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Abstract 
 

Ferreira, Rodrigo da Silva; Feitosa, Raul Queiroz (Advisor); Bentes, 
Cristiana (Co-advisor). InterIMAGE Cloud Platform: The Architecture 
of a Distributed Platform for Automatic, Object-Based Image 
Interpretation. Rio de Janeiro, 2015, 159p. PhD Thesis – Departamento de 
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

The general objective of this thesis was the development of a distributed 

computational architecture for the automatic, object-based interpretation of large 

volumes of remote sensing image data, focusing on data and processing 

distribution in a cloud computing environment. Two specific objectives were 

pursued: (i) the development of a novel distributed architecture for image analysis 

that is able to deal with vectors and rasters at the same time; and (ii) the design 

and implementation of an open-source, distributed platform for the interpretation 

of very large volumes of remote sensing data. In order to validate the new 

architecture, experiments were carried out using two classification models – land 

cover and land use – on a QuickBird image of an area of the São Paulo 

municipality. The classification models, proposed by Novack (Novack09), were 

recreated using the knowledge representation structures available in the new 

platform. In the executed experiments, the platform was able to process the whole 

land cover classification model on a 32,000x32,000-pixel image (~3.81 GB), with 

approximately 8 million image objects (~23.2 GB), in just one hour, using 32 

machines in a commercial cloud computing service. Equally interesting results 

were obtained for the land use classification model. Another possibility of 

parallelism provided by the platform’s knowledge representation structures was 

also evaluated. 

 

Keywords 
Remote Sensing; Geographic Object-Based Image Analysis (GEOBIA); 

Distributed Processing; Cloud Computing. 
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Resumo 
 

Ferreira, Rodrigo da Silva; Feitosa, Raul Queiroz; Bentes, Cristiana. 
Plataforma em Nuvem InterIMAGE: A Arquitetura de uma 
Plataforma Distribuída para a Interpretação Automática de Imagens 
Baseada em Objetos. Rio de Janeiro, 2015, 159p. Tese de Doutorado – 
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do 
Rio de Janeiro. 

O objetivo genérico desta tese foi o desenvolvimento de uma arquitetura 

computacional distribuída para a interpretação automática, baseada em objetos, de 

grandes volumes de dados de imagem de sensoriamento remoto, com foco na 

distribuição de dados e processamento em um ambiente de computação em 

nuvem. Dois objetivos específicos foram perseguidos: (i) o desenvolvimento de 

uma nova arquitetura distribuída para análise de imagens que é capaz de lidar com 

vetores e imagens ao mesmo tempo; e (ii) a modelagem e implementação de uma 

plataforma distribuída para a interpretação de grandes volumes de dados de 

sensoriamento remoto. Para validar a nova arquitetura, foram realizados 

experimentos com dois modelos de classificação – um de cobertura da terra e 

outro de uso do solo – sobre uma imagem QuickBird de uma área do município de 

São Paulo. Os modelos de classificação, propostos por Novack (Novack09), 

foram recriados usando as estruturas de representação do conhecimento da nova 

plataforma. Nos experimentos executados, a plataforma foi capaz de processar 

todo o modelo de classificação de cobertura da terra para uma imagem de 

32.000x32.000 pixels (~3,81 GB), com aproximadamente 8 milhões de objetos de 

imagem (~23,2 GB), em apenas 1 hora, utilizando 32 máquinas em um serviço de 

nuvem comercial. Resultados igualmente interessantes foram obtidos para o 

modelo de classificação de uso do solo. Outra possibilidade de paralelismo 

oferecida pelas estruturas de representação de conhecimento da plataforma 

também foi avaliada. 

 

Palavras-chave 
Sensoriamento Remoto; Análise de Imagens Baseada em Objetos 

Geográficos (GEOBIA); Processamento Distribuído; Computação em Nuvem. 
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1 
Introduction 

In the last decades, the availability of remote sensing image data has grown 

enormously. This is mainly due to the advent of new satellites and aircrafts, and 

the consequent drop in the costs of remotely sensed images, many of them made 

freely available. But not only the number of images has grown; the spatial, 

spectral and temporal resolutions have increased and created a new demand for 

scalable solutions to image interpretation problems (Vatsavai13). 

NASA EOSDIS (Earth Observing System Data and Information System) 

project (EOSDIS15), for example, comprised in September 2013 about 10 PB of 

data, with an average growth of 8.5 TB per day. Besides NASA, space agencies 

like ESA (European Space Agency), JAXA (Japan Aerospace Exploration 

Agency), among others, produce a similar amount of remote sensing image data 

daily. 

Private companies show the same scenario. Companies like Digital Globe, 

Planet Labs and Skybox Imaging (acquired by Google in 2014) are about to sum 

up one hundred satellites orbiting the globe. By 2018, Skybox Imaging expects to 

have a constellation of 24 satellites imaging the globe three or four times a day 

(IEEESpectrum13). The company also provides 90-second, high-definition videos 

at 30 frames per second of any spot on Earth. It is a huge market that was recently 

leveraged by the announcement of the alleviation of image resolution restrictions 

by the U.S. government (MarketWired14). With the new policy, Digital Globe, 

for example, will be able to sell WorldView-3 images at up to 0.25m of spatial 

resolution in the first trimester of 2015, expanding the company market 

opportunities in additional $400 million (Reuters14).  

All these changes encourage the improvement of current solutions and the 

development of new solutions to problems such as agriculture health monitoring, 

natural disaster response, mining operations, carbon and maritime monitoring. 

However, to completely unveil these possibilities new methods and tools are 

demanded. These new methods and tools must be able to extract information from 
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such high-resolution imagery, and analyze and interpret such amount of remote 

sensing data. 

On the one hand, recent studies (Blaschke01; Blaschke14) argue that higher 

image resolutions entail a paradigm shift in image interpretation. Instead of pixel-

based approaches, very-high-resolution images led scientists to build a new 

methodology, more suitable to the new characteristics of these images. In this 

approach, called GEOBIA (Geographic Object-Based Image Analysis), image 

analysis is based on image objects. It allows image analysts to use other 

information present in image objects like texture, shape and context that may 

likely improve the classification accuracy. 

On the other hand, new tools must be able to handle huge volumes of data 

seamlessly. The characteristics of these data indicate that their storage and 

processing should be done on highly parallel systems, such as shared-nothing 

clusters (Olston08). 

There are some software suites that follow the GEOBIA approach and offer 

a distributed solution for very large image data. One of them is a very successful 

commercial software called eCognition (eCognition15). This system was the first 

commercial software package to provide object-based techniques for image 

analysis and leveraged the new approach as it made it easier for researches 

(specially from environmental and biomedical sciences) to embed their 

interpretation models into the system. 

Although eCognition is the most adopted software for this purpose in the 

world, there are some disadvantages. The first is the cost. A single license costs a 

few thousands of dollars. While this may not be a problem for some universities 

and researchers around the world, it hinders its use by scientists with fewer 

resources. The second is even more important: eCognition is a proprietary 

software. It is not possible to know how its algorithms were implemented. The 

third one is about extensibility. It is not possible to extend the system, so users 

have to wait for specific features to be implemented by the company. The last one 

is related to scalability. Its distributed solution is oriented towards a local cluster 

that is often expensive and hard to maintain. 

In the last years, cloud computing solutions have become an appealing 

alternative to solve this kind of problem, mainly because of its low cost and 
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scalability potential. As image datasets grow, a cloud system can be resized 

accordingly, still delivering acceptable costs and processing time. 

However, programming for distributed environments such as cloud systems 

can be tiresome. Recent technologies, specifically the MapReduce model 

(Dean04) and its open-source version Hadoop MapReduce, made it a much easier 

task. By abstracting the details of parallelization, fault-tolerance, data distribution 

and load balancing, MapReduce allows users to focus on data processing. 

