conversion. The procedures for converting NCL and SMIL to

Smix, presented in Chapter 6, are incomplete and need to be expanded. In the
case of NCL, the next step is the mapping of anchors and contexts. In the case
of SMIL, there still much to be done, but one could start by mapping the basic
timing attributes begin and dur, as suggested in Section 6.2.

New language features

• Concrete syntax for Plain Smix. Currently, Plain Smix does not have a concrete
syntax. As an alternative to the XML status quo in high-level multimedia
languages, one could investigate and define a human-friendlier syntax for
Plain Smix—maybe something along the lines of the abstract syntax for µNCL
defined in Chapter 6—something which were meant primarily for humans and
not for parsers.1

• Inline definition of subprograms. In Smix, subprograms can only be defined
indirectly, via media objects. A natural evolution direction for Smix (or Plain
Smix) is the introduction of a construct for inline specification of subprograms
(sub-presentations); that is, a construct similar to the NCL context, but which
would necessarily denote a sub-presentation and which, from the point of view
of the parent program, would be indistinguishable from a media object.
• Additional reserved properties. The complete list of reserved Smix properties,

presented in Table 5.2, is intentionally restricted. Some extensions already
available in GStreamer can be easily integrated into the system. For instance,
some viable candidates are properties for audio visualization, audio effects
(reverb, compression, etc.), and video transformations (for example, rotation).

1A side note on the importance of notation by A. N. Whitehead [134]: “By relieving the brain of
all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in
effect, increases the mental power of the race.”
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Optimization

• Linearization algorithm. The time complexity of the linearization procedure
defined in Section 4.2.2 can be improved. For instance, one could use dynamic
programming techniques to avoid recomputing subprograms when running the
algorithm with different initial targets.
• Program optimization. Section 5.1.3 discusses some program reduction tech-

niques derived from the basic equivalence results of Section 4.2.6. These
reductions are a starting point, but further equivalences and procedures need to
be investigated. As noted in the section, the same results can be used to trim
the contents of action queues, which can improve the scheduler performance.
In this case, however, the requirement of real-time performance may hinder
the use of complex optimization procedures. One possibility is the use of
heuristics, which can be faster than the canonical optimization procedure.
More advanced techniques, such as reaction caching, branch prediction, and
instruction pipelining can also be investigated.
• Pipeline optimization. Optimization techniques can also be applied to the

pipeline used to render the presentation. For instance, subgraphs corresponding
to objects that are not being presented or that are currently invisible or inaudible
could be temporarily disabled. Other possibility is the pre-rendering of non-
interactive parts of the application (what in NCL terminology is called a
temporal chain). These parts could be identified and simulated offline, with
the resulting scenes pre-rendered and recorded to a cache file. Later, at run-
time, the VM could instruct the engine to use these cached scenes instead of
recomputing the final samples from scratch.

7.3
A final remark

Multimedia researchers sometimes overlook rigor in favor of the immediate, practical
side-effects of technology—beautiful sound and graphics. This thesis was an attempt
to bring the focus back to the concepts and methods that cause those effects—back to
the computational models that determine and, ultimately, limit what we can express
with computers. To this effect, a last word of advice might be helpful.

Before you become too entranced with gorgeous gadgets and mesmeriz-
ing video displays let me remind you that information is not knowledge,
knowledge is not wisdom, and wisdom is not foresight. Each grows out
of the other, and we need them all.

— Arthur C. Clarke (British writer)
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A
Listings

Listing A.1. A concrete representation of Example 3.1 (page 36).

1 return {
2 { x = {uri='x.png'},
3 y = {uri='y.ogg'},
4 z = {uri='z.ogv'},
5 },
6

7 {{'start', lambda},
8 {true, 'start', 'x'}},
9

10 {{'start', 'x'},
11 {true, 'start', 'y'},
12 {true, 'stop', 'z'}},
13

14 {{'start', 'y'},
15 {true, 'start', 'z'}},
16

17 {{'stop', 'x'},
18 {true, 'stop', lambda}},
19 }

Listing A.2. A concrete representation of Example 3.3 (page 45).

1 return {
2 { x = {uri='x.png', handle_input=true},
3 y = {uri='y.png', handle_input=true},
4 z = {uri='z.png', handle_input=true},
5 },
6 {{'start', lambda},
7 {true, 'start', 'x'}},
8

9 {{'seek', 'x'},
10 {function (m) return m.x.time == seconds (10) end,
11 'stop', 'x'}},
12

13 {{'set', 'x', 'input'},
14 {function (m) return m.x.prop.input.key == 'RIGHT' end,
15 'stop', 'x'}},
16

17 {{'stop', 'x'},
18 {true, 'start', 'y'}},
19

20 {{'seek', 'y'},
21 {function (m) return m.y.time == seconds (10) end,
22 'stop', 'y'}},
23

24 {{'set', 'y', 'input'},
25 {function (m) return m.y.prop.input.key == 'RIGHT' end,
26 'stop', 'y'}},
27
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28 {{'stop', 'y'},
29 {true, 'start', 'z'}},
30

31 {{'seek', 'z'},
32 {function (m) return m.z.time == seconds (10) end,
33 'stop', 'z'}},
34

35 {{'set', 'z', 'input'},
36 {function (m) return m.z.prop.input.key == 'RIGHT' end,
37 'stop', 'z'}},
38

39 {{'stop', 'z'},
40 {true, 'start', 'x'}},
41 }
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B
Proofs

Theorem 4.1. For all e ∈ Expr, θ ∈ M, and n1, n2 ∈ N:

〈e, θ〉 ⇒ n1 and 〈e, θ〉 ⇒ n2 implies n1 ≡ n2 ,

that is, the evaluation of expressions is deterministic.

