7 Referências Bibliográficas

- O. da Fonseca Martins Gomes, J. C. Alvarez Iglesias and S. Paciornik, "Classification of hematite types in iron ores through circularly polarized light microscopy and image analysis," *Minerals Engineering*, p. 7, 4 September 2013.
- [2] A. Benvindo da Luz, J. Alvez Sampaio e S. C. Alves França, Tratamento de minérios, Rio de janeiro: CETEM/MCT, 2010.
- [3] J. M. Mourão, "Estudo Prospectivo do Setor Siderúrgico," CGEE/ABM, Brasilia, 2008.
- [4] D. Barthelmy, "Mineralogy database," Webmineral, Janeiro 2015.[Online]. Available: http://webmineral.com.
- [5] A. R. Huamán De la Cruz, "Quantificação de ferro em minério de ferro por Espectrometria de Fluorescência de raios-X por dispersão de Energia," PUC, Rio de janeiro, 2013.
- [6] K. Soares Augusto, "Identificação Automática do Grau de Maturação de Pelotas de Minério de Ferro", DEQM/PUC-Rio, Rio de janeiro, 2012.
- [7] C. A. Gonçalves de Jesus, "Sumario Mineral," DNPM/MG, 2014.
- [8] T. de Carvalho Pires, "Siderurgia no Brasil 2010-2025," CGEE, Brasília, 2010.
- [9] R. Marlise, "Segmentação de grãos de hematita em amostras de minério de ferro por análise de imagens de luz polarizada," Universidade Federal de Santa Maria, Rio Grande do Sul, 2008.
- [10] C. B. Vieira, C. A. Rosière, E. Q. Pena, V. Seshadri e P. S. Assis, "Avaliação técnica de minérios de ferro para sinterização nas siderúrgicas e minerações brasileiras: uma análise crítica," Revista Escola de Minas, 2003.
- [11] C. A. Rosière, H. Quade e H. Siemes, "Um modelo para a evolução microestrutural dos minérios de ferro do Quadrilátero Ferrífero. Parte II-Trama, textura e anisotropia de susceptibilidade magnética.," Geonomos, 1996.

- [12] C. A. Rosière, C. B. Vieiera, V. Seshadri e J. R. Chemela , "Classificação genética de minérios de ferro – problemas e vícios – Proposta de uma classificação tipológica para indústria.," Seminário de Redução de Minério, São Paulo, 1997.
- [13] F. Chemale Junior e L. Takehara, Minério de Ferro, São Paulo: Blucher, 2013.
- [14] S. Jewell and S. Kimball, Mineral Commodity Summaries, Reston: USGS, 2014.
- [15] C. Batista Vieira, F. G. da Silva Araújo, C. A. Rosiére, V. Seshadri y H. Coelho, «Enfoque geometalúrgico sobre el control de calidad del mineral de hierro en procesos de aglomeración y reducción,» Acero Latinoamericano, 2011.
- [16] Vale, "Características estruturais dos finos SECA,SECA, e ALEGRIA que compuseram pilhas de desempenho ruim e excelente na Usiminas," Relatório Interno, 1998.
- [17] J. C. Álvarez Iglesias, "Desenvolvimento de um sistema de microscopia digital para classificação automática de tipos de hematita em minério de ferro," PUC, Rio de janeiro, 2012.
- [18] M. W. Davidson, "Molecular Expressions: Optical Microscopy Primer," janeiro 2015. [Online]. Available: micro.magnet.fsu.edu.
- [19] S. Paciornik and M. H. de Pinho Mauricio, "Digital Imaging," Catholic University, Rio de janeiro, 2004.
- [20] J. C. Álvarez Iglesias, "Uma Metodologia para Caracterização de Sínter de Minério de Ferro: Microscopia Digital e Análise de Imagens," PUC, Rio de janeiro, 2008.
- [21] D. Turon Wagner, "Quantificação automática, por microscopia digital, do ferro metálico em briquetes autorredutores de minério de ferro," PUC, Rio de janeiro, 2012.
- [22] S. Paciornik, Notas de aula de Microscopia Quantitativa, PUC: Rio de janeiro, 2014.
- [23] A. Vianna Fontes, "Caracterização Tecnológica de Minério de Ferro Especularítico," UFRJ, Rio de janeiro, 2013.

- [24] O. da Fonseca Martins Gomes, "Processamento e Análise de Imagens Aplicados à Caracterização Automática de Materiais," PUC, Rio de janeiro, 2001.
- [25] O. da Fonseca Martins Gomes e S. Paciornik, "Caracterização quantitativa de minério de ferro por microscopia co-Localizda", Tecnologia em Metalurgia, Materiais e Mineração, São Paulo, 2009.
- [26] L. Gottesfeld Brown, "A Survey of Image Registration Techniques," Columbia University, New York, 1992.
- [27] O. da Fonseca Martins Gomes, "Microscopia Co-Localizada:Novas Possibilidades na Caracterização de minérios," PUC, Rio de janeiro, 2007.
- [28] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, Canada, 2004.
- [29] D. G. Lowe, "Object recognition from local scale-invariant features," International Conference on Computer Vision, Canada, 1999.
- [30] S. Paciornik, Notas de aula de Processamento Digital de Imagens, PUC: Rio de Janeiro, 2014.
- [31] B. Pascal and W. Thorsten, 27 July 2015. [Online]. Available: http://fiji.sc/Non_Local_Means_Denoise.
- [32] K. S. Deshmukh and G. N. Shinde, "An Adaptive Color Image Segmentation," Computer Vision Center, Barcelona, 2005.
- [33] R. Gonzales and R. Woods, Digital Image Processing, New Jersey: Pretice Hall, 2002.
- [34] D. Turon Wagner, "Caracterização automática de minério de ferro," PUC, Rio de janeiro, 2010.
- [35] S. Theodoridis and K. Koutroumbas, "Pattern Recognition," Academic Press, Burlington, 2009.
- [36] A. K. Jain, R. P. Duin and J. Mao, "Statistical pattern recognition: a review," IEEE Transactions on Pattern analysis and Machine Intelligence, 2000.
- [37] A. K. Jain, M. N. Murty and P. J. Flynn, "Data clustering: a review," ACM Computing Surveys, 1999.

