

Lili Edith Daza Durand

Classificação de Hematitas em Minério de Ferro: Otimização de Aquisição e Processamento de Imagens

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia Química e de Materiais da PUC-Rio.

Orientador: Prof. Sidnei Paciornik

Co-orientador: Dr. Julio César Álvarez Iglesias

Rio de Janeiro Agosto de 2015

Lili Edith Daza Durand

Classificação de Hematitas em Minério de Ferro: Otimização de Aquisição e Processamento de Imagens

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia Química e de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sidnei Paciornik

Orientador e Presidente

Departamento de Engenharia Química e de Materiais – PUC Rio

Dr. Julio César Álvarez Iglesias

Co - Orientador

Departamento de Engenharia Química e de Materiais – PUC Rio

Dr. Marcos Henrique de Pinho Maurício

Departamento de Engenharia Química e de Materiais - PUC Rio

Dr. Otávio da Fonseca Martins Gomes

Centro de Tecnologia Mineral – CETEM

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Lili Edith Daza Durand

Graduou-se em Engenharia Química pela Universidad Nacional de Ingenieria do Perú. Ingressou no curso de mestrado em Engenharia de Materiais no ano 2013.

Ficha Catalográfica

Daza Durand, Lili Edith

Classificação de Hematitas em Minério de Ferro: Otimização de Aquisição e Processamento de Imagens / Lili Edith Daza Durand ; orientador: Sidnei Paciornik ; co-orientador: Julio César Álvarez Iglesias. – 2015.

94 f.: il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Química e de Materiais, 2015.

Inclui bibliografia

1. Engenharia Química – Teses. 2. Engenharia de Materiais – Teses. 2. Minério de Ferro. 3. Hematita. 4. Classificação Automática. 5. Análise de Imagens. I. Paciornik, Sidnei. II. Iglesias, Julio César Álvarez. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Química e de Materiais. IV. Título.

CDD: 620.11

A Deus, por tudo o que sou.

A Juliana minha mãe pela dedicação, compreensão, paciência e amor que fizeram possível minha realização professional e pessoal.

Agradecimentos

A Deus pela oportunidade de sair de meu pais para poder crescer como professional e como ser humano.

A CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior pela ajuda financeira.

A Juliana e Francisco, meus pais, a Gladys y Maritza minhas irmãs, por apoiarme e confiar em mim ao largo desta travessia; e que apesar da distância sempre senti o amor de cada um deles.

A meu orientador Sidnei Paciornik pelos conhecimentos e oportunidades brindadas no processo de formação como mestre, pela confiança que deposito em mim e pôr as palavras de alento que me impulsavam a fazer melhor as coisas.

A meu co-orientador Julio César Álvarez Iglesias pelo ensinamento, compromisso, a paciência e pela ajuda brindada ao longe do desenvolvimento da minha teses.

Ao professor Marcos Henrique pelo tempo, a paciência e o conhecimento transmitido durante os momentos de dúvida. A Karen Augusto Soares pelo tempo fornecido e por estar sempre disposta a ajudar-me com alguma dúvida.

A meu noivo Roger Gago Tolentino, por seu amor, compreensão, pelas palavras de alento em momentos difíceis e por ser parte deste logro.

A minha amiga Lilia Olaya Luengas, pela agradável companhia durante todo o Mestrado e pelas experiências compartilhadas.

E a cada pessoa com a que compartilhei momentos, risos e palavras.

Resumo

Daza Durand, Lili Edith; Paciornik, Sidnei; Álvarez Iglesias, Julio César. Classificação de Hematitas em Minério de Ferro: Otimização de Aquisição e Processamento de Imagens. Rio de Janeiro, 2015. 94p. Dissertação de Mestrado — Departamento de Engenharia Química e de Materiais, Pontificia Universidade Católica do Rio de Janeiro.