Among all the freely available tools that follow the GEOBIA approach, 

InterIMAGE (Costa08) is the only system that provides most of the functionalities 

present in eCognition. It is an open-source platform for object-based image 

analysis that takes the GEOBIA ideals to a broader audience. Unlike eCognition, 

the system is open-source and extensible, allowing the inclusion of external 

operators that perform specific tasks like image segmentation, feature extraction 

and classification. Although InterIMAGE is a fully functional system, it has 

limitations regarding the size of the images and the number of image objects it can 

process. 

Although eCognition and InterIMAGE provide a whole set of object-based 

image analysis tools, their support to very large datasets is quite limited. While 

InterIMAGE provides only some multi-core functionalities, eCognition’s 

distributed solution lacks the scalability that only cloud systems can provide. 

Many works have tackled the problems of spatial operations (Nishmura11; 

Lu12; Zhong12; Aji13; Eldawy13) and image processing (Liu12; Wang12; Lin13; 

Liu13) in cloud environments, but none has investigated object-based image 

analysis in such distributed systems. This is mainly due to the inherent complexity 

of dealing with raster and vector data at the same time. This work fills this gap by 

proposing a novel architecture that performs distributed object-based image 

analysis, by considering raster and vector data at the same time in the 

interpretation process. In order to do that, on-demand image handling and 

distributed MapReduce-based strategies are proposed. 

Another aspect to object-based image analysis is related to knowledge 

representation. eCognition, InterIMAGE and their predecessors (Kummert98; 

Liedtke99; Bückner01) provide a semantic network to represent expert 

knowledge. Besides that, the execution of image interpretation operations is 

highly constrained by the hierarchical structure of the semantic network. Although 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
Introduction 18 

the work proposed in this thesis also provides a semantic network for knowledge 

representation, its interpretation strategy is controlled by a graph structure that 

lends much more flexibility to the expert for representing his knowledge in the 

system. This structure allows image operators to be combined in different ways 

and provides two levels of parallelism in cloud environments. 

Like InterIMAGE, this novel architecture also allows users to extend the 

system by adding new operators. Operators are defined in a high-level language 

that allows non-technical users to include new operators and combine existing 

operators to create new ones. 

Ultimately, this thesis proposes a distributed platform for object-based 

image analysis that relies on the MapReduce model for parallel processing. The 

goal of the proposed platform is to provide a costless platform that is able to 

process the enormous amount of image data available today following the 

GEOBIA approach. The proposed architecture is inspired by the original 

InterIMAGE system and inherits some of its main features. However, it is 

designed to execute in a cloud computing environment where data and processing 

distribution allows it to handle very large datasets. The platform is named 

InterIMAGE Cloud Platform (ICP). 

 

1.1. 
Objectives 

The general objective of this research project is the proposal of a distributed 

computational architecture to support the object-based analysis of very large 

remote sensing data that provides robustness and performance through data 

partitioning and processing distribution in a cloud computing environment with 

maximum parallelism exploitation. 

The present work concentrates on two main specific objectives. The first is 

the development of a novel distributed architecture that provides: data partitioning 

and distributed processing for image interpretation problems based on the 

MapReduce model; intuitive expert knowledge modelling; extensibility and 

flexibility. The second is the design and implementation of a distributed platform 

for object-based interpretation of very large remote sensing data. 
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To validate the proposed architecture, experiments were conducted aiming 

at the performance assessment of two interpretation models (land cover and land 

use) using a QuickBird image of an area of the São Paulo municipality. 

 

1.2. 
Thesis contributions 

This thesis presents a novel distributed architecture for object-based image 

analysis, which enables the analysis and interpretation of very large remote 

sensing data. The main contributions are listed below: 

 

(1) The specification of a distributed image interpretation architecture that: 

― is performant and robust to very large datasets by partitioning 

input data and distributing processing across potentially 

hundreds or thousands of machines. 

― considers raster and vector data at the same time in the 

interpretation process. 

― is extensible, allowing the inclusion of new operators. 

― allows the recursive definition of operators which speeds up the 

construction of new interpretation models. 

― provides a graph structure that allows the construction of flexible 

interpretation models and enables two levels of parallelism. 

(2) Distributed strategies for: 

― spectral feature computation. 

― spatial conflict resolution. 

― topological feature computation. 

― recursive computation.  

― hierarchical feature computation. 

(3) The implementation of a platform that is able to process large volumes 

of data in a reasonable time and provides intuitive expert knowledge 

modelling. 
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1.3. 
Thesis organization 

The next chapter gives a general survey on the topics addressed in this 

thesis. The fundamentals of geographic object-based image analysis (GEOBIA), 

cloud computing, MapReduce, Hadoop and Pig are presented. 

Chapter 3 presents a literature review and describes the state of the art on 

distributed systems for image and geographic data processing. 

Chapter 4 presents the proposed architecture. The architecture components 

and strategies are discussed in detail. 

Chapter 5 presents the software prototype and discusses in detail the 

experiments and the results obtained. 

Chapter 6 presents the final conclusions along with some directions for 

future researches. 
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2 
Theoretical foundations 

This chapter presents the theoretical foundations for understanding the 

architecture proposed in chapter 4. The fundamentals of geographic object-based 

image analysis (GEOBIA), cloud computing, MapReduce, Hadoop and Pig are 

presented. 

 

2.1. 
Geographic Object-Based Image Analysis (GEOBIA) 

Since the early 1970’s, most of the image processing methods have been 

based on the classification of individual pixels. This approach has been the 

dominant paradigm in remote sensing for many years and, in fact, there are a fair 

number of well-stablished techniques to classify images by pixel (Strahler86; 

Weng09). 

This approach is reasonable as long as the objects of interest are smaller or 

similar in size to the image’s spatial resolution (L-resolution) (Hay01; 

Blaschke04). Once the target objects get larger than the image’s spatial resolution 

(H-resolution), another approach has proved more adequate (Fisher97; 

Blaschke01; Burnett03). Instead of focusing on the statistical analysis of single 

pixels, this new approach is concerned with the spatial patterns within the target 

objects and the derived features such as texture, shape and context that may likely 

improve the classification accuracy. This new approach came to be known as 

object-based image analysis (OBIA). 

One of the reasons that made this approach come into existence was the 

advent, in the last decades, of new sensors with higher spatial resolutions. High 

resolution images increased the within-class spectral variability and uncovered the 

limitations of the pixel-based approach (Hay96; Wang09). Another factor that 

leveraged the object-based approach was the release of eCognition 

(eCognition15), in 2000, the first commercial software conceived for the 

delineation and analysis of image objects from remote sensing imagery. 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
Theoretical foundations 22 

Hay and Castilla (Hay08) argue that although OBIA is also used in other 

fields like biology, medicine and astronomy, when it comes to remote sensing, 

there are earth surface related concepts that should be reflected in the name of the 

discipline. In this sense, they proposed the name “Geographic Object-Based 

Image Analysis” (GEOBIA). They define GEOBIA as “a sub-discipline of 

Geographic Information Science (GIScience) devoted to developing automated 

methods to partition remote sensing imagery into meaningful image objects, and 

assessing their characteristics through spatial, spectral and temporal scales, so as 

to generate new geographic information in GIS-ready format”. 

In this sense, GEOBIA represents a bridge between the raster domain of 

remote sensing and the vector domain of GIS while the generation of polygons 

(classified image objects) is the link between these two worlds. Thus, at its 

fundamental level GEOBIA requires image segmentation. 

Image objects are discrete regions of a digital image that are internally 

coherent and different from its surroundings (Castilla08; Haralick85). This is 

usually the outcome of a segmentation algorithm and is not uncommon to equate 

image segments to image objects. However, the authors argue that, as the image 

segmentation procedure may produce under- and over-segmented results 

according to a human observer, image objects could be redefined as the segments 

derived from a good segmentation algorithm. 

The authors also define meaningful image objects as the image objects that 

represent geographic objects, which are bounded geographic regions that can be 

identified for a period of time as the referent of a geographic term. Examples of 

geographic terms would be a ‘glacier’, a ‘mineral extraction site’ or anything that 

can be represented in a map. 