Proof. By structural induction on Expr. Suppose

〈e, θ〉 ⇒ n1 and 〈e, θ〉 ⇒ n2 ,

for some e ∈ Expr, θ ∈ M, and n1, n2 ∈ N. Then there are five possibilities.
[Case 1] e ≡ n, for some n ∈ N. By rule Rn, n1 ≡ n2 ≡ n.
[Case 2] e ≡ state(x), for some x ∈Media. By rule Rs, n1 ≡ n2 ≡ θs(x).
[Case 3] e ≡ time(x), for some x ∈Media. By rule Rt, n1 ≡ n2 ≡ θt(x).
[Case 4] e ≡ prop(x, u), for some x ∈ Media and u ∈ Prop. By rule Rρ,

n1 ≡ n2 ≡ θρ(x, u).
[Case 5] e ≡ e1 ? e2, for some e1, e2 ∈ Expr, where ? denotes one of the

symbols +, −, ×, or ÷. By rule R?, there are n′1, n′2 ∈ N such that

〈e1, θ〉 ⇒ n′1 and 〈e2, θ〉 ⇒ n′2 with n1 ≡ f?(n′1, n
′
2) ,

and there are n′′1 , n′′2 ∈ N such that

〈e1, θ〉 ⇒ n′′1 and 〈e2, θ〉 ⇒ n′′2 with n2 ≡ f?(n′′1 , n
′′
2 ) ,

where f? denotes the corresponding arithmetic operation on N. By induction hypoth-
esis, n′1 ≡ n′′1 and n′2 ≡ n′′2 . Therefore,

n1 ≡ f?(n′1, n
′
2) ≡ f?(n′′1 , n

′′
2 ) ≡ n2 .

Theorem 4.2. For all e ∈ Expr and θ ∈ M, there is an n ∈ N such that

〈e, θ〉 ⇒ n ,

that is, the evaluation of expressions always terminates.

Proof. By structural induction on Expr. The statement is trivially true for atomic
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expressions. Let e ≡ e1 ? e2, where ? denote one of the symbols +, −, ×, or ÷. Then,
by induction hypothesis, there are n1, n2 ∈ N such that

〈e1, θ〉 ⇒ n1 and 〈e2, θ〉 ⇒ n2 ,

and by rule R?,
〈e1 ? e2, θ〉 ⇒ f?(n1, n2) ,

where f? denotes the corresponding arithmetic operation on N.

Theorem 4.3. For all p ∈ Pred, θ ∈ M, and t1, t2 ∈ T:

〈p, θ〉 ⇒ t1 and 〈p, θ〉 ⇒ t2 implies t1 ≡ t2 ,

that is, the evaluation of predicates is deterministic.

Proof. By structural induction on Pred. Suppose

〈p, θ〉 ⇒ t1 and 〈p, θ〉 ⇒ t2 ,

for some p ∈ Pred, θ ∈ M, and t1, t2 in T. Then there are four possibilities.
[Case 1] p ≡ t, for some t ∈ T. By rules R> or R⊥, t1 ≡ t2 ≡ t.
[Case 2] p ≡ e1 ? e2, for some e1, e2 ∈ Expr, where ? denotes one of the

symbols = or <. By rule R?, there are n′1, n′2 ∈ N such that

〈e1, θ〉 ⇒ n′1 and 〈e2, θ〉 ⇒ n′2 ,

and there are n′′1 , n′′2 ∈ N such that

〈e1, θ〉 ⇒ n′′1 and 〈e2, θ〉 ⇒ n′′2 .

By Theorem 4.1, n′1 ≡ n′′1 and n′2 ≡ n′′2 . Therefore, by rule R?,

t1 ≡ f?(n′1, n
′
2) ≡ f?(n′′1 , n

′′
2 ) ≡ t2 ,

where f? : N × N→ T denotes the characteristic function of the relation correspond-
ing to ? on N.

[Case 3] p ≡ ¬p1, for some p1 ∈ Pred. By rule R¬, there are t′1, t′2 such that

〈p1, θ〉 ⇒ t′1 and 〈p1, θ〉 ⇒ t′2 ,

with t1 ≡ f¬(t′1) and t2 ≡ f¬(t′2), where f¬ denotes the boolean operation of negation
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on T. By induction hypothesis, t′1 ≡ t′2. Therefore,

t1 ≡ f¬(t′1) ≡ f¬(t′2) ≡ t2 .

[Case 4] p ≡ p1 ? p2, for some p1, p2 ∈ Pred, where ? denotes one of the
symbols ∨ or ∧. By rules R∧ or R∨, there are t′1, t′2 ∈ T such that

〈p1, θ〉 ⇒ t′1 and 〈p2, θ〉 ⇒ t′2 with t1 ≡ f?(t′1, t
′
2) ,

and there are t′′1 , t′′2 ∈ T such that

〈p1, θ〉 ⇒ t′′1 and 〈p2, θ〉 ⇒ t′′2 with t2 ≡ f?(t′′1 , t
′′
2 ) ,

where f? denotes the boolean operation corresponding to ? on T. By induction
hypothesis, t′1 ≡ t′′1 and t′2 ≡ t′′2 . Therefore,

t1 ≡ f?(t′1, t
′
2) ≡ f?(t′′1 , t

′′
2 ) ≡ t2 .