O minério de ferro é um material policristalino oriundo de processos naturais complexos. Os minerais mais comuns que o compõem (hematita, magnetita, goethita, etc.) podem ser identificados no microscópio ótico de luz refletida, através de suas refletâncias distintas. A importância do estudo das hematitas, especificamente, surge porque os maiores depósitos de minério de ferro, no Brasil, são praticamente todos do tipo hematítico, com altos teores de ferro. A hematita é um mineral fortemente anisotrópico que apresenta pleocroísmo de reflexão. Isto faz com que o brilho na imagem mude com diferentes orientações dos cristais. Assim, quando se utiliza luz polarizada, o contraste entre os cristais aumenta o suficiente para diferenciá-los. Tradicionalmente, as hematitas são classificadas em "tipos texturais" identificados como hematita microcristalina (Mc), martita (Ma), e partículas policristalinas compactas (Co) formadas, por sua vez, de cristais dos tipos: granular (Gr), lamelar (La), lobular (Lo). Em trabalhos anteriores foi desenvolvida uma rotina de classificação automática para os diferentes tipos de hematitas. Esta rotina utiliza como entrada duas imagens de uma mesma região, a primeira em campo claro (CC) e a segunda polarizada circularmente (CPOL). Neste trabalho foram implementadas modificações nas etapas de aquisição das imagens CPOL e no processamento de ruído, visando melhorar as etapas de classificação. Assim, a imagem CPOL, que apresenta problemas característicos de iluminação, passou a ser capturada utilizando o recurso de sub-quadros (subframe), o que elimina a necessidade de correção de fundo, melhorando a qualidade dos mosaicos de imagens capturados. Em seguida, explorou-se recurso de saturação digital da câmera, de forma a melhorar, substancialmente, o contraste entre os cristais de hematita. Finalmente, testou-se o impacto do uso de um novo filtro de redução de ruído - Non-Local Means (MNL) - sobre a segmentação de cristais. Os resultados mostraram uma melhora substancial na identificação dos tipos texturais de hematita com relação aos métodos anteriores e também superiores à tradicional identificação visual por operador treinado.

Palavras-Chave

Minério de Ferro; Hematita; Classificação Automática; Análise de Imagens.

Abstract

Daza Durand, Lili Edith; Paciornik, Sidnei (Advisor); Álvarez Iglesias, Julio César (Co-Advisor). Classification of Hematites in Iron Ore: Optimization of Image Acquisition and Processing. Rio de Janeiro, 2015. 94p. Masters Dissertation – Departamento de Engenharia Química e de Materiais, Pontificia Universidade Católica do Rio de Janeiro.

Iron ore is a polycrystalline material originated from complex natural processes. Its main composing minerals (hematite, magnetite, goethite, etc.) can be identified with the reflected light optical microscope through their distinctive reflectances. The relevance of studying hematite, specifically, originates from the fact that the largest Brazilian iron deposits are mostly of the hematitic type, with high iron content. Hematite is a strongly anisotropic mineral that presents reflectance pleocroism. Thus, different crystal orientations produce different brightness and, when using polarized light, the contrast between crystals is strong enough to allow their discrimination. Traditionally, hematites are classified in textural types identified as microcrystalline (Mc), martite (Ma) and compact polycristalline (Co), composed of granula (Gr), lamellar (La) and lobular (Lo) crystals. An automatic classification routine for hematite types was developed in previous works. This routine takes as input two images of the same region, one in Bright Field and the second in Circular Polarization (CPOL). In this work, modifications in the CPOL image acquisition and in noise filtering were implemented, in order to improve the classification step. Thus, the CPOL images, which present a characteristic background problem, were acquired employing the subframe method, what eliminates the need for background correction, improving the quality of image mosaics. Then, the digital saturation of the camera was optimized to improve substantially the contrast between hematite types. Finally, the impact of a new noise reduction filter - the Non-Local Means Filter - on crystal segmentation was evaluated. The results showed a substantial improvement in the identification of hematite textural types as compared to the previous method, and also superior to the traditional visual identification by an operator.

Keywords

Iron Ore; Hematite; Automatic Classification; Image Analysis.

Sumário

1 Introdução	16
2 Objetivos	18
3 Revisão Bibliográfica	19
3.1. Minério de Ferro	19
3.2. Hematita	21
3.3. Microscopia	23
3.3.1. Microscopia Digital	23
3.3.2. Microscopia Ótica de Luz Refletida em Campo Claro	25
3.3.3. Luz Polarizada	25
3.3.4. Polarização Circular	26
3.3.5. Aquisição Automática de Imagens	28
3.4. Processamento e Análise Digital de Imagens	29
3.4.1. Registro de Imagem	30
3.4.2. Correção de Fundo	32
3.4.3. Filtragem de Ruído	33
3.4.4. Técnicas de segmentação	34
3.4.4.1. Limiarização	34
3.4.4.2. Segmentação por Textura	35
3.4.4.3. Crescimento de Regiões	40
3.4.5. Espaço de Medidas	42
3.4.6. Reconhecimento de Padrões e Classificação	45
3.4.6.1. Classificação Supervisionada	47
4 Materiais e Métodos	48
4.1. Preparação de Amostras	48
4.2. Aquisição de Imagens ao Microscópio Ótico	49
4.3. Desalinhamento	52
4.4. Segmentação	55
4.4.1. Limiarização	55
4.4.2. Crescimento de Regiões	56
4.5. Classificação	60
4.5.1. Classificação por Textura (Método Sintético)	60