In a recent paper (Blaschke14), Blaschke et al. presented this change from a 

pixel-based to an object-based approach as a paradigm shift. This claim is based 

on the growing interest on the field, as the number of papers, conferences, 

journals and books dedicated to the topic has increased significantly in the last 

years (Blaschke14). The authors also argue that besides shape, texture and context 

information, there are more advantages in using GEOBIA. Among these 

advantages are the possibility to adapt many of Object-Oriented (OO) concepts 

and methods to GEOBIA; to work with multi-scales and object hierarchies; and to 

include ontologies and semantics into the interpretation process. 
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The authors conclude that GEOBIA is not just a collection of segmentation, 

analysis and classification methods. In their opinion, it is an evolving paradigm 

with specific tools, software, methods, rules and language; and that it is 

increasingly being used for studies that conceptualize and formalize knowledge 

that represents location-based reality. 

The next section presents an open-source system that follows the GEOBIA 

paradigm. The architecture proposed in this work is based on this system. 

 

2.1.1. 
InterIMAGE 

InterIMAGE is an open-source platform for automatic, knowledge-based 

image interpretation developed in collaboration between the Pontifical Catholic 

University of Rio de Janeiro (PUC-Rio) and the Brazilian National Space 

Research Institute (INPE). The system is based on GeoAIDA (Bückner01), a 

system developed in Germany from which it inherits its basic design, knowledge 

structures and control mechanisms (Costa08). 

The interpretation strategy in InterIMAGE is based on a semantic network 

that represents hierarchically the semantic concepts (classes) expected to be found 

in an image. The nodes represent real world concepts and the arcs represent the 

relations between the nodes. These relations are strictly hierarchical in which each 

node has exactly one parent node. To each operator it is possible to associate a 

top-down and a bottom-up operator.  

The interpretation process takes place in two steps: a top-down (TD) and a 

bottom-up (BU) step. The TD step starts from the uppermost nodes and goes 

down until it reaches the leaf-nodes. It represents a model-driven processing 

where a net of object hypotheses is created in conformity with the semantic 

network.  These hypotheses correspond to geographic regions in the image. In the 

TD step, when the interpretation control reaches a semantic node, it fires the 

associated top-down or holistic operator. Holistic operators are executable 

programs specialized on the detection of specific semantic concepts. In order to do 

that, these operators use image processing operations like segmentation, feature 

extraction and classification. Nodes that do not have a holistic operator associated 

to them perform a structural classification based on their sub-nodes. 
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The geographic regions detected by a holistic operator associated to a node 

are passed as masks to its child nodes, which will then execute their own holistic 

operators. The system allows the definition of different segmentation parameters 

and classification rules for each semantic concept. This characteristic enables the 

system to perform powerful classifications but creates the need for a spatial 

resolution operation in the BU step, as the same geographic region can be 

associated to more than one class. 

When the leaf-nodes are reached, the BU step is executed going from the 

leaf-nodes to the top. In this step, the system confirms or discards hypotheses 

generated in the TD step, resolves eventual spatial conflicts between the 

hypotheses and updates the shapes of the image objects if necessary. The 

resolution of spatial conflicts can be done in the semantic network level, by just 

assigning different weights for each semantic concept. This way, the image object 

that belongs to the class with the higher weight wins. Another option is to use the 

so called decision rules. By using this mechanism, the user can define the weights 

of each image object directly or through the use of fuzzy sets. The system 

provides an intuitive graphical interface for the creation of such rules. 

Figure 1 depicts InterIMAGE’s interpretation process. The user must 

provide the knowledge model (semantic network) and input data in order to 

execute an interpretation. For the semantic node, the user must define the holistic 

operators and BU rules associated to each node. The input data can be any type of 

vector and raster data. 

The box in the middle shows the interpretation strategy. An instance net as 

output from the TD step and its transformation in instance net during the BU step. 

The output is a multi-scale thematic map and a symbolic description of the scene. 
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Figure 1: interpretation process in InterIMAGE. 

Source: Adapted from Pahl (2008). 

 

Although InterIMAGE is a fully functional system, it has limitations 

regarding the size of the images and the number of image objects it can process. 

Of course, there is no direct relation between the image size and the number of 

objects; it depends on the segmentation algorithm used and its input parameters. 

However, recent studies (Novack09) have shown that in some cases even images 

as small as 2000x2000 pixels could not be processed.  

Recently, the segmentation program was improved in order to segment 

larger images. This solved only part of the problem, as these larger images tend to 

generate a higher number of image objects that exceeds the limit of objects the 

system’s core can process (this problem can be solved up to a certain limit by 

increasing the available RAM memory). 

This was one of the main motivations for the distributed architecture 

proposed in this work that works on local clusters but is mainly oriented towards 

cloud environments. The next sections introduce cloud computing and some 

technologies that compose the architecture discussed in chapter 4. 
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2.2. 
Cloud computing 

Cloud computing refers to applications and services that run on a distributed 

network using virtualized resources and accessed by common Internet protocols 

and networking standards (Sosinsky11). The term cloud computing brings with it 

two essential concepts: virtualization and abstraction. 

Virtualization is achieved by pooling and sharing resources. A centralized 

infrastructure provides processing and storage functionalities on demand. Costs 

are assessed on a per-use basis and resources can scale easily.  

Abstraction refers to the ability to abstract the details of system 

implementation from users and developers. In cloud computing, physical systems 

are not specified, data location is unknown and system administration is 

outsourced. 

Cloud computing is usually divided in two sets of models: deployment and 

service models. The first one is related to the purpose of the cloud and its location. 

In this context, a cloud can be public, private, hybrid or a community cloud. While 

in a public cloud the infrastructure is available for public use, in a private cloud it 

is available for the exclusive use of a company. By contrast, a hybrid cloud 

combines multiple clouds (private or public). A community cloud is one built to 

serve a common purpose. It may be used by various organizations that share the 

same values, policies and so on. 

Regarding service models, there are several models described in the 

literature, being these three the most accepted: Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS) and Software as a Service (SaaS). 

In the IaaS model, providers offer computers (physical or virtual) and other 

resources. These resources are pooled on demand from a data center. The user is 

responsible for the maintenance of operating systems and applications. One 

example of this model is Amazon Elastic Compute Cloud (EC2). 

In the PaaS model, besides hardware infrastructure, providers deliver a 

computing platform including operating system, programming language execution 

environment, databases and web servers. Application developers use the system to 

develop and run their software solutions without having to manage the underlying 
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hardware and software layers. Examples of this model are Google AppEngine, 

Windows Azure Platform and Amazon Elastic MapReduce (EMR). 

Finally, in the SaaS model, providers offer applications along with the 

infrastructure and platform they run on. This model is also known as “on-demand 

software” and is usually priced on a per-use basis or under a subscription fee. One 

example of this model is GoogleApps. 

According to Mell and Grance (Mell11), there are some characteristics that 

cloud computing systems must offer:  

• On-demand self-service: a client must be able to provision 

resources without having to contact vendor personnel. 

• Broad network access: as it relies heavily on network 

communication, a cloud system must provide fast internet access. 

• Resource pooling: a cloud service provider dynamically allocates 

physical and virtual resources as needed. 

• Rapid elasticity: a cloud computing system must be able to quickly 

scale up and out. This scaling can be manual or automatic. 

• Measured service: to charge a client on a per-use basis, a cloud 

service provider must measure every resource like the amount of 

storage, network I/O and processing power used. 

The models and the essential characteristics of cloud computing are shown 

in Figure 2. 

 

 

Figure 2: cloud computing definitions. 

Source: Adapted from Sosinsky (2011). 
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These characteristics bring together a range of advantages in using cloud 

computing systems. The first one is related to cost. Cloud computing systems 

offer lower costs by operating at a higher efficiency. Besides that, a client 

company can reduce its costs by outsourcing IT management and using only the 

resources it needs at a given time. 

