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Abstract 
 

Costa, Felippe Moraes Silva; Freire, José Luiz de França (Advisor); Rudolph, 

Jürgen (Co-Advisor). Cycle Counting Methods for Load-Time-Histories 

Typical for Power Plant Applications. Rio de Janeiro, 2015. 126p. MSc. 

Dissertation - Departamento de Engenharia Mecânica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 
 

Structural components of power plants are subjected to thermal transients 

during their operational life. These thermal transients generate unequal temperature 

distributions across the components’ wall thickness, causing severe thermal 

stresses. The repetition of the thermal transients and, consequently, repetition of 

stress and strain variations are responsible for fatigue damage of the structural 

components. In such cases, fatigue damage is assessed by calculating the 

cumulative usage factor or CUF.  CUF calculations are based on the stresses and 

strains histories, on experimental fatigue curves and fatigue damage models, and 

on algorithms used to determine the number of cycles a given stress or strain range 

occurs during the life period considered. This thesis presents and discusses fatigue 

damage models and their association with existing cycle counting models that are 

applicable to power plant components. A selection of combinations of damage and 

cycle-counting models was used in two case study examples.  

 

Keywords 

Power plant components; design against fatigue; Low Cycle Fatigue (LCF); 

load time histories; analytical solution; cycle counting methods; multiaxial 

algorithms; proportional loading; non-proportional loading; multiaxial loading. 
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Resumo 
 

Costa, Felippe Moraes Silva; Freire, José Luiz de França (Orientador); 

Rudolph, Jürgen (Coorientador). Métodos de Contagem de Ciclos Usados 

em Histórias de Carregamentos Típicas de Usinas Nucleares. Rio de 

Janeiro, 2015. 126p. Dissertação de Mestrado - Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 
 

 

 Componentes estruturais de usinas térmicas para geração de energia sofrem 

transientes térmicos durante a operação da planta devido a partidas e paradas, 

variações de potência requerida e ocorrências causadas por anomalias. Estes 

transientes térmicos geram distribuições de temperaturas não uniformes ao longo 

da espessura dos componentes e, consequentemente, geram tensões térmicas. As 

variações destas tensões ao longo do tempo podem causar fadiga nos pontos mais 

solicitados destes componentes. A análise de fadiga para um ponto crítico do 

componente fornece o dano acumulado por meio do fator acumulado de dano ou 

CUF. O cálculo do CUF é feito baseado no conhecimento das histórias de tensões 

e deformações que ocorrem nos pontos críticos, no uso de modelos de geração de 

dano ciclo a ciclo e no uso de algoritmos para contagem de ciclos.  Esta dissertação 

apresenta e discute modelos de dano a fadiga e suas associações aos modelos de 

contagem de ciclos existentes que são possíveis de serem aplicadas a componentes 

de usinas térmicas.  Uma seleção de combinações entre modelos de dano e métodos 

de contagem foram utilizadas em dois exemplos nomeados estudos de caso. 

 

Palavras chaves 

Componentes de usina térmica; projeto contra a fadiga; fadiga de baixo 

ciclo; história de carga no tempo; método de contagem de ciclos; algoritmos 

multiaxiais; carregamento proporcional; carregamento não-proporcional; 

carregamento multiaxial. 
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1 

Introduction  

 

The methods used to design and assess considering fatigue as the 

principal damage mechanism are well treated in references [1-4] and can be 

separated into four categories: stress-life methods, strain-life methods, energy-life 

methods and fracture mechanics methods. The first three methods focus on 

studying the initiation of a micro crack, while the last one focuses on the growth of 

a macro crack. 

Stress-life methods are called SN methods and strain-life methods are 

commonly referred to as 𝜀N methods. Generally speaking, SN (stress-life or high 

cycle fatigue) methods are related to varying stresses that are elastic and, 

consequently, lower than the material yield strength. They are also connected to 

lives that are higher than a few thousand cycles. 𝜀N (strain-life or low cycle fatigue) 

methods are related to large varying stress that induce critical points of the 

components to large elastic and plastic varying strains. Consequently, these 

stresses are higher than the material yield strength and are connected to lives that 

are shorter than a few thousand cycles. Pressure vessels and power plant design 

codes (such as ASME section III and ASME section VIII), in addition to fitness-in-

service codes (such as API 579-1/ASME FFS-1), deal with fatigue assessment 

using 𝜀N methods. In such cases, 𝜀N methods are applied to critical points of 

components that are expected to operate safely for a few hundred cycles or for 

millions of cycles. 

In this master’s thesis, several aspects of a fatigue analysis using 𝜀N 

methods applicable to power plant components subjected to mechanical and 

thermal loads are developed and discussed.  

The first aspect to be studied is the stress analysis of a simple case, where 

a thick walled pipe is subjected to thermal and mechanical loads that are typical 

for power plant facilities. 

The principal goal of this study is to develop a procedure that can be 

implemented in a software program in such a way that the time required to evaluate 

the full stress solutions can be optimized, since the usual finite element procedures 

implemented so far are still too time consuming. 
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This analytical procedure (proposed in Chapter 2) used for a thick walled 

pipe is not only faster to evaluate but also makes known the stress distribution 

across the thickness of the pipe. This distribution is needed to linearize the stresses 

so that the ASME and API Codes addressing elastic stress fatigue assessment 

procedures for pressure vessels and power plant components may be used. The 

procedure for stress linearization is presented in Chapter 2. 

The second aspect is the presentation of fatigue damage models and cycle 

counting method algorithms applicable to proportional and non-proportional 

histories. These subjects are presented and explained in Chapters 3 and 4, 

respectively. The principal characteristics and relevant differences are developed 

in these chapters, as well as the adaptations required for implementing calculation 

procedures when particular combinations of cycle counting methods and damage 

models are used. 

The third aspect is presented in Chapter 5. This chapter discusses the 

stress-strain relationship when a non-proportional history is analyzed in such a way 

that non-proportional hardening and strain plasticity sequence effects can be 

calculated and considered in the fatigue assessment procedure. 

 Lastly, the methods discussed in Chapters 2 to 5 are applied to two 

examples to explain and show their life prediction differences. 
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2 

 

Stress Analysis 

 

2.1  

Introduction 

 This chapter presents the stress analysis of a thick walled pipe subjected 

to thermal and mechanical loads. This problem is commonly observed in piping 

and components of thermal power plant facilities. The fluid that flows inside the 

pipe changes temperature and pressure during operational transients1. This 

creates, along the time, variation in mechanical stresses caused by internal 

pressure and variation in the thermal stresses caused by the temperature gradient 

induced in the pipe wall due to the change in temperature of the internal fluid. 

The resulting mechanical and thermal stresses are independent of each 

other as long as the principal of linear superposition holds true, e.g. the analysis is 

linearly elastic. That is why they are calculated separately. The final result is 

obtained by superposing the results (mechanical plus thermal stresses).  

This chapter also presents the concept known as stress linearization, used 

in the ASME Code to perform the simplified elasto-plastic fatigue assessment. To 

apply the stress linearization procedure, it is necessary to fully determine the 

mechanical and thermal stress distributions along the component’s wall. 

In order to determine these stress distributions, the fluid temperature and 

pressure time histories must be known. Figure 2.1 shows the fluid pressure and 

temperature time histories that will be used in this chapter. These histories started 

on 10/15/2012 at 3:16 p.m. and ended on 10/16/2012 at 8:43 p.m. They represent 

a generic power plant pipe component’s measured history  that occurred during 

the plant’s startup and shut down periods. In the present case, temperature and 

pressure values were measured and recorded within a 60 second interval. 

                                                
1 Particularly, the combination of constant internal pressure and transient thermal loading is very 

common. 

DBD
PUC-Rio - Certificação Digital Nº 1312457/CA



17 
 

 

 

Figure 2.1: History of temperature and pressure. 

The pipe’s material and geometric properties used in this example are: 

modulus of elasticity (𝐸) = 210 GPa, Poisson’s ratio (𝑣) = 0.3, thermal conductivity 

(𝜆) = 33 𝑊 (𝑚 ∙ 𝐾)⁄ , coefficient of thermal expansion (𝛼𝑇) = 12,9 ∙ 10−6 °𝐶−1, 

specific heat (𝑐) = 622 𝐽 (𝑘𝑔 ∙ 𝐾)⁄ , density (𝜌) = 7760 𝑘𝑔 𝑚3⁄ , internal radius (𝑟𝑖) = 

100 𝑚𝑚 and outer radius (𝑟𝑜) = 212 𝑚𝑚. 

Another important parameter in the thermal solution is the fluid’s heat 

transfer coefficient (ℎ). The heat transfer coefficient can be given in terms of a time 

history, as shown in Figure 2.1, for temperature and pressure. However, in this 

chapter, the coefficient was assumed to be constant throughout the operation, 

since it did not present a significant variation over the range of the fluid’s 

temperature. The heat transfer coefficient used in this chapter is equal to 1000 

𝑊 𝑚2𝐾⁄ . 

 

2.2  

Mechanical Solution 

 The mechanical stress solution is given by using the Lame’s equations for 

thick walled pipes subjected to internal and external pressure: 

 𝜎𝑟(𝑟) =
𝑝𝑖𝑟𝑖

2−𝑝𝑜𝑟𝑜
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where 𝜎𝑟 is the radial stress, 𝜎𝜃 is the circumferential stress, 𝜎𝑧 is the longitudinal 

stress, 𝑟𝑜 is the external radius, 𝑟𝑖 is the internal radius, 𝑝𝑜 is the external pressure, 

and 𝑝𝑖 is the internal pressure (which, in the case studied here, is equal to the 

history of the internal pressure shown in Figure 2.1). 

In equations (2.1) and (2.2) one can see that the radial and circumferential 

stresses are functions of the radial coordinate. Therefore, it is possible to calculate 

the distribution of stress along the pipe’s thickness, which is a prerequisite for 

performing the stress linearization. Equation (2.3) is not a function of the radial 

coordinate because the longitudinal stress is constant along the thickness of the 

pipe. 

Using the Lame’s equations, the pipe’s geometric properties and the load 

history presented in Figure 2.1 it is possible to calculate the stress components 

that the pipe is subjected during the startup and shut down periods of the plant. 

Figure 2.2 shows the history of the stress components acting on the inner wall of 

the pipe. Figure 2.3 shows the stress distribution along the thickness of the pipe 

that occurred at the time step of 5:23 p.m. on 10/15/2012. As will be shown during 

the calculation of the thermal stress solution, this is the critical time step to be 

considered in the fatigue assessment. 

 

Figure 2.2: History of mechanical stresses calculated on the inner wall of the pipe. 
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Figure 2.3: Distribution of the mechanical stresses along the wall thickness at the time step of 5:23 

p.m. on 10/15/2012. 

 

2.3  

Thermal Solution 

 The thermal solution is not as simple as the mechanical solution. 

Mechanical stresses acting at each time step are function of the pressure at the 

respective time step. Thermal stresses acting at each time step are function of the 

temperature distribution across the pipe’s thickness at the respective time step.  

Therefore, it is necessary to calculate the temperature distribution across 

the thickness at each time step. What hampers the thermal stress solution is the 

fact that this temperature distribution is not only a function of the temperature at 

the time step being considered, but it also depends on the temperature history that 

occurred prior to this time step. Hence, it is a thermal transient calculation. 

This problem is usually solved using a finite element analysis. However, the 

finite element analysis normally consumes too much computational time to 

evaluate the final result. For that reason, this chapter proposes an analytical 

approach developed by Albrecht [5].  In this thesis, the Albrecht’s closed form 

solution was developed in such a way as to end up with a fast and accurate 

evaluation of the thermal stresses involved in this problem. 

Since this method is not commonly employed, and its use for the present 

purpose was not found in the literature, it is necessary to guarantee the validity of 

the proposed procedure. Thus, the example was solved using a finite element 
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analysis in such a way that the analytical results could be checked using the finite 

element results. 

Albrecht proposed several solutions to this problem in [5]. Two of those are 

explained in the following paragraphs. 

 

2.3.1  

Albrecht’s First Solution 

 Albrecht’s first solution was developed in such a way that stresses can be 

calculated directly from the temperature gradient of the fluid without calculating the 

temperature distribution. All the calculations that lead to this equation are available 

in reference [5]. The solution consists of two equations: 

 𝜎𝜃𝑖(𝑡) = 𝜎𝑧𝑖(𝑡) =
𝛼𝑇∙𝐸∙∆𝑇

1−𝑣
∑ 𝐴𝑛𝑒

−𝑎∙𝑘𝑛
2 ∙𝑡∞

𝑛=1   (2.4) 

 𝜎𝜃𝑜(𝑡) = 𝜎𝑧𝑜(𝑡) =
𝛼𝑇∙𝐸∙∆𝑇

1−𝑣
∑ 𝐵𝑛𝑒

−𝑎∙𝑘𝑛
2 ∙𝑡∞

𝑛=1   (2.5) 

where equation (2.4) is the solution for the circumferential and longitudinal stresses 

acting on the inner wall, and equation (2.5) is the solution for the circumferential 

and longitudinal stresses acting on the outer wall. In both equations, 𝑡 is the time 

in seconds and 𝑎 is the factor of thermal diffusivity (𝑚2 𝑠⁄ ). 

 𝑎 =
𝜆

𝜌∙𝑐
  (2.6) 

The constants 𝐴𝑛 and 𝐵𝑛 are given by the following equations:  

 𝐴𝑛 =
2[

2𝑟𝑖
2

𝑟𝑖
2𝑘𝑛
2(𝑟𝑜

2−𝑟𝑖
2)
 − 

𝜆

ℎ∙𝑟𝑖
]

[1+(
𝑟𝑖𝑘𝑛𝜆

ℎ∙𝑟𝑖
)
2

] − 
[(
𝑟𝑖𝑘𝑛𝜆
ℎ∙𝑟𝑖

)∙𝐽1(𝑟𝑖𝑘𝑛)+𝐽0(𝑟𝑖𝑘𝑛)]
2

𝐽1
2(𝑟𝑜𝑘𝑛)

  (2.7) 

 𝐵𝑛 =

2𝑟𝑖
𝑟𝑜𝐽1(𝑟𝑜𝑘𝑛)

[
𝐽1(𝑟𝑖𝑘𝑛)

ℎ∙𝑟𝑖 𝜆⁄
 + 

𝐽0(𝑟𝑖𝑘𝑛)

𝑟𝑖𝑘𝑛
]− 

4𝑟𝑖
2

(𝑟𝑜
2−𝑟𝑖

2)𝑟𝑖
2𝑘𝑛
2

[1+(
𝑟𝑖𝑘𝑛𝜆

ℎ∙𝑟𝑖
)
2

] − 
[(
𝑟𝑖𝑘𝑛𝜆
ℎ∙𝑟𝑖

)∙𝐽1(𝑟𝑖𝑘𝑛)+𝐽0(𝑟𝑖𝑘𝑛)]
2

𝐽1
2(𝑟𝑜𝑘𝑛)

  (2.8) 
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where 𝐽𝛼(𝑥) is the Bessel function of the first kind,  𝑌𝛼(𝑥) is the Bessel function of 

the second kind, and the 𝑛 values of 𝑘𝑛 are obtained by finding the 𝑛 (𝑛 = 1, 2, 3, …) 

roots of the following equation: 

  [𝜆 ∙ 𝑘𝑛 ∙ 𝐽1(𝑟𝑖 ∙ 𝑘𝑛) + ℎ ∙ 𝐽0(𝑟𝑖𝑘𝑛)] ∙ 𝑌1(𝑟𝑜𝑘𝑛) − [𝜆 ∙ 𝑘𝑛 ∙ 𝑌1(𝑘𝑛𝑟𝑖) + ℎ ∙ 𝑌0(𝑘𝑛𝑟𝑖)] ∙

𝐽1(𝑟𝑜𝑘𝑛) = 0   (2.9) 

With these equations, it is possible to calculate the thermal stresses on the 

inner and outer surfaces of the thick walled pipe.  

A numerical solution algorithm was implemented in order to calculate the 

stresses. The solution’s first step consists in admitting that, at the first time step, 

the stresses are equal to zero. 

The second step of the routine considers the first interval between the first 

and second time steps. The mean heat transfer coefficient is found for this interval, 

between these two time steps.2 Using the geometrical and material properties of 

the pipe, equation (2.9) is solved using the Newton-Raphson algorithm to find the 

first root 𝑘𝑛. Using this value, equations (2.7) and (2.8) are solved with 𝑛 equal to 

one. 

The routine continues finding the roots 𝑘𝑛 and calculating the values of 𝐴𝑛 

and 𝐵𝑛 until the difference between the preview values of the summations of 

equations (2.4) and (2.5) and the current values of the summations reach a 

prescribed tolerance (this tolerance was made equal to 10−4).  

For example, after calculating M roots 𝑘𝑛, the M values of 𝐴𝑛 and 𝐵𝑛, and 

defining the values of the summations as 𝑋𝑀𝐴  and 𝑋𝑀𝐵
, the routine calculates the 

next root and the next values of 𝐴𝑛 and 𝐵𝑛. The values of the summations with M 

+ 1 roots can be defined as 𝑋𝑀+1𝐴 and 𝑋𝑀+1𝐵. If the difference between 𝑋𝑀𝐴
 and 

𝑋𝑀+1𝐴 and the difference between 𝑋𝑀𝐵
 and 𝑋𝑀+1𝐵 are less than 10−4, the routine 

stops and returns the values of the summations of equations (2.4) and (2.5) using 

the M roots and M values of 𝐴𝑛 and 𝐵𝑛. 

The temperature gradient (∆𝑇) is obtained as the difference in temperature 

between the first and second time steps. Using the above procedure, it is possible 

to fully solve equations (2.4) and (2.5). At this stage of the procedure, only the 

stresses caused by the first interval are considered. However, the temperature 

                                                
2 Even with the heat transfer coefficient being constant in the problem (presented in this thesis), the 

algorithm developed herein was implemented in such a way that histories where this coefficient varies 
through time can be solved as well. 
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gradient that occurs in the first interval will cause stress at the second time step 

and at the time steps that follow. Consequently, it is necessary to calculate the 

history of stresses caused by the first interval, as is observed in Figure 2.4. This 

result can be accomplished by solving equations (2.4) and (2.5) for all the time 

steps in the history, changing the parameter 𝑡, needed in the cited equations, to 

the respective time of each time step.  

 

Figure 2.4: Schematic chart of one stress component history calculated using the first temperature 

interval. 

The routine continues to the second stage, repeating the same procedure 

with the second interval and resulting in another stress history, which is now equal 

to zero at the first and second time steps. An example of the resulting stress history 

is shown in Figure 2.5.  

 

Figure 2.5: Schematic chart of a stress component history calculated using the second 

temperature interval. 

The procedure continues until all the intervals are evaluated. After that, all 

the stress histories (using the first, second, third, …, and last intervals) are added 

up in order to provide the final result. The limitation regarding Albrecht’s first 

solution is due to the fact that it is only possible to calculate the stresses on the 

inner and outer walls. Since this precludes the stress linearization procedure, 

another solution is presented. 
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2.3.2  

Albrecht’s Second Solution 

Albrecht’s second solution does not calculate the stresses directly. Before 

calculating the stresses, the temperature distribution along the thickness is 

required. This distribution is obtained using the following equation: 

 𝑇(𝑟, 𝑡) = 𝑇0 − 𝑇0𝜋ℎ∑
𝐽0(𝑟 𝑘𝑛)[𝜆 𝑘𝑛 𝑌1(𝑟𝑖 𝑘𝑛)+ℎ 𝑌0(𝑟𝑖 𝑘𝑛)]−𝑌0(𝑟 𝑘𝑛)[𝜆 𝑘𝑛 𝐽1(𝑟𝑖 𝑘𝑛)+ℎ 𝐽0(𝑟𝑖 𝑘𝑛)]

(𝜆2𝑘𝑛
2+ℎ2)−

[𝜆 𝑘𝑛 𝐽1(𝑟𝑖 𝑘𝑛)+ℎ 𝐽0(𝑟𝑖𝑘𝑛)]
2

𝐽1
2(𝑟𝑜𝑘𝑛)

∞
𝑛=1 ∙

∙ 𝑒−𝑎∙𝑘𝑛
2 ∙𝑡   (2.10) 

where 𝑇0 is the initial temperature, and 𝑘𝑛 are the roots of equation (2.9). A 

procedure similar to the one explained previously (during  Albrecht’s first solution) 

was implemented to solve this equation. The major differences between the two 

procedures are:  

 The goal of the second procedure is not to obtain the stresses in a first step, 

but the transient temperature distribution. 

 The assumption that the value at the first time step of the interval being 

evaluated is equal to zero is no longer valid. The value of the first time step 

is now equal to its initial temperature. 