4.5.2. Classificação por Forma (Método Analítico)	63
5 Resultados e Discussão	64
5.1. Otimização do <i>Frame</i> da Câmera	64
5.2. Análise Qualitativa das Diferentes Técnicas de Captura	65
5.2.1. Comparação de imagens Full Frame com Subframe	65
5.2.2. Comparação de Imagens Subframe com Subframe Saturadas	67
5.2.3. Comparação de Imagens Subframe saturadas com Subframe	
saturadas NLM	68
5.3. Analise Estatística do Método Sintético	69
5.4. Análise Qualitativa do Método Analítico	72
5.5. Análise Quantitativa dos Resultados	75
6 Conclusões e Trabalhos Futuros	79
6.1. Trabalhos Futuros	80
7 Referências Bibliográficas	81
8 Anexo	85
8.1. Resultados	85
8.1.1. Otimização da posição do subframe frame	85
8.1.2. Otimização do frame da Câmera	87
8.1.3. Análise Qualitativa do Método Analítico	90
8.1.4. Análise Quantitativa dos Resultados	92

Lista de Figuras

Figura 3-1: Microscópio ótico do LMD da PUC-Rio	24
Figura 3-2: Esquema da Luz Refletida em Campo Claro [22]	25
Figura 3-3: Esquema da formação da luz polarizada. (a) Imagem	
LPOL com polarizador girado -10º e (b) Imagem LPOL com	
polarizador girado +10º	26
Figura 3-4: Esquema da formação da luz polarizada circular [22]	27
Figura 3-5: Técnica de captura do mosaico; (a) varredura espacial com	
captura de imagens individuais; (b) concatenação das imagens e	
criação do mosaico; (c) visão ampliada para exemplificar a	
superposição dos campos verde e amarelo [20]	29
Figura 3-6: Sequência padrão de PADI [24]	30
Figura 3-7: Possíveis transformações em registro de imagens [27]	31
Figura 3-8: Ilustração do processo de correção de iluminação. (a) Imagem	
original, (b) Imagem corrigida	33
Figura 3-9: Ilustração do efeito do filtro NLM. (a) Imagem original;	
(b) Imagem depois da aplicação NLM	34
Figura 3-10: Representação gráfica do vetor d [24]	37
Figura 3-11: Exemplo de crescimento de regiões com t=3: (a) Imagem	
em tons de cinza; (b) Duas regiões (R1 e R2) separadas com n=2	
sementes (em vermelho); (c) Três regiões (R1, R2, e R3) separadas	
com n=3 sementes (em vermelho) [17]	42
Figura 3-12 Conectividade entre os pixels: (a) Imagem original, onde	
o pixel circulado é o pixel analisado; (b) Conectividade 4, considerando	
que são dois objetos separados; (c) Conectividade 8, considerando que	
os pixels fazem parte de um mesmo objeto [6]	45
Figura 3-13: Classificação supervisionada utilizando os parâmetros	
característicos FFC e RA [17]	46
Figura 4-1: Propriedades da câmera CCD.	50
Figura 4-2: Ilustração de captura de imagens. (a) Com quadro	
completo (full frame); (b) Com quadro parcial (subframe)	51
Figura 4-3: Imagens CC e CPOL, respectivamente, desalinhadas.	
Para perceber melhor o desalinhamento parte das imagens CC e	
CPOL foram ampliadas	53
Figura 4-4: Imagens CC e CPOL, respectivamente, alinhadas, Para	

perceber melhor o alinhamento parte das imagens CC e CPOL	
foram ampliadas	54
Figura 4-5: Imagem da máscara binária	55
Figura 4-6: Interseção da Máscara binária (Figura 4-5) com CPOL	
(Figura 4-4(b)) utilizando o operador lógico AND	56
Figura 4-7: Imagem CPOL com ruído gaussiano.	57
Figura 4-8: Imagem resultante do Canny sobre a imagem com ruído	57
Figura 4-9: Imagem resultante do divisor de águas	58
Figura 4-10: Sementes dos grãos.	59
Figura 4-11: Imagem binária dos cristais.	60
Figura 4-12: Hematita compacta	61
Figura 4-13: Martita	62
Figura 4-14: Microcristalina	62
Figura 4-15: Cristais de hematita compacta classificados	63
Figura 5-1: Tipos de aquisição de imagens CPOL: (a) Mosaico 2x2 com	
full frame; (b) Mosaico 28x21 subframe de 200x200	64
Figura 5-2: Fração dos mosaicos originais da Figura 5-1 que	
mostram a comparação entre as imagens: (a) CPOL full frame 2x2 com	
gradiente de iluminação (b) CPOL full frame com gradiente de	
iluminação corrigido; (c) CPOL subframe	66
Figura 5-3: Comparação entre as imagens: (a) CPOL subframe e;	
(b) CPOL subframe saturada	67
Figura 5-4: Comparação entre as imagens: (c) CPOL subframe saturada	
e; (d) CPOL subframe saturadas NLM	68
Figura 5-5: Representação da matriz de confusão para martita	72
Figura 5-6: Exemplo de Identificação de cristais em função das	
variações da imagem CPOL. (a) CPOL full frame; (b) CPOL sub frame;	
(c) CPOL subframe saturada; (d) CPOL subframe saturadas NLM	74
Figura 5-7: Comparação entre as frações de hematita compacta obtidas	
pelos métodos sintético e analítico para o Mosaico 1	76
Figura 5-8: Imagens da Classificação de hematita. (a) Imagem CC;	
(b) Imagem CPOL (c) Imagem full frame; (d) Imagem subframe;	
(e) Imagem subframe saturada; (f) Imagem subframe saturada NLM	78
Figura 8-1:Mosaico 5x5 subframe: (a) framestart não centrado;	
(b) framestart centrado.	85
Figura 8-2: Mosaico 6x4 subframe: (a) framestart não centrado;	
(b) framestart centrado.	86