By offering load balancing and failover mechanisms cloud computing 

systems are also highly reliable, often much more reliable than a domestic 

solution. These systems are also easier to use. Companies have to care much less 

about hardware requirements and software licenses. Its centralized structure 

makes it easier to upgrade softwares and always provide users with the latest 

versions. 

There are also some disadvantages. While for small companies cloud 

systems may be the best solution, larger organizations can afford the IT staff 

necessary to develop custom software solutions specially designed for their needs. 

Such specialized solutions are likely going to outperform a generic system. 

Another disadvantage is related to network latency and communication 

overhead. Applications that depend heavily on data transfer or that are 

performance sensitive can suffer significantly. For these applications cloud 

computing may not be the best model. 

Finally, the major concerns about cloud computing are privacy and security. 

It is quite difficult to assure data secrecy when sending data over a network or 

storing it in a cloud service beyond your control. It is not possible to predict what 

cloud providers will do in face of government actions and, besides that, each 

country has its own policies and legislations. It is the client’s responsibility to 

comply with the applicable jurisdictions. 

The next section presents a platform that became ubiquitous when it comes 

to distributed storage and processing in the cloud: Hadoop. 

 

2.3. 
Apache Hadoop 

Hadoop is an infrastructure for large-scale distributed batch processing. It 

was designed to process large volumes of data by efficiently distributing work 
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across hundreds or thousands of commodity computers connected to a network 

(HadoopTutorial15). 

Although Hadoop is best known for MapReduce and its distributed file 

system (HDFS), the term is also used for a family of related projects such as Pig 

(to be seen later in this chapter), Hive (Hive15), HBase (HBase15) and 

ZooKeeper (ZooKeeper15), to name a few.  

Hadoop was created at Yahoo! and has its origins in Apache Nutch, a part of 

the Apache Lucene project. In 2006, it became an independent subproject called 

Hadoop and in 2008 it was made a top-level project at Apache (Hadoop15). 

The next sections present Hadoop’s two main components: MapReduce and 

HDFS. 

 

2.3.1. 
Hadoop Distributed File System (HDFS) 

HDFS is the storage component of Hadoop. It is a distributed file system 

optimized for high throughput and works best when reading and writing large files 

(gigabytes and larger) (Holmes12). The system is based on Google File System 

(GFS) (Ghemawat03) and follows its design goals of scalability, reliability and 

availability. 

To achieve scalability, the system overcomes the storage limits of an 

individual machine by dividing the data in subsets that are stored on different 

machines in a cluster. The main advantage of this approach is that it is possible to 

increase the system’s storage capacity by just adding more machines (or storage 

devices) to the cluster. 

HDFS follows traditional filesystem design. Files are stored as blocks or 

chunks and the system has some metadata to keep track of the mapping between 

filenames and blocks, directory tree structure, permissions, etc. One difference is 

that the blocks are much larger than general purpose filesystems. While these 

filesystems use 4 KB or 8 KB block sizes, HDFS uses 64 MB by default, but it is 

not uncommon to see larger blocks of 128 MB, 256 MB or even 1 GB. By using 

larger blocks, HDFS minimizes disk seek operations, resulting in high throughput 

(Sammer12). 
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For reliability, the system uses the concept of replication. Data blocks are 

replicated on multiple machines in the cluster, three by default. When the number 

of copies of a block falls below the replication factor, the system automatically 

makes a new copy of that block. The replication mechanism also helps the system 

to achieve high availability, as the system can tolerate machine failures and 

recover from them automatically. 

An HDFS cluster has two types of nodes: one namenode (master) and a 

number of datanodes (workers) (White12). As shown in Figure 3, the HDFS 

client communicates with the namenode to retrieve information about the 

filesystem metadata, and with datanodes to read and write files. The namenode 

keeps in memory the filesystem metadata, such as which datanodes manage the 

blocks for each file, and provides management and control services. The 

datanodes store, retrieve data blocks and report to the namenode periodically with 

the list of blocks they are storing. 

 

 

Figure 3: HDFS architecture. 

Source: Adapted from Holmes (2012). 

 

As there is only one namenode, it represents a single point of failure in the 

system (Venner09). If the machine running the namenode is no longer available 

the filesystem cannot be used and all the files in the filesystem will be lost. 

Hadoop provides two mechanisms to make the namenode resilient to failures. The 

first way is to back up the filesystem metadata periodically; another way is to run 

a secondary namenode. This node does not act as a namenode, as the name 
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suggests, but it merges periodically the filesystem metadata with the edit log and 

keeps a copy of the merged data that can be used if the namenode fails.  

 

2.3.2. 
MapReduce model 

The MapReduce model, first proposed by Google (Dean04), is a method for 

solving petascale problems in large clusters of commodity machines (Venner09). 

It was largely inspired by the map and reduce primitives present in Lisp and other 

functional languages. 

The model hides the inherent complexity of distributed systems and allows 

the parallelization and distribution of large-scale computations. With this 

abstraction it is possible to focus on the data processing and to rely on 

MapReduce to manage the details of parallelization, fault-tolerance, data 

distribution and load balancing. 

In their seminal work, Dean and Ghemawat (Dean04) claimed that their 

implementation of MapReduce was already being used by Google to process 

many terabytes of data on thousands of machines on a daily basis. The framework 

was highly scalable and drew the attention of both the academy and the industry. 

It did not take long for others to come up with open-source implementations of 

their model, being Hadoop’s the most widely adopted. This is the MapReduce 

implementation used in ICP. 

Sammer (2012) highlights the main features of the model. Firstly, it is 

simple to develop. The developer does not have to worry about socket or thread 

programming. By using simple functional programming concepts, it is possible to 

build robust applications to deal with extremely large datasets. Secondly, 

MapReduce is highly scalable. Tasks are independent and can be executed in 

parallel on separate machines. MapReduce is a shared-nothing system and 

applications can readily take advantage of recently added machines. Thirdly, it 

automatically parallelizes and distributes work. While developers focus on the 

map and reduce functions, MapReduce stores the input data in a distributed 

filesystem and takes advantage of its characteristics to parallelize data processing. 

Finally, MapReduce is fault tolerant. In an environment with a large number of 

machines, failure is not an exception, but it is likely to happen. The framework 
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deals with such a scenario by rescheduling failed tasks and keeping track of 

problematic nodes. 

MapReduce is composed by three steps: map, shuffle and sort, and reduce. 

Firstly, the framework takes as input a set of key/value pairs, which represents a 

logical record from the input data source. In the case of a file it could be a line, or 

if the input source is a table in a database, it could be a row. The map function is 

applied to an input key/value pair and produces zero or more intermediate 

key/value pairs. The shuffle and sort are responsible for determining the reducer 

that should receive a key/value pair (partitioning) and ensuring that, for a given 

reducer, all its input keys are sorted. The reduce function gets an intermediate key 

and the set of values associated to that key and combines or aggregates those 

values in order to produce a smaller set of values, typically just one output value.  

 

 

Figure 4: MapReduce example. 

 

As an example, let us consider a simple application that counts the number 

of image objects in each land cover class (Figure 4). Let us assume that we have 

two input files with 12 records containing object id and land cover class. Firstly, 

the map phase splits the input data according to a given split size. In this example, 

each split equates to three lines. For each split, the map phase splits each record 

and outputs the class (intermediate key) and a 1 to indicate the class has been seen 

one time (intermediate value). Once the map phase is complete, the sort and 

shuffle phase sorts all records by key, collects the records with the same key and 
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sends them to the same reducer. The reduce phase sums up the number of times 

each class was seen and outputs these values together with the class as output. 

The next section presents some details of Hadoop’s MapReduce 

implementation. 

 

2.3.3. 
Hadoop MapReduce 

Hadoop MapReduce is the computation component of Hadoop that 

implements the MapReduce model. Hadoop MapReduce is aware of HDFS and 

can use the namenode during the scheduling of tasks to decide the location of the 

map and reduce tasks, following the “moving computation to data” philosophy. 