 The equation to be solved (equation (2.10)) is a function of the radial 

position. Thus the thickness of the pipe is divided into 𝑁𝐷 parts of the same 

size. 

 The values of the summation  in equation (2.10) are now the ones used to 

reach the given tolerance. 

The temperature distribution is obtained by repeating, at each one of the 

𝑁𝐷+1 divisions of the pipe, the explained procedure for the Albrecht’s first solution 

using the above modifications. Figure 2.6 presents a flowchart of the routine for a 

better visualization of the procedure. 
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Figure 2.6: Flowchart of the algorithm that solves Albrecht's second solution. 

After calculating the temperature distribution along the thickness, the 

stresses are calculated using the following equations: 

 𝜎𝑟(𝑟, 𝑡) =
𝛼𝑇𝐸

1−𝑣
[

𝑟2−𝑟𝑖
2

𝑟2(𝑟𝑜
2−𝑟𝑖

2)
∫ 𝑇(𝑟, 𝑡) 𝑟 𝑑𝑟
𝑟𝑜
𝑟𝑖

− 
1

𝑟2
∫ 𝑇(𝑟, 𝑡) 𝑟 𝑑𝑟
𝑟

𝑟𝑖
]  (2.11) 
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 𝜎𝜃(𝑟, 𝑡) =
𝛼𝑇𝐸

1−𝑣
[
1

𝑟2
∫ 𝑇(𝑟, 𝑡) 𝑟 𝑑𝑟
𝑟

𝑟𝑖
+ 

𝑟2+𝑟𝑖
2

𝑟2(𝑟𝑜
2−𝑟𝑖

2)
∫ 𝑇(𝑟, 𝑡) 𝑟 𝑑𝑟 − 𝑇(𝑟, 𝑡)
𝑟𝑜
𝑟𝑖

]  (2.12) 

 𝜎𝑧(𝑟, 𝑡) =
𝛼𝑇𝐸

1−𝑣
[

2

𝑟𝑜
2−𝑟𝑖

2 ∫ 𝑇(𝑟, 𝑡) 𝑟 𝑑𝑟 − 𝑇(𝑟, 𝑡)
𝑟𝑜
𝑟𝑖

]  (2.13) 

 Since the temperature values along the thickness are obtained discreetly, 

the integrations are solved using the trapezoidal rule.  

 

2.3.3  

Finite Element Solution 

 The finite element solution was implemented using the ANSYS® software. 

The simulation used a 2D axisymmetric analysis. Since the finite element solution 

was implemented in 2D, a rectangle was drawn to represent the pipe (Figure 2.7 

(a)). The rectangle is 112 mm in width and 1000 mm in height, where the left side 

of the rectangle is 100 mm from the Y axis. Using that and the axisymmetric on the 

Y axis, the representation of the pipe is obtained. 

The height of the rectangle represents the length of the pipe. The results of 

the simulations, used for comparison with the analytical results, were obtained in 

the nodes at the middle of the mesh (Figure 2.7 (c)). Hence, a very long pipe was 

simulated so that it would not be necessary to select any boundary conditions.  

The finite element solution was separated into two different solutions; the 

first one was a thermal transient solution, where a convective load was selected 

for the inner wall of the pipe (Figure 2.7 (b)). The input load required for this kind 

of solution is the temperature and heat transfer coefficient history. The result of this 

analysis is the temperature history in all the nodes at every time step. 

The thermal transient solution results are used in the mechanical static 

analysis, i.e. the temperature distribution along the pipe at each time step is 

analyzed as a static problem. The result of this analysis is the thermal stresses for 

each node at every time step.  

The meshes used in the thermal and mechanical solutions were the same 

(Figure 2.7 (a)). The mesh refinement and the step size selection used in the 

thermal transient solution were accomplished by observing the progressive 

changes in the results acquired at the node indicated in Figure 2.7 (c). The mesh 

and the transient’s step sizes were refined until there were no longer any significant 

changes in the final stress results observed in this node. 
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Figure 2.7: (a) Mesh used in the simulation; (b) edge where the convection load was applied; (c) 

node where the results were obtained. 

It is important to point out that optimizing the time consumed on the finite 

element analysis was not within the scope of this work. The goal herein is to verify 

if the analytical solutions proposed in the subchapters regarding Albrecht’s first and 

second solutions were accurate enough to solve the problem. In cases where the 

optimizing the time on the finite element solution is important, simulations with 

optimized meshes and shorter specimen lengths should be pursued.  

 

2.3.4  

Thermal Results 

The analytical and finite element solutions were compared to validate the 

former results.  First, a simple temperature history was used. The history started 

with pipe and fluid in equilibrium at 50°C. Then the fluid was heated up to 270°C 

and maintained at  that temperature, configuring a temperature change caused by 

a step impulse.  The heat transfer coefficient was kept constant and equal to 1000 

𝑊 𝑚2𝐾⁄ .  

 The material and geometrical properties used were cited previously.  

The results of the three solutions for the inner wall of the pipe were 

compared:  Albrecht’s first solution equation (2.4); Albrecht’s second solution, 

equations (2.12) and (2.13); the finite element solution results at the node marked 

with a red flag in Figure 2.7 (c). 
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 The agreement of this comparison led to the second stage of comparison. 

That it used the more complex history presented in Figure 2.1. 

 

Figure 2.8: History of the circumferential stress during the startup period. 

The results once again were similar; the history of circumferential stress for 

the startup period of operation, using the three proposed solutions, is presented in 

Figure 2.8. One can see that the results were very similar. It is even difficult to 

notice the difference between them, especially Albrecht’s first solution. 

The largest difference among the three solutions can be observed at the 

red circle in Figure 2.8. At this instant in time, the stress values are the highest, 

and it is possible to note that the Albrecht’s solutions give results slightly more 

conservative than the FE solution.  

Based on the facts that Albrecht’s first solution precludes stress 

linearization and that Albrecht’s second solution was faster at calculating the result 

for the time interval (23.25 seconds), one can conclude that Albrecht’s second 

solution was the best one for the component fatigue assessment. 

Aspects to highlight from the previous paragraphs and from observing 

Figure 2.8 and Figure 2.2 are: the thermal stress solution is more complex than 

the mechanical solution, and the values of the thermal stresses are significantly 

higher than the values of the mechanical stresses. 
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Using Albrecht’s second solution, the thermal stress components acting on 

the inner wall were calculated along the entire temperature history. The history of 

thermal stresses is presented in Figure 2.9. 

 

Figure 2.9: History of thermal stresses calculated on the inner wall of the pipe using the Albrecht’s 

second solution. 

From Figure 2.9 one can see that the circumferential and longitudinal 

stresses are equal - as they should be according to equation (2.4) derived from the 

Albrecht’s first solution. In addition, the radial stress is always equal to zero on the 

inner wall of the pipe, as expected.  

Figure 2.10 shows the distribution of stresses across the thickness of the 

pipe at the time step referent to 5:23 p.m. on 10/15/2012, which is the critical time 

step marked with a red circle in Figure 2.8. The critical time step for the thermal 

solution is equal to the critical time step for the final solution, since the critical stress 

values for the mechanical solution are almost irrelevant when compared with the 

critical stress values for the thermal solution. 
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Figure 2.10: Distribution of the thermal stresses along the wall thickness at time step of 5:23 p.m. 

on 10/15/2012 using Albrecht’s second solution. 

One can see in Figure 2.10 that the circumferential and longitudinal 

stresses are equal and that the radial stress is zero only on the inner and outer 

walls. This is not true along the thickness of the pipe and may lead to different 

circumferential and longitudinal stress values on the inner and outer walls for the 

linearized stresses. 

After having calculated the mechanical and thermal solutions, it is possible 

to obtain the final result, obtained by superposing both solutions. Figure 2.11 

shows the history of stresses on the inner wall (summation of the results in Figure 

2.9 and Figure 2.2). Figure 2.12 presents the stress distributions across the 

thickness of the wall pipe at the critical time step (summation of the results in 

Figure 2.10 and Figure 2.3). 
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Figure 2.11: History of thermal plus mechanical stresses calculated on the inner wall of the pipe. 

 

Figure 2.12: Distribution of the thermal plus mechanical stresses along the wall thickness at the 

time step of 5:23 p.m. on 10/15/2012. 

In Figure 2.11, it is possible to observe that the mechanical stresses make 

the circumferential and longitudinal stresses no longer equal to each other on the 

inner and outer walls, and that the radial stress is no longer zero.  

Even with the mechanical stresses being small when compared with the 

thermal stresses, it is the mechanical part that is responsible for making the history 

of the stresses present values non-proportional with each other (although principal 

stress directions  remain unchanged). At this point, it is necessary to define a non-

proportional history.   
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A loading with fixed principal stress directions is said to be a proportional 

history, even if the principal stresses value changes in a non-proportional manner. 

A non-proportional history is defined as a history where the principal directions 

change along the time. Using these definitions, the history shown in the pipe 

example is proportional, although it is possible to observe that the stress value 

changes are non-proportional to each other. 

 

2.4  

Stress Linearization 

The stress linearization method is proposed by the ASME Code in a way 

that allows fatigue assessment by using an elastic finite element analysis, even 

when loading causes plastic behavior. The procedure is called simplified elasto-

plastic fatigue analysis. Stress linearization is required to calculate the standard 

plasticity correction factor 𝐾𝑒. 

Full stress distributions are usually obtained by means of finite element 

analysis. The application of a stress linearization process through the thickness of 

a specific section of the component makes it possible to determine the membrane, 

bending and peak stress components that are used to calculate equivalent 

stresses, which is used later in the fatigue analysis procedure recommended by 

the ASME Code [Section VIII – Div.2 – Annex 5]. 

The linearized stress components can be calculated using the following 

equations: 

 𝜎𝑖𝑗,𝑚 =
1

𝑡
∫ 𝜎𝑖𝑗𝑑𝑥
𝑡

0
  (2.14) 

 𝜎𝑖𝑗,𝑏 =
6

𝑡2
∫ 𝜎𝑖𝑗 (

𝑡

2
− 𝑥)𝑑𝑥

𝑡

0
  (2.15) 

 𝜎𝑖𝑗,𝑃(𝑥)|𝑥=0 = 𝜎𝑖𝑗(𝑥)|𝑥=0 − (𝜎𝑖𝑗,𝑚 + 𝜎𝑖𝑗,𝑏)  (2.16) 

 𝜎𝑖𝑗,𝑃(𝑥)|𝑥=𝑡 = 𝜎𝑖𝑗(𝑥)|𝑥=𝑡 − (𝜎𝑖𝑗,𝑚 − 𝜎𝑖𝑗,𝑏)  (2.17) 

where 𝑡 is the thickness of the selected cross section. Equation (2.14) calculates 

the membrane stress (𝜎𝑖𝑗,𝑚) in the 𝑖𝑗 direction, equation (2.15) calculates the 

bending stress (𝜎𝑖𝑗,𝑏) in the 𝑖𝑗 direction, and equations (2.16) and (2.17) calculate 

the peak stress (𝜎𝑖𝑗,𝑃) in the 𝑖𝑗 direction on the inner and outer walls, respectively. 

It is important to note that the same stress linearization procedure can also 

be applicable for any known analytical solution.  
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In the thick-walled pipe case study discussed in this chapter, Albrecht’s 

second solution gives the full stress component distribution as a function of the 

radial position on the pipe. 

Using the trapezoidal rule to solve the integrations in equations (2.14) and 

(2.15), and also by solving equations (2.16) and (2.17), the results of Albrecht’s 

second solution were linearized and compared with the linearization of the finite 

element solution given by the ANSYS® software. This software has a standard 

module to linearize the stresses; the algorithm is based on the same equations 

presented here. 

The results of the analytical solution and the finite element solution were 

compared in order to verify the analytical solution, this time by means of the stress 

linearization procedure. In this case, only the thermal solutions were compared. 

Since the ANSYS® linearizes the stresses at one selected time step, the 

comparison was performed at the critical time step during the startup (time step on 

10/15/2012 at  5:23 p.m.).  

  𝜎𝑖𝑗,𝑚 𝜎𝑖𝑗,𝑏 𝜎𝑖𝑗,𝑃(𝑥)|𝑥=0 𝜎𝑖𝑗,𝑃(𝑥)|𝑥=𝑡 

𝜎𝜃 

Albrecht’s 2nd -0.62 -187.55 -108.24 -82.65 

ANSYS -0.60 -168.49 -107.03 -74.03 

𝜎𝑧 

Albrecht’s 2nd -23.84 -199.23 -73.34 -71.12 

ANSYS -21.76 -181.66 -77.40 -63.96 

𝜎𝑟 
Albrecht’s 2nd -23.22 -11.68 34.90 11.54 

ANSYS -21.52 -11.46 29.58 10.20 

Table 2.1: Linearization of the stresses (values in MPa). 

In Table 2.1 one can observe again that the values of Albrecht’s second 

solution are similar when compared with the finite elements analysis, the analytical 

solution being slightly more conservative. These results validate the linearization 

of the stresses using the analytical solution. 

In the fatigue analysis, The ASME Code uses two parameters that result 

from the stress linearization procedure: 𝑆𝑛, which is the addition of the primary plus 

secondary stresses, and 𝑆𝑝, which is the summation of the primary, secondary and 

peak stresses. The primary, secondary and peak stresses are categories of 

stresses. 
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Primary stress is separated into three subcategories:  

 Primary General Membrane: described as the average stress across the 

solid section. It is only produced by mechanical loads, such as pressure 

and dead weight, and it excludes stresses caused by stress 

concentrations and discontinuities. 

 Primary Local Membrane: similar to the Primary General Membrane. 

The difference is that the Primary Local Membrane considers stresses 

caused by discontinuities, but not stresses caused by stress 

concentrations. 

 Primary Bending:  the bending component of the primary stress. It is 

produced by mechanical loads, and excludes stresses caused by 

discontinuities and stress concentrations. 

 

The secondary stress is not separated, and it considers the addition 

between the membrane and bending stresses. It is described as a self-equilibrating 

stress that is necessary to satisfy the continuity of the structure, and it is present 

in structural discontinuities. It can be caused by either mechanical or thermal loads, 

and it excludes stresses caused by local concentrations. 

The peak category is described as the addition to the primary or secondary 

stress caused by the presence of a notch and/or certain thermal stresses that may 

cause fatigue but not distortion in the shape.  

For a better categorization of the stresses, the code should be consulted. 

To summarize, in the problem presented here, the 𝑆𝑛 stress is the summation of 

the membrane and bending stresses due to pressure and thermal loads calculated 

using equations (2.14) and (2.15), and the 𝑆𝑝 stress is the summation of the 

membrane, bending and peak stresses. 

Table 2.1 shows that the stresses in the inner wall of the pipe have the 

highest stress values. Hence, it can concluded that the critical part for the initiation 

and growth of a crack in the pipe is the inner wall. Consequently, a fatigue analysis 

is performed using the stresses acting at this location of the pipe. 

The conclusion of this chapter is that, by using the mechanical solution and   

Albrecht’s second solution for the thermal stress, it is possible to calculate all the 

stresses components along the thickness of the pipe. Thus, the stresses can be 

linearized and the 𝑆𝑛 and 𝑆𝑝 parameters needed for the ASME Code fatigue 

analysis are obtained.  
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One advantage of the method proposed here is that, unlike the finite element 

solution,  𝑆𝑛 and 𝑆𝑝 can be calculated along the given stress history for the entire 

period that the input (temperature, pressure and heat transfer coefficient history) 

is given. Using a finite element solution performed as the one shown, using 

ANSYS®, linearization is only possible at one selected time step. 

The histories of the 𝑆𝑛 and 𝑆𝑝 stresses in the inner wall were calculated and 

are presented below. It is important to point out that the nomenclatures 𝑆𝑛,𝑟, 𝑆𝑛,𝜃, 

𝑆𝑛,𝑧 mean the 𝑆𝑛 stress for the radial, circumferential and longitudinal components 

respectively, and that the nomenclature for the 𝑆𝑝 stresses is analogous. This type 

of nomenclature is only allowed by Section VIII of the ASME code, since in Section 

III of the code the 𝑆𝑛 and 𝑆𝑝 stresses are defined using the principal stresses. 

 

Figure 2.13: History of 𝑺𝒏 stresses caused by the mechanical loads. 

-30

-20

-10

0

10

20

30

40

0 20000 40000 60000 80000 100000 120000

St
re

ss
 (

M
P

a)

Time (s)

𝑆𝑛,𝑟

𝑆𝑛,𝜃

𝑆𝑛,𝑧

DBD
PUC-Rio - Certificação Digital Nº 1312457/CA



35 
 

 

 

Figure 2.14: History of 𝑺𝒑 stresses caused by the mechanical loads. 

 

Figure 2.15: History of 𝑺𝒏 stresses caused by the thermal loads. 
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Figure 2.16: History of 𝑺𝒑 stresses caused by the thermal loads. 

 

Figure 2.17: History of 𝑺𝒏 stresses caused by the thermal plus mechanical loads. 
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Figure 2.18: History of 𝑺𝒑 stresses caused by the thermal plus mechanical loads. 

 

Figure 2.19: History of the circumferential stresses caused by the thermal plus mechanical loads. 
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Figure 2.20: History of the longitudinal stresses caused by the thermal plus mechanical loads. 

 

Figure 2.21: History of the radial stresses caused by the thermal plus mechanical loads. 
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3 

Multiaxial Fatigue Damage Models 

 

3.1  

Damage Models 

Fatigue damage models relate strain, or stress ranges or energy variables, 

to the number of cycles they actuate until a crack begins. 

Damage models can be separated into three different groups: stress-based 

models, where the ranges of stress are related to the number of cycles required to 

initiate a crack; strain-based models, where the ranges of strain are related to the 

number of cycles needed to initiate a crack; and energy-based models, where the 

product of stress and strain is related to the number of cycles required to initiate a 

crack. 

There are several stress-based models for multiaxial fatigue evaluation, 

such as the Sines [6], Findley [7], McDiarmid [8] and Dang Van [9] models, the last 

three models being applicable to non-proportional histories. Stress-based models 

are good for predicting high-cycle fatigue, where stresses are generally less than 

the material’s yield strength, and the number of cycles required to initiate a crack 

is high.  

With the growing need to design structures with high stress and strain 

values, which implies a low number of cycles needed to initiate a crack, Coffin and 

Manson proposed a model for calculating the number of allowed cycles using the 

strain ranges as a parameter. In so doing, they created a strain-based model. 

Subsequent to that model, other models were proposed for evaluating the 

number of cycles allowed, using not only strain or stress, but their product instead. 

These models are known as energy-based models. 

The strain-based and the energy-based models are the models 

recommended for low-cycle fatigue. Since this work focuses on the low-cycle 

fatigue approach, these models are the ones that will be discussed herein.3 

 

3.2  

Coffin-Manson or Morrow Model 

 Some of the literature [4] calls this equation (3.1) the Coffin-Manson 

equation (or model); others [10],  the Morrow model. This is the most common 

model for low-cycle fatigue evaluation. It relates the range of the strain (∆𝜀) to the 

number of cycles to failure (𝑁). 

                                                

3 Although only the strain and energy-based models are recommended for low-cycle fatigue, all the 

models can be used for high-cycle fatigue. However, the stress-based models are more frequently 

used for high cycle fatigue, due their simplicity. 
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∆𝜀

2
=

∆𝜀𝑒𝑙

2
+
∆𝜀𝑝𝑙

2
=

𝜎′𝑓

𝐸
(2𝑁)𝑏 + 𝜀′𝑓(2𝑁)

𝑐  (3.1) 

where ∆𝜀𝑒𝑙 is the elastic strain amplitude, ∆𝜀𝑝𝑙 is the plastic strain amplitude, 𝜎′𝑓 is 

the fatigue strength coefficient, 𝜀′𝑓 is the fatigue ductility coefficient, 𝑏 is the fatigue 

strength exponent, 𝑐 is the fatigue ductility exponent, and 2𝑁 is the total number of 

reversals to failure. The resulting curve is presented in Figure 3.1. 

 

Figure 3.1: Representative curve of equation (∆𝜺𝒙𝑵). 

Figure 3.1 helps to show the difference between the denominations and 

behaviors of so-called low-cycle fatigue and high-cycle fatigue.  One can see that, 

for low numbers of 𝑁 (low-cycle fatigue); the plastic strain range dominates the 

curve expressed by the second term of equation (3.1). For high numbers of 𝑁 

(high-cycle fatigue), the curve is dominated by the elastic strain range.  

