

Izabel Souto Ferreira da Silva

Simulação Numérica de Escoamento Anular em Tubulações Horizontais Utilizando o Modelo de Dois Fluidos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Orientador: Profa. Angela Ourivio Nieckele

Rio de Janeiro, 10 de setembro de 2015

Izabel Souto Ferreira da Silva

Simulação Numérica de Escoamento Anular em Tubulações Horizontais Utilizando o Modelo de Dois Fluidos

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Profa. Angela Ourivio Nieckele Orientadora Departamento de Engenharia Mecânica – PUC-Rio

Dr. João Neuenschwander Escoteguy Carneiro SINTEF BRASIL

Prof. Luis Fernando Alzuguir Azevedo Departamento de Engenharia Mecânica – PUC-Rio

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 10 de setembro de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Izabel Souto Ferreira da Silva

Graduou-se em Engenharia Química na PUC-RJ no ano de 2011, tendo participado do programa de dupla diplomação da CAPES entre os anos de 2008-2010 no Institut National de Sciences Appliquées (Lyon, França)

Ficha Catalográfica

Silva, Izabel Souto Ferreira da

Simulação numérica de escoamento anular em tubulações horizontais utilizando o modelo de dois fluidos / Izabel Souto Ferreira da Silva ; orientador: Angela Ourivio Nieckele. – 2015.

133 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2015. Inclui bibliografia

Engenharia mecânica – Teses. 2. 1. Escoamento anular. 3. Modelo de dois fluidos. 4. Equação de estado. 5. Fator de atrito da interface. Ι. Nieckele, Angela Ourivio. П. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Ao CNPq e a OGpar pelo apoio fornecido à pesquisa realizada.

Ao Engenheiro Geraldo Furtado Rodrigues, pelo incentivo à realização do mestrado e interesse no desenvolvimento do mesmo.

Ao Engenheiro José Brito de Oliveira, grande exemplo profissional e incentivador da constante busca pelo conhecimento. Meus grandes exemplos profissionais.

À Profa. Angela Ourivio Nieckele, pela incansável dedicação e vontade de ensinar e valiosa orientação a este trabalho, graças ao seu vasto conhecimento pude aprender e me interessar ainda mais pelo tema, obrigado por sempre exigir o melhor.

À minha família e, em especial, a minha vó Norma, sempre demonstrando orgulho pelas minhas escolhas profissionais e acadêmicas.

À minha mãe Solange, pelo enorme apoio em todas as situações, grande parte do meu sucesso é dedica ao seu esforço ao longo de todos esses anos.

Resumo

Silva, Izabel Souto Ferreira da; Nieckele, Angela, Ourivio. Simulação Numérica de Escoamento Anular em Tubulações Horizontais Utilizando o Modelo de Dois Fluidos. Rio de Janeiro, 2015. 133p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Escoamentos bifásicos no regime anular são caracterizados pela formação de um filme de líquido ao redor das paredes do duto com a fase gasosa escoando na área central do duto. O presente trabalho consiste na simulação numérica de um escoamento anular em tubulação horizontal, com e sem transferência de calor através de um código unidimensional baseado no Modelo de Dois Fluidos. São considerados dois pares de fluidos, sendo o primeiro ar-água, o qual é vastamente estudado na literatura e um fluido típico encontrado na produção de petróleo formado de gás natural e óleo. Parâmetros característicos do padrão de escoamento anular como gradiente de pressão, fator de atrito da interface e espessura do filme de líquido são determinados e comparados com dados experimentais e numéricos, apresentando boa concordância. O gás natural é modelado como gás real, através da aplicação da Equação de Estado de Peng-Robinson e comparado com a modelagem utilizando Equação de Gases Ideais. Para o fluido típico selecionado, este efeito é muito pequeno tanto com relação aos parâmetros hidrodinâmicos como velocidades das fases e queda de pressão como nos parâmetros térmicos como campo de temperatura, perda de calor para o ambiente e coeficiente bifásico de troca de calor.