This avoids network overhead as workers do not need to copy data over the 

network to access it (Sammer12). 

This ability is close to the notion of data locality. In many high-performance 

computing (HPC) systems data is stored on a large shared centralized storage 

system. During the execution of a job, workers retrieve the data from the central 

storage system, process it, and write the result back to the storage system. For 

large datasets, when there is a large number of workers retrieving the same data at 

the same time, performance suffers. 

Instead of a central storage system, MapReduce uses a distributed file 

system where each node is at the same time a storage node and a compute node. 

The framework pushes the computation to the machines where blocks can be read 

locally. This characteristic benefits from HDFS’s replication feature. Replication 

not only increases data availability but also increases the chance to assign a task to 

a machine that is available to perform a computation. 

As shown in Figure 5, Hadoop MapReduce architecture is similar to the 

master-slave model in HDFS (Holmes12). There are two major processes in 

Hadoop MapReduce: the jobtracker and the tasktracker. The jobtracker is the 

master process. It accepts job submissions from clients, schedules tasks execution 

on worker nodes and provides other administrative functions. There is one 

jobtracker per MapReduce cluster. Clients and tasktrackers communicate with the 

jobtracker via remote procedure calls (RPC). Tasktrackers use regular heartbeats 
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to inform the jobtracker about their progress, just like the relationship between 

datanodes and the namenode in HDFS. 

 

 

Figure 5: Hadoop MapReduce architecture. 

Source: Adapted from Holmes (2012). 

 

The tasktracker accepts task assignments from the jobtracker, instantiates 

the user code, executes the tasks locally and reports progress back to the 

jobtracker periodically. There is always a single tasktracker on each worker node. 

Tasktrackers and HDFS’s datanodes run on the same machines providing compute 

and storage capabilities, respectively. Each tasktracker has a number of map and 

reduce task slots, that represent the available resources in the worker machine that 

a task can be assigned to. Setting the number of task slots depends on the number 

of cores (physical and virtual), disk, memory and whether or not the job is CPU 

intensive. Similarly, finding the right balance between the number of map and 

reduce tasks is job dependent. 

 

2.3.3.1. 
Fault tolerance 

To achieve fault tolerance, MapReduce treats failures as common and 

inevitable. A cluster with tens, hundreds or thousands of machines is very likely 

to experience failures at a significant rate (Sammer12), regardless if the problem 

is in the machines, disks, network or even in the data. 
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To cope with task failures, Hadoop MapReduce provides the concept of task 

attempts. A tasktracker has a limit of four task attempts by default, below this 

limit the failed tasks are rescheduled to run. If this limit is exceeded, the 

tasktracker goes to the job-level blacklist, which prevents tasks from the same job 

from being assigned to that specific tasktracker. If tasks from multiple jobs fail on 

a specific tasktracker, that tasktracker is added to the global blacklist for 24 hours. 

If the tasktracker of a specific worker does not send a heartbeat for a 

configurable period, the tasktracker is considered dead, along with the tasks it was 

assigned, and the tasks are rescheduled to another tasktracker. 

Like the namenode in HDFS, the jobtracker is a single point of failure in 

Hadoop MapReduce. If it fails (or the machine on which it runs) the whole job 

fails.  

 

2.4. 
Apache Pig 

Pig is a framework for executing data flows in parallel on Hadoop 

(Gates11). It includes a language, Pig Latin, for expressing these data flows; and 

an engine that compiles Pig Latin scripts into a series of one or more MapReduce 

jobs that are then executed in the cluster. 

Pig started out as a research project at Yahoo! Research in the early 2000’s. 

With the wide adoption of the framework in the following years, Pig became a 

top-level Apache project in 2010 (Pig15). 

The MapReduce programming model is appealing to programmers because 

it simplifies the development of parallel applications. There are only two high-

level declarative primitives (map and reduce) that must be defined and the rest of 

the code (the map and reduce functions) can be written without worrying about 

parallelism. 

However, the MapReduce model has its limitations. Its one-input, two-stage 

dataflow is very rigid. To perform tasks with a different dataflow, joins or n-stage 

flows for example, inelegant workarounds have to be conceived (Olston08). Even 

for simple operations like projection and filtering, custom code must be provided. 

These factors lead to code that is difficult to reuse and to maintain. Additionally, 
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the system cannot perform optimizations due to the opaque nature of the map and 

reduce functions. 

The goal of Pig’s development team is to make Pig Latin the native 

language of parallel data-processing environments like Hadoop (Gates11). Pig 

provides several advantages over using MapReduce directly. It provides 

processing operations such as group by, order by, filter and projection that 

otherwise would have to be coded directly in MapReduce. This gets even worse 

for more complicated operations like join. Pig provides some complex, non-trivial 

implementations of these operations. For example, Pig has join and order by 

operators that take into account the uneven distribution of records per key in the 

reduce phase and rebalance the reducers. Algorithms like this may take months to 

be written in MapReduce. 

Pig Latin scripts are easier to write and to maintain than MapReduce’s Java 

code. This means that writing the same code in Pig takes less time and fewer lines 

of code than in MapReduce. On the one hand, there may be some specific 

algorithms that are harder to implement in Pig. With MapReduce, developers have 

more control and, given enough time, they will likely outperform a generic system 

like Pig. On the other hand, Pig framework analyzes the whole data flow in the 

attempt of optimizing it before it is compiled in MapReduce jobs. This usually 

leads to better performance than programming MapReduce directly. 

Its creators claimed that Pig was designed to fit in a sweet spot between the 

declarative style of SQL, and the low-level, procedural style of MapReduce 

(Olston08). By offering this high-level framework Pig provides another key 

advantage. As MapReduce evolves, the code is likely to change from version to 

version, making old codes hard to maintain or even incompatible with newer 

versions. Pig hides away MapReduce’s implementation details from users making 

these transitions between versions much smoother. 

As an example, let us consider a simple SQL statement that finds the 

average area of large objects for each sufficiently large class: 

 
SELECT class, AVG(area) FROM objects WHERE area > 200 GROUP BY 

class HAVING COUNT(*) > 103 

 

An equivalent Pig Latin script would be: 
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large_objects = FILTER objects BY area > 200; 

groups = GROUP large_objects BY class; 

big_groups = FILTER groups BY COUNT(large_objects) > 103 

output = FOREACH big_groups GENERATE class, 

AVG(large_objects.area); 

 

A Pig Latin program is a sequence of steps, much like in a programming 

language. Each step carries out a single high-level data transformation such as 

filtering, grouping, and aggregation, like in SQL. These high-level primitives 

make low-level MapReduce manipulations unnecessary. 

Writing a Pig Latin program is similar to specifying a query execution plan 

(i.e. a dataflow graph) which makes it easier for programmers to understand and 

control how the data will be processed. For programmers, this method is more 

appealing than writing an SQL query. An SQL query is usually oriented to answer 

just one question. When users need to perform several data operations things get 

more complicated. One option is to create separate queries and store the partial 

results in temporary tables. Another option is to write subqueries that have to be 

nested in order to process the data in the right order. Both options are not so 

appealing. With Pig, there is no need to worry about temporary tables or 

subqueries. It was conceived to process long chains of data operations. 

The main reason for these differences is that SQL was designed for a 

RDBMS environment. In these environments, data is stored in tables, normalized 

and with proper constraints. That is not the case with Pig. It was designed to work 

in the Hadoop environment, where data is not normalized and there are no tables. 

Thus, Pig Latin use cases are usually extract transform load (ETL) data 

pipelines, research on raw data and iterative processing, but the main one is data 

pipelines (Gates11). Furthermore, Pig is suitable for the batch processing of data. 

It is the appropriate tool to sequentially process gigabytes or terabytes of data, but 

when random lookups are needed or the workload is much smaller, NoSQL 

(Fowler12) databases may be a better solution. 
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2.4.1. 
Pig Latin 

Pig Latin is a dataflow language (Gates11). This means it differs from most 

programming languages like Java and C++, which are control flow languages. In 

these languages the dataflow is just a side effect. In Pig Latin, the user defines a 

sequence of steps where each step represents a single, high-level data 

transformation. 