The parameters required in equation (3.1) are obtained by testing the 

material of interest. The test entails subjecting specimens of the material to strain-

controlled tests. For each specimen the same range of strain (Figure 3.2) is 

applied several times until the specimen fails. The strain range and the total 

number of reversals to failure for each specimen are then plotted on a diagram 

such as the one in Figure 3.1, the resulting curve being the one that best fits the 

experimental data points. 
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Figure 3.2: (a) Illustration of the strain history in a strain controlled test. (b) Representation of the 

hysteresis loop of the strain history presented in (a). 

For non-proportional histories, this model is frequently used by replacing 

the left side of equation (3.1) with the equivalent Mises strain range. 

 

3.3  

ASME B&PV Code 

 A fatigue analysis using the ASME Boiler and Pressure Vessel Code [11, 

12] is required to use the fatigue curves presented in the code. The fatigue curves 

in the ASME Code are derived from results of experimental tests. Unnotched and 

polished test specimens without welds are subjected to strain controlled tests with 

fully reversed loads at room temperature. The alternated stress (𝑆𝑎) results x the 

number of cycles to failure (𝑁) are plotted on a log-log scale chart, where the 
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alternated stress is the value of Δ𝜀 2⁄  – as presented in Figure 3.1 – multiplied by 

the elasticity modulus of the steel. 

The failure of the specimens is defined as the time that the tensile load 

drops 25% from its steady test value [13]. The number of cycles to failure is the 

number of cycles necessary to present this stress drop. The specimens are usually 

cylindrical and are between 9 and 12 mm in diameter, so this drop in stress 

represents a crack of approximately 3 mm in depth [13]. 

The fatigue curves in the ASME Code are the best-fit curves obtained from 

the experimental results [14]. The curves presented in the code consider margins 

of 2 on the stress and 20 on the cycles (12 for new curves). These factors are 

introduced in order to take into consideration effects that change the fatigue 

strength of components such as size, surface, mean stress, environment, and the 

fact that fatigue is intrinsically a stochastic phenomenon. 

ASME Code Section VIII [12] presents the fatigue curve in two different 

ways. The first one relates the alternated stress (𝑆𝑎) to the number of cycles 

allowed (𝑁) using the following equations: 

 𝑁 = 10𝑋  (3.2) 

 𝑋 =
𝐶1+𝐶3𝑌+𝐶5𝑌

2+𝐶7𝑌
3+𝐶9𝑌

4+𝐶11𝑌
5

1+𝐶2𝑌+𝐶4𝑌
2+𝐶6𝑌

3+𝐶8𝑌
4+𝐶10𝑌

5   (3.3) 

 𝑌 = (
𝑆𝑎

𝐶𝑢𝑠
) (

𝐸𝐹𝐶

𝐸𝑇
)  (3.4) 

where the value of the constants 𝐶𝑛 depends on the material and the range of 𝑆𝑎. 

The value of 𝐶𝑢𝑠 is a conversion factor (equal to 1.0 if 𝑆𝑎 is in ksi, and equal to 

6.894757 if 𝑆𝑎 is in MPa), 𝐸𝐹𝐶 is the modulus of elasticity used in the evaluation of 

the fatigue curve and given in the code, and 𝐸𝑇 is the modulus of elasticity of the 

material at the average temperature of the cycle that is being evaluated. 

The second way that the fatigue curve is presented in the ASME Code is 

as a table. There are nine tables (as nine groups of constants 𝐶𝑛) that represent 

the fatigue curve in the code. Each table is related to one different group of steel. 

The tables present values of 𝑁 and the correspondent value of 𝑆𝑎. If a value under 

consideration is found to be between two values, the code recommends doing an 

interpolation of the values. 

ASME Code, Section III (section for nuclear power plant assessment) 

presents fatigue curves in the table format. Section VIII presents fatigue curves in 

both formats. 
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It is important to note that the fatigue curve presented in the ASME Code 

gives  results similar to those calculated using equation (3.1) of the Coffin-Manson 

model, if a margin factor of 2 on stress (elastic part) and 20 on life (plastic part) are 

applied. 

The next three paragraphs present a comparison between the fatigue 

curves presented by the ASME Code and by the Coffin-Manson model. The 

comparison uses information from the 304 stainless steel presented in [15] and in 

the ASME Code, Section VIII (the tables presented in this section are the same as 

those in Section III), in Annex 3-F, group 3.F.3 – the group for 304 stainless steel. 

The material properties used for equation (3.1) were: 𝐸 = 196 GPa, 𝜎′𝑓 = 

1287 MPa, 𝜀′𝑓 = 0.122, 𝑏 = -0.145 and 𝑐 = -0.394, [15]. For the comparison, 

equation (3.1) was multiplied by the modulus of elasticity (𝐸), and the factor of 2 

on the stress and 20 on the life were included, thus: 

 𝑆𝑎 = 𝐸
∆𝜀

2
= 𝐸 [

𝜎′𝑓

2𝐸
(2𝑁)𝑏 + 𝜀′𝑓(20 ∙ 2𝑁)

𝑐]  (3.5) 

Using the previous equation with the parameters already given, in addition 

to the table in the ASME Code (presented in Table 3.1 for 304 stainless steel), a 

log-log chart 𝑆𝑎 𝑥 𝑁 was plotted in Figure 3.3. 

 

Number 
of Cycles 

(N) 

Alternated 
Stress 
(Sa) 

1.00E+01 870 

2.00E+01 624 

5.00E+01 399 

1.00E+02 287 

2.00E+02 209 

5.00E+02 141 

1.00E+03 108 

2.00E+03 85.6 

5.00E+03 65.3 

1.00E+04 53.4 

2.00E+04 43.5 

5.00E+04 34.1 

1.00E+05 28.4 

2.00E+05 24.4 

5.00E+05 20.5 

1.00E+06 18.3 

2.00E+06 16.4 
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5.00E+06 14.8 

1.00E+07 14.4 

1.00E+08 14.1 

1.00E+09 13.9 

1.00E+10 13.7 

1.00E+11 13.6 

Table 3.1: ASME Code data for the 304L stainless steel fatigue curve. 

 

Figure 3.3: ASME Code and Coffin-Manson (with factor) fatigue curves. 

One can see in Figure 3.3 that both curves are similar to each other, with 

the Coffin-Manson curve being a little more conservative than the ASME code 

curve. The difference between the two curves can be attributed to different 

experimental tests. 

Figure 3.3 also shows two other fatigue curves. One is given by equation 

(3.6) and is called the Universal Slope Method, which was proposed by Manson.4 

The material’s ultimate strength 𝑆𝑢 was taken from reference [15], and the 

coefficient 𝜀′𝑏 was calculated using RA (area reduction taken from reference [14]) 

and equation (3.7).  

 𝑆𝑎 = 𝐸
∆𝜀

2
= 𝐸 [3.5

𝑆𝑢

𝐸
(𝑁)−0.12 + 𝜀′𝑏

0.6(𝑁)−0.6]
1

2
  (3.6) 

 𝜀′𝑏 = 𝑙𝑛 (
1

1−
𝑅𝐴

100

)  (3.7) 

                                                
4 It is important to highlight the fact that none of the models that attempted to establish a relationship 

between the fatigue parameters and properties of simpler tests (such as tensile, hardness tests) were 
successful [16]. On that way, using the Coffin-Manson model with the measured fatigue properties it 
is a better choice than using models such as the Universal Slope Method. 
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The second curve (equation (3.8)) is given in [14]. The parameters used 

are valid for  304 stainless steel. This latter equation is the best fit equation for 

experimental data points used by the ASME curve [14]. 

 𝑆𝑎 =
𝐸

4√𝑁
𝑙𝑛

100

100−𝑅𝐴
+ 𝑆𝑒  (3.8) 

To compare these curves with the one in the ASME Code, the factor of 2 

for the stress and 20 for the life must be included; thus, equations (3.6) and (3.8) 

become, respectively: 

 𝑆𝑎 = 𝐸
∆𝜀

2
= 𝐸 [3.5

𝑆𝑢

2𝐸
(𝑁)−0.12 + 𝜀′𝑏

0.6
(20𝑁)−0.6]

1

2
  (3.9) 

 𝑆𝑎 =
𝐸

4√20𝑁
𝑙𝑛

100

100−𝑅𝐴
+
𝑆𝑒

2
  (3.10) 

To use the fatigue curve of the ASME Code, it is necessary to define the 

alternated stress in accordance with the code. Section VIII of the code presents 

two different types of analyses, one based on an elastic analysis and the other  

based on an elastic-plastic analysis. 

 

3.3.1 

Fatigue Assessment Using Elastic Stress Analysis 

 This method requires the calculation of two types of stress: 𝑆𝑛, which is 

calculated from the linearization of the stresses and is equal to the primary plus 

secondary stresses, and 𝑆𝑝, which is calculated using the primary plus secondary 

plus peak stresses. The method is applied to each range of stress. The stress 

ranges are calculated using the stresses that occur at the beginning and at the end 

of each stress cycle. The cycle counting methods are described in the next chapter; 

nevertheless, it is important to point out the fact that the ASME Code uses only the 

Extreme Value Method and the Simplified Rainflow methods, the first being 

applicable to proportional and non-proportional load histories, and the latter to 

proportional histories. 

For each stress cycle, the ASME Code5 gives two load points in the time 

history for 𝑡𝑚  and 𝑡𝑛 . Using these points, it is possible to calculate the stress 

ranges ∆𝑆𝑝 for the time-cycle being considered: 

                                                
5 This definition is for Section VIII of the ASME Code. In Section III, the 𝑆𝑛 and 𝑆𝑝 equivalent stress 

ranges are defined using Tresca instead of von Mises. 
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∆𝑆𝑝 =
1

√2
[(∆𝜎𝑥𝑥 − ∆𝜎𝑦𝑦)

2
+ (∆𝜎𝑥𝑥 − ∆𝜎𝑧𝑧)

2 + (∆𝜎𝑦𝑦 − ∆𝜎𝑧𝑧)
2
+ 6(∆𝜏𝑥𝑦

2 + ∆𝜏𝑥𝑧
2 + ∆𝜏𝑦𝑧

2)]
0.5

  

  (3.11) 

where: 

 ∆𝜎𝑖𝑗 = | 𝜎𝑚 𝑖𝑗 − 𝜎𝑛 𝑖𝑗|  (3.12) 

 The alternated stress is then defined as: 

 𝑆𝑎 =
𝐾𝑓∙𝐾𝑒∙∆𝑆𝑝

2
  (3.13) 

where 𝐾𝑓 is the fatigue strength reduction factor, and 𝐾𝑒 is the fatigue penalty 

factor. The value of the fatigue strength reduction factor is one if the calculated 

stresses already take the effects of a local notch or weld into consideration. If this 

is not the case, the value of 𝐾𝑓 must be calculated.  

The value of 𝐾𝑒 depends on the 𝑆𝑛 stress range. The  𝑆𝑛 stress range is 

calculated similar to the way the 𝑆𝑝 stress is calculated - using equation (3.6). The 

difference is that the stress range 𝑆𝑛 considers only the linearized summation of 

the primary plus the secondary stresses. The value of 𝐾𝑒 is then obtained by using 

the following equation: 

  

{
 

 
𝐾𝑒 = 1                                             𝑓𝑜𝑟                ∆𝑆𝑛 ≤ 𝑆𝑃𝑆

𝐾𝑒 = 1 +
(1−𝑛)

𝑛(𝑚−1)
(
∆𝑆𝑛

𝑆𝑃𝑆
− 1)        𝑓𝑜𝑟 𝑆𝑃𝑆 < ∆𝑆𝑛 < 𝑚𝑆𝑃𝑆

𝐾𝑒 =
1

𝑛
                                           𝑓𝑜𝑟             ∆𝑆𝑛 ≥ 𝑚𝑆𝑃𝑆

  (3.14)6 

where the values of 𝑚 and 𝑛 are material properties and the value of 𝑆𝑃𝑆 is the 

maximum value between three times the average value of the allowable stress at 

the highest and lowest temperature occurring in the cycle, and two times the 

average value of the yield stress at the highest and lowest temperature occurring 

in the cycle, as given by the equations described in Figure 3.4. The values of 𝑚 

and 𝑛 are given in Table 5.13 of the code for different materials, and their values 

vary from 1.7 to 3 for 𝑚 and from 0.2 to 0.3 for 𝑛.   

                                                
6 This equation is defined in Section VIII of the ASME Code. In Section III, the 𝑆𝑃𝑆 value is replaced 

with the 𝑆𝑚 property given in the code. 
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Figure 3.4: Exemplification of the calculation of 𝑺𝑷𝑺. 

The advantage of this method is that, by including the fatigue penalty factor, 

it is possible to perform a fatigue evaluation of a component under cyclic plasticity 

employing an elastic stress analysis. One can see in equation (3.9) that the value 

of 𝐾𝑒 varies between 1.0 and 3.3 or 5.0 (depending on the value of 𝑛). This 

constitutes the simplified elasto-plastic fatigue analysis. 

If a component is subjected to a  minor cyclic loading (causing an irrelevant 

plastic deformation), the value of 𝐾𝑒 is 1.0, and the value of the alternating stress 

is not changed by the penalty factor. However, if the cyclic load is large enough to 

make the plastic deformation relevant, the value of 𝐾𝑒 increases, as does the value 

of the alternating stress. This is how this method includes the effect of cyclic 

plasticity in the framework of an elastic stress analysis.  

Even though this procedure (of doing a large-strain low-cycle fatigue 

evaluation with the results from an elastic stress analysis) is an excellent idea, it 

has already been shown [14] that the results of this procedure can lead to over 

conservative results. The code also includes a different method for evaluating the 

value of the penalty factor, but it is first necessary to do an elastic-plastic analysis, 

which would negate the largest advantage of this method. New methods for 

evaluating 𝐾𝑒 are being studied to fix this problem, but the best way to not deal 

with over conservative results is by using an accurate elasto-plastic analysis. 
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3.3.2  

Fatigue Assessment Using Elasto-Plastic Stress Analysis 

 This method requires performing a full elasto-plastic stress analysis instead 

of an elastic stress analysis. This method also requires some sort of cycle 

counting.7 Using the results of the cycle counting, the effective strain range is 

evaluated accordingly by applying equation (3.15). 

 ∆𝜀𝑒𝑓𝑓 =
∆𝑆𝑝

𝐸𝑦𝑎
+ ∆𝜀𝑝𝑒𝑞  (3.15) 

where ∆𝑆𝑝 is as defined in equation (3.6), 𝐸𝑦𝑎 is the average value of the elasticity 

modulus at the highest and lowest temperature of the cycle, and ∆𝜀𝑝𝑒𝑞 is the same  

plastic strain range defined in equation (3.16), which is analogous to  equation 

(3.6): 

 ∆𝜀𝑝𝑒𝑞 =
√2

3
[(∆𝑝𝑥𝑥 − ∆𝑝𝑦𝑦)

2
+ (∆𝑝𝑥𝑥 − ∆𝑝𝑧𝑧)

2 + (∆𝑝𝑦𝑦 − ∆𝑝𝑧𝑧)
2
+ 1.5(∆𝑝𝑥𝑦

2 + ∆𝑝𝑥𝑧
2 + ∆𝑝𝑦𝑧

2)]
0.5

 

  (3.16) 

where ∆𝑝𝑖𝑗 is the plastic strain range of the 𝑖𝑗 component. The value of the 

alternated stress is then calculated with: 

 𝑆𝑎 =
𝐸𝑦𝑎∙∆𝜀𝑒𝑓𝑓

2
  (3.17) 

 Using the value of the alternated stress, it is possible to get the allowed 

number of cycles.  

What all the damage models presented so far have in common is that they 

use some type of equivalent strain or stress range; for example, one based on the 

von Mises parameter  for evaluating  fatigue life. However, it is well-known that, for 

the fatigue assessment of non-proportional histories, the models that have the best 

behavior are usually the critical plane models.   

 

3.4  

Critical Plane Models 

 Critical plane models investigate the stresses and strains that occur on 

each possible plane that passes through the material point, and they evaluate the 

                                                
7 The cycle counting performed here counts the stresses and relates the plastic strain ranges in the 

same way as explained in equation (3.7). In cases were the strains are already measured, the cycle 
counting can be performed on the strains, and the ∆𝜀𝑒𝑓𝑓 value can be calculated by the von Mises 

equivalent strain equation using the total strain values instead of separating them into plastic and 
elastic parts as in equation (3.10). 
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fatigue damage on each one of those planes. The plane that presents most 

damage will be the critical one. It is assumed that the fatigue crack propagates on 

that plane. 

The first step is to calculate the stresses and strains that are acting on the  

plane that is to be investigated. For a given plane, as presented in Figure 3.5, the 

stresses acting on the plane can be obtained with equations (3.18), (3.19) and 

(3.20). For strains, equations (3.21), (3.22) and (3.23) should be used. 

 

Figure 3.5: Illustration of the stresses acting on a particular plane. [10] 

𝜎𝑥′ = 𝑠𝑖𝑛
2(𝜙) ∙ [𝜎𝑦𝑠𝑖𝑛

2(𝜃) + 𝜎𝑥𝑐𝑜𝑠
2(𝜃)] + 𝜎𝑧𝑐𝑜𝑠

2(𝜙) + 2𝜏𝑥𝑦𝑠𝑖𝑛
2(𝜙) ∙ sin(𝜃) ∙

cos(𝜃) + 2sin (𝜙) ∙ cos (𝜙) ∙ [𝜏𝑥𝑧 cos(𝜃) + 𝜏𝑦𝑧sin (𝜃)]  (3.18) 

 

𝜏𝑥′𝑦′ = sin(𝜙) ∙ cos(𝜃) ∙ sin(𝜃) ∙ (𝜎𝑦 − 𝜎𝑥) + 𝜏𝑥𝑦 sin(𝜙) ∙ [𝑐𝑜𝑠
2(𝜃) − 𝑠𝑖𝑛2(𝜃)] +

cos (𝜙) ∙ [𝜏𝑦𝑧 cos(𝜃) − 𝜏𝑥𝑧sin (𝜃)]   (3.19) 

 

𝜏𝑥′𝑧′ = sin(𝜙) ∙ cos(𝜙) ∙ [𝜎𝑧 − 𝜎𝑥𝑐𝑜𝑠
2(𝜃) − 𝜎𝑦𝑠𝑖𝑛

2(𝜃)] − 2𝜏𝑥𝑦 sin(𝜙) ∙ cos(𝜙) ∙

sin(𝜃) ∙ cos(𝜃) + 𝑠𝑖𝑛2(𝜙) ∙ [𝜏𝑥𝑧 cos(𝜃) + 𝜏𝑦𝑧 sin(𝜃)]  − 𝑐𝑜𝑠
2(𝜙) ∙ [𝜏𝑥𝑧 cos(𝜃) +

𝜏𝑦𝑧sin (𝜃)]  (3.20) 

 

𝜀𝑥′ = 𝑠𝑖𝑛
2(𝜙) ∙ [𝜀𝑦𝑠𝑖𝑛

2(𝜃) + 𝜀𝑥𝑐𝑜𝑠
2(𝜃)] + 𝜀𝑧𝑐𝑜𝑠

2(𝜙) + 𝛾𝑥𝑦𝑠𝑖𝑛
2(𝜙) ∙ sin(𝜃) ∙

cos(𝜃) + sin (𝜙) ∙ cos (𝜙) ∙ [𝛾𝑥𝑧 cos(𝜃) + 𝛾𝑦𝑧sin (𝜃)]  (3.21) 
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𝛾𝑥′𝑦′ = 2 ∙ {sin(𝜙) ∙ cos(𝜃) ∙ sin(𝜃) ∙ (𝜀𝑦 − 𝜀𝑥) + (𝛾𝑥𝑦 2⁄ ) ∙ sin(𝜙) ∙ [𝑐𝑜𝑠2(𝜃) −

𝑠𝑖𝑛2(𝜃)] + cos (𝜙) ∙ [(𝛾𝑦𝑧 2⁄ ) ∙ cos(𝜃) − (𝛾𝑥𝑧 2⁄ ) ∙ sin (𝜃)]}   (3.22) 

 

𝛾𝑥′𝑧′ = 2 ∙ {sin(𝜙) ∙ cos(𝜙) ∙ [𝜀𝑧 − 𝜀𝑥𝑐𝑜𝑠
2(𝜃) − 𝜀𝑦𝑠𝑖𝑛

2(𝜃)] − 𝛾𝑥𝑦 sin(𝜙) ∙ cos(𝜙) ∙

sin(𝜃) ∙ cos(𝜃) + 𝑠𝑖𝑛2(𝜙) ∙ [(𝛾𝑥𝑧 2⁄ ) ∙ cos(𝜃) + (𝛾𝑦𝑧 2⁄ ) ∙ sin(𝜃)]  − 𝑐𝑜𝑠2(𝜙) ∙

[(𝛾𝑥𝑧 2⁄ ) ∙ cos(𝜃) + (𝛾𝑦𝑧 2⁄ )sin (𝜃)]}  (3.23) 

 

 Critical plane models are usually based on the same concept. This concept 

entails predicting the initiation and growth of a short crack (undetectable with 

normal industrial procedures). The existing models predict that the crack will start 

and propagate in either Mode I or Mode II [10]. It is known that cracks can also 

propagate in Mode III, but the models considered in this thesis do not predict such 

behavior.  