Theorem 4.4. For all p ∈ Pred and θ ∈ M, there is a t ∈ T such that

〈p, θ〉 ⇒ t ,

that is, the evaluation of predicates always terminates.

Proof. By structural induction on Pred. The statement is trivially true for truth
values. Suppose p is not a truth value and let θ ∈ M be an arbitrary memory. Then
there are three possibilities.

[Case 1] p ≡ e1 ? e2, for some e1, e2 ∈ Expr, where ? denotes one of the
symbols = or <. By Theorem 4.2, there are n1, n2 ∈ N such that

〈e1, θ〉 ⇒ n1 and 〈e2, θ〉 ⇒ n2 .

Thus, by rule R?,
〈e1 ? e2, θ〉 ⇒ t ,

with t ≡ f?(n1, n2), where f? denotes the characteristic function of the relation
corresponding to ? on N.

[Case 2] p ≡ ¬p1, for some p1 ∈ Pred. By induction hypothesis,

〈p1, θ〉 ⇒ t1 ,
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for some t1 ∈ T. Thus, by rule R¬,

〈¬p1, θ〉 ⇒ f¬(t1) ,

where f¬ denotes the negation operation on T.
[Case 3] p ≡ p1 ? p2, for some p1, p2 ∈ Pred, where ? denotes one of the

symbols ∨ or ∧. By induction hypothesis, there are t1, t2 ∈ T such that

〈p1, θ〉 ⇒ t1 and 〈p2, θ〉 ⇒ t2 .

Thus, by rules R∧ or R∨,

〈p1 ? p2, θ〉 ⇒ f?(t1, t2) ,

where f? denotes the boolean operation corresponding to ? on T.

Theorem 4.5. For all α ∈ ActSeq, θ, θ1, θ2 ∈ M:

〈α, θ〉 ⇒ θ1 and 〈α, θ〉 ⇒ θ2 implies θ1 = θ2 ,

that is, the evaluation of action sequences is deterministic.

Proof. By induction on the structure of derivations. For all α ∈ ActSeq, suppose

d1  〈α, θ〉 ⇒ θ1 and d2  〈α, θ〉 ⇒ θ2 ,

for some derivations d1 and d2, and some θ, θ1, θ2 ∈ M. There are seven possibilities.
[Case 1] α ≡ ε. By rule Rε, θ1 = θ2 = θ.
[Case 2] α ≡ (p ? x)α′, for some p ∈ Pred, x ∈ Media, and α′ ∈ ActSeq.

By Theorem 4.4,
〈state(x) , ∧ p, θ〉 ⇒ t ,

for some t ∈ T. If t ≡ >, by rule R+, there are derivations d′1 and d′2 such that

d′1  〈`(P, (p ? x))α′, θ[ ⊃s x]〉 ⇒ θ1

d′2  〈`(P, (p ? x))α′, θ[ ⊃s x]〉 ⇒ θ2 .

Otherwise, if t ≡ ⊥, by rule R−, there are derivations d′′1 and d′′2 such that

d′′1  〈α
′, θ〉 ⇒ θ1

d′′2  〈α
′, θ〉 ⇒ θ2 .
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As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1 and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
[Case 3] α ≡ (p ? x)α′, for some p ∈ Pred, x ∈ Media and α′ ∈ ActSeq.

Similar to Case 2.
[Case 4] α ≡ (p ? x)α′, for some p ∈ Pred, x ∈ Media and α′ ∈ ActSeq.

Similar to Case 2.
[Case 5] α ≡ (p ? x:e)α′, for some p ∈ Pred, x ∈ Media, u ∈ Prop,

e ∈ Expr, and α′ ∈ ActSeq. By Theorems 4.2 and 4.4,

〈e, θ〉 ⇒ n and 〈state(x) , ∧ p, θ〉 ⇒ t ,

for some n ∈ N and t ∈ T. If t ≡ >, by rule R+, there are d′1 and d′2 such that

d′1  〈`(P, (p ? x:n))α′, θ[n Et x]〉 ⇒ θ1

d′2  〈`(P, (p ? x:n))α′, θ[n Et x]〉 ⇒ θ2 .

Otherwise, if t ≡ ⊥, by rule R−, there are derivations d′′1 and d′′2 such that

d′′1  〈α
′, θ〉 ⇒ θ1

d′′2  〈α
′, θ〉 ⇒ θ2 .

As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1 and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
[Case 6] α ≡ (p ? x.u:e)α′, for some p ∈ Pred, x ∈ Media, u ∈ Prop,

e ∈ Expr, and α′ ∈ ActSeq. Similar to Case 5.
[Case 7] α ≡ {e ∗ α1}α2, for some e ∈ Expr and α1, α2 ∈ ActSeq. Then, by

Theorem 4.2,
〈e, θ〉 ⇒ n ,

for some n ∈ N. If n > 0, by rule R+
∗ , there are derivations d′1 and d′2 such that

d′1  〈α1{n − 1 ∗ α1}α2, θ〉 ⇒ θ1

d′2  〈α2{n − 1 ∗ α2}α2, θ〉 ⇒ θ2 .

Otherwise, if n ≤ 0, by rule R−∗ , there are derivations d′′1 and d′′2 such that

d′′1  〈α2, θ〉 ⇒ θ1

d′′2  〈α2, θ〉 ⇒ θ2 .