Although Pig Latin programs provide an explicit sequence of operations, 

they do not have to be executed in that order. High-level primitives like GROUP and 

FILTER allow some optimizations. Let us consider a Pig Latin script that is 

interested in image objects that have a high rectangular fit score but have a small 

area: 

 
rectangular_objects = FILTER objects BY rectangularFit(geometry) > 

0.8; 

small_objects = FILTER rectangular_objects BY area(geometry) < 5.0; 

 

Although the script suggests that the filter that uses rectangularFit will be 

executed before the filter that uses area, this might not be the best decision. If the 

function rectangularFit is an expensive user defined function, it would be more 

efficient to first filter the objects by area and then invoke rectangularFit on the 

resulting objects. If these filters were implemented directly in a map or reduce 

function, this optimization would be impossible. 

Another feature of the language is the ability to operate over plain input files 

without any schema information. The user has only to provide Pig with a function 

that parses the content of the file into Pig Latin’s data model. There is no need for 

a time-consuming data import process. Similarly, the output can be written in any 

format according to a user defined function that converts Pig Latin’s data model 

into a byte sequence. This allows the framework to readily interoperate with other 

applications. 

The language is built for the processing of web-scale data, thus Pig Latin 

includes only a small set of primitives that can be easily parallelized. Operations 

that do not lend themselves to efficient parallel execution were intentionally 
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excluded but can still be implemented via UDFs (user defined functions). In this 

case, users are responsible for the efficiency of their programs. 

To facilitate the debugging process over such large scale datasets, Pig Latin 

also provides a novel interactive debugging environment that illustrates the output 

of each step of the user’s program. The sample data is carefully chosen to 

resemble the real data as much as possible. 

 

2.4.1.1. 
User Defined Functions (UDFs) 

One of Pig’s main features is the possibility to extend the framework. All 

aspects in Pig Latin, including grouping, filtering, joining and per-tuple 

processing can be customized through the use of UDFs. Users can combine the 

default operators with their own or others’ functions. Currently, these UDFs can 

be written in six languages: Java, Jython, Python, JavaScript, Ruby and Groovy. 

The most extensive support is provided for the Java language. With 

functions written in Java it is possible to customize all parts of the processing 

including load/store functions, column transformation and aggregation (Pig15). 

Java functions are also more efficient because they are implemented in the same 

language as Pig and because they can implement additional interfaces like 

Algebraic and Accumulator, that can speed up the processing significantly. The 

former does that by utilizing Hadoop’s combiner, which reduces the skew in the 

reduce tasks and the amount of data sent over the network between the map and 

reduce tasks. The latter allows Pig’s UDFs to work on subsets of the data and 

avoids records to be spilled to disk. Support for the other languages is limited. 

Pig comes with a large number of built-in UDFs. Besides these UDFs, there 

is also PiggyBank (PiggyBank15), a collection of user-contributed UDFs that is 

shipped along with Pig. 

There are four types of UDFs: evaluation, filter, load and store functions. 

Evaluation functions can process and return single elements of data or collections 

of data. Filter functions are a special case of evaluation functions that can only 

return Boolean values. Load and store functions are the ones concerned with data 

input and output. 
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2.4.2. 
Pig’s engine 

Pig runs on Hadoop and uses its distributed file system (HDFS) and its 

processing framework, MapReduce. One of Pig’s advantages is that there is no 

need to worry about the map, shuffle and reduce phases. Pig’s engine manages the 

decomposition of the commands present in a Pig Latin script into the appropriate 

MapReduce phases. 

The engine analyzes a Pig Latin script and understands the data flow 

described by the user. In this step, the engine can do an early check for errors and 

perform some optimizations before compiling the Pig Latin script into 

MapReduce jobs. Figure 6 shows how a sequence of Pig Latin commands would 

be compiled into MapReduce jobs. 

 

 

Figure 6: MapReduce compilation of Pig Latin. 

Source: Adapted from Olston (2008). 

 

Although Pig currently uses Hadoop as its execution platform, its parser and 

logical plan constructor are independent of the execution platform. Only the 

compilation of the logical plan into a physical plan depends on the specific 

execution platform (Olston08). The latest versions provide a pluggable execution 

engine feature which will allow Pig to run on non-MapReduce engines in the 

future. 
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3 
Related work 

This work, to the best of our knowledge, is the first to provide a complete 

MapReduce-based architecture for geographic object-based image analysis. 

Similar efforts have been made for medical images (Aji12), where the authors 

proposed a MapReduce-based query system for microscopy images. This system 

implemented a spatial query system providing basic spatial operations like join 

and nearest neighbor. This architecture included a query engine called RESQUE 

(Real-time Spatial Query Engine), a spatial SQL-to-MapReduce translator based 

on YSmart (Lee11) and Hadoop as the execution engine. 

In 2013, a more generic version of this system was proposed (Aji13). Now 

with a new name – Hadoop-GIS – the system was meant to not only work with 

medical images but any spatial data, including remote sensing data. However, the 

main objective was still similar: to provide a MapReduce-based spatial query 

system with join, containment and aggregation queries. This work improved the 

original system by providing boundary object handling and skew-aware data 

partitioning. 

In the same year, another study proposed a spatial extension to the Hadoop 

framework, called SpatialHadoop (Eldawy13), which would enable the efficient 

processing of spatial operations. The extension provided a two-layered spatial 

index over Hadoop with implementations of Grid file (Nievergelt84) and R-tree 

(Guttman84). They are used as a global index that partitions data across cluster 

nodes and local indexes data organize data inside each node, respectively. 

SpatialHadoop achieved up to 260x speedup for a dataset of 128GB in 

comparison to Hadoop. The spatial operations tested were polygon union, skyline, 

convex hull, closest pair and farthest pair. 

Although the results are interesting, there is an important issue with this 

approach related to technology dependency. The spatial extension is too closely 

related to Hadoop’s source code. That means that any major changes in Hadoop 

(that are likely to happen) would imply in major changes or even incompatibility 
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of the extension. By using on-demand, R-tree-based spatial indexes, Hadoop-GIS 

(Aji13) achieved almost linear speedups in comparison to the commercial system 

DBMS-X but at a safer distance from Hadoop’s source code. The index creation 

overhead, as shown in the experiments, only accounted for a small fraction of the 

overall query response. 

Several similar systems were proposed to perform spatial operations. 

Parallel Secondo (Lu12) is a parallel spatial DBMS which uses Hadoop as a 

distributed task scheduler, while spatial DBMS instances running on cluster nodes 

take care of storage and query processing. MD-HBase (Nishmura11) extends 

HBase to support multidimensional indexes which allow efficient range and kNN 

queries. VegaGiStore (Zhong12) is a spatial query system that relies on a 

geography-aware approach and a two-tier distributed spatial index. 

All these works implement a sort of spatial query system based on Hadoop 

that emulate common operations of conventional SDBs (spatial databases) 

(Güting94). SDBs perform well in relatively small datasets (Shekhar03) but their 

capabilities can hardly meet the performance requirements of queries over big 

spatial data. Another emerging solution is the KVS (key-value stores) systems 

such as BigTable (Chang08), HBase (HBase15) and Cassandra (Lakshman10). 

They are proved to be interesting scalable alternatives to store big semi-structured 

data.  

Although these approaches are interesting for query processing they are not 

suitable for data processing. In ICP, data is short-living, as partial results are 

combined in order to produce new results in a sort of pipeline or data flow. Thus, 

MapReduce batch processing framework is more adequate for this type of 

processing, while databases have their place providing real-time interaction 

(queries) between the user interface and the final results of these pipelines. 