It bears pointing out that the Mode I, Mode II and Mode III nomenclatures 

are used in the fracture mechanics field. However, it is also used herein to 

subcategorize models that evaluate fatigue in materials more sensitive to normal 

stress (Mode I) and materials more sensitive to shear stress (Mode II or Mode III).  

 

Figure 3.6: Illustration of cracks under Mode I, Mode II and Mode III conditions. 

A few these models will be presented and discussed. 

 

3.5  

Brown-Miller Model 

 After having observed multiaxial low-cycle fatigue tests, Brown and Miller 

[17] concluded that the equivalent strain was not a good parameter for evaluating 

the fatigue life of low-cycle fatigue problems. Hence, they decided to conduct axial 

and torsion tests, keeping the shear strain range constant to better understand the 

problem. They concluded that two strain parameters were needed to predict the 
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life of a multiaxial low-cycle fatigue condition. They also concluded that these two 

parameters had to involve the normal and shear strain ranges.  

 

Figure 3.7: Illustration of the strain range parameters of the Brown-Miller model. 

Brown and Miller proposed calculating the equivalent shear strain range by 

using the shear and normal strain ranges acting on the plane with maximum shear 

strain with the following equation: 

 
∆�̂�

2
=

∆𝛾𝑚𝑎𝑥

2
+ 𝑆∆𝜀⊥  (3.24) 

where ∆𝛾 is the equivalent shear strain range, ∆𝛾𝑚𝑎𝑥 is the maximum shear strain 

range, 𝑆 is a material property, and ∆𝜀⊥ is the normal strain range acting on the 

plane where the ∆𝛾𝑚𝑎𝑥 is found.  

Considering a uniaxial stress state, the ranges of maximum shear and 

normal strains can be calculated as: 

 
∆𝛾𝑚𝑎𝑥

2
= (1 + 𝑣)

∆𝜀

2
;  ∆𝜀⊥ = (1 − 𝑣)

∆𝜀

2
  (3.25) 

Substituting equation (3.25) in equation (3.24): 

 
∆�̂�

2
=

∆𝜀

2
[(1 + 𝑣) + 𝑆(1 − 𝑣)]  (3.26) 

Separating the right side of equation (3.26) into plastic and elastic parts 

yields: 

 
∆�̂�

2
=

∆𝜀𝑒𝑙

2
[(1 + 𝑣𝑒𝑙) + 𝑆(1 − 𝑣𝑒𝑙)] +

∆𝜀𝑝𝑙

2
[(1 + 𝑣𝑝𝑙) + 𝑆(1 − 𝑣𝑝𝑙)]  (3.27) 

This equation can be simplified as: 

 
∆�̂�

2
= 𝐴

∆𝜀𝑒𝑙

2
+ 𝐵

∆𝜀𝑝𝑙

2
  (3.28) 
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Where 𝐴 = (1 + 𝑣𝑒𝑙) + 𝑆(1 − 𝑣𝑒𝑙) and 𝐵 = (1 + 𝑣𝑝𝑙) + 𝑆(1 − 𝑣𝑝𝑙). If one 

considers that 𝑣𝑝𝑙 = 0.5 and that 𝑣𝑒𝑙 = 0.3 for most types of steels, the 𝐴 and 𝐵 

values are: 𝐴 = 1.3 + 0.7𝑆 and 𝐵 = 1.5 + 0.5𝑆. Substituting equation (3.24) in 

equation (3.1) and equation (3.20) yields: 

 
∆𝛾𝑚𝑎𝑥

2
+ 𝑆∆𝜀⊥ =  𝐴

𝜎′𝑓

𝐸
(2𝑁)𝑏 + 𝐵𝜀′𝑓(2𝑁)

𝑐  (3.29) 

This is the equation of the Brown-Miller Model. This model is a critical plane 

model, so all possible planes must be investigated so that the plane with the least 

number of cycles required to initiate a crack may be found. Parameter 𝑆 is one of 

the problems of this solution, this parameter not only depends on the material, but 

also on temperature and the value of 𝑁. 

As shown in [4], when 𝑁 is close to the fatigue limit of the material, the value 

of 𝑆 is close to 0.3. However [10] shows this property obtained for short lives (close 

to one thousand cycles), where the results for 𝑆 can vary widely. In 304 stainless 

steel at 20°C, the value of 𝑆 is 1.57, while at 550°C, 𝑆 is 1.0, and in 316 stainless 

steel at 550°C, the value of 𝑆 is 2.4.  

The need to determine 𝑆 for different ranges of numbers of cycles and 

different ranges of temperatures is seen as a considerable disadvantage of the 

Brown-Miller Model. 

 

3.6  

Fatemi-Socie Model 

 The Brown-Miller Model has another disadvantage. It is possible to show 

that using only the shear and normal strain ranges cannot correctly predict the 

allowed number of cycles. For example, consider two specimens of the same 

material, both being subjected to the same shear and normal strain ranges, but the 

first with a negative mean normal stress and the second one with a positive mean 

normal stress. The first one will resist more cycles than the second one. 

This happens because, whereas in the first case a micro crack in the 

specimen   closes due to the negative mean normal stress, in the second case, the 

micro crack opens due to the positive mean normal stress, and with this opening, 

the micro crack will grow until it becomes detectable. This problem was the one 

studied by Socie and Shield [18]. 
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Socie and Shield tested several Inconel specimens with different biaxial 

loading histories. They designed the histories so that all of them would have similar 

maximum shear and normal strain amplitudes in common, similar equivalent axial 

and shear stress, and similar plastic work. The only relevant difference was the 

normal stress. The results that should have been the same according to the Brown-

Miller model were actually much different. Hence, Fatemi and Socie proposed [19] 

the following equation: 

 
∆γ

2
(1 + 𝑘

𝜎⊥𝑚𝑎𝑥

𝑆𝑦
) =

𝜏′𝑓

𝐺
(2𝑁)𝑏𝛾 + 𝛾′𝑓(2𝑁)

𝑐𝛾  (3.30) 

where ∆γ is the range of shear strain on the plane being evaluated, 𝜎⊥𝑚𝑎𝑥 is the 

maximum stress normal to the plane that is being evaluated, 𝑘 is a material 

constant, 𝑆𝑦 is the yield strength, 𝜏′𝑓 is the shear fatigue strength coefficient, 𝛾′𝑓 is 

the shear fatigue ductility coefficient, 𝑏𝛾 is the shear fatigue strength exponent, 𝑐𝛾 

is the shear fatigue ductility exponent, and 𝐺 is the shear elastic model. 

 

Figure 3.8: Illustration of the parameters required in the Fatemi-Socie model. 

 The parameters on the right side of equation (3.30) can be approximated 

by the parameters on the right side of equation (3.1) using the following 

relationships: 𝜏′𝑓 ≈ 𝜎
′
𝑓 √3⁄ , 𝛾′𝑓 ≈ √3𝜀′𝑓, 𝑏𝛾 ≈ 𝑏, 𝑐𝛾 ≈ 𝑐 and 𝐺 = 𝐸 2(1 + 𝑣)⁄ . 

The material constant 𝑘 can be calculated by comparing uniaxial test results 

with pure torsion test results. Reference [15] shows that the values of 𝑘 are 0.15 

for 304L stainless steel and 0.7 for 1050 steel. Reference [10] recommends using 

𝑘 = 1 if no tests results are available. 
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3.7  

Smith-Watson-Topper Model 

 The critical plane models presented above were developed for materials 

where a crack initiates and initially grows in Mode II due to shear strain. The Smith-

Watson-Topper Model is the alternative solution for evaluating fatigue damage in 

materials where the initiation and growth of short cracks is controlled by the Mode 

I condition. Cast iron and 304 stainless steel are examples of such materials.  

This model was first developed as a way to also take into consideration the 

means stress value in uniaxial fatigue test results. Mean stress is an important 

parameter, as described above in the explanation of the Fatemi-Socie model.  

It has been seen [17] that strain ranges alone, as in the Coffin-Manson 

model, for example, may not do a good job of predicting the life of a specimen. The 

strain range by itself cannot provide information if the short crack is opening under 

tension or closing under compression. Consequently, Smith [20] proposed a new 

model that is referred to in the literature as the SWT (Smith-Watson-Topper) 

model.  

The SWT (Smith-Watson-Topper) model is controlled by the principal strain 

range ∆𝜀1 and by the maximum stress that actuates in the same direction as the 

principal strain range 𝜎𝑚𝑎𝑥1. The rest of the parameters in equation (3.31) are the 

same as the ones described in equation (3.1). 

 𝜎𝑚𝑎𝑥1
∆𝜀1

2
= 

𝜎′𝑓
2

𝐸
(2𝑁)𝑏 + 𝜎′𝑓𝜀′𝑓(2𝑁)

𝑐  (3.31) 

Although this model was initially created to evaluate fatigue in uniaxial tests, 

it has been modified over the years [4, 10] so that it can also be used for multiaxial 

conditions under proportional and non-proportional loadings. For non-proportional 

loadings, the equation is changed to a critical plane model: 

 𝜎𝑚𝑎𝑥⊥
∆𝜀⊥

2
= 

𝜎′𝑓
2

𝐸
(2𝑁)𝑏 + 𝜎′𝑓𝜀′𝑓(2𝑁)

𝑐  (3.32) 

Since this model is a critical plane model, all possible planes must be 

investigated so that the plane with the least number of cycles for initiating a crack 

may be found. The parameters shown in equation (3.32) are the strain range 

perpendicular to a candidate critical plane under investigation (∆𝜀⊥) and the 

maximum stress that acts in the same direction as the perpendicular strain range 

(𝜎𝑚𝑎𝑥⊥). 
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Figure 3.9: Illustration of the parameters required in the SWT model. 

 

3.8  

Gupta-Fesich Model 

Gupta and Fesich [21] proposed a critical plane model for evaluating the 

fatigue damage from stress states subjected to fixed and rotating principal stress 

or strain directions. Loadings with fixed principal stress directions are considered 

proportional when the direction never changes. Cases where only the value of the 

principal strain (or stress) changes, and cases entailing a rotating principal 

direction are considered as a non-proportional history, where not only the value of 

the principal strain (or stress) changes, but the principal direction changes as well. 

The model, developed at BARC and MPA University of Stuttgart, was 

created based on the experimental results obtained for specimens subjected to 

torsional loadings. The model’s equation is similar to the one presented by the 

SWT model. The main modification is the inclusion of the shear strain range ∆𝛾 

and the shear stress range ∆𝜏.  

 𝜎⊥𝑚𝑎𝑥
∆𝜀⊥

2
+
∆𝛾

2

∆𝜏

2
= 

𝜎′𝑓
2

𝐸
(2𝑁)𝑏 + 𝜎′𝑓𝜀′𝑓(2𝑁)

𝑐  (3.33)8 

This model is a critical plane model, so all possible planes must be 

investigated so that the plane with the least number of cycles required to initiate a 

crack may be found. The shear strain and stress values can be calculated as the 

ones acting on the plane perpendicular to the normal strain and stress. 

                                                
8 It is important to note that the models mixture damages. The right side of equation (3.33) presents 

only parameters regarding normal loads, while the left side of the equation mixture normal and shear 
parameters without any adjustment coefficient. Moreover, the equation mixes an energy criteria 
(∆𝛾/2 ∙ ∆𝜏/2) with other criteria that are not energy (𝜎⊥𝑚𝑎𝑥 ∙ ∆𝜀⊥/2). For that reason, Liu I and Liu II 

[10] are better recommended for evaluating damage while keeping a similar approach. 
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Figure 3.10: Illustration of the parameters required in the Gupta-Fesich model. 

 Fesich later proposed a modification not only on his method, but on the 

Fatemi-Socie model also. The improvement he proposed for those models was the 

addition of the strain gradient effect as a support effect. With that addition, 

equations (3.30) and (3.33) become, respectively: 

 (
1

1+𝜒𝛾
)
∆γ

2
(1 + 𝑘

1

1+𝜒𝜀

𝜎⊥𝑚𝑎𝑥

𝜎𝑦
) =

𝜏′𝑓

𝐺
(2𝑁)𝑏𝛾 + 𝛾′𝑓(2𝑁)

𝑐𝛾  (3.34) 

 (
1

1+𝜒𝜀
)𝜎⊥𝑚𝑎𝑥

∆𝜀⊥

2
+ (

1

1+𝜒𝛾
)
∆𝛾

2

∆𝜏

2
= 

𝜎′𝑓
2

𝐸
(2𝑁)𝑏 + 𝜎′𝑓𝜀′𝑓(2𝑁)

𝑐  (3.35) 

where 𝜒𝜀 is the normal strain gradient and 𝜒𝛾 is the shear strain gradient, as 

defined by Sibel  in [22]: 

 𝜒𝜀 =
1

ε𝑚𝑎𝑥
(
𝑑𝜀

𝑑𝑦
)
𝑚𝑎𝑥

; 𝜒𝛾 =
1

γ𝑚𝑎𝑥
(
𝑑𝛾

𝑑𝑦
)
𝑚𝑎𝑥

   (3.36) 

 Figure 3.11 illustrates the strain gradient parameters required for equation 

(3.36). 
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Figure 3.11: Illustration of the parameters required to evaluate the normal strain gradient. 

 A notched component will produce not only a strain (𝜀𝑚𝑎𝑥) and stress 

concentration, but also a strain (𝜀(𝑦)) and stress distribution in the region close to 

the notch. This distribution (the blue line in Figure 3.11) reaches maximum value 

at the notch and  stabilizes at  minimum value  in an area far from the notch (the 

exact distance depends on the shape and size of the notch).  

The parameters needed in equation (3.36) can be evaluated as the 

maximum strain value and the maximum differentiation value of the strain 

distribution in relation to the distance (𝑦). This was the modification proposed by 

Fesich for improving the evaluation of fatigue damage in notched components [13]. 
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4 

 

Cycle Counting 

 

4.1  

Cycle Counting Methods 

There are several cycle counting methods available in the current literature. 

This chapter presents and discusses 7 of these methods that can be applied to 

non-proportional histories: the Extreme Value Method (EVM) [12, 23], the Rainflow 

Method [24, 4], the Simplified Rainflow Method [12], the Bannantine and Socie 

Method [25, 15], the Wang-Brown Method [27, 28], the Modified Wang-Brown 

Method [28] and the Path Dependent Maximum Range Method [30].  

Cycle counting methods can be applied to count stress or strain histories, 

but conducting the cycle counting using the strain history in the low cycle fatigue 

cases is highly recommended to avoid non-conservative life evaluations. 

However, in cases where strains are not measured and significant changes 

in temperature are observed, evaluating the stress-strain relationship becomes 

rather complex. To overcome this difficulty, industrial design codes, such as the 

ASME Code, enable the user to perform cycle counting using the calculated stress 

results. 

Differences between the stress and strain based counting approaches will 

be evaluated and discussed in Chapter 6, where the fatigue life results obtained 

using different cycle counting routines based on stress and strain will be compared.  

 

4.2  

Extreme Value Method 

 The Extreme Value Method (EVM) is a simple, conservative cycle counting 

method. Its uniaxial form consists of selecting two points in the stress or strain load 

history, one with the highest value and the other with the lowest value. A range is 

determined with this pair of values and after it has been counted, the points are 

deleted from the load history. The procedure then continues until no more reversal 

points are found. 
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The idea behind this cycle counting method is to determine the highest 

range possible, then the second one, and so on.  

 

Figure 4.1: Example of the Extreme Value Method. 

 Figure 4.1 helps to show the sequence followed using the EVM cycle 

counting method. In this particular load history, the highest range is identified by 

the two points marked with circles, the second highest range with triangles, and 

the third highest with squares. The selection of pairs of points in the load history to 

determine the range continues until no more reversal points are left. 

The EVM does not have to be used in the actual load history sequence. 

The load history can be organized in or out of order of stress or strain occurrences 

observed along a certain amount of time, as shown in Figure 4.2.  
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Figure 4.2: Example of representative load history. 

Figure 4.2 presents a representative load history where a string of 

important events occurring during the operation life of an equipment are placed out 

of order. The events are organized, though not necessarily in order, and each one 

represents the load conditions (such as start-up, shut-down, normal operation, 

etc.) applied to the component. The history must be presented with the number of 

occurrences (expected or measured) of each event. Figure 4.2 is an example of a 

representative load history with three events and their number of occurrences (n).  

The Extreme Value Method is the method allowed by ASME Code for non-

proportional histories. A summary of the steps presented in Annex 5 of the code 

is: 

 Step 1: Calculate the stress history (the analysis must include peak 

stresses at local discontinuities). 

 Step 2: Delete the points that are not reversal points (or peak or valley 

points). 

 Step 3: Find in the history the pair of points ( 𝑡𝑚 , 𝑡𝑛 ) that produces the 

highest range of the equivalent von Mises stress, using equation (4.1). 

∆𝑆𝑟𝑎𝑛𝑔𝑒 =
1

√2
[( ∆𝜎11 −
𝑚𝑛 ∆𝜎22

𝑚𝑛 )2 + ( ∆𝜎22 −
𝑚𝑛 ∆𝜎33

𝑚𝑛 )2 + ( ∆𝜎33 −
𝑚𝑛 ∆𝜎11

𝑚𝑛 )2𝑚𝑛 + 

 +6( ∆𝜎12
𝑚𝑛 2

+ ∆𝜎23
𝑚𝑛 2

+ ∆𝜎31
𝑚𝑛 2

)]
0.5

  (4.1)  

 

where: 

 ∆𝜎𝑖𝑗 =
𝑚𝑛 𝜎𝑖𝑗 −

𝑚 𝜎𝑖𝑗
𝑛   (4.2) 

 

 𝜎𝑖𝑗 = 𝜎𝑖𝑗( 𝑡𝑚 )𝑚  and 𝜎𝑖𝑗 = 𝜎𝑖𝑗( 𝑡𝑛 )𝑛   (4.3) 
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 Step 4: Record the time points 𝑡𝑚  and 𝑡𝑛  and their specified number 

of repetitions 𝑁𝑚 , 𝑁𝑛 . 

 Step 5: Determine the number of cycles repetitions: 

o If 𝑁𝑚  < 𝑁𝑛 : Delete point 𝑡𝑚 , and reduce the number of 

repetitions at point 𝑡𝑛  to 𝑁𝑛  - 𝑁𝑚 . 

o If 𝑁𝑚  > 𝑁𝑛 : Delete point 𝑡𝑛 , and reduce the number of 

repetitions at point 𝑡𝑚  to 𝑁𝑚  - 𝑁𝑛 . 

o If 𝑁𝑚  = 𝑁𝑛 : Delete both points 𝑡𝑛  and 𝑡𝑚 . 

 Step 6: Return to Step 3 and repeat Steps 3 to 6 until no more 

reversal points remains in the history. 

 

 For a better visualization of the procedure, the method is applied in the load 

history presented in Figure 4.2. Step 1 entails determining the stress history shown 

in Figure 4.2. The result of step 2 (elimination of the points that are not reversals) 

can be seen in Figure 4.3. 

 

Figure 4.3: Example of the elimination of non-reversal points in the load history presented in 
Figure 4.2. 

 Step 3 selects the possible pairs that can be formed. The pair with the 

widest range is pair D-B. Since the number of occurrences at point B is less than 

the number of occurrences at point D, point B is deleted, the number of 

occurrences at point D is reduced to 100, and a range of 350 MPa with 100 

repetitions is counted.  
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The procedure returns to step 3, and now the pair with the widest range is 

pair C-D. The same routine described above is applied, the range of 300 MPa with 

100 repetitions is counted, and the history now contains only points A and C, both 

with 100 occurrences. Lastly, the final counting will return the range of pair A-C. 

Since both have the same number of occurrences, they are deleted and the cycle 

counting ends, because there are no more reversal points remaining in the history. 