As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1, and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
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Proposition 4.6. Let P denote the following Smix program:

x→ (> ? x)(> ? x) .

Then there is no θ ∈ M such that 〈(> ? x), P,Φ〉 ⇒ θ.

Proof. For the sake of a contradiction, suppose that there is a memory θ such
that 〈(> ? x),Φ〉 ⇒ θ in program P. Then there is a minimal derivation d of the
form:

· · ·

· · ·

· · ·d′ =
〈(> ? x), θ[ ⊃s x][ ⊃s x]〉 ⇒ θ R+

〈(> ? x)(> ? x), θ[ ⊃s x]〉 ⇒ θ
d = R+

〈(> ? x),Φ〉 ⇒ θ

But d contains a subderivation d′  〈(> ? x),Φ〉 ⇒ θ such that h(d′) < h(d),
which contradicts the minimality of d. Therefore, the assumption that there is such
memory θ is false.

Theorem 4.7. For all α ∈ ActLine, θ, θ1, θ2 ∈ M:

〈α, θ〉 ⇒ θ1 and 〈α, θ〉 ⇒ θ2 implies θ1 = θ2 ,

that is, the evaluation of linear programs is deterministic.

Proof. By induction on the structure of derivations. For all α ∈ ActLine, suppose

d1  〈α, θ〉 ⇒ θ1 and d2  〈α, θ〉 ⇒ θ2 ,

for some derivations d1 and d2, and some θ, θ1, θ2 ∈ M. There are seven possibilities.
[Case 1] α ≡ ε. By rule Rε, θ1 = θ2 = θ.
[Case 2] α ≡ (p ? x)[α1]α2, for some p ∈ Pred, x ∈ Media, and α1,

α2 ∈ ActLine. By Theorem 4.4,

〈state(x) , ∧ p, θ〉 ⇒ t ,

for some t ∈ T. If t ≡ >, by rule R+, there are derivations d′1 and d′2 such that

d′1  〈α1α2, θ[ ⊃s x]〉 ⇒ θ1

d′2  〈α1α2, θ[ ⊃s x]〉 ⇒ θ2 .

Otherwise, if t ≡ ⊥, by rule R−, there are derivations d′′1 and d′′2 such that

d′′1  〈α2, θ〉 ⇒ θ1

d′′2  〈α2, θ〉 ⇒ θ2 .

DBD
PUC-Rio - Certificação Digital Nº 1112682/CB



125

As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1 and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
[Case 3] α ≡ (p ? x)[α1]α2, for some p ∈ Pred, x ∈ Media, and α1,

α2 ∈ ActLine. Similar to Case 2.
[Case 4] α ≡ (p ? x)[α1]α2, for some p ∈ Pred, x ∈ Media, and α1,

α2 ∈ ActLine. Similar to Case 2.
[Case 5] α ≡ (p ? x:e)[α1]α2, for some p ∈ Pred, x ∈ Media, e ∈ Expr,

and α1, α2 ∈ ActLine. By Theorems 4.2 and 4.4,

〈e, θ〉 ⇒ n and 〈state(x) , ∧ p, θ〉 ⇒ t ,

for some n ∈ N and t ∈ T. If t ≡ >, by rule R+, there are d′1 and d′2 such that

d′1  〈α1α2, θ[n Et x]〉 ⇒ θ1

d′2  〈α1α2, θ[n Et x]〉 ⇒ θ2 .

Otherwise, if t ≡ ⊥, by rule R−, there are derivations d′′1 and d′′2 such that

d′′1  〈α2, θ〉 ⇒ θ1

d′′2  〈α2, θ〉 ⇒ θ2 .

As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1 and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
[Case 6] α ≡ (p ? x.u:e), for some p ∈ Pred, x ∈ Media, u ∈ Prop,

e ∈ Expr, and α1, α2 ∈ ActLine. Similar to Case 5.
[Case 7] α ≡ {e ∗ α1}α2, for some e ∈ Expr and α1, α2 ∈ ActLine. By

Theorem 4.2,
〈e, θ〉 ⇒ n ,

for some n ∈ N. If n > 0, by rule R+
∗ , there are derivations d′1 and d′2 such that

d′1  〈α1{n − 1 ∗ α1}α2, θ〉 ⇒ θ1

d′2  〈α1{n − 1 ∗ α1}α2, θ〉 ⇒ θ2 .

Otherwise, if n ≤ 0, by rule R−∗ , there are derivations d′′1 and d′′2 such that

d′′1  〈α2, θ〉 ⇒ θ1

d′′2  〈α2, θ〉 ⇒ θ2 .

As d′1 ≺ d1, d′2 ≺ d2, d′′1 ≺ d1, and d′′2 ≺ d2, by induction hypothesis, θ1 = θ2.
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Lemma 4.8. For all α1, α2 ∈ ActLine, and θ, θ′, θ′′ ∈ M:

〈α1α2, θ〉 ⇒ θ′′ iff
(
〈α1, θ〉 ⇒ θ′ and 〈α2, θ

′〉 ⇒ θ′′
)
.

Proof. (If part) Suppose 〈α1α2, θ〉 ⇒ θ′′, for some arbitrary α1, α2 ∈ ActLine, and θ,
θ′′ ∈ M. Then, by definition of relation⇒, there is a derivation d such that

d  〈α1α2, θ〉 ⇒ θ′′ .