Palavras-chave

Escoamento anular; Modelo de Dois Fluidos; Equação de Estado; Fator de atrito da interface.

Abstract

Silva, Izabel Souto Ferreira da; Nieckele, Angela Ourivio. **Numerical Simulation of Annular Flow in Horizontal Pipes using the Two Fluid Model.** Rio de Janeiro, 2015. 133p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Annular two-phase flow is characterized by the formation of a liquid layer spread around the pipe circumference with gas flowing in the core area of the pipe. The present work consists in the numerical simulation of an annular flow in horizontal pipe, with and without heat transfer through a one-dimensional code based on the Two Fluid Model. Two pairs of fluids are considered, being the first air-water, which is widely studied in the literature and a typical natural gas and oil fluid from production oil fields. Characteristics parameters of annular flow such as pressure drop, interface friction factor e liquid film height are obtained and compared with experimental and numerical data, showing in both cases good agreement. The natural gas is modeled as real gas, using the Peng-Robinson Equation of State, and compared with the ideal gas modeling. For the typical fluid selected, this effect is quite small on the hydrodynamics parameters such as phases' velocities and pressure drop and on the thermal parameters such as temperature, heat loss for the environment and heat exchange coefficient.

Keywords

Annular flow; Two Fluid Model; Equation of State; Interface friction factor.

Sumário

1. Introdução	18
1.1. Objetivo	23
1.2. Organização do Trabalho	24
2. Revisão bibliográfica	25
2.1. Escoamento Bifásico Gás-Líquido	25
2.2. Escoamento Anular	27
2.2.1 Mecanismos de formação/manutenção do líquido	filme de 28
2.2.2 Filme de Líquido	33
2.2.3 Queda de Pressão	37
2.3. Fluidos Reais	39
2.3.1 Modelos de Gás Real	40
2.3.2 Escoamentos Óleo-Gás	43
3. Modelagem Matemática	45
3.1. Equações Governantes	46
3.2. Equações de Fechamento	50
3.2.1 Salto de Pressão	51
3.2.2 Tensões Cisalhantes	51
3.2.3 Fluxos de Calor	53
3.3. Propriedades Termodinâmicas	56
3.3.1 Equações de Estado	56
3.3.3.1 Equação de Peng-Robinson	57

3.3.2 Propriedades de Mistura	58
3.3.2.1 Propriedades de Substância Pura e Mistura	59
3.3.2.2 Regra de Combinação Clássica de Van der Waals	60
3.3.2.3 Calor Específico à Pressão Constante	61
3.4. Condições de Contorno	61
3.5. Variáveis Auxiliares	62
3.5.1 Parâmetros Característicos do Escoamento	62
3.5.2 Parâmetros Térmicos	64
3.6. Escoamento Estável ou Instável	65
4. Método Numérico	68
4.1. Fração Volumétrica	70
4.2. Velocidades	71
4.3. Pressão	73
4.4. Temperatura	75
4.5. Condições de Contorno e Iniciais	77
4.6. Malha Computacional	78
4.7. Critérios para Passo de Tempo	78
4.8. Critérios de Convergência	79
4.9. Procedimento de Execução	79
5. Resultados de Escoamento Ar/Água	82
5.1. Escoamento Ar /Água em Golfada com Troca Térmica	82
5.2. Escoamento Ar/Água Anular sem Troca Térmica	87
5.2.1 Mapas de Padrões	88
5.2.2 Perda de Carga	90
5.2.3 Altura do Filme de Líquido	94
5.2.4 Ondulações na Interface do Filme de Líquido	96

PUC-Rio - Certificação Digital Nº 1312462/CA

5.3. Comentários Finais	98
6. Resultados de Escoamento Gás Natural/Óleo	100
6.1. Fator de Compressibilidade	101
6.2. Escoamento de Gás Natural Pressurizado	104
6.2.1. Comparação com solução bi-dimensional	106
6.3. Influência das Velocidades das Fases no Escoamento	112
6.3.1. Espessura do Filme de Líquido para Gás Ideal	112
6.3.2. Comparação de Gás Ideal com Gás Real	114
6.3.3. Velocidade da Onda	118
6.4. Comentários Finais	120
7. Conclusões	122
Referências Bibliográficas	124