The Extreme Value Method can also be used to count cycles for a strain 

history. The procedure is the same described previously, the difference being the 

use of the equivalent von Mises strain in equation (4.4): 

∆𝑒𝑟𝑎𝑛𝑔𝑒 =
1

√2(1 + �̅�)
[( ∆𝜀11 −
𝑚𝑛 ∆𝜀22

𝑚𝑛 )2 + ( ∆𝜀22 −
𝑚𝑛 ∆𝜀33

𝑚𝑛 )2 + ( ∆𝜀33 −
𝑚𝑛 ∆𝜀11

𝑚𝑛 )2 +𝑚𝑛  

 +1.5( ∆𝜀12
𝑚𝑛 2

+ ∆𝜀23
𝑚𝑛 2

+ ∆𝜀31
𝑚𝑛 2

)]
0.5

  (4.4)  

 

where: 

 ∆𝜀𝑖𝑗 =
𝑚𝑛 𝜀𝑖𝑗 −

𝑚 𝜀𝑖𝑗
𝑛   (4.5) 

 

 𝜀𝑖𝑗 = 𝜀𝑖𝑗( 𝑡𝑚 )𝑚  and 𝜀𝑖𝑗 = 𝜀𝑖𝑗( 𝑡𝑛 )𝑛   (4.6) 

and �̅� is the mean or effective Poisson coefficient, which is defined in equation 

(4.7): 

 �̅� = (0.5𝜀𝑝𝑙 + 𝑣𝑒𝑙𝜀𝑒𝑙) (𝜀𝑝𝑙 + 𝜀𝑒𝑙)⁄   (4.7) 

where 𝜀𝑝𝑙 and 𝜀𝑒𝑙 are, respectively, the plastic and elastic components of the 

strains. 

As already mentioned, the EVM enables the user to evaluate the load 

history apart from  its actual sequence. This characteristic makes it advantageous 

for use in the design phase of a component, where the expected loading sequence 

of events is  unknown. 

 

4.3  

Rainflow 

This method, proposed by the Japanese researchers Matsuishu and Endo 

toward the end of the 1960’s [24], is the best way of cycle counting an entire 

complex history of uniaxial loads [4]. The name comes from the original description 

of the technique, where the process is described in terms of rain falling off a 

“pagoda roof”. This method can be used either with stress or strain histories. 
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The step sequence is:  

 Step 1: Eliminate all values that are not reversal points (peaks and 

valleys).  

 Step 2: Start the counting at the first event in the history. 

 Step 3: From the point under consideration, the cycle counting 

continues sequentially until:  

o Flow from a higher or equal peak (or a smaller or equal valley) 

than the initial point is met. 

o The flow counting from a previously initiated flow is met. 

o The load history is finished.  

 Step 4: Count a half cycle using the values at the beginning and at the 

end of the cycle counting result, go to the next point in the history and 

repeat steps 3 and 4 until the load history is finished. 

 

Figure 4.4 helps to show cycle counting using the Rainflow Method (RM) 

by way of an example. 

 

Figure 4.4: Load history. 

The load history does not require step 1, since it only has reversal points. 

Figure 4.5 shows the exemplification of the cycle counting. The counting starts at 

the beginning of the history, point A, which is a valley, and finishes at point C, which 

is a smaller valley compared to A. The counting continues sequentially, this time 

starting at point B and finishing at point D, which is a higher peak when compared 

to peak B. The counting that begins at point C ends at point G, which is a smaller 

valley when compared to valley C. The cycle counting continues until no more 

points are left in the history. 
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Figure 4.5: Example of the Rainflow cycle counting in the load history presented in Figure 4.4. 

 The final result of the cycle counting procedure can be summarized as six 

half cycles (A-B, B-C, C-D, D-G, G-H, H-I) and one full cycle (E-F). Each stress or 

strain range is determined as the modulus of the difference between the value of 

the point at the beginning and at the end of the cycle counting. 

The Rainflow Method (RM) was developed and recommended for uniaxial 

load histories or so-called proportional load histories. However, the RM can also 

be used for non-proportional histories, if two modifications are made. 

In the first modification, the cycle counting is applied to each stress or strain 

direction. Peaks and valleys belonging to the selected cycle counting stress 

direction determine the time steps where stress values have been taken from the 

other directions in order to calculate the equivalent stress compatible with the 

original counting. Thus, there will be as many counts as stress directions. The 

counting that gives the maximum fatigue damage is selected to represent the final 

damage. 

In the second modification the stress (strain) range is no longer calculated 

as the modulus of the difference between values occurring at the start and end 

points of each half cycle counting. The range is calculated using all stress (strain) 

components for each half cycle counted. The ranges are calculated using the 

Mises equivalent or Tresca criteria. Equations (4.1) for stress and (4.4) for strains 

are examples of equivalent ranges to be calculated using the von Mises criterion. 
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Figure 4.6 is an example of a non-proportional loading history. The rainflow 

cycle counting performed using direction x returns the range between point A and 

B. The range of each direction is calculated as shown in Figure 4.7. Then, the 

range values are placed in equation (4.1) and the equivalent von Mises stress 

range is calculated. 

 

Figure 4.6: Example of a non-proportional loading history. 

 

Figure 4.7: Example of the evaluation of ranges. 
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 These two modifications, which allow a uniaxial cycle counting method to 

be applied to non-proportional histories, can also be implemented in the next 

method: The Simplified Rainflow. 

 

4.4  

Simplified Rainflow 

 The Simplified Rainflow is the Rainflow Method presented in ASME BPVC 

Section VIII, Division 2, Annex 5.B. It modifies the regular Rainflow by re-ordering 

the load history beforehand so that it begins and ends with either the highest peak 

or the lowest valley. This re-ordering eliminates the need to count half cycles; only 

full cycles are counted. The Simplified Rainflow routine presented in the ASME 

B&PV Code is summarized below: 

 Step 1: Re-order the loading history to start and end at either the highest 

peak or lowest valley.  

 Step 2: Eliminate the points that are not reversal points. 

 Step 3: Read the first three points in the history. 

 Step 4: Denote by X the range formed by the last two points, and by Y the 

range formed by the first two points. 

 Step 5: Compare the absolute values of X and Y. 

o If X < Y, read the next point and return to Step 4. 

o If X ≥ Y, go to Step 6 

 Step 6: Count range Y as one cycle and discard its peak and valley. 

 Step 7: Return to Step 3 and repeat Step 3 to 7 until no more reversal 

points remain. 

 

As an example, the Simplified Rainflow is applied to the load history in Figure 

4.4. The first step is to re-order the history so that it will begin and end at the highest 

peak, which is represented by point D. 

Figure 4.8 shows the re-ordered history. After the history is re-ordered, one 

can see  that points A and I have the same values and are now next to each other. 

Using step 2 of the procedure, points A and I have been transformed into only one 

point (Point I,A), as shown in Figure 4.8.  

From step 3, after having read points D, E and F, and in agreement with step 

4, range E-F is denoted X and D-E is denoted Y. Since X is less than Y, the next 
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point is read. This times, range F-G denotes range X and E-F denotes range Y. 

Because X is greater than Y, the range between E-F is counted as a full cycle and 

points E and F are eliminated. The result of eliminating of points E and F can be 

seen in Figure 4.9. 

 

Figure 4.8: First part of the Simplified Rainflow method example. 

 

Figure 4.9: Second part of the Simplified Rainflow method example. 

Once one cycle has been counted, the routine returns to step 3, now 

reading the first three points: D, G and H. The routine continues as described until 

points I, A and B are counted. The cycle counting continues as shown in Figure 

4.10 and Figure 4.11. 
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Figure 4.10: Third part of the Simplified Rainflow method example. 

 

Figure 4.11: Last part of the Simplified Rainflow method example. 

The cycle counting is finished because, after deleting point D and G, as 

shown in Figure 4.11, there are no more reversal points in the history. The final 

result is then four full cycles (E-F, B-I, A, H-C, D-G). These counting results are 

different from the one obtained with the traditional Rainflow. However, it is already 
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known that the results obtained with the Simplified Rainflow are equal to, or are 

more conservative than, those obtained with the traditional Rainflow Method. 

 

4.5  

Bannantine and Socie 

 The method proposed by Bannantine and Socie, [15, 24, 26], is based on 

a combination of the critical plane concept (explained in the previous chapter) and 

the Rainflow cycle counting method.  

This method consists in analyzing the strain (or stress) components of the 

load history on a candidate failure plane, followed by the use of the Rainflow cycle 

counting method applied to the shear or normal strain acting on the candidate 

plane.  Whether to count the shear strain or the normal strain depends on the 

failure mode of the material: shear strain for shear failure prone materials and 

normal strain for tensile failure prone materials. Consequently, the effects of the 

normal strain in the shear strain failure mode and vice versa are not considered.  

Other required parameters, such as the maximum normal stress for the 

Fatamie and Socie damage model and for the Smith-Watson-Topper damage 

model, can be determined for each counted cycle as the maximum normal stress 

value that occurred during the cycle being counted, as shown in Figure 4.12. 

 

Figure 4.12: Example of the Bannantine and Socie method. 
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 The example in Figure 4.12 shows the Bannantine and Socie cycle 

counting method performed on the strains. At a certain point of the counting, the 

Rainflow will return the cycle counted indicated in red. The maximum value of the 

normal stress between these two points is the one marked with a red cross. 

 

4.6  

Wang-Brown 

 Wang and Brown proposed a cycle counting method [27] that is applicable 

to any proportional or non-proportional strain (or stress) history. This method 

generalizes the Rainflow Method and is based on cycle counting the equivalent 

von Mises strain. 

Since the equivalent von Mises strain is always positive, the method uses 

the relative equivalent strain to count the cycles. The steps to apply the method 

are as follows: 

 Step 1: Select the point in the history with the largest von Mises strain 

and re-order the history so that it will start and end at this point. Start 

the cycle-counting using this first point in the history. 

 Step 2: Using this first point, calculate the relative von Mises strain for 

the entire history using equation (4.4) and changing 𝜀𝑖𝑗 by ∆𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑇 −

𝜀𝑖𝑗
𝑃 , (where 𝜀𝑖𝑗

𝑃  is the point under consideration and 𝜀𝑖𝑗
𝑇  is the other point 

in the strain history). 

 Step 3: The final point to close the cycle is identified when the cycle 

counting routine reaches the highest value of the relative von Mises 

strain, or when it reaches a previously counted path. 

 Step 4: Count that as a half cycle, go to the next point and repeat steps 

2 to 4 until every point in the history is evaluated. 

 

An example of this cycle counting in a 𝛾𝑥𝑦 𝑥 𝜀𝑥 is represented in [28]. The 

example uses a non-proportional history with the following strains in percentage 

values: (𝜀𝑥 , 𝛾𝑥𝑦) = (2,1) → (−1,2) → (2,−2) → (−2,−2) → (2,2) → (−2,0).  

Assuming that 𝑣𝑒𝑙=0.3 and 𝜀𝑒𝑙 ≅ 𝜀𝑝𝑙, equation (4.7) gives the mean Poisson 

coefficient (�̅�) equal to 0.4. Considering that 𝜎𝑥 = 𝜎𝑦 = 0 (since the history is given 

using the example of an torsion and tensile strain controlled experiment, only the 
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stress 𝜎𝑧 and the shear stress will be different than zero), Hooke’s law implies 𝜀𝑦 =

𝜀𝑧 = −�̅�𝜀𝑥 and the equivalent von Mises strain presented in equation (4.4) can be 

simplified as: 

 𝜀𝑀𝑖𝑠𝑒𝑠 = √𝜀𝑥2 + 3(
𝛾𝑥𝑦

2(1+�̅�)
)
2

  (4.8) 

The procedure begins by re-ordering the history. The history starts and 

ends at points 1 and 7 with strains equal to (2,2), as shown in Figure 4.13. 

Substituting Points 1, 5 and 6 in equation (4.8), one can see that the three points 

have the same equivalent von Mises strain, so choosing between points 1, 5 or 6 

to start the history is just a matter of choice. The history can also be represented 

and counted using the strain plot in Figure 4.14. 

 

Figure 4.13: Re-ordered strain history for the given example. 
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Figure 4.14: Representation of the history in a 𝜸𝒙𝒚 𝒙 𝜺𝒙 diagram. 

The cycle counting starts at point 1. Using point 1 as the reference, the 

history of the relative von Mises strain is determined with equation (4.9) and 

illustrated in Figure 4.15. The relative von Mises strain with point 1 as the 

reference, equation (4.9) is obtained by rearranging equation (4.8). 

 𝜀𝑅𝑒𝑙 𝑀𝑖𝑠𝑒𝑠(𝑃𝑜𝑖𝑛𝑡 1) =  √(𝜀𝑥 − 2%)2 + 3(
𝛾𝑥𝑦−2%

2(1+�̅�)
)
2

  (4.9) 

After calculating the history of the relative von Mises strain, the cycle 

counting is performed and stops at the highest point. The result is a half cycle with 

points 1-2-2’-7, shown in Figure 4.15. Point 2’ is the projection of the reversal point 

2 onto the path between points 5 and 6; the position of the projection in the history 

needs to be calculated and is described with parameter 𝛼 as:  

 (𝜀𝑥(2
′), 𝛾𝑥𝑦(2

′)) = (𝜀𝑥(5), 𝛾𝑥𝑦(5)) + 𝛼 ∙ [(𝜀𝑥(6), 𝛾𝑥𝑦(6)) − (𝜀𝑥(5), 𝛾𝑥𝑦(5))] (4.10) 

Thus, the values of the strains in terms of 𝛼 are  𝜀𝑥(2
′) = 2 - 4𝛼 and 𝛾𝑥𝑦(2

′) = -2. 

Since the value of the relative Mises strain with respect to  point 1 must be equal  

at point 2 and point 2’, the value of 𝛼 can be found using equation (4.9), where the 

value on the left side is equal to 4.19% (the value of the relative Mises strain  in 

Figure 4.14  at point 2), the value of 𝜀𝑥 and 𝛾𝑥𝑦 is equal to 2 - 4𝛼 and -2, 

respectively. Hence 𝛼 is equal to 0.844,  𝜀𝑥(2
′) = -1.378%, and 𝛾𝑥𝑦(2

′) = -2%. 

Thus, the values of the strains in terms of 𝛼 are 𝜀𝑥(2
′) = 2 - 4𝛼 and 𝛾𝑥𝑦(2

′) 

= -2. Since the value of the relative Mises strain with respect to point 1 must be 

equal at point 2 and point 2’, the value of 𝛼 can be found using equation (4.9), 
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where the value on the left side is equal to 4.19% (the value of the relative Mises 

strain in Figure 4.14 at point 2), the value of 𝜀𝑥 and 𝛾𝑥𝑦 is equal to 2 - 4𝛼 and -2, 

respectively. Hence 𝛼 is equal to 0.844, 𝜀𝑥(2
′) = -1.378%, and 𝛾𝑥𝑦(2

′) = -2%. 

 

Figure 4.15: Count of the first event. 

The need to calculate the location of the projection of the reversal point is 

due to the rule from step 3 of the procedure. During the count of the first event 

shown in Figure 4.15, path 2’-6 was counted, so if a subsequent count passes 

along this path, it will have to stop at point 2’. 

Once the first cycle has been counted, the next step is to do the second 

count. This count starts at point 2, so the entire history is converted to a relative 

von Mises strain with respect to point 2. To do so, equation (4.9) is changed to:  

 𝜀𝑅𝑒𝑙 𝑀𝑖𝑠𝑒𝑠(𝑃𝑜𝑖𝑛𝑡 1) =  
√(𝜀𝑥+2%)

2
+3 (

𝛾𝑥𝑦−0%

2(1+�̅�)
)
2

  (4.11) 

The counting ends at point 7 and the result is a half cycle with points 2-3-

3’-4-7. The projection of reversal point 3’ is calculated by changing equation (4.10) 

to equation (4.12), and the procedure is repeated as described before. 

 

Figure 4.16: Count of the second event. 

(𝜀𝑥(3
′), 𝛾𝑥𝑦(3

′)) = (𝜀𝑥(4), 𝛾𝑥𝑦(4)) + 𝛼 ∙ [(𝜀𝑥(5), 𝛾𝑥𝑦(5)) − (𝜀𝑥(4), 𝛾𝑥𝑦(4))]  (4.12) 
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The routine of this cycle counting method continues until every point is 

counted - in this example, until the counting reaches point 6.  

This method can also be applied using the stress in equation (4.1) instead 

of equation (4.4), and changing 𝜎𝑖𝑗 to ∆𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑇 − 𝜎𝑖𝑗

𝑃. 

The previous counting example was done using only two strain 

components. Nevertheless, the method can be applied even with a full tensor, with 

the procedures being analogous. 

 

4.7  

Modified Wang-Brown 

Meggiolaro and Castro [28] proposed two modifications to the Wang-Brown 

method. The first one was to reduce the strain (or stress) history to a five 

dimensional Euclidian space. Hence, the entire history can be represented as 

points in space (𝑃𝑖 = (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5) for strains and 𝑃𝑖 = (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) for 

stresses. The dimensional reduction is accomplished with the following equations: 

𝑆1 ≡ 𝜎𝑥 −
𝜎𝑦

2
−
𝜎𝑧

2
, 𝑆2 ≡

𝜎𝑦−𝜎𝑧

2
√3, 𝑆3 ≡ 𝜏𝑥𝑦√3, 𝑆4 ≡ 𝜏𝑥𝑧√3, 𝑆5 ≡ 𝜏𝑦𝑧√3             (4.13) 

𝑒1 ≡
2𝜀𝑥−𝜀𝑦−𝜀𝑧

2(1+�̅�)
, 𝑒2 ≡

𝜀𝑦−𝜀𝑧

2(1+�̅�)
, 𝑒3 ≡

𝛾𝑥𝑦√3

2(1+�̅�)
, 𝑒4 ≡

𝛾𝑥𝑧√3

2(1+�̅�)
,  𝑒5 ≡

𝛾𝑦𝑧√3

2(1+�̅�)
      (4.14) 

where �̅� was defined in equation (4.7). 

This reduction makes the Wang-Brown counting routine simpler. In such 

reduced space, the distance between two points is the relative von Mises strain (or 

stress). Hence, there is no need to evaluate the relative von Mises strain (or stress) 

for every point, since this value can be easily obtained by calculating the distance 

between the points. 

The second modification proposed by Meggiolaro and Castro involves the 

first step in the Wang-Brown cycle counting routine. Originally, the first step tries 

to guarantee the identification of the highest range of the load history. However, 

using a simple example it is possible to show that this will not occur in some 

histories. 

Consider the following non-proportional history (𝜀𝑥 , 𝜀𝑦): (0.6%, 0%) → (0%, 

0.8%) →  (-0.5%, 0%). The Wang-Brown routine starts at the second point, the one 

that has the highest equivalent strain, resulting in two half cycles of combinations 

between the first and second points, with a relative von Mises strain equal to 
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√0.52/(1 + �̅�). However, if the relative von Mises strain between the first and the 

third points is calculated, the result is equal to √0.605/(1 + �̅�), resulting in a higher 

value when compared with the result of the Wang-Brown cycle counting. 

Thus, the modification proposed by Meggiolaro and Castro (MWB) is to first 

find the pair of points that will produce the highest range of relative von Mises 

strains, and then use the point with the highest equivalent strain to start the cycle 

counting. With these modifications, the final routine of the MWB is expressed by 

the following steps: 

 

 Step 1: Convert the entire history into a five dimensional Euclidian 

space. If it is a strain history, use equation (4.14), otherwise, use 

equation (4.13). 

 Step 2: Find in the history the pair of points that are farthest from each 

other. Between those points, choose the one with the greatest 

distance from the origin. This is the point where the cycle count 

begins.  

 Step 3: The point under consideration is going to be the initial point 

(𝑃𝑖). 

 Step 4: The final point, (𝑃𝑓), is found when a point with the greatest 

distance in relation to  𝑃𝑖 is found, or when a segment from a previous 

count is found. 

 Step 5: Count a half cycle from 𝑃𝑓 to 𝑃𝑖, go to the next point, and then 

return to step 3 until every point has been counted. 

 

The example in subchapter 4.6 (Wang-Brown) is repeated to show how the 

MWB counting is performed. First, using equation (4.14), the entire strain history 

is converted into a five dimensional Euclidian space, using the assumptions made 

previously (that lead to the result 𝜀𝑦 = 𝜀𝑧 = −�̅�𝜀𝑥). The conversion can be 

simplified as: 𝑒1 = 𝜀𝑥 , 𝑒3 = 𝛾𝑥𝑦√3 2(1 + �̅�), 𝑒2 = 𝑒4 = 𝑒5 = 0⁄ . Therefore, the history 

can be presented using the diagram in Figure 4.17: 
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Figure 4.17: Strain history presented in a 𝒆𝟏𝒙 𝒆𝟑 diagram. 

 In step 2, a search is made among the pairs of points in the history, looking 

for  the pair that has points that are located farthest from each other. The pair 

formed by points 𝑃1 and 𝑃6 returns the largest distance between them. Since both 

points have the same Mises strain, it does not matter which one of these points is 

chosen to start the counting process. In this example, point 𝑃1 was chosen to start 

the cycle counting. 