The proof proceeds by induction on the structure of d. There are three possibilities.
[Case 1] α1 ≡ ε. By rule Rε, 〈α1, θ〉 ⇒ θ, and by the replacing ε for α1 in d,

〈α2, θ〉 ⇒ θ′′.
[Case 2] α1 ≡ a[α′1]α′′1 , for some a ∈ ActAtom, and α′1, α′′1 ∈ ActLine. Then

either

d′′1 · · · d′′n
· · ·d′ =

〈α′1α
′′
1α2, fa(θ)〉 ⇒ θ′′

d = R+
a〈a[α′1]α′′1α2, θ〉 ⇒ θ′′

(+)

or

d′′1 · · · d′′n
· · ·d′ =

〈α′′1α2, θ〉 ⇒ θ′′
d = R−a ,〈a[α′1]α′′1α2, θ〉 ⇒ θ′′

(−)

where fa(θ) denotes the memory resulting from executing action a in θ.
If (+) holds, then since d′ ≺ d, by induction hypothesis, there are derivations d′1

and d′2 such that

d′1  〈α
′
1α
′′
1 , fa(θ)〉 ⇒ θ′ and d′2  〈α2, θ

′〉 ⇒ θ′′ ,

for some θ′ ∈ M. By applying rule R+
a to derivations d′1, d′′1 , . . . , d′′n , the following

derivation is obtained:

d′′1 · · · d′′n
· · ·d′1 =

〈α′1α
′′, fa(θ)〉 ⇒ θ′

R+
a ,〈a[α′1]α′′1 , θ〉 ⇒ θ′

which establishes that 〈α1, θ〉 ⇒ θ′, and by d′2, 〈α2, θ
′〉 ⇒ θ′′.

Otherwise, if (−) holds, by induction hypothesis, there are derivations d′1 and d′2
such that

d′1  〈α
′′
1 , θ〉 ⇒ θ′ and d′2  〈α2, θ

′〉 ⇒ θ′′ ,

for some θ′ ∈ M. By applying rule R−a to derivations d′1, d′′1 , . . . , d′′n , the following
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derivation is obtained:

d′′1 · · · d′′n
· · ·d′1 =

〈α′′1 , θ〉 ⇒ θ′
R−a ,〈a[α′1]α′′1 , θ〉 ⇒ θ′

which establishes that 〈α1, θ〉 ⇒ θ′, and by d′2, 〈α2, θ
′〉 ⇒ θ′′.

[Case 3] α1 ≡ {e ∗ α′1}α
′′
1 , for some e ∈ Expr, and α′1, α′′1 ∈ ActLine. Then

either

· · ·d′′ =
〈e, θ〉 ⇒ n

· · ·d′ =
〈α′1{n − 1 ∗ α′1}α

′′
1α2, θ〉 ⇒ θ′′

d = R+
∗〈{e ∗ α′1}α

′′
1α2, θ〉 ⇒ θ′′

(+)

or
· · ·d′′ =

〈e, θ〉 ⇒ n
· · ·d′ =

〈α′′1α2, θ〉 ⇒ θ′′
d = R−∗〈{e ∗ α′1}α

′′
1α2, θ〉 ⇒ θ′′

(−)

for some e ∈ Expr and n ∈ N.
If (+) holds, then since d′ ≺ d, by induction hypothesis, there are derivations d′1

and d′2 such that

d′1  〈α
′
1{n − 1 ∗ α′1}α

′′
1 , θ〉 ⇒ θ′ and d′2  〈α2, θ

′〉 ⇒ θ′′ ,

for some θ′ ∈ M. By applying rule R+
∗ to derivations d′1 and d′′, the following

derivation is obtained:

· · ·d′′ =
〈e, θ〉 ⇒ n

· · ·d′1 =
〈α′1{n − 1 ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

R+
∗〈{e ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

which establishes that 〈α1, θ〉 ⇒ θ′, and by d′2, 〈α2, θ
′〉 ⇒ θ′′.

Otherwise, if (−) holds, by induction hypothesis, there are derivations d′1 and d′2
such that

d′1  〈α
′′
1 , θ〉 ⇒ θ′ and d′2  〈α2, θ

′〉 ⇒ θ′′ ,

for some θ′ ∈ M. By applying rule R−∗ to d′1 and d′′, the following derivation is
obtained: · · ·d′′ =

〈e, θ〉 ⇒ n
· · ·d′1 =

〈α′′1 , θ〉 ⇒ θ′
R−∗〈{e ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

which establishes that 〈α1, θ〉 ⇒ θ′, and by d′2, 〈α2, θ
′〉 ⇒ θ′′.

(Only-if part) Suppose 〈α1, θ〉 ⇒ θ′ and 〈α2, θ
′〉 ⇒ θ′′ for some arbitrary α1, α2 ∈

ActLine, and θ, θ′′ ∈ M. Then, by definition of relation⇒, there are derivations d1

and d2 such that

d1  〈α1, θ〉 ⇒ θ′ and d2  〈α2, θ
′〉 ⇒ θ′′ .
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The proof proceeds by induction on the structure of d1. There are three possibilities.
[Case 1] α1 ≡ ε. By rule Rε, 〈α1, θ〉 ⇒ θ and, by the replacing ε by α1 in d2,

〈α1α2, θ〉 ⇒ θ′′.
[Case 2] α1 ≡ a[α′1]α′′1 , for some a ∈ ActAtom, and α′1, α′′1 ∈ ActLine. Then

either

d′′1 · · · d′′n
· · ·d′1 =

〈α′1α
′′
1 , fa(θ)〉 ⇒ θ′

d1 = R+
a〈a[α′1]α′′1 , θ〉 ⇒ θ′

(+)

or

d′′1 · · · d′′n
· · ·d′1 =

〈α′′1 , θ〉 ⇒ θ′
d1 = R−a ,〈a[α′1]α′′1 , θ〉 ⇒ θ′

(−)

where fa(θ) denotes the memory resulting from executing action a in θ.
If (+) holds, then since d′1 ≺ d1, by induction hypothesis, d′1, and d2, there is a

derivation d such that
d  〈α′1α

′′
1α2, fa(θ)〉 ⇒ θ′′ .