Figura 8-3: Mosaico 2x2 com full frame	87
Figura 8-4: Mosaico 5x5 subframe de 1292x976	87
Figura 8-5: Mosaico 6x4 subframe de 1024x1024	88
Figura 8-6: Mosaico 11x8 subframe de 512x512	88
Figura 8-7: Mosaico 22x16 subframe de 256x256	89
Figura 8-8: Exemplo de Identificação de cristais em função das	
variações da imagem CPOL. (a) CPOL full frame; (b) CPOL subframe;	
(c) CPOL subframe saturada; (d) CPOL subframe saturadas NLM	90
Figura 8-9: Exemplo de Identificação de cristais em função das	
variações da imagem CPOL. (a) CPOL full frame; (b) CPOL subframe;	
(c) CPOL subframe saturada; (d) CPOL subframe saturadas NLM	91
Figura 8-10: Comparação entre as frações de hematita compacta	
obtidas pelos métodos sintético e analítico para o Mosaico 2	92
Figura 8-11: Comparação entre as frações de hematita compacta	
obtidas pelos métodos sintético e analítico para o Mosaico 3	93

Lista de Tabelas

Tabela 3-1: Reservas mundiais de minério de ferro no ano 2013 [14]	21
Tabela 3-2: Tipos de hematita compacta [16].	22
Tabela 3-3: Tipos de hematita não compacta [16]	22
Tabela 3-4: Parâmetros de Haralick [6]	39
Tabela 5-1: Taxa de acerto da classificação nas imagens CPOL	69
Tabela 5-2: Matriz de confusão para imagens full frame	70
Tabela 5-3: Matriz de confusão para imagens subframe	70
Tabela 5-4: Matriz de confusão para imagens subframe saturadas	71
Tabela 5-5: Matriz de confusão para imagens subframe saturadas NLM	71
Tabela 5-6: Fração de área das hematitas (%), para as 4 condições	
de aquisição CPOL	76
Tabela 5-7: Contagem de partículas, para as 4 condições de	
aquisição CPOL	76
Tabela 8-1: Fração de área das hematitas (%), para as 4 condições	
de aquisição CPOL	92
Tabela 8-2: Contagem de partículas, para as 4 condições de	
aquisição CPOL	92
Tabela 8-3: Fração de área das hematitas (%), para as 4 condições	
de aquisição CPOL	93
Tabela 8-4: Contagem de partículas, para as 4 condições de	
aguisição CPOL	94

PUC-Rio - Certificação Digital Nº 1321798/CA

Lista de Abreviaturas

ADI Análise Digital de Imagens

CC Campo Claro

CCD Charge Coupled Device

CPOL Campo Polarizado

CoA Compactas pelo Método Analítico
CoS Compactas pelo Método Sintético

DEQM Departamento de Engenharia Química e de Materiais

Gr Granular

ICMM Conselho Internacional de Mineração e Metais

La Lamelar

LBP Local Binary Patterns

LMD Laboratório de Microscopia Digital

Lo Lobular

LPOL Polarização Linear

Ma Martita

Mc Microcristalina

MD Microscopia Digital

MLR Microscópio de Luz Refletida

NC Não compacta

NLM Non-Local Means

PADI Processamento e Análise Digital de Imagens

PDI Processamento Digital de Imagens

PIB Produto Interno Bruto

ROI Region of Interest

SIFT Scale Invariant Feature Transform

Weka Waikato Environment for Knowledge Analysis