Proceeding to step 3, point 𝑃1 is the point under consideration, point 𝑃6 is 

the farthest point from the point under consideration, and the result of the counted 

cycle is 𝑃1-𝑃2-𝑃2′-𝑃6, as shown in Figure 4.18. 

 

Figure 4.18: Count of the first event. 
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 An easier way to locate the projections of the reversal points is also 

proposed in [28]. The idea is to calculate the value of 𝛼 using Stewart’s Theorem 

[29] for the triangle formed, in this case, by 𝑃1, 𝑃5, 𝑃6.  

 

Figure 4.19: Example of the calculation to locate the projection of reversal point 𝑷𝟐′. 

 The letters in Figure 4.19 are the distances between each point, a = 

|𝑃6 − 𝑃5|, b = |𝑃5 − 𝑃1|, 𝑐 = |𝑃6 − 𝑃1| and 𝑝 = |𝑃2 − 𝑃1|. The solution for 𝛼 is obtained 

using the following equation: 

 𝛼 =
(𝑎2+𝑏2−𝑐2)±√(𝑎2+𝑏2−𝑐2)2−4𝑎2(𝑏2−𝑝2)

2𝑎2
  (4.15) 

The value of 𝛼 is the lowest value between the two solutions that are inside   

intervals 0 and 1. In the example the values of 𝛼 using equation (4.15) are 0.8444 

and -0.8444 (the second solution is outside the interval allowed, so the value of 𝛼 

is 0.8444). This is the same value obtained in the example shown previously, the 

difference being the simplicity of implementation. 

With the first cycle counted and the projection of the reversal point located, 

the cycle counting continues with the second cycle. The second cycle starts at 

point 𝑃2, and the farthest point from the point under consideration is point 𝑃7. The 

result of this count is a half cycle with points 𝑃2-𝑃3-𝑃3′-𝑃5-𝑃7, where point 𝑃3 is 

determined using the same method previously described (using triangle 𝑃2, 𝑃4, 𝑃5). 

The cycle counting continues until all the points are counted; in the case of 

this example, until point 𝑃6 is counted. 

Meggiolaro and Castro also recommend using an enclosing surface 

solution fitting the full and half cycles in order to calculate the parameters needed 
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to obtain the fatigue damage associated with each cycle. Then, to evaluate the 

total damage, a damage accumulation rule (Miner’s rule for example) is adopted. 

If a critical plane approach is used, repeat the entire procedure for each plane 

using only the shear strains (or stresses) or the normal strain (or stress) acting on 

the plane of analysis - depending on the damage model that is being used - instead 

of the full tensor. The plane that maximizes the damage will be the critical plane 

and the damage accumulated on that plane will be the result.  

 

4.8  

Path-Dependent Maximum Range (PMDR) 

 The PMDR method is a cycle counting method proposed by Dong, Wei and 

Hong [30] for performing fatigue evaluations on components under variable-

amplitude and arbitrary multiaxial conditions. With this method it is possible to 

determine the strain (or stress) ranges, in addition to another parameter that the 

authors called the path-dependent effective strain (or stress). 

The PMDR can be defined as a cycle counting method that searches for 

the farthest two points in the stress (or strain) space of a given history. The path 

traveled between those two points is then recorded as the path-dependent 

effective stress (or strain). A history of normal and shear stresses presented in [30] 

is reproduced here to illustrate the method. 

 

Figure 4.20: Illustration of the PMDR method. 

 The method can be described using the history from Figure 4.20 from P to 

Q: 

 

 Step 1: Convert the entire stress history into a 𝜎 − √3𝜏 space, as shown 

in Figure 4.20. 
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 Step 2: Find the point (Q) farthest from the point under consideration 

(Point P). While searching, make sure that the distance is always 

increasing. If a point where the distance starts to decrease is found, the 

previous point (Point R) is identified as a local maximum or a turning 

point, and the projection of the turning point in the load path PQ (Point 

R*) has to be found.  

The projection is the intersection between the load path and the 

circumference centered at the point under consideration (Point P), with 

the radius equal to the distance of the local maximum (Point R). The 

search for the farthest point continues, starting from the projection of 

the turning point (R*) until the load path ends, no more turning points 

are found, or the farthest point is found (Point Q). 

 Step 3: Count one half cycle and record the maximum distance (∆𝜎𝑒) 

between the two points counted (P and Q) as the stress range, and the 

path traveled between the two points (PR + RR*’ + R*Q, where RR*’ is 

the virtual path between R and R*) as the path-dependent effective 

stress. 

 Step 4: Repeat Steps 2 and 3 for the remaining load paths (R-R*). 

 Step 5: Repeat Steps 2 to 4 until every path has been counted only 

once. 

 

This method can also be used on strains; the only modification needed is 

that the strain history has to be converted into a 𝜀 − 𝛾 √3⁄  space.  

It is recommended that the PMDR be adopted in a critical plane approach. 

In this case the stresses (or strains) must be those that act on the plane of analysis, 

with the load history replaced by the three stress (or strain) components’ history - 

one normal stress and two shear stresses.  

The method can be used to transform the history into a 𝜎 − √3𝜏𝑠 − √3𝜏𝑧 

space (if the cycle counting is applied to the strain history, the strain space to be 

considered is the 𝜀 − 𝛾𝑠 √3⁄ − 𝛾𝑧 √3⁄   space) as shown in Figure 4.21, where sub 

index 𝑠 is the shear stress (or strain) in one direction and sub index 𝑧 is the shear 

stress (or strain) perpendicular to 𝑠. 
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Figure 4.21: Illustration of the PMDR method in 3-D. 

The major advantage of the PMDR and the MWB cycle counting methods 

is that they return not only stress or strain ranges, but they also return the paths 

between the two points that were counted. This is a very important parameter, 

since, as discussed in the previous chapter, the damage is also induced by the 

loading path. 

It is interesting to note that if the PMDR method is applied to the example 

in subchapter 4.7, it will return exactly the same result as the cycle counting given 

by the Modified Wang-Brown. 

Nevertheless, the computational implementation of the Modified Wang-

Brown is simpler. In addition to that, the PMDR cycle counting method mix damage 

caused by tensile and shear strain (or stress), Figure 4.22 shows a case where 

this phenomenon is better observed. 

 

Figure 4.22: Illustration of the mixture of damage caused by tensile and shear stress. 

In the above figure, one can see two loading paths. When calculating the 

damage using a model that mixes tensile and shear stress, the two paths will 

DBD
PUC-Rio - Certificação Digital Nº 1312457/CA



81 
 

 

display the same damage. However, this is not true since the two loading paths 

have the same shear amplitude, but path 2 has a higher value of mean normal 

stress, which will cause more damage. 

For that reason, and for a more efficient way of detecting the projection of 

the reversal points, the MWB turns out to be the better choice. A small change on 

the flowchart presented in [28] is proposed in Figure 4.23. 

With this small change, the algorithm for the Modified Wang-Brown cycle 

counting method will ensure the return of the path, by returning the points that the 

cycle counting passes when travelling between two extreme points.  

 

Figure 4.23: Flowchart of the proposed modification of the Modified Wang-Brown. 
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5 

 

Non-Proportional Stress/Strain Time History 

 

5.1 

Introduction 

Some of the models in Chapter 3 use not only the stress or the strain 

history, but also a combination of both parameters to evaluate the damage caused 

by fatigue. Therefore, the presentation of mathematical models capable of relating 

strains and stresses along the loading history are required for the damage models 

and cycle counting methods.  

There are two different problems to solve. The first one involves the case 

where the strain history is already given and thus the stress history must be 

calculated. This happens in strain-controlled tests or in equipment in operation 

where strains are measured using strain-gauges. The second problem occurs 

when stresses are calculated based on geometry, material and loading conditions.  

These problems can be subcategorized into two conditions: elastic and 

plastic. The proper way to evaluate the stress-strain relationship regarding non-

proportional histories will be presented in this chapter for both elastic and plastic 

conditions.  

 

5.2  

Elastic Stress-Strain Relations 

 If the stress or strain values are small enough (typically less than the value 

of the yield stress or yield strain), the relationship can be established using a linear 

elastic isotropic model. The model used for this case is Hooke’s law: 

 𝜀𝑥 =
1

𝐸
[𝜎𝑥 − 𝑣(𝜎𝑦 + 𝜎𝑧)]   

 𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝑣(𝜎𝑥 + 𝜎𝑧)]   

 𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝑣(𝜎𝑥 + 𝜎𝑦)]  (5.1) 

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
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𝛾𝑥𝑧 =
𝜏𝑥𝑧
𝐺

 

𝛾𝑦𝑧 =
𝜏𝑦𝑧

𝐺
 

where 𝐸 is the elastic modulus of the material, 𝑣 is the Poisson coefficient and 𝐺 

is the elastic shear modulus, calculated using the following equation: 

 𝐺 = 
𝐸

2(1+𝑣)
  (5.2) 

The equations can be rearranged in such a way that the stress values are 

calculated using known strain values: 

 𝜎𝑥 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑥 + 𝑣(𝜀𝑦 + 𝜀𝑧)]  

 𝜎𝑦 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑦 + 𝑣(𝜀𝑥 + 𝜀𝑧)]  

 𝜎𝑧 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑧 + 𝑣(𝜀𝑥 + 𝜀𝑦)]  (5.3) 

 𝜏𝑥𝑦 =
𝐸

(1+𝑣)

𝛾𝑥𝑦

2
 

 𝜏𝑥𝑧 =
𝐸

(1+𝑣)

𝛾𝑥𝑧

2
  

 𝜏𝑦𝑧 =
𝐸

(1+𝑣)

𝛾𝑦𝑧

2
  

Equations (5.1) and (5.3) show that stress-strain relations are simpler and 

unique, meaning that, for a given value of a stress state, there is only one strain 

state value. This is not the case under a plastic condition.  

 

5.3  

Plastic Stress-Strain Relations 

 Under a plastic condition, the stress-strain relationship is no longer linear 

and uniquely defined. The visualization of this non-unique property can be seen in 

Figure 3.2(b) (and again in Figure 5.1).  
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Figure 5.1: Representation of the non-unique stress-strain relationship. 

As noted in Figure 5.1, two different strain values (𝜀𝑎1 and 𝜀𝑎2) can be 

related to a given state of stress, 𝜎𝑎. Thus, strains cannot be related only to the 

present stress state. The proper relationship can be established by knowing the 

present stress state  together with the previous stress-strain state. The reasons for 

using both conditions are explained further in the present chapter. 

Since the main goal of this work is to evaluate the fatigue damage caused 

by repetitive loads, the models used here have to establish a proper knowledge of 

the strain-stress relationship under a cyclic deformation condition. Stress-strain 

relationships  are modeled  using certain plastic behaviors  described by different 

models such as: isotropic hardening, kinematic hardening, cyclic creep or 

ratcheting, mean stress relaxation and non-proportional cyclic hardening. 

Before delving further into  explanations about the plasticity models 

mentioned above, two important concepts used in plasticity models must be 

explained: the Yield surface and the Ramberg-Osgood Model. 

 

5.3.1  

Yield Surface 

The equation most commonly used to describe the yield surface 𝐹 for 

various types of steel is based on the von Mises criterion, as presented in equation 

(5.4): 

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5

St
re

ss
 (

M
P

a)

Strain (%)

𝜎𝑎
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𝐹 = 
1

2
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑥 − 𝜎𝑧)

2 + (𝜎𝑦 − 𝜎𝑧)
2
+ 6(𝜏𝑥𝑦

2 + 𝜏𝑥𝑦
2 + 𝜏𝑥𝑦

2)] −

𝑆𝑦 = 0   (5.4) 

where 𝑆𝑦 is the yield stress. For a plane stress, the yield surface is given by: 

 𝐹 = 𝜎𝑥
2 + 3𝜏𝑥𝑦

2 − 𝑆𝑦
2 = 0  (5.5) 

 It is important to note that the yield stress must be defined as the limit where 

a transition between the elastic and elasto-plastic behaviors of the material occurs. 

This stress limit can be defined as the stress that causes plastic strain greater than, 

say, 0.001% or any other reasonably small value. The traditional yield strength 

definition calls for a plastic strain of 0.2%, which is a very large value when 

accurate elasto-plastic analyses are required. 

A simplification is obtained by assuming that all the stress components are 

equal to zero except components 𝜎𝑥 and 𝜏𝑥𝑦. In this case, the yield surface turns 

out to be a circumference on a 𝜎𝑥 𝑥 √3𝜏𝑥𝑦 plot, centered at (0,0) and with a 𝑆𝑦 

radius.  

 

Figure 5.2: Illustration of the yield surface. 

 In Figure 5.2, every point inside the circumference is considered to be under 

elastic loading and every point outside the circumference is considered to be under 

plastic loading. 
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5.3.2  

Ramberg-Osgood Model 

 The Ramberg-Osgood model [4, 31] establishes the stress-strain 

relationship under elasto-plastic conditions. Some modifications, to be presented 

later in this chapter, are necessary to describe a proper stress-strain relationship 

in the case of non-proportional loading. 

The Ramberg-Osgood equation separates the entire strain into two 

different parts. One is the elastic part, where stress and elastic strains are related 

using the elasticity modulus. The plastic part is modeled in an exponential form 

using the Ramberg-Osgood parameters, 𝐾𝑚, the hardening coefficient, and 𝑛𝑚, 

the hardening exponent. 

 𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙 =
𝜎

𝐸
+ (

𝜎

𝐾𝑚
)

1

𝑛𝑚  (5.6) 

 It is possible to get the values of the material parameters needed for the 

Ramberg-Osgood equation by best fitting the experimental results from a regular 

tensile test. 

However, this model only represents the monotonic curve, which is 

determined using the 𝜎 𝑥 𝜀 curve obtained from the regular tensile test (specimen 

subjected to one axial loading). When the specimen is under reversed loading 

unloading, the stabilized cyclic deformation is also represented by the Ramberg-

Osgood equation: 

 ∆𝜀 =
∆𝜎

2
+ 2(

∆𝜎

2𝐾′
)

1

𝑛′
   (5.7) 

where ∆𝜀 is the strain range, ∆𝜎 is the stress range amplitude, 𝐾′ is the cyclic 

hardening coefficient, and 𝑛′ is the cyclic hardening exponent. The cyclic Ramberg-

Osgood parameters are obtained by using the 𝜎 𝑥 𝜀 cyclic curve. It is not unusual 

in fatigue analysis to assume 𝐾𝑚 and 𝑛𝑚 as equal to 𝐾′ and 𝑛′, respectively, when 

the formers’ cyclic parameters are unknown. For a proper calculation,  the 

hysteresis loop equation (5.7) must be used, as in Figure 5.3. 
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Figure 5.3: Example of the Ramberg-Osgood Curve. 

 

5.3.3  

Isotropic Hardening 

 Isotropic hardening is demonstrated by the isotropic change in the size of 

the yield surface. Hardening can be quantitatively represented by the increase in 

the stress limit required to cause a previously defined increase in plasticity. In other 

words, hardening means that an increase in the applied stress is required to cause 

an increase in the plastic strain.  

This phenomenon is better explained by an example where a specimen is 

loaded and unloaded in a simple tensile test. Figure 5.4 shows a specimen that is 

stressed until point 1 is reached, which is a point higher than a previously defined 

elasto-plastic limit (for example defined as the point where the plastic strain 

reaches, say, 0.001% or 0.2%). After unloading to zero and reloading the 

specimen, the new elasto-plastic limit becomes 𝜎1.  

If the specimen continues to be loaded until it reaches point 2 and is then 

unloaded under compression, compressive plastic strain will start after point 3 

(𝜎3 = −𝜎2) is reached. The generalization of a constant hardening, despite the 

previous proportionality of the pair of stresses (𝜎𝑥, 𝜏𝑥𝑦) that caused the increase in 

elasto-plastic stress limit, is described by the isotropic hardening phenomenon. 
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Figure 5.4: Illustration of the Isotropic Hardening phenomenon. 

 

5.3.4  

Kinematic Hardening 

The kinematic hardening model is represented by the yield surface that 

translates but does not change the size or the shape. Using the previous example 

and observing Figure 5.5, one can see that the process of loading, unloading and 

reloading only produces the translation of the yield. The displacement of the yield 

surface is represented by vector 𝛼𝐵 in Figure 5.5, but there is no growth of the 

yield surface, as  occurred during isotropic hardening. 

The difference between the two phenomena appears in the next part of the 

example. When the specimen continues to be loaded until it reaches point 2, and 

the yield surface is dislocated again farther from the origin, the unload to point 3’ 

gives a yield stress in compression (𝜎3′ = 𝜎2 − 2𝜎𝑦) that is smaller than the same 

parameter  for isotropic hardening (point 3 in Figure 5.4).  
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Figure 5.5: Illustration of the Kinematic Hardening phenomenon. 

 When a piece of material is subjected to cyclic deformation, the material 

will exhibit both isotropic and kinematic hardening behavior in the first cycles, and 

after a certain number of cycles, the material starts a phase described as cyclically 

stable. In that phase, the material displays only the kinematic hardening behavior. 

In general, when a fatigue assessment is being performed, the material is assumed 

to already be in  a cyclically stable condition9; therefore, for cyclically-stabilized 

materials, only the kinematic has to be input to describe the material’s behavior. 

  

5.3.5  

Non-proportional Cyclic Hardening 

 Figure 5.6 is the figure used most in the literature to exemplify this 

phenomenon. It shows results for tension and torsional strain controlled tests on a 

cylindrical bar. Both in-phase and 90 degrees out-of-phase data were obtained 

using sinusoidal waveforms to generate the normal and shear strains. When the 

cyclic deformation becomes stable, the amplitude of the equivalent stress is 

determined from the imposed strain amplitude. 

                                                
9 This assumption is due to the fact that only in the first cycles of deformation can the behavior of the 

material be described as non-stable [4, 27]. Since in fatigue analysis the material is subjected to a 
large number of cycles, the consideration of presenting an isotropic hardening behavior in the initial 
cycles has little impact on the final result. 
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Figure 5.6: Illustration of the Non-proportional Cyclic Hardening phenomenon. 

 A phase difference between the strains is created in a non-proportional 

loading situation (when the direction of the principal strain changes during the 

strain history). One can see in the figure that there is a difference between the two 

curves, with the 90° out-of-phase curve presenting higher values of equivalent 

stress for the same values of equivalent strain. This characteristic is caused by the 

non-proportional cyclic hardening phenomenon. 

Quantification of the non-proportional cyclic hardening phenomenon is 

made by changing the value of the cyclic hardening coefficient (𝐾) in the Ramberg-

Osgood model (exponent 𝑛 is the same for proportional and non-proportional 

histories). The change in 𝐾 is accomplished using the following equation: 

 𝐾′ = 𝐾(1 + Φ ∙ 𝐹𝑁𝑃)  (5.8) 

where 𝐾′ is the non-proportional cyclic hardening coefficient, Φ is a material 

property, and 𝐹𝑁𝑃 is the factor of non-proportionality for a given load. [4, 10]  

 The non-proportionality factor is measured by means of three steps: first, 

the entire load history is drawn in a 𝜀 𝑥 𝛾 √3⁄  diagram; then, the complete load path 

in the diagram is circumscribed by an ellipse, with the minor axis of the ellipse 

denoted as 𝑏 and the major axis as 𝑎; lastly, the value of the factor is  equal to ratio 

𝑏 𝑎⁄ . An illustration of how to evaluate the factor is shown in Figure 5.7. 
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Figure 5.7: Illustration of the quantification of the non-proportional factor. 

 The material property Φ can be obtained using the results of the tests that 

generate the two curves plotted in Figure 5.6. The value of 𝐾 is determined by 

fitting the in-phase curve in the chart using the Ramberg-Osgood equation, while 

the value of 𝐾′ is obtained by fitting the 90° out-of-phase curve. Because the value 

of 𝐹𝑁𝑃 is 1.0 for the 90° out-of-phase loading, the value of Φ is calculated from 

equation (5.8).  

Typical values for Φ are shown in [4] and can vary from 1.0 for materials 

that develop a large amount of non-proportional hardening, such as 316 and 304 

stainless steel, to 0.0 for materials that do not develop any significant non-

proportional hardening effects, such as Al 7075 and Al 1100.  

 

5.3.6  

Mean Stress Relaxation and Ratcheting or Cyclic Creep 

 The cyclic creep or ratcheting phenomenon can be explained using the 

following example. Consider a bar with one end fixed (without displacement or 

rotation) and with a weight connected to the other end, creating static axial stress. 

The end with the weight is then subjected to cyclic angular displacement, in such 

a way that a controlled cycle shear strain is produced.  