By applying rule R+
a to derivations d, d′′1 , . . . , d′′n , the following derivation is obtained:

d′′1 · · · d′′n
· · ·d =

〈α′1α
′′
1α2, fa(θ)〉 ⇒ θ′′

R+
a ,〈a[α′1]α′′1α2, θ〉 ⇒ θ′′

which establishes that 〈α1α2, θ〉 ⇒ θ′′.
Otherwise, if (−) holds, then by induction hypothesis, d′1, and d2, there is a

derivation d such that
d  〈α′′1α2, θ〉 ⇒ θ′′ .

By applying rule R−a to derivations d, d′′1 , . . . , d′′n , the following derivation is obtained:

d′′1 · · · d′′n
· · ·d =

〈α′′1α2, θ〉 ⇒ θ′′
R−a ,〈a[α′1]α′′1α2, θ〉 ⇒ θ′′

which establishes that 〈α1α2, θ〉 ⇒ θ′′.
[Case 3] α1 ≡ {e ∗ α′1}α

′′
1 , for some e ∈ Expr, and α′1, α′′1 ∈ ActLine. Then

either

· · ·d′′1 =
〈e, θ〉 ⇒ n

· · ·d′1 =
〈α′1{n − 1 ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

d1 = R+
∗〈{e ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

(+)

or
· · ·d′′1 =

〈e, θ〉 ⇒ n
· · ·d′1 =

〈α′′1 , θ〉 ⇒ θ′
d1 = R−∗〈{e ∗ α′1}α

′′
1 , θ〉 ⇒ θ′

(−)

for some e ∈ Expr and n ∈ N.
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If (+) holds, then, since d′1 ≺ d1, by induction hypothesis, d′1, and d2, there is a
derivation d such that

d  〈α′1{n − 1 ∗ α′1}α
′′
1α2, θ〉 ⇒ θ′′ .

By applying rule R+
∗ to derivations d and d′′1 , the following derivation is obtained:

· · ·d′′1 =
〈e, θ〉 ⇒ n

· · ·d =
〈α′1{n − 1 ∗ α′1}α

′′
1α2, θ〉 ⇒ θ′′

R+
∗〈{e ∗ α′1}α

′′
1α2, θ〉 ⇒ θ′′

which establishes that 〈α1α2, θ〉 ⇒ θ′′.
Otherwise, if (−) holds, by induction hypothesis, d′1, and d2, there is a deriva-

tion d such that
d  〈α′′1α2, θ〉 ⇒ θ′′ .

By applying rule R−∗ to derivations d and d′′1 , the following derivation is obtained:

· · ·d′′1 =
〈e, θ〉 ⇒ n

· · ·d =
〈α′′1 , θ〉 ⇒ θ′′

R−∗〈{e ∗ α′1}α
′′
1α2, θ〉 ⇒ θ′′

which establishes that 〈α1α2, θ〉 ⇒ θ′′.

Theorem 4.9. For all α ∈ ActLine and θ ∈ M, there is a θ′ ∈ M such that

〈α, θ〉 ⇒ θ′ ,

that is, the evaluation of linear programs always terminates.

Proof. By structural induction on ActLine. The statement is trivially true for the
empty program (ε). Suppose α . ε and let θ ∈ M be an arbitrary memory. Then
there are two possibilities.

[Case 1] α ≡ a[α1]α2, for some a ∈ ActAtom, and α1, α2 ∈ ActLine. By
induction hypothesis, there are θ′, θ′′ ∈ M such that

〈a[α1], θ〉 ⇒ θ′ and 〈α2, θ
′〉 ⇒ θ′′ .

By Lemma 4.8, 〈a[α1]α2, θ〉 ⇒ θ′′.
[Case 2] α ≡ {e ∗ α1}α2, for some e ∈ Expr, and α1, α2 ∈ ActLine. By

induction hypothesis, there are θ′, θ′′ ∈ M such that

〈{e ∗ α1}, θ〉 ⇒ θ′ and 〈α2, θ
′〉 ⇒ θ′′ .

By Lemma 4.8, 〈{e ∗ α1}α2, θ〉 ⇒ θ′′.
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Proposition 4.12. For all e1, e2 ∈ Expr and α ∈ ActLine:

if e1 ∼ e2 then {e1 ∗ α} ∼ {e2 ∗ α} .

Proof. (If part) Let e1, e2 ∈ Expr, α ∈ ActLine, and θ, θ′ ∈ M, and suppose there
is a derivation

d  〈{e1 ∗ α}, θ〉 ⇒ θ′ .