Lista de tabelas

Tabela 3.1 - Correlações para determinar o fator de atrito.	52
Tabela 3.2 - Correlações para determinação do fator de atrito	53
utilizadas no trabalho de Emamzadeh (2012).	
Tabela 3.3 - Propriedades termodinâmicas das substâncias puras.	59
Tabela 3.4 - Constantes de interação binária.	60
Tabela 3.5 - Coeficientes do calor específico à pressão constante.	61
Tabela 4.1 - Termos de forçamento das equações de balanço.	68
Tabela 5.1 - Casos Lima (2009) simulados por Simões (2012).	83
Tabela 5.2 - Comparação entre modelos numéricos de parâmetros	84
térmicos.	
Tabela 5.3 – Comparação entre grandezas estatísticas médias das	87
golfadas.	
Tabela 5.4 - Parâmetros geométricos e de escoamento do estudo	97
experimental de Farias (2010).	
Tabela 6.1 - Composição do fluido típico.	101
Tabela 6.2 - Validação do fator de compressibilidade.	102
Tabela 6.3 - Pares de velocidades simulados.	104
Tabela 6.4 – Diferenças de modelagem.	108
Tabela 6.5 - Previsão do gradiente de pressão (Pa/m) por diferentes	109
modelos/correlações.	
Tabela 6.6 - Altura do filme de líquido média.	114
Tabela 6.7 - Velocidade de propagação das ondas da interface.	119

Lista de figuras

Figura 1.1 -	Esquema offshore de produção de petróleo.	18
Figura 1.2 -	Aumento da produção brasileira em águas profundas	19
	(Petrobras, 2014).	
Figura 1.3 -	Bloqueio de duto (Petrobras, 2014) (a) Bloqueio por	20
	formação de hidrato (b) Bloqueio por deposição de	
	parafina.	
Figura 1.4 -	Regimes de escoamento multifásico: (a) horizontal	20
	(b) vertical. Fonte: Carneiro (2006).	
Figura 1.5 -	Mapa de arranjo de fases Fonte: Stuckenbruck (2011).	21
Figura 2.1 -	Mapa de padrões de escoamento (Baker, 1954).	26
Figura 2.2 -	Imagem do filme de líquido capturada por técnica	29
	óptica. Fonte: Farias et al. (2012).	
Figura 2.3 -	Espalhamento devido ao escoamento secundário de	29
	gás. Fonte: Emamzadeh (2012).	
Figura 2.4 -	Espalhamento do filme de líquido por ação das ondas.	30
	Fonte: Emamzadeh (2012).	
Figura 2.5 -	Transferência de líquido por entranhamento e	31
	deposição de gotículas. Fonte: Emamzadeh (2012).	
Figura 2.6 -	 Mecanismos responsáveis pelo entranhamento das 	31
	gotículas (a) ; (b); (c); (d). Fonte: Emamzadeh (2012).	
Figura 2.7 -	Conceito de bombeamento de líquido por ondas de	32
	dispersão. Fonte: Fukano e Ousake (1989).	
Figura 2.8 -	Foto da estrtura do filme de líquido na região inferior de	32
	um duto. Fonte: Hewitt et al. (1990).	
Figura 2.9 -	Espessura do filme de líquido medida em diferentes	34
	ângulos da circunferência. Fonte: Paras e Karabelas	
	(1991).	
Figura 2.10 -	Diagrama espaço-tempo de ondas individuais. Fonte:	35

Farias et al. (2012)