If both loadings produce only an elastic scenario, or if the ratcheting 

phenomenon is not observed, the results of the loading conditions are easy to  

estimate. The static axial stress will impose a static axial strain, whereas the 

angular displacement cycles will result in a constant range of shear strain, since 

the shear strain is controlled.  

This is not the case when loading results in plastic behavior and when 

ratcheting is observed. In such cases, the static axial stress will generate an initial 

axial strain. However, for each cycle of shear strain, not only a range of shear strain 
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is observed, but also an increase in the axial strain value. This increase is caused 

by the ratcheting phenomenon, and it is characterized by the growth of the plastic 

deformation in material subjected to cyclic strain loading associated with mean 

stress.  

The same phenomenon is observed if the bar is subjected to both static 

shear stress and cyclic axial strain. It is important to point out the fact that the rate 

of the ratcheting effect can increase with the number of cyclic loadings, or it can 

decrease (eventually making the maximum strain stable) after a certain number of  

loading cycles. This rate depends on the material’s properties and on the amount 

of plasticity observed in it. 

Mean stress relaxation is similar to the ratcheting phenomenon. It can be 

observed during a cyclic strain controlled test where a mean stress is present. The 

𝜎 𝑥 𝜀 curve in such cases will present the same strain ranges, but the mean stress 

value will tend towards zero for each strain cycle. That is what the mean stress 

relaxation means. The mean stress relaxation rate will depend on the  initial mean 

stress value and the  plastic strain range. 

Because none of the models in the current literature [10] evaluate such 

phenomena accurately, the modeling of the plasticity characteristics described in 

this subchapter is still matter for research. 

 

5.4  

Models for the Plastic Stress-Strain Relationship 

This subchapter describes some of the models that establish a relationship 

between stress and strain with the presence of cyclic plastic deformation. Although 

this   description is made considering non-proportional histories, these methods 

can also be  implemented for proportional load histories.  

Before proceeding any further with presenting the models, it is important to 

point out a couple of points. The first one is that the methods presented here do 

not consider the change of material properties caused by variations in  

temperature. Models that evaluate these changes are more complicated and are 

beyond the scope of those presented here (see [32] for additional information).  

The second point is that such models can only be used if the strain values 

are known. In cases where stresses are calculated, the plasticity model must be 
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included in the stress analysis, [33], or an elastic-plastic finite element solution 

must be implemented. 

 

5.4.1  

Kanazawa Method 

 Kanazawa proposed a method [34] that uses two concepts previously 

explained  in this chapter. The model applies the non-proportional cyclic hardening 

coefficient (𝐾′) calculated in equation (5.8) in the Ramberg-Osgood equation. 

Consequently, the stress-strain relation is given by the following equation:  

 
∆𝜎𝑒𝑞

2
= 𝐾′ (

∆𝜀𝑒𝑞𝑝𝑙

2
)
𝑛

  (5.9) 

where ∆𝜎𝑒𝑞 and ∆𝜀𝑒𝑞𝑝𝑙 are the equivalent ranges of stress and plastic strain, 

respectively. If the strain value is not separated into plastic and elastic components, 

the stress value can be obtained by numerically solving the equation: 

 ∆𝜀𝑒𝑞 =
∆𝜎𝑒𝑞

2
+ 2(

∆𝜎𝑒𝑞

2𝐾′
)

1

𝑛
  (5.10) 

This is the Ramberg-Osgood equation, which  uses the equivalent strain 

and stress and the value of the non-proportional cyclic hardening coefficient 

instead of the proportional cyclic hardening coefficient. The strain range can also 

be obtained by a given stress range value using equation (5.10) directly. 

Reference [4] proposes using equation (5.10) in a critical plane approach. 

In doing so, the strain range that is normal to a plane (∆𝜀⊥) can be related to the 

range of stress that is normal to a plane (∆𝜎⊥), and vice versa, in the same way as 

explained previously. Hence, parameter 𝜎⊥𝑚𝑎𝑥 required in the Fatemi-Socie and 

SWT models is  obtained for a given strain history. 

One can see that this model is very simple; however, reference [35] shows 

that it can lead to predictions of stress values 40% higher than the experimental 

values. A problem with this model arises, for example, if two different loading paths 

are considered, both having the same amplitudes in shear and axial strain, but with 

different formats in the 𝜀 𝑥 𝛾 √3⁄  diagram. It is possible that, in using this model, 

the two different loading paths will result in the same non-proportional cyclic 

hardening coefficient, since this value is defined by the semi-axis of an ellipse that 

has circumscribed the load path, as shown in Figure 5.8. 
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Figure 5.8: Example where the same ellipse can circumscribe two different load paths. 

Another model (the Jiang and Sehitoglu using Tanaka’s non-proportionality 

model) yields better predictions. In order to present this model, for a better 

understanding, the Flow Rule and the Mróz model will be presented first. 

 

5.4.2  

Flow Rule 

 A Flow Rule is a constitutive equation that describes the relationship 

between increments of stress and plastic strain. To apply this rule, the total strain 

must be separated into the plastic and elastic parts, with the calculation of the 

elastic part being performed by using Hooke’s law.  

Flow rules are usually supported by the concept proposed by Drucker [36], 

which states that the vector of incremental plasticity strain is normal to the yield 

surface during plastic deformation. This concept can be expressed by the following 

equation, the flow rule formula: 

 𝑑𝜀𝑖𝑗
𝑝
=

1

𝐶

𝜕𝐹

𝜕𝜎𝑖𝑗

𝜕𝐹

𝜕𝜎𝑘𝑙
𝑑𝜎𝑘𝑙

𝜕𝐹

𝜕𝜎𝑚𝑛

𝜕𝐹

𝜕𝜎𝑚𝑛

  (5.11) 

where 𝑑𝜀𝑖𝑗
𝑝

 is the vector of incremental plasticity strain, 𝐹 is the yield surface 

function, and the material property 𝐶 is the strain hardening coefficient.  
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5.4.3  

Mróz Model  

 Mróz proposed a model [37] that consists of a description of the stress-

strain relationship using a series of yield surfaces. The first step of this model is to 

define the number of yield surfaces to be used. This number, included in the model, 

defines the accuracy of the resulting stress-strain relationship. A larger number of 

yield surfaces implies better accuracy, but more time is consumed in obtaining the 

final result. 

The yield surfaces can be obtained using the 𝜎 𝑥 𝜀 curve (Figure 5.9), 

which is the result of an experimental test, or is defined based on the Ramberg-

Osgood parameters.  

Two parameters have to be selected before calculating the yield surfaces: 

𝑆𝑦, which is the material’s yield stress, and 𝜎𝑚𝑎𝑥, which is the parameter defined 

by the user, and equal to the maximum equivalent stress that the model can 

evaluate. If, for example, this value is 500 MPa, any larger stress value cannot be 

evaluated unless 𝜎𝑚𝑎𝑥 is changed to a higher value. 

The number of yield surfaces (𝑀) defines the number of divisions between 

the values of 𝜎𝑚𝑎𝑥 and 𝑆𝑦. The range formed between those values is split into 

levels of stress 𝜎𝑙 (Figure 5.9), which can be defined using the following equation: 

 𝜎𝑙 = 𝑆𝑦 + (𝑙 − 1) (
𝜎𝑚𝑎𝑥−𝑆𝑦

𝑀−1
) ,   𝑙 = 1,2,3,… ,𝑀  (5.12) 

The yield surfaces are obtained by replacing the value of 𝑆𝑦 with 𝜎𝑙, 

respective to each yield surface, using equation (5.4). For a better visualization of 

this calculation, see Figure 5.8. The yield surfaces assumed that only the stresses 

𝜎𝑥 and 𝜏𝑥𝑦 are present. Thus, one can see that the yield surfaces become circles 

centered on the origin of the 𝜎𝑥 𝑥 √3𝜏𝑥𝑦 diagram. 
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Figure 5.9: Illustration of the calculation of the yield surfaces with M = 3. 

  Evaluating the stess-strain relationship is made by translation (but not 

changing the format) of the yield surfaces and using the flow rule equation (5.11). 

The constant 𝐶 required in equation (5.11) is defined for each region between two 

yield surfaces, and calculating these constants can be done using the following 

equation: 

 𝐶𝑛 = {
3

2
∙ [(

𝜀𝑛+1−𝜀𝑛

𝜎𝑛+1−𝜎𝑛
) −

1

𝐸
]}
−1
,   𝑛 = 1,2,3,… ,𝑀 − 1  (5.13) 

 The translation of the yield surfaces its better explained by using Figure 

5.10. 

 

Figure 5.10: Translation of the yield surfaces [10]. 
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 Because the loads at point a are elastic, the stress-strain relationship can 

be evaluated using Hooke’s law. Beyond point a, the smallest yield surface starts 

to be translated and the loading begins to cause a part of plasticity behavior. That 

part can be evaluated using the flow rule, with the coefficient related to the region 

between the smallest and the middle-sized yield surfaces. 

The smallest yield surface continues to be translated until it touches point 

b. At that moment, both smallest and middle-sized surfaces are translated 

together, and the flow rule will now use the coefficient related to the region between 

the middle-sized and largest yield surfaces, until it touches point c. After reaching 

point c, unloading occurs to point d. At this moment, there is no plastic deformation 

because unloading occurs inside the smallest circle, and the stress-strain 

relationship is established by Hooke’s law. 

With the loading path history continuing to point e, the smallest yield surface 

is moved again, and the constant used in the flow rule is the one related to the 

region between the smallest and middle-sized yield surface. The compression 

loading continues making both smallest and middle-sized yield surfaces move 

together, and the constant for the region between the middle-sized and largest 

yield surfaces is adopted according to the flow rule. 

Finally, the loading touches point f and the procedure is repeated cyclically 

from point c to point f. The resulting 𝜎𝑒𝑞 𝑥 𝜀𝑒𝑞 curve based on this model is 

presented in Figure 5.11. 

 

Figure 5.11: The stress-strain relationship when the load history is the one in Figure 5.10 [10]. 

 One can see that the resulting curve has a hysteresis loop format, which is 

to be expected under such loading conditions. This model can be better visualized 

using the application presented in [38], in which the creation of the yield surfaces 

using the Ramberg-Osgood parameters, the movement of the yield surface and 
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the resulting 𝜎𝑒𝑞 𝑥 𝜀𝑒𝑞 curve while loading is applied are all presented. The yield 

surface movement calculation used in this application is based on the Garud [40] 

model. 

Even with the resulting 𝜎𝑒𝑞 𝑥 𝜀𝑒𝑞 curve being the one expected, this method 

has one disadvantage: it does not do a good job at predicting the ratcheting effect. 

That is why the Jiang and Sehitoglu model using Tanaka’s non-proportionality 

model is presented below and employed herein. 

 

5.4.4  

Jiang and Sehitoglu using Tanaka’s Non-proportionality Model 

The method [41 to 48] requires calculating the deviatoric stresses using: 

 𝑆𝑥 = 𝜎𝑥 −
1

3
𝜎ℎ , 𝑆𝑦 = 𝜎𝑦 −

1

3
𝜎ℎ, 𝑆𝑧 = 𝜎𝑧 −

1

3
𝜎ℎ, 𝑆𝑥𝑦 = 𝜎𝑥𝑦, 𝑆𝑥𝑧 = 𝜎𝑥𝑧, 𝑆𝑦𝑧 =

𝜎𝑦𝑧  (5.14) 

where: 

 𝜎ℎ =
𝜎𝑥+𝜎𝑦+𝜎𝑧

3
  (5.15) 

 The yield surface is defined as: 

 𝐹 = (𝑆 − 𝛼): (𝑆 − 𝛼) − 2𝑘2 = 0  (5.16) 

where 𝑆 is the deviatoric stress tensor, 𝛼 is the total backstress tensor, which 

represents the location of the center point of the yield surface, 𝑘 is the yield shear 

stress (𝑘 =  𝑆𝑦 √3⁄ ) and the “:” operator represents the inner product. The flow rule 

proposed for this model is simplified with: 

 𝑑𝜀𝑝 =
1

ℎ
〈𝑑𝑆: 𝑛〉𝑛  (5.17) 

where 〈 〉 is defined as the MacCauley bracket (if the value inside the bracket is 

negative, the result of the operation is zero, and if the value is positive the result is 

the value between the brackets), 𝑑𝜀𝑝 is the incremental plastic strain tensor, 𝑑𝑆 is 

the incremental stress tensor in a deviatoric space, ℎ is the plastic modulus, and 𝑛 

is the unit tensor that is normal to the exterior of the yield surface located at the 

loading point. This tensor can be calculated with: 

 𝑛 =
𝑆−𝛼

|𝑆−𝛼|
  (5.18) 
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The concept used in this mode is the same as the one presented by 

Chaboche [42 to 44], who proposed that the total backstress tensor can be split 

into 𝑀 parts, with the relationship between the total and the parts being described 

as: 

 𝛼 = ∑ 𝛼𝑖𝑀
𝑖=1   (5.19) 

This representation is similar to the idea shown in the Mróz model, in that 

the splitting of the backstress tensor is close to the idea of several yield surfaces. 

The modeling of the split backstress tensors can be done with the definition of  

parameters 𝑐𝑖 and 𝑟𝑖  in equation (5.20),  which can be calculated using the 

Ramberg-Osgood parameters, as shown in [46, 49], in a way similar to the Mróz 

model.  

The translation due to the loading of the parts of the total backstress tensor 

is calculated using the following equation: 

 𝑑𝛼𝑖 = 𝑐𝑖𝑟𝑖 [𝑛 − (
|𝛼𝑖|

𝑟𝑖
)
𝜒𝑖+1

𝐿𝑖] 𝑑𝑝  (5.20) 

where 𝑐𝑖 and 𝑟𝑖 are material properties calculated using the Ramberg-Osgood 

equation (see [46, 49]), 𝑑𝑝 is the equivalent plastic strain, and 𝜒𝑖 is a material 

property responsible for controlling the ratcheting rate. In cases where steady state 

response is under analysis, the value of this constant is not important and, as 

shown in [35], if it is assumed to be 10, the model will predict adequate behavior 

of several materials and different loading conditions. 

The following definitions are also required for the use of equation (5.20): 

𝐿𝑖 =
𝛼𝑖

|𝛼𝑖|
, 𝑖 = 1,2,3,… ,𝑀 

 |𝛼𝑖| = √𝛼𝑖: 𝛼𝑖, 𝑖 = 1,2,3, … ,𝑀  (5.21) 

𝑑𝑝 =  √𝑑𝜀𝑝: 𝑑𝜀𝑝 

The translation of the parts of the total backstress (𝑑𝛼𝑖) is often called the 

evolution of the backstress, and was proposed by Jiang [45], who showed that the 

plastic modulus ℎ can be calculated using equation (5.22), where this equation 

already considers the consistency condition. The consistency condition implies that 

the deviatoric stress tensor must be inside the yield surface during plastic 

deformation. 
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 ℎ =  ∑ 𝑐𝑖𝑟𝑖 [1 − (
|𝛼𝑖|

𝑟𝑖
)
𝜒𝑖+1

𝐿𝑖: 𝑛]𝑀
𝑖=1 + √2

𝑑𝑘

𝑑𝑝
  (5.22) 

The non-proportional effects are included in the model by changing the 

value of 𝑟𝑖 and the evolution of 𝑑𝑘. The evolution of these values is obtained using 

a non-proportional parameter that is defined as a fourth rank 𝐶 as proposed by 

Tanaka [48]. The evolution of this tensor can be evaluated by: 

 𝑑𝐶𝑖𝑗𝑘𝑙 = 𝑐(𝑛𝑖𝑗𝑛𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙)𝑑𝑝  (5.23) 

Initially, Tanaka’s non-proportional tensor values (𝐶) are all equal to zero 

and as the loadings are applied, the values change using the above equation. 

Tensors 𝑛𝑖𝑗 and 𝑛𝑘𝑙 in equation (5.23) are the tensors defined in equation (5.18). 

The non-proportional parameter is obtained with the following equation: 

 𝐴 = √1 −
𝑛𝑝𝑞𝐶𝑡𝑡𝑝𝑞𝐶𝑡𝑡𝑟𝑠𝑛𝑟𝑠

𝐶𝑖𝑗𝑘𝑙𝐶𝑖𝑗𝑘𝑙
  (5.24) 

The sub-index syntax operations used in equations (5.23) and (5.24) apply 

the tensor calculus concepts. The change in the value of 𝑟𝑖 and the evolution of 𝑑𝑘 

are evaluated with: 

 𝑑𝑘 = 𝛽[𝑘𝑜(1 + Φ𝐴) − 𝑘]𝑑𝑝  (5.25) 

 𝑑𝑟𝑖 =  𝛽[𝑟𝑜
𝑖(1 + Φ𝐴) − 𝑟𝑖]𝑑𝑝  (5.26) 

where 𝑘𝑜 and 𝑟𝑜
𝑖 are the initial values of 𝑘 and 𝑟𝑖, respectively, and 𝛽 is the material 

parameter that controls the rate of non-proportional hardening. Reference [35] 

shows that if the value of 𝛽 is set at 5, the model will predict an adequate 

relationship for several materials and different loading conditions if the steady state 

(cyclically stable) behavior is being modeled. The parameter Φ is the same one 

presented in subchapter 5.3.5 in the explanation of equation (5.8). 

Reference [35] also shows that predictions using this model perform better 

than using the Kanazawa method. In the worst case, the Kanazawa method 

predicts values 40% higher than the measured values, and the Jiang and Sehitoglu 

model using Tanaka’s non-proportionality model predicts values 12% higher than 

the measured values. For this reason, the latter method is the one applied in this 

thesis. 
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6 

 

Case Studies 

 

6.1  

Introduction 

 Two fatigue analysis cases are presented in this chapter. The first uses the 

stress history calculated in Chapter 2; the second uses the experimental results of 

tests presented in [15]. During the presentation of both case studies, the methods 

described in the previous chapters are explained in such a way that the entire 

fatigue analysis methodology presented in this thesis may be well understood. In 

addition, some adaptations that were necessary  are also presented and explained 

in more detail. 

Figures 6.1 and 6.2 show the combination of the cycle counting methods 

and the damage models implemented in the software programs used for case 

studies one and two respectively. 

 

Figure 6.1: Use of the three software programs employed in the first case study. 
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Figure 6.2: Use of the four software programs employed (without considering the eFatigue) in the 

second case study. 

 

6.2  

First Case Study 

 The first case study is performed using the time history of stresses 

calculated in Chapter 2. The primary objective of this case study is to compare the 

cycle counting method in Figure 4.22 (Modified Wang-Brown) with the Rainflow 

method. Since the stress history is non-proportional, the modification of the 

Rainflow method explained in subchapter 4.3 is adopted.  

The model used for evaluating the damage caused by this history is the one 

in the ASME Code for elastic stress analysis (explained in subchapter 3.3.1). Since 

this method does not use half cycles to evaluate damage, the Simplified Rainflow 

method was selected (subchapter 4.4). 

Figures 6.3 to 6.5 show the linearized and peak stress components 

calculated in Chapter 2. 
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Figure 6.3: History of the circumferential stresses caused by the thermal plus mechanical loads. 

 

Figure 6.4: History of the longitudinal stresses caused by the thermal plus mechanical loads. 
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Figure 6.5: History of the radial stresses caused by the thermal plus mechanical loads. 

A phenomenon that occurs when the linearized stresses are used in a 

fatigue analysis is that sometimes the peak (or valley) of the stress components of 

tensors 𝑆𝑝 and 𝑆𝑛 do not take place at the same time step. In the ASME Code the 

alternating stress (which is the parameter for entering the fatigue curve) is a 

function of the values of 𝐾𝑒 and the range of 𝑆𝑝 (formed using one cycle counting 

method) as shown in equation (3.13), where 𝐾𝑒 is a function of the range of 𝑆𝑛 and 

of the material properties, as shown in equation (3.14).  

 

Figure 6.6: Schematic example of a time history of linearized stresses. 

To form the stress ranges, the cycle counting is done using the 𝑆𝑝 stresses, 

and the  𝑆𝑛 ranges are formed using the same time steps that formed the 𝑆𝑝 ranges. 
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In that way, if a cycle counting routine returns the 𝑆𝑝 range using  time steps 𝑡𝑚  

and 𝑡𝑛 , the  𝑆𝑛 range is formed using  time steps 𝑡𝑚  and 𝑡𝑛 .  

However, this leads to a problem, as can be observed in Figure 6.6. The 

cycle counting performed along the 𝑆𝑝 history will return its range for time steps 𝑡𝑚  

and 𝑡𝑛  while, on the other hand, the highest value of ∆𝑆𝑛 occurs for time steps 

𝑡𝑚−1  and 𝑡𝑛 .  