There are two possibilities.
[Case 1] 〈e1, θ〉 ⇒ n and n > 0, for some n ∈ N. Then d is of the form:

· · ·

〈e1, θ〉 ⇒ n
· · ·d′′ =

〈α{n − 1 ∗ α}, θ〉 ⇒ θ′

〈{e1 ∗ α}, θ〉 ⇒ θ′

By the hypothesis of the theorem, there is a derivation d′ such that

d′  〈e2, θ〉 ⇒ n .

And by applying rule R+
∗ to d′ and d′′, the following derivation is obtained:

· · ·d′ =
〈e2, θ〉 ⇒ n

· · ·d′′ =
〈α{n − 1 ∗ α}, θ〉 ⇒ θ′

〈{e2 ∗ α}, θ〉 ⇒ θ′

which establishes that 〈{e2 ∗ α}, θ〉 ⇒ θ′.
[Case 2] 〈e1, θ〉 ⇒ n and n ≤ 0, for some n ∈ N. By the hypothesis of the

theorem, there is a derivation d′ such that

d′  〈e2, θ〉 ⇒ n .

And by applying rule R+
∗ to d′ and axiom instance 〈ε, θ〉 ⇒ θ, the following derivation

is obtained:
· · ·d′ =

〈e2, θ〉 ⇒ n
d′′ =

〈ε, θ〉 ⇒ θ′

〈{e2 ∗ α}, θ〉 ⇒ θ′

which establishes that 〈{e2 ∗ α}, θ〉 ⇒ θ′.
(Only-if part) Similar.

Proposition 4.15. For all p1, p2 ∈ Pred, x ∈ Media, and α1, α2, α3, α4 ∈

ActLine:

if π(α1)∩ { x, x} = ∅ then (p1 ? x)[α1(p2 ? x)[α2]α3]α4 ∼ (p1 ? x)[α1α3]α4 .
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Proof. (If part) Let p1, p2 ∈ Pred, x ∈ Media, α1, α2, α3, α4 ∈ ActLine, and θ,
θ′ ∈ M, and suppose there is a derivation

d  〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′ .

There are two possibilities.
[Case 1] θs(x) , . Then derivation d is of the form:

· · ·d1 =
〈state(x) , ∧ p1, θ〉 ⇒ >

· · ·d2 =
〈α1(p2 ? x)[α2]α3α4, θ[ ⊃s x]〉 ⇒ θ′

〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′

By Lemma 4.8, there are derivations d′ and d′′ such that

d′  〈α1, θ[ ⊃s x]〉 ⇒ θ1 and d′′  〈(p2 ? x)[α2]α3α4, θ1〉 ⇒ θ′ ,

for some θ1 ∈ M. And by d′ and by the hypothesis of the proposition, θ1s(x) = .1

Thus d′′ is of the form:

· · ·d′′1 =
〈state(x) , ∧ p2, θ1〉 ⇒ ⊥

· · ·d′′2 =
〈α3α4, θ1〉 ⇒ θ′

〈(p2 ? x)[α2]α3α4, θ1〉 ⇒ θ′

By applying Lemma 4.8 to d′ and d′′2 , the following derivation is obtained:

d′′′  〈α1α3α4, θ[ ⊃s x]〉 ⇒ θ′ .

And by applying rule R+ to d1 and d′′′, the following derivation is obtained:

· · ·

〈state(x) , ∧ p1, θ〉 ⇒ >
· · ·

〈α1α3α4, θ[ ⊃s x]〉 ⇒ θ′

〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′

which establishes that 〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′.
[Case 2] θs(x) = . Then derivation d is of the form:

· · ·d1 =
〈state(x) , ∧ p1, θ〉 ⇒ ⊥

· · ·d2 =
〈α4, θ〉 ⇒ θ′

〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′

By applying rule R− to d1 and axiom 〈ε, θ〉 ⇒ θ, the following derivation is obtained:

· · ·

〈state(x) , ∧ p1, θ〉 ⇒ ⊥ 〈ε, θ〉 ⇒ θ
d′ =

〈(p1 ? x)[α1α3], θ〉 ⇒ θ

1This step in the proof could be separated in a lemma stating that if 〈α, θ〉 ⇒ θ′, { , }∩π(α1) = ∅,
and θs(x) = , then θ′s(x) = . In this case, the proof proceeds by induction on the structure of
program α. For simplicity, this proof is omitted.
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And by applying Lemma 4.8 to d′ and d2,

〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′ .

(Only-if part) Let p1 ∈ Pred, x ∈Media, α1, α3, α4 ∈ ActLine, and θ, θ′ ∈ M, and
suppose there is a derivation

d  〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′ .

There are two possibilities.
[Case 1] θs(x) , . Then derivation d is of the form:

· · ·d1 =
〈state(x) , ∧ p1, θ〉 ⇒ >

· · ·d2 =
〈α1α3α4, θ[ ⊃s x]〉 ⇒ θ′

〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′

By Lemma 4.8, there are derivations d′ and d′′ such that

d′  〈α1, θ[ ⊃s x]〉 ⇒ θ1 and d′′  〈α3α4, θ1〉 ⇒ θ′ ,

for some θ1 ∈ M. And by d′ and by the hypothesis of the proposition, θ1s(x) = .
Thus, for any p2 ∈ Pred, there is derivation d′′′ such that

d′′′  〈state(x) , ∧ p2, θ1〉 ⇒ ⊥ .