In (Zhou98), a partitioning based approach for parallelizing spatial joins is 

discussed. This work uses a multiple-assignment, single-join approach with the 

PBSM (Partition Based Spatial-Merge Join) algorithm (Patel96). It also provides a 

strategy to rebalance the tasks to achieve better parallelization. 

In ICP, we use a dynamic assignment approach, where multiple assignment 

(Lo96) and multiple matching (Zhou98) approaches are used depending on 

whether data replication is needed. Following the approaches of (Zhong12), 

(Aji13) and (Eldawy13), our architecture uses a two-tier distributed spatial index 
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based on a global tile grid and on on-demand R-tree-based spatial indexes. The 

system relies on MapReduce for load balancing. Although there are some 

similarities between Hadoop-GIS (Aji13) and ICP, there are two major 

differences. Firstly, Hadoop-GIS is not concerned with image handling and 

spectral feature computation: the features are provided along with the image 

objects as input. Secondly, Hadoop-GIS is interested in providing a spatial query 

system and not a framework for image analysis. Although image segmentation is 

not in the scope of this thesis, the final objective of ICP is to provide a full-

fledged object-based image analysis platform comprising image segmentation, 

feature extraction and classification. 

Programming MapReduce directly can be difficult for non-technical users. 

Several high-level languages were developed to simplify the interaction with 

Hadoop MapReduce including Pig Latin (Olston08), HiveQL (Thusoo09) and Y-

Smart (Lee11). These languages allow users to describe their programs in terms of 

primitive operations like filter, sort and join. While HiveQL and Y-Smart are 

SQL-to-MapReduce translators, Pig Latin presents a different approach. It focuses 

on data processing which is more suitable for programmers. 

Eldawy and Mokbel (Eldawy14) propose, as a continuation of their previous 

work (Eldawy13), a spatial extension to the Pig framework. Relying on the ESRI 

Geometry API (ESRI15), the authors introduce spatial operations like contains, 

overlaps and intersection. Aji et al. (Aji13) also proposes a spatial extension to 

HiveQL with spatial constructs, spatial query translation and execution. Their 

extension is based on their own spatial query engine called RESQUE. 

ICP relies on the Pig framework – which provides a high-level data flow 

language (Pig Latin) and an efficient MapReduce compiler – and extends this 

framework with spatial operations and spectral feature computation. Spatial 

operations are powered by the JTS library (JTS15) and image operations rely on 

Java Advanced Imaging library (JAI15) and ImgLib2 (Pietzsch12). 

Regarding image processing systems, there are also a number of works. Lin 

et al. (Lin13) proposes a cloud-based framework for massive remote sensing 

image storage and processing using Mahout (Mahout15) and MapReduce. A 

pixel-based classification is performed using the K-means implementation 

provided by the Mahout library. Liu et al. (Liu12) introduces a MapReduce 

approach for processing large-scale remote sensing images. Their approach uses a 
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multiresolution tile pyramid and a tile-based processing to achieve parallelism in 

MapReduce. The experiments show interesting results for SURF (Bay06) and 

Sobel edge detection algorithms. Liu et al. (Liu13) proposes a distributed system 

that relies on HBase (HBase15) for image data storage and MapReduce for image 

data processing. Wang et al. (Wang12) presents a large-scale multimedia data 

mining approach using the MapReduce framework. Some methods like point 

detection and clustering are investigated for images and event detection and near-

duplicate retrieval for videos. All these works have in common that they are 

focused on image processing and point- or pixel-based image analysis.  

In fact, it seems that much has been done on distributed systems for spatial 

operations and raster processing, but little or nothing has been done, in this 

context, for object-based image analysis. This is interesting, as object-based image 

analysis places itself as a bridge between the raster and the vector domains. 

The architecture proposed in this work fills this gap by providing a platform 

that enables image segmentation (although it is out of the scope of the present 

thesis), feature extraction and image object classification in a distributed 

environment, considering raster data and vector data in the interpretation process. 

Thus, ICP is a platform based on Hadoop and Pig frameworks that provides a 

distributed architecture to perform object-based image analysis. 

There is another aspect to ICP that is related to knowledge representation. 

One of the main goals of the platform is to provide an intuitive, flexible and 

powerful knowledge representation structure. Image interpretation has been 

regarded, traditionally, as a pattern recognition problem. Among the pattern 

recognition categories presented in (Jain00), statistical (Webb02), machine 

learning (Li00; Mciver01; Zhong08; Chi05) and structural methods (Sagerer97; 

Liedtke99; Bückner01; Schiewe01; Centeno03) are particularly important for the 

analysis of remote sensing data (Costa10). 

While statistical and machine learning methods present a high demand for 

training samples, structural methods use expert’s knowledge to reduce 

significantly this requirement. This main characteristic makes such methods more 

suitable for remote sensing applications. Structural methods involve complex 

patterns in which knowledge is built recursively from simpler patterns until 

primitive patterns are reached. In knowledge-based or cognitive systems, the 

classes of objects that are expected to be found in an image are defined based on 
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an explicit representation of the expert’s knowledge about their spectral, 

morphological and topological characteristics (Costa10). 

There are other advantages of utilizing explicit knowledge representation 

(Crevier97). Firstly, knowledge can be added to a knowledge base, without 

modifying preexisting rules. Secondly, it can be more easily validated and favors 

interactive problem solution. Finally, explicit knowledge leverages collaboration 

and knowledge exchange between those working on similar problems (Costa10).  

Systems like ERNEST (Kummert98), AIDA (Liedtke99), GeoAIDA 

(Bückner01) and InterIMAGE (Costa08) use a semantic network to represent 

knowledge. Besides declarative knowledge, this structure is closely related to the 

image interpretation strategy (procedural knowledge), where data-driven and 

model-driven operations are performed according to the hierarchical structure of 

the semantic network. 

Like these systems, ICP provides a semantic network for the hierarchical 

modelling of target classes. However, the procedural knowledge is detached from 

this hierarchical structure and represented in a more generic graph structure. A 

graph lends more flexibility for the modelling of the expert’s knowledge allowing 

different combinations of operations. 
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4 
InterIMAGE Cloud Platform (ICP) 

The distributed architecture for object-based image analysis proposed in this 

work is inspired by the InterIMAGE system (Costa08). InterIMAGE is a 

knowledge-based platform that follows the GEOBIA approach. It is an extensible, 

open-source system for the automatic, knowledge-based interpretation of remote 

sensing data. InterIMAGE has the following features: (i) it is free, unlike other 

softwares that perform object-based image analysis and can cost a few thousands 

of dollars; (ii) it is extensible; the software provides mechanisms that allows 

users/developers to extend the system by adding external operators to perform 

specific tasks; (iii) it is open-source; it means it is possible to check the source 

code and understand exactly what the system does behind the scenes. 

These characteristics make InterIMAGE and other free and open-source 

softwares (FOSS) a much more interesting tool for scientists than commercial 

alternatives. It did not take long for this system to start drawing the attention of 

the academy. This can be seen by the number of academic works that investigate 

the possibilities of the system (Novack10; Sousa11; Camargo12). However, as a 

system which’s core was developed in the beginning of the 2000’s (Bückner01), 

when the number of satellites and image resolutions available today were not a 

reality, the system was not conceived for the interpretation of such large datasets. 

This came to be one of its main limitations. 

In order to stay up to the new sub-meter resolutions and to the huge amount 

of image data produced today, InterIMAGE needed to be redesigned. The 

architecture that will be presented in this chapter – named InterIMAGE Cloud 

Platform (ICP) – is a total redesign of InterIMAGE and provides a distributed 

platform for cloud environments based on Hadoop and Pig. By utilizing the 

MapReduce programming model, this new platform is able to interpret very large 

remote sensing image datasets. The next sections present this novel architecture in 

detail. 
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4.1. 
Architecture overview 

ICP’s architecture inherits some features from InterIMAGE. There is a 

semantic network where the user can hierarchically define the semantic concepts 

that they expect to find during the execution of an interpretation model; and a 

control strategy that executes operators that perform specific tasks. Although the 

general idea is similar, the new architecture is different in many ways. 