If time step 𝑡𝑚−1  is selected instead of time step 𝑡𝑚  to calculate the ranges, 

it is possible that the alternating stress value (which is the final value of interest) 

will be higher, even if the ∆𝑆𝑝 is lower. The  𝑆𝑛 range in this case will show a larger 

value, which will increase the value of the alternating stress (see equations (3.13) 

and (3.14)).  

In conclusion, performing the cycle counting using the history of 𝑆𝑝 stresses 

may result in a non-conservative fatigue analysis. In order to avoid that situation, 

the highest value of the alternating stress must be found in the cycle counting 

method. As explained in Chapter 2, this is one of the reasons that the entire history 

of the linearized stresses has to be calculated and not just its values at the time 

step where the maximum range of stress 𝑆𝑝 range is formed. 

To ensure that the highest value of alternating stress is found, a number of 

methods have been proposed. One is studied in [23], which assumes that the 

alternating stress value to be considered must be located between the time 

intervals where the 𝑆𝑛 and 𝑆𝑝 peaks occur. Even though this is a good assumption, 

another, simpler method was the one chosen for this thesis. This simple method is 

explained and developed in more detail in the following paragraphs. 

This method was initially proposed for use with the Rainflow cycle counting 

method. It consists in, after the cycle counting is performed, combining the time 

steps - close to the time steps that have been counted – that will generate the 

largest alternating stress. Since the cycle counting procedure is implemented using 

a software program, the number of time steps in the search to be considered before 

and after the time step counted along the routine application (the so-called rubber 

band) is one of the input parameters that must be given by the user. Figure 6.7 

presents a better visualization of this search.  
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Figure 6.7: Example of the search for the highest alternating stress. 

In Figure 6.7 the dashed lines represent the time steps counted using the 

Rainflow routine, where 𝑡𝑚  represents the peak and 𝑡𝑛  the valley. The three points 

before the dashed lines represent the three time steps before the counted time 

step, and the four points after the dashed lines represent the four time steps after 

the counted time step. In that case, the user’s input stated that the number of time 

steps to be analyzed before the counted time step is three, and the number of time 

steps to be analyzed after the counted time step is four. 

Hence, the 𝑆𝑝 and 𝑆𝑛 stress ranges are calculated using the combinations 

between all the times steps marked with circles and all the time steps marked with 

‘x’. The combination that returns the largest alternating stress value is the final 

result for the considered time step. Consequently, the number of time steps defined 

by the user has an important influence on the result.  

This number cannot be too low, because  if it is, the maximum alternating 

stress will not be found. It cannot be too high, because, not only will the time to run 

the evaluation procedure  increase drastically, but also because it  may be possible 

to reach another peak or another valley, which will produce an erroneous cycle 

counting result.  

As explained above, this procedure was developed for use in combination 

with the Rainflow cycle counting. Thus, for comparing the results obtained by 

applying the presented method with those obtained by applying the Modified Wang 
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Brown, a similar procedure was developed for use in combination with the latter 

method. 

In order to explain this method, the histories of stresses 𝑆𝑝 shown in 

Figures 6.3 to 6.5 are converted to a five dimensional Euclidian space using 

equation (4.13). This conversion is shown in Figure 6.8. 

 

Figure 6.8: History of 𝑺𝒑 stress presented in a 𝑺𝟏 𝒙 𝑺𝟐 diagram. 

Using the procedure developed for the Modified Wang Brown method 

(Figure 4.22) for the cycle counting of the history shown in Figure 6.8, the results 

of the first counting are several points that, when connected, generates a path, as 

explained in subchapter 4.8 (PMDR). The points farthest from each other - resulting 

from the first counting - are the ones marked in Figure 6.8 with a blue ‘x’. 

To relate this path to the range of 𝑆𝑝, an enclosing surface solution is 

adopted. Enclosing surface solutions are methods used in non-proportional 

histories to relate paths of counted histories to ranges of stresses (for more 

information see [50]). Due to difficulties in implementing these approaches, only 

the Minimum Ball method is selected.  

This method simply consists of evaluating the minimum-sized ball (on a 2D 

path) or sphere (on a higher dimensional path) that circumscribes the entire path. 

The diameter of this ball (or sphere) will be the range of 𝑆𝑝. 

DBD
PUC-Rio - Certificação Digital Nº 1312457/CA



108 
 

 

 

Figure 6.9: Example of the calculation of the 𝑺𝒑 range using the minimum ball method. 

 The same procedure is used to calculate the 𝑆𝑛 ranges. The computational 

routine implemented is summarized as: 

1) Convert the entire histories of 𝑆𝑝 and 𝑆𝑛 to a five dimensional space.  

2) Use the flowchart in Figure 4.22 to apply cycle counting on the history 

of 𝑆𝑝, where the result of this counting will not be the stresses, but the 

time steps; 

3) With these time steps, calculate the ranges of 𝑆𝑛 and 𝑆𝑝 using the 

minimum ball method. 

With this explanation, it is possible to calculate the alternating stresses, but 

it is not yet possible to be sure that these alternating stresses are the largest ones. 

In order to ensure that the maximum alternating stresses are found, a similar 

procedure of searching for the maximum alternating stress, as explained 

previously, is proposed in the next paragraph. 

The time steps related to the 𝑆𝑝 stresses that are touching the minimum 

ball are obtained. Going back to the example presented previously, the time steps 

(in the first counting) are the ones marked with a blue ‘x’ in Figures 6.8 and 6.9. If 

we call these time steps 𝑡𝑚  and 𝑡𝑛 , it is possible to use a procedure similar to the 
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one in Figure 6.7, the difference being that now the combinations of time steps will 

pass through the minimum ball method to calculate the stress ranges.  

The combination of 𝑡𝑚−1  (the time step immediately before the first one 

counted) with 𝑡𝑛+1  (the time step immediately after the second one counted) is 

obtained by transforming the stresses of these time steps into a five dimensional 

space, and then the minimum sphere circumscribing the stresses will represent the 

respective range.  

This action is repeated for all possible combinations (inside  the number of 

time steps given by the user) until the maximum alternating stress is found. The 

other difference between the search explained previously and this one is that the 

latter procedure gives the possibility of more than two points touching the minimum 

ball, and, consequently, the number of combinations will increase.  

After having given this full explanation, it is now possible to show the 

results. The software with the Modified Wang Brown solution was implemented 

using the entire routine explained previously. The results of the cycle counting 

routines (Rainflow and Modified Wang Brown) returned that only the first counted 

cycle was significant, since it was the only one that gave any result for the CUF 

value; the other counted cycles result in insignificant or null CUF values.  

The outputs generated from this counted cycle using both routines were 

identical: ∆𝑆𝑝 was equal to 607.53 MPa, ∆𝑆𝑛 was equal to 362.09 MPa, 𝐾𝑒 was 

equal to 1.26, and, consequently the alternating stress (𝑆𝑎) was equal to 433.82 

MPa, resulting in a CUF value of 0.000176. Even with the results being equal, it is 

not possible to say that both routines will always generate similar results.  

The fact that the loading history used in this example has characteristics of 

low non-proportionality between the values precludes such conclusion.  In Figure 

6.9, one can see how non-proportional the values are, by comparing them with a 

history with proportional values. In Figure 6.9, a history with proportional stress 

values would result in a straight line passing through the origin in the 𝑆1 𝑥 𝑆2 

diagram. 

To illustrate the differences between these two methods, a highly non-

proportional history is used. 
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6.3  

Second Case Study 

 In this case study, histories of strain controlled fatigue tests [15] are used 

to compare the cycle counting methods and the damage models. The specimens 

used in [15] had solid circular sections with a diameter of 15.2 mm. The specimens 

were made of a 304L stainless steel material and were subjected to an axial-torsion 

strain controlled loading.  

The strain history load is composed of combinations of different amplitude 

ratios of fully reversed axial-torsion cycles. The load amplitude ratios varied from 

cycle  to cycle using one-degree increments, as shown in Figure 6.10. The first 

cycle starts at zero degrees with pure axial loading, and then it is followed by cycles 

where the torsion load is increased and the axial load is decreased. Therefore, the 

straight load lines plotted in Figure 6.8 are rotated with the specified one degree 

increment until a circular boundary in the 𝛾 √3 𝑥 𝜀⁄  diagram is formed. One block 

of this load is completed when it rotates 360 degrees. 

 

Figure 6.10: Strain axial-torsion load in the 𝜸 √𝟑 𝒙 𝜺⁄  diagram. 

It is interesting to note that each cycle is proportional. Therefore, each 

loading block is composed of 360 proportional load cycles. The cycle to cycle load-

ratio variation turns the block into an example of a highly non-proportional load 

history.  
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Figure 6.11: Strain load time history of one block. 

 The experiment performed in [15] consisted of repeating this block of 

strains until the specimen reached failure. The failure criteria considered a 5% drop 

in the axial load or torsion load when compared with their stabilized value. The 

tests used here were conducted with two specimens under a constant strain range 

value ∆𝜀 of 0.014 mm/mm. In other words, the circumference diameter in Figure 

6.10 is 0.014 mm/mm. The first specimen failed  after 5.5 blocks and the second 

after 5.8 blocks. 

To compare these experimental values with those calculated using the 

methods in this thesis, the latter were separated into two different groups. One 

group adopted the critical plane approach. The other group was composed of the 

methods that do not adopt the critical plane approach. The methods belonging to 

this second group are called regular approach methods. 

From the regular approach method group, only the Coffin-Manson (or 

Morrow) damage model was used. In this case, the strain ranges were obtained 

using the Extreme Value Method (EVM), the Modified Wang Brown (MWB) and the 

Rainflow method (see subchapter 4.3). 

In the critical plane approach, the damage models to be compared were 

the Fatemie-Socie Model (FS), the Smith-Watson-Topper Model (SWT) and the 

Coffin-Mason (or Morrow) model (CM). Because the FS and the SWT models 

require determining the maximum stress perpendicular to the plane that is being 

evaluated, only the Bannantine and Socie (BS) and the Modified Wang Brown 

cycle counting methods were used. 

As explained in subchapter 4.5, the Bannantine and Socie was developed 

as a change in the Rainflow method to find the maximum perpendicular stress (or 

strain, depending on the damage method) that occurs between the counted time 

steps. However, the MWB, as explained here-in, does not use that to count with, 
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and it is simple to search this parameter using the MWB method. After each 

counted cycle the value of maximum perpendicular stress is searched, belonging 

to the values of perpendicular stresses in the path returned by the counting. 

However, because the test is strain controlled, the concepts explained in 

Chapter 5 have to be considered. The approach used to calculate the stresses is 

the Jiang and Sehitoglu method in conjunction with Tanaka’s non-proportionality 

model (presented in subchapter 5.4.4). Due to the difficulty of implementing this 

model,  the website eFatigue.com [51] was used as an auxiliary tool. 

The strain load history is given as an input together with all the required 

material parameters, as explained in subchapter 5.4.4. After using the eFatigue 

auxiliary tool, the output is the complete stress-strain history (related using the 

previously cited method) and also a fatigue analysis. However, for the study of the 

fatigue methods implemented here, only the strains and stresses are collected and 

presented in Figure 6.12 through 6.15. Finally, the strains and stresses are used 

in the fatigue assessment in accordance with the methods explained above. 

 

Figure 6.12: 𝝈 𝒙 𝜺 diagram for the longitudinal direction. 
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Figure 6.13: 𝝉 𝒙 𝜸 diagram for the shear components. 

 

Figure 6.14: 𝝈 𝒙 𝜺 diagram for the circumferential direction. 
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Figure 6.15: 𝝈 𝒙 𝜺 diagram for the radial direction. 

where the stress and strain in the ‘x’ direction is relative to the load acting in the 

axial directions, and the stress and strain in the ‘xy’ direction are caused by the 

torsion load. The stress in the ‘y’ direction (the circumferential direction of the 

cylinder) and the strain in the ‘z’ direction (the radial direction of the cylinder) are 

due to the Poisson effect. 

The strain histories with time (Figure 6.16) are counted using the stress 

histories  when necessary (Figure 6.17). In the regular approach, the histories are 

simply counted in the ‘x’, ‘xy’ and ‘z’ directions, the ranges are obtained and the 

damage is evaluated. In the critical plane approach, all the stresses and strains 

are calculated on a candidate critical plane, the cycle counting procedures are 

made on each plane, and the ranges of strains and the maximum perpendicular 

stresses are obtained to finally evaluate the damage. 
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Figure 6.16: Time history of strains. 

 

Figure 6.17: Time history of stresses. 

 The final result of each method can be compared based on the tables 

below, where the values represent the predicted number of blocks to failure for 

each combination of methods:  

 Regular Approach 

 MWB EVM Rainflow (x) Rainflow (z) Rainflow (xy) 

CM 1.31 0.49 42.05 17.15 8.67 

Table 6.1: Final results using the regular approach methods. 
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Critical Plane 

Approach 

 MWB BS 

FS 3.20 10.00 

SWT 5.50 19.67 

CM 4.77 7.05 

Table 6.2: Final results using the critical plane approach methods. 

The values in the tables represent the number of blocks allowed according 

to each method, which can be compared with the experimental results shown 

previously (5.5 and 5.8 blocks). With the stress values having been calculated, 

another result that is just as important to calculate is the result of a cycle counting 

performed on the stresses. The MWB method is used in such instances. For the 

damage models, the selected method is the one presented in the ASME Code. 

It must be noted that, in the ASME Code, both 𝑆𝑛 and 𝑆𝑝 stresses have to 

be determined in order to do  the fatigue analysis. However, because the stress 

distribution  in the solid cylinder subjected to axial and torsion loads is smooth, 

equal values for 𝑆𝑛 and 𝑆𝑝 were assumed in the analysis. 

Nevertheless, the design fatigue curve presented in the ASME Code 

includes a margin that would preclude a fair comparison with the other results. 

Thus, the ASME method was used once more, but this time, the CUF calculations 

were made using the alternating stress divided by the elastic modulus using  the 

Coffin-Manson curve instead of the ASME Code curve. Table 6.3 presents the 

predicted number of blocks to failure for both  methods: 

 MWB 

ASME Curve 0.13 

CM Curve 3.94 

Table 6.3: Final result of the MWB method using the stresses for counting. 
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7 

Conclusions 

 This thesis has dealt with a number of topics that are relevant for the fatigue 

analysis of power plant components and piping subjected to mechanical and 

thermal loads.  

The first topic dealt with the implementation and discussion of two analytical 

stress solutions applicable to thick walled pipes subjected to thermal and 

mechanical loads. As an example of this application, an actual measured pressure 

and temperature load history in a power plant was applied to a piping component 

and the transient analytical solutions were compared with results based on a 

commercial finite element software program. 

The main goal of this study was to optimize the time consumed in 

determining the stresses that occur along the thickness of the pipe walls caused 

by transient thermal loading. The analytical solution implemented for this purpose 

consumed 1/3 of the time when compared with the solution time required for the 

finite element analysis. The implemented analytical solution allows the linearization 

of the stress components acting along the pipe wall thickness for all time steps 

used in the thermal transient solution. This is an important aspect for the accurate 

fatigue analysis of components under thermal loading transients.  

Three other topics were addressed in the sequence: a study of the most 

frequently used fatigue damage models; the presentation and discussion of the 

most frequently used cycle counting methods applicable to components subjected 

to proportional and non-proportional load histories; and the presentation and 

discussion of stress-strain plasticity hardening models applicable to proportional 

and non-proportional load histories. Numerical algorithms of relevant models 

presented in the topics mentioned above were developed and implemented in C++ 

so that their combination could be applied to two case studies. 

The last topic presented in the thesis was the application of the 

combinations of models to assess fatigue damage in two case studies. 

The first case study entailed a thick pipe component subjected to transient 

thermal load and varying internal pressure. In this case, the most important aspect 

was the presentation of adjustments to the models so that a proper fatigue analysis 

for power plant components can be accurately performed.  
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One conclusion from the case was the confirmation that the Rainflow 

counting method could be adequately used because the principal stress directions 

do not change significantly as a function of time in this specific application, although 

there is non-proportionality in terms of the stress values generated by each loading 

type. 

The second case study used loading, information and results acquired from 

multiaxial fatigue tests of 304L stainless steel specimens, and recently made 

available in the open literature. Applying the combination of model algorithms to 

the actual test data revealed that methods based on the regular approach did not 

produce good results, because the Extreme Value Method damage predictions 

were very conservative and the Rainflow predictions were non-conservative. 

In the second case study, the critical plane approaches associated with the 

Modified Wang Brown method of cycle counting predicted damage very similar to 

the test results. The Smith-Watson-Topper damage model and Modified Wang 

Brown method of cycle counting damage results were the most accurate against 

the test damage results. Not coincidentally, this damage model, as explained in 

subchapter 3.7, is the best one for evaluating materials that fail in Mode I, such as 

304L stainless steel. 

As expected, Table 6.3 shows very conservative results when the ASME 

Code procedure is used. The ASME Code fatigue analysis combines a 

conservative fatigue damage curve with the Extreme Value Method (EVM). 

Conclusions of the second case study can be summarized as follows: 

 The fatigue damage calculation procedure presented in the code for 

non-proportional histories is non-conservative [10]. 

 The best damage model to use depends on the material under 

evaluation. 

 The MWB was the cycle counting method that showed the best results, 

especially when used with a critical plane approach. 

 The damage model proposed in the code, using linearized stresses, 

combined with the MWB cycle counting method, might give good 

results, and this could be a good solution for a fatigue analysis of power 

plant components. 

Three recommendations for future research topics are as follows: 
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 Search for more experimental results available in the literature for use 

in verifying the accuracy of the methods and models presented in this 

thesis, especially results from fatigue tests with temperature changes; 

 Develop the analytical stress analysis considering two modification: 

o Add the modified Armstrong-Frederick using Tanaka’s non-

proportionality model to this analysis (to do so, [33] is 

recommended as a good reference for further reading). In this 

way, the strain history can be calculated and an elasto-plastic 

fatigue analysis can be performed. It is expected that this type of 

analysis will give more accurate results than the elastic analysis. 

o Expand the analytical solution to more components. The 

analytical solution was only validated for a thick walled pipe, 

which is a very simple geometry. A series of different 

components have to be evaluated in a power plant. Therefore, if 

analytical approaches could be generalized for other 

components, this would save even more time during a fatigue 

analysis. 

 Improve the convex enclosure method. It was later observed that the 

method proposed here has its problems. These problems can be better 

observed in Figure 7.1 and 7.2. Figure 7.1 contains an illustration of a 

micro crack under different loading conditions. Whereas at (a) the 

crack is subjected to normal stress that tends to open the crack, at (b) 

another normal stress is added that does not affect the crack; and at 

(c)  a shear stress is added to (a) that affects the behavior of the crack. 

 

Figure 7.1: Illustration of a micro crack under different loading conditions. 
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Figure 7.2 shows examples of paths that the loading conditions in Figure 

7.1 can create if the stresses change through time. (I) and (II) are loading paths 

generated by loading condition (a), (III) is the path created by (b) and (IV) is the 

path of (c).  

One can see that, when using the minimum ball method to calculate an 

equivalent stress for loading paths (II) and (IV), the equivalent stress will be equal. 

However, this should not be the correct result, since the loading condition at (c) is 

more damaging than at (a), such that a proper convex enclosure method has to be 

implemented to consider the difference. The minimum ellipse and MOI [50] are 

examples of good convex enclosure methods. 

 

Figure 7.2: Illustration of the loading paths created by the loading conditions given in Figure 7.1. 

On loading paths (I) and (III), the minimum ball method calculates the same 

equivalent stress, which is the correct result, since the addition of the other normal 

stress at (b) does not result in a more damaging loading condition. However, if the 

proposed convex enclosure methods (minimum ellipse or MOI) are applied to 

these  loading paths, (III) will be more damaging than (I), and this is not the correct 

result. To remedy this problem, only the damaging stress components are to be 

considered when using the convex enclosure methods. For example, if a critical 

plane approach is being used, only the normal stress (or strain) on the plane and 

its shear stresses (or strains) should be considered. 

Some concluding remarks can be added: 

 The simplified elasto-plastic fatigue analysis based on elastic stress 

analysis and plasticity correction will remain the most common method  

for an engineering calculation method. Against this background, 

examined fields of improvement should be summed up. Particularly, 

the advantages of more complex cycle counting methods should be 

pointed out and the applicability of the Modified Wang-Brown Solution 

as a standard fatigue post processing method should be substantiated.  
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 Assessments of the non-proportionality of typical power plant load or 

stress-time histories should be made.  

 A systematic examination of non-proportionality may be recommended 

as a possible topic for further studies. 
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