By applying rule R− to d′′′ and d′′, the following derivation is obtained:

· · ·

〈state(x) , ∧ p2, θ1〉 ⇒ ⊥

· · ·

〈α3α4, θ1〉 ⇒ θ′

〈(p2 ? x)[α2]α3α4, θ1〉 ⇒ θ′

for any α2 ∈ ActLine. And by applying Lemma 4.8 to d′ and the above derivation,
the following derivation is obtained:

d′2  〈α1(p2 ? x)[α2]α3α4, θ[ ⊃s x]〉 ⇒ θ′

Finally, by applying rule R+ to d1 and d′2 the following derivation is obtained:

· · ·

〈state(x) , ∧ p1, θ〉 ⇒ >
· · ·

〈α1(p2 ? x)[α2]α3α4, θ[ ⊃s x]〉 ⇒ θ′

〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′

which establishes that 〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′.
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[Case 2] θs(x) = . Then derivation d is of the form:

· · ·d1 =
〈state(x) , ∧ p1, θ〉 ⇒ ⊥

· · ·d2 =
〈α4, θ〉 ⇒ θ′

〈(p1 ? x)[α1α3]α4, θ〉 ⇒ θ′

By applying rule R− to d1 and axiom 〈ε, θ〉 ⇒ θ, the following derivation is obtained:

· · ·

〈state(x) , ∧ p1, θ〉 ⇒ ⊥ 〈ε, θ〉 ⇒ θ
d′ =

〈(p1 ? x)[α1(p2 ? x)[α2]α3], θ〉 ⇒ θ

for any p2 ∈ Pred and α2 ∈ ActLine. And by applying Lemma 4.8 to d′ and d2,

〈(p1 ? x)[α1(p2 ? x)[α2]α3]α4, θ〉 ⇒ θ′ .

Proposition 4.16. For all α1, α2 ∈ ActLine:

if Π(α1) ∩ Π(α2) = ∅ then α1α2 ∼ α2α1 .

Proof. Let θ ∈ M and X ∈ dom θ. Then the restriction of media memory θ to X,
in symbols θ | X, is a memory such that (θ | X)(x) = θ(x), for each x ∈ X. And
if α ∈ ActLine, the restriction of memory θ to program α, in symbols θ | α, is a
memory θ | Π(α), with the implicit assumption that Π(α) ⊆ dom θ.

The proof relies on the following results regarding memory restrictions:2

〈α, θ〉 ⇒ θ′ implies 〈α, θ | α〉 ⇒ θ′ | α ,(†)

and

〈α, θ〉 ⇒ θ′ and θ′′ | α = ∅ implies 〈α, θ ∪ θ′′〉 ⇒ θ′ ∪ θ′′ .(‡)

(If part) Let α1, α2 ∈ ActLine and θ, θ1 ∈ M, and suppose 〈α1α2, θ〉 ⇒ θ′.
Then, by Lemma 4.8,

(1) 〈α1, θ〉 ⇒ θ1 and 〈α2, θ1〉 ⇒ θ′ ,

for some θ1 ∈ M. Without loss of generality, assume that

(2) θ = (θ | α1) ∪ (θ | α2) ,

for all θ ∈ M.
2Their proofs are omitted.
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Then, by (1),

〈α1, θ〉 ⇒ θ1

→ 〈α1, θ | α1〉 ⇒ θ1 | α1 by (†)

→ 〈α1, (θ | α1) ∪ (θ | α2)〉 ⇒ (θ1 | α1) ∪ (θ | α2) by (‡)

→ 〈α1, θ〉 ⇒ (θ1 | α1) ∪ (θ | α2) by (2)

→ (θ1 | α1) ∪ (θ | α2) = θ1 by (1) and Theorem 4.7

→ 〈α2, (θ1 | α1) ∪ (θ | α2)〉 ⇒ θ′ by (1)

→ 〈α2, ((θ1 | α1) ∪ (θ | α2)) | α2〉 ⇒ θ′ | α2 by (†)

→ 〈α2, θ | α2〉 ⇒ θ′ | α2 by definition of |

→ 〈α2, (θ | α1) ∪ (θ | α2)〉 ⇒ (θ | α1) ∪ (θ′ | α2) by (‡)

→ 〈α2, θ〉 ⇒ (θ | α1) ∪ (θ′ | α2) by (2)

where symbol→ stands for logical implication. Thus

(3) 〈a2, θ〉 ⇒ (θ | α1) ∪ (θ′ | α2).

By (1),

〈α2, θ1〉 ⇒ θ′

→ 〈α2, θ1 | α2〉 ⇒ θ′ | α2 by (†)

→ 〈α2, (θ1 | α1) ∪ (θ1 | α2)〉 ⇒ (θ1 | α1) ∪ (θ′ | α2) by (‡)

→ 〈α2, θ1〉 ⇒ (θ1 | α1) ∪ (θ′ | α2) by (2)

→ (θ1 | α1) ∪ (θ′ | α2) = θ′ by (2) and Theorem 4.7

Thus

(4) (θ1 | α1) ∪ (θ′ | α2) = θ′ .

Again, by (1),

〈α1, θ〉 ⇒ θ1

→ 〈α1, θ | α1〉 ⇒ θ1 | α1 by (†)

→ 〈α1, (θ | α1) ∪ (θ′ | α2)〉 ⇒ (θ1 | α1) ∪ (θ′ | α2) by (‡)

→ 〈α1, (θ | α1) ∪ (θ′ | α2)〉 ⇒ θ′ by (4)

Finally, from the previous implication and (3), by Lemma 4.8, 〈α2α1, θ〉 ⇒ θ′.
(Only-if part) Similar.
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