fechar

SIMULAçÕES EM ENGENHARIA ELÉTRICA

 

 

 

 

 

 

 

detalhes

 

 

 

 

 

 

 

INVERTED PENDULUM

TRANSFER FUNCTION, STATE VARIABLE MODEL AND IMPULSE RESPONSE

The transfer function, G(s) , of the output \Phi(s), pendulum position, with respect to F, the driving force is:

G(s) = \frac{\Phi(s)}{F(s)} = \frac{\frac{ml}{q}s}{s^3 + \frac{b(I+ml^2)}{q}s^2-\frac{(M+m)mgl}{q}s - \frac{bmgl}{q}} \begin{bmatrix}\underline{rad} \\N \end{bmatrix}


Where: q = (M+m)(I+ml^2)-(ml)^2


The transfer function, H(s), of the output X(s), cart position, with respect to F, the driving force is:

H(s) = \frac{X(s)}{F(s)} = \frac{\frac{I+ml^2}{q}s^2-gml}{s^4 + \frac{b(I+ml^2)}{q}s^3-\frac{(M+m)mgl}{q}s^2 - \frac{bmgl}{q}s} \begin{bmatrix}\underline{m} \\N \end{bmatrix}

The system can be represented by its state space model:

\begin{bmatrix} \dot{X} \\ \ddot{X} \\ \dot{\Phi} \\ \ddot{\Phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0& \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{ml^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0& 0 & 0 & 1 \\ 0& \frac{-mlb}{I(M+m)+Mml^2}& \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \\ \end{bmatrix} \begin{bmatrix} X \\ \dot{X} \\ \Phi \\ \dot{\Phi} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{I+ml^2}{I(M+m)+Mml^2} \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{bmatrix} u

y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ \dot{X} \\ \Phi \\ \dot{\Phi} \end{bmatrix} + \begin{bmatrix} 0\\ 0 \end{bmatrix} u

Enter the values of the parameters:

M= kg      I=kg.m^2     m= kg     

g= 9.8 kg.m / s^2     b= N/m/s    l=m

 


voltar