Figura 3.1 -	Esquema de escoamento base estratificado.	46
Figura 3.2 -	Esquema de escoamento base anular.	46
Figura 3.3 -	Esquema com as diferentes temperaturas na seção	54
	transversal do duto (a) configuração de escoamento	
	estratificado (b) configuração de escoamento anular.	
Figura 3.4 -	Condições de contorno utilizadas.	62
Figura 3.5 -	Esquema das sondas de medição da altura do filme de	64
	líquido. Fonte: Farias (2010).	
Figura 4.1 -	Volumes de controle principal e deslocado e respectiva	70
	nomenclatura (a) volume de controle escalar (b) volume	
	de controle das velocidades.	
Figura 4.2 -	Volumes de controle escalar da (a) entrada e (b) saída.	77
Figura 4.3 -	Fluxograma de solução do algoritmo TDMA.	81
Figura 5.1 -	Comparação dos resultados com dados experimentais e	85
	numéricos para (a) fluxo de calor (b) coeficiente de	
	transferência de calor (c) queda de temperatura	
	(d) queda de pressão	
Figura 5.2 -	"Holdup" ao longo da tubulação após 500s de	86
	escoamento (a) Caso 1_int (b) Caso 2_int (c) Caso 3_int	
	(d) Caso 4_int (e) Caso 5_int.	
Figura 5.3 -	Mapa de padrões, escoamento horizontal de ar/água,	88
	D=0,0508m.	
Figura 5.4 -	Mapa de padrões, escoamento horizontal de ar/água,	89
	D=0,0158m.	
Figura 5.5 -	Teste de malha em função de ΔP/L.	89
Figura 5.6 -	Comparação do gradiente de pressão do presente	91
	trabalho com correlação de Taitel e Dukler (1976) para	
	fator de atrito da interface com resultado experimental	
	de Laurinat (1982).	
Figura 5.7 -	Comparação do fator de atrito da interface do presente	91
	trabalho com correlação de Taitel e Dukler (1976) para	
	fator de atrito da interface com resultado experimental	

de Laurinat (1982).

Figura 5.8 -	Comparação do fator de atrito da interface do presente	92
	trabalho com resultado experimental de Laurinat (1982)	
	e numérico de Emamzadeh (2012).	
Figura 5.9 -	Validação do fator de atrito da interface com dados	93
	obtidos numericamente e com dados experimentais.	
Figura 5.10	 Comparação do gradiente de pressão do presente 	93
	trabalho com resultado experimental de Laurinat (1982)	
	e numérico de Emamzadeh (2012).	
Figura 5.11	 Validação do gradiente de pressão com dados obtidos 	94
	numericamente e com dados experimentais.	
Figura 5.12	 Comparação da altura do filme de líquido do presente 	96
	trabalho com dados experimentais de Paras e	
	Karabelas (1991) e numéricos de Emamzadeh (2012).	
Figura 5.13	 Oscilações ao longo do duto para o Caso 1_an. 	97
Figura 5.14	- Oscilações ao longo do duto para o Caso 2_an.	98
Figura 6.1 -	Comparação entre fator de compressibilidade obtido	103
	pelo modelo e calculado pelo software VRTherm para	
	baixas pressões.	
Figura 6.2 -	Comparação entre fator de compressibilidade obtido	103
	pelo modelo e calculado pelo software VRTherm para	
	altas pressões.	
Figura 6.3 -	Mapa de padrões, escoamento horizontal do fluido	105
	típico gás natura/óleo, altamente pressurizado.	
Figura 6.4 -	Teste de malha do fluido típico em função de $\Delta P/L$.	105
Figura 6.5 -	Comparação do gradiente de pressão previsto pelo	107
	modelo de dois fluidos 1D (gás ideal e real) e pelo	
	modelo VOF 2D do Fluent.	
Figura 6.6 -	Comparação entre fator de compressibilidade previsto	108
	pelo modelo proposto e pelo Fluent.	
Figura 6.7 -	Comparação entre gradiente de temperatura ao longo	110
	do duto previsto pelo modelo proposto e pelo Fluent.	
Figura 6.8 -	Comparação entre variação de velocidades ao longo do	111

duto prevista pelo modelo proposto e pelo Fluent.