[38] I. Witten, E. Frank and M. Hall, Data Mining, United States: Elsevier, 2011.

8.1. Resultados

8.1.1. Otimização da posição do subframe frame

Figura 8-1: Mosaico 5x5 *subframe*: (a) *framestart* não centrado; (*b*) *framestart* centrado.

Figura 8-2: Mosaico 6x4 *subframe*: (a) *framestart* não centrado; (b) *framestart* centrado.

8.1.2. Otimização do frame da Câmera

Figura 8-3: Mosaico 2x2 com full frame

Figura 8-4: Mosaico 5x5 *subframe* de 1292x976.

Figura 8-5: Mosaico 6x4 *subframe* de 1024x1024.

Figura 8-6: Mosaico 11x8 subframe de 512x512.

Figura 8-7: Mosaico 22x16 subframe de 256x256.

8.1.3. Análise Qualitativa do Método Analítico

Figura 8-8: Exemplo de Identificação de cristais em função das variações da imagem CPOL. (a) CPOL *full frame*; (b) CPOL *subframe*; (c) CPOL *subframe* saturada; (d) CPOL *subframe* saturadas NLM.

Figura 8-9: Exemplo de Identificação de cristais em função das variações da imagem CPOL. (a) CPOL *full frame*; (b) CPOL *subframe*; (c) CPOL *subframe* saturada; (d) CPOL *subframe* saturadas NLM.

8.1.4. Análise Quantitativa dos Resultados

Mosaico 2	Método Analítico				Método Sintético					
	Gr	La	Lo	CoA	CoS	Ма	Мс	NC	CoS+NC	CoA+NC
Full frame	16,8	6,2	20,7	43,6	54,1	29,1	7,7	36,9	90,9	80,5
Subframe	21,5	11,5	19,6	52,6	55,4	28,3	7,3	35,6	90,9	88,1
Subframe saturada	19,2	7,8	15,9	42,9	56,7	28,1	6,1	34,2	90,9	77,1
Subframe saturada NLM	22,1	14,4	18,5	54,9	58,4	25,8	6,8	32,5	90,9	87,4

Tabela 8-1: Fração de área das hematitas (%), para as 4 condições de aquisição CPOL.

Gr=Granular, La=Lamelar, Lo=Lobular, CoA=Compacta obtida pelo método analítico (Gr+La+Lo), CoS=Compacta obtida pelo método sintético, Ma=Martita, Mc=Microcristalina, NC=Não compacta (Ma+Mc)

Figura 8-10: Comparação entre as frações de hematita compacta obtidas pelos métodos sintético e analítico para o Mosaico 2.

Tabela 8-2: Contagem de partículas, para as 4 condições de aquisição CPOL.

Mosaico 2	Método Analítico							
	Gr	La	Lo	Total				
Full frame	293	83	74	450				
Subframe	345	138	57	540				
Subframe saturadas	327	100	54	481				
Subframe saturadas NLM	400	157	81	638				

Mosaico 3	Método Analítico				Método Sintético					
WOSalco 5	Gr	La	Lo	CoA	CoS	Ма	Mi NC	CoS+NC	CoA+NC	
Full frame	19,0	10,0	9,4	38,3	43,6	42,1	3,9	46,0	89,6	84,3
Subframe	19,8	11,5	11,7	43,0	44,7	40,6	4,2	44,9	89,6	87,9
S <i>ubframe</i> saturada	16,7	9,4	7,0	33,0	46,8	39,0	3,8	42,8	89,6	75,9
Subframe saturada NLM	25,3	15,2	11,2	51,7	54,2	31,8	3,5	35,4	89,6	87,1

Tabela 8-3: Fração de área das hematitas (%), para as 4 condições de aquisição CPOL.

Gr=Granular, La=Lamelar, Lo=Lobular, CoA=Compacta obtida pelo método analítico (Gr+La+Lo), CoS=Compacta obtida pelo método sintético, Ma=Martita, Mc=Microcristalina, NC=Não compacta (Ma+Mc)

Figura 8-11: Comparação entre as frações de hematita compacta obtidas pelos métodos sintético e analítico para o Mosaico 3.

Mosaico 3	Método Analítico							
MUSAICO J	Gr	La	Lo	Total				
Full frame	374	118	62	554				
Subframe	360	148	59	567				
Subframe saturadas	347	122	34	503				
Subframe saturadas NLM	524	217	89	830				

Tabela 8-4: Contagem de partículas, para as 4 condições de aquisição CPOL.