- Figura 6.9 Oscilações no filme de líquido ao longo da tubulação 113 para diferentes velocidades superficiais da fase líquida (Casos 1, 2 e 3).
- Figura 6.10 Oscilações no filme de líquido ao longo da tubulação 114 para diferentes velocidades superficiais da fase gasosa (Casos 4, 1, 5, 6 e 7).
- Figura 6.11 Fator de compressibilidade ao longo da tubulação para 115 diferentes velocidades da fase gasosa.
- Figura 6.12 Comparação entre a altura do filme de líquido ao longo 116 da tubulação para modelagem de gás real e de gás ideal (a) Caso 1 (b) Caso 2 (c) Caso 3.
- Figura 6.13 Comparação entre a altura do filme de líquido ao longo 117 da tubulação para modelagem de gás real e de gás ideal (a) Caso 4 (b) Caso 5 (c) Caso 6 (d) Caso 7.
- Figura 6.14 Detalhes da altura do filme de líquido ao longo da 119 tubulação para modelagem (a) Caso 1 (b) Caso 2 (c) Caso 3 (d) Caso 4 (e) Caso 5.
- Figura 6.15 Velocidades de propagação das ondas dos casos 120 investigados.

Lista de Símbolos

- A Área da seção transversal da tubulação
- A Matriz Jacobiana do sistema característico
- B Matriz Jacobiana do sistema característico
- D Diâmetro da tubulação
- C Vetor coluna do sistema característico
- C Número de Courant
- c Velocidade do som
- *C*_o Parâmetro de distribuição
- Eo Número de Eötvös
- f Fator de fricção
- Fr Número de Froude
- *g* Aceleração da gravidade
- *h*_L Altura da superfície do líquido
- *L_s* Comprimento das golfadas
- P Pressão interfacial e da fase gasosa
- R Constate do gás
- Re Número de Reynolds
- *S* Perímetro molhado
- s Coeficiente de correção
- t Tempo
- T Temperatura de referência
- *U_d* Velocidade de "*drift*"
- U_{K} Velocidade da fase K
- U_M Velocidade da mistura
- U_{sK} Velocidade superficial da fase K
- *U*_t Velocidade de translação da golfada
- x Coordenada axial

Símbolos gregos

- α Fração volumétrica da fase
- β Ângulo de inclinação da tubulação com respeito à horizontal
- D Diâmetro corrigido
- ∠ Variação de uma grandeza / Discriminante da equação do 2º grau
- ϕ Grandeza a ser calculada
- Φ Vetor solução do sistema de autovalores
- γ Fator de subrelaxação
- y* Razão de calores específicos
- *κ* Curvatura da interface
- *k_p* Número de onda da perturbação
- λ_p Comprimento de onda da perturbação
- λ Autovalores da análise característica
- μ Viscosidade dinâmica
- v Viscosidade cinemática
- *v*_s Freqüência das golfadas
- π Constante Pi
- \wp Parâmetro auxiliar referente a derivada de h_L com respeito à α_L
- ρ Massa específica
- σ Tensão superficial
- τ Tensão de cisalhamento

Subscritos

- *e*,*w* Faces leste e oeste do volume de controle principal
- *E* Referente ao centro do volume principal de controle a leste *entrada* Entrada da tubulação
- *G* Fase gasosa
- I lésimo ponto nodal
- *i* Interface
- L Fase líquida

- M Mistura
- max Máximo valor
- N Número total de nós no domínio / medidas realizadas
- *n* n-ésima medida
- *P* Referente ao centro do volume de controle principal
- *p* Referente à perturbação
- r Relativa
- ref Referência
- s Referente a "slug", ou golfada
- saída Saída da tubulação
- t Translação
- *w* Parede da tubulação
- W Referente ao centro do volume principal de controle a leste

Sobrescritos

- *o* Referente ao passo de tempo anterior
- ref Referência
- Referente a uma grandeza aproximada mediante o esquema upwind
- ~ Referente a uma grandeza aproximada
- * Referente à iteração anterior