In InterIMAGE, besides representing the class hierarchy, the semantic 

network also defines the interpretation logic, i.e. the operators’ execution 

sequence in an interpretation model. In ICP, the semantic network represents only 

declarative knowledge, while procedural knowledge is defined in a different 

component called operator graph. This new component allows the construction of 

more powerful and flexible models in comparison to the original InterIMAGE. 

This flexibility makes it easier for the interpretation models created in ICP to 

adhere to the user’s knowledge. 

Another difference is that in InterIMAGE there is limited data partitioning 

and processing parallelization, i.e. at some point of the interpretation the whole 

dataset is processed at once. This limits the input size the system can handle to the 

size it can fit in the main memory. From the user’s perspective, that is 

undoubtedly where the two systems differ the most. In ICP, data storage and 

processing is inherently distributed, which allows the system to process large 

volumes of data in parallel. 

Although InterIMAGE allows the use of some fuzzy logic in its decision 

rules, it does not take full advantage of this approach. It keeps a copy of an object 

hypothesis for each class it has been assigned, even when the geographic regions 

are the same (e.g. the image segments were yielded by the same segmentation 

algorithm). In ICP, the same image object can belong to more than one class with 

different membership values, very much like a fuzzy system would do. This not 

only avoids data replication but also simplifies the spatial conflict resolution 

procedure. 

Although it is relatively simple, in InterIMAGE, to create a new operator 

and add it to the system, this procedure still requires good programming skills. In 
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ICP, operators are created in Pig Latin which makes it easier for non-technical 

users to add new functionalities to the system. 

These characteristics show that ICP does not only provide a distributed 

platform for parallel execution, it also offers a more flexible and powerful 

architecture that facilitates the construction of interpretation models. Figure 7 

illustrates the proposed architecture. 

 

 

Figure 7: ICP’s architecture. 

 

ICP’s architecture (Figure 7) is composed by three main components: 

knowledge representation, data distribution and distributed processing. Next 

sections discuss each of these components. 

 

4.2. 
Knowledge representation 

As stated before, knowledge representation in ICP is obtained through two 

different components: semantic network and operator graph. The former is 

responsible for declarative knowledge while the latter is responsible for 

procedural knowledge. 
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4.2.1. 
Semantic network 

The semantic network represents hierarchically the semantic concepts or 

classes that an expert expects to find during an interpretation. It is a tree-like 

structure where nodes represent concepts and the edges represent relations 

between these concepts (Figure 8). 

 

 

Figure 8: Example of a semantic network. 

 

4.2.2. 
Operator graph 

The operator graph (Figure 9) is responsible for the control strategy. It is a 

directed graph that defines the operators and their relations in an interpretation 

model. The nodes represent operators that are mostly related to the generation and 

validation of object hypotheses associated to the classes defined in the semantic 

network; and the edges represent the graph’s structure, indicating the operators’ 

execution sequence. 
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Figure 9: Example of an operator graph. 

 

A common workflow in ICP is composed by three steps: object generation, 

hypothesis generation and hypothesis validation. Firstly, the segmentation process 

generates image objects. Secondly, classification operators take these image 

objects as input and classify them. It is possible that in this step the same original 

image object or image objects obtained from different segmentations and that 

present some overlap are classified as different classes. That is why from this 

point on they are called object hypotheses. In order to help the system to decide 

which hypotheses will win in the end, along with the class, classification operators 

also produce a membership value that represent the confidence they have that an 

object belong to a specific class. Finally, a hypothesis validation step takes place 

where spatial conflicts are resolved. 

In InterIMAGE, there are two types of operators: top-down and bottom-up. 

The former is used to find regions in the image associated to specific semantic 

concepts and to build a net of object hypotheses. The latter is used to validate or 

discard these hypotheses and resolve eventual spatial conflicts generating the final 

net of object instances. Each semantic node may have a top-down and a bottom-

up operator associated to it. 

In ICP, there is no concept of top-down and bottom-up steps. As stated 

before, the interpretation is no longer based on the semantic network’s hierarchy. 

The semantic network represents only declarative knowledge while the procedural 

knowledge is defined in the operator graph. 
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A graph structure lends much more flexibility to the construction of an 

interpretation model. While in InterIMAGE the semantic nodes can have only one 

parent node, in ICP a graph node may be preceded and succeeded by any number 

of nodes. In this sense, in the new architecture, graph nodes (operators) may 

perform object generation, hypothesis generation or object validation. 

In InterIMAGE, holistic (top-down) operators can be written in (almost) any 

programming language. Besides these operators, the system also provides another 

mechanism: decision rules. Decision rules allow the user to manipulate object 

hypotheses by computing features, combining and filtering them. Internally, these 

rules are programmed in a specific language but the latest versions provide an 

intuitive user interface for that. These characteristics create two levels of 

interaction with the system. In some sense, decision rules are custom operators 

that users can easily define and operators are executable programs that only 

programmers can create. Another consequence of this architecture is that it is not 

possible to access external operators from a decision rule. 

In ICP, operators and decision rules are treated the same way; both of them 

are written in Pig Latin (from this point on, the term operator will be used to refer 

to both of them). This not only simplifies the system, but also allows operators to 

be called from a decision rule and vice-versa. In fact, ICP’s architecture allows 

operators to be created upon other existing operators, making it easier for users to 

profit from what others have done in the platform. For example, an operator that 

classifies vegetation can be included in a decision rule that classifies land cover 

classes. This also is valid for the operator graph itself. A whole complex land 

cover classification model can be included into a higher level classification model 

by just including one operator. This recursive use of knowledge allows the 

creation of very powerful interpretation models. 

In ICP, operators are defined by a Pig Latin template script and its input 

parameters. An operator can use Pig Latin commands and UDFs. As an example, 

here is the code for a basic operator that imports an external segmentation (some 

details were left out for the sake of readability): 
 

--Loads image objects 

load = LOAD '$INPUT_PATH' USING 

org.apache.pig.builtin.JsonLoader('geometry, properties'); 
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--Filters out invalid geometries 

selection = FILTER load BY II_IsValid(geometry, properties, ''); 

 

--Computes tile information 

projection = FOREACH selection GENERATE geometry, 

II_ToProps(II_CalculateTiles(geometry, 

properties#'tile'),'tile',properties) AS properties; 

 

--Sets objects’ class 

projection = FOREACH projection GENERATE geometry, 

II_ToProps('$CLASS','class',properties) AS properties; 

 

--Sets objects’ membership value 

projection = FOREACH projection GENERATE geometry, 

II_ToProps($RELIABILITY,'membership',properties) AS properties; 

 

--Stores resulting objects 

STORE projection INTO '$OUTPUT_PATH' USING 

br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

 

The commands in red are Pig Latin commands. The functions in blue are 

UDFs and the terms in bold black are the input parameters. This operator 

basically reads a given input segmentation file, filters out invalid polygons, 

computes the tile labels, sets the class and membership properties and stores the 

result. 

ICP is also extensible. It is possible to extend the system’s functionalities by 

adding new operators and UDFs. UDFs are operators’ building blocks and, 

depending on the objective of one operator, developers can use existing UDFs or 

create new ones to achieve their goal. Almost all system’s UDFs are written in 

Java but they can also be written in other languages as shown in section 2.4.1.1.  

 

4.2.2.1. 
Graph execution 

When an interpretation model is executed, the nodes (operators) in the 

operator graph are visited in an iterative process (Figure 10). 
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Figure 10: flowchart of the graph execution. 

 

Before the execution, the graph has at its disposal a number of available 

instance group slots. They represent separate Hadoop clusters in the cloud. When 

an operator is selected, the graph controller verifies if the operator is enabled or 

running. Disabled and running nodes are skipped. Then, the controller verifies if a 

node that was running finished execution. If so, the instance group slot occupied 

by this operator is released and the operators that depend on it are notified. 

If the operator was not running, the controller checks if it is available. It 

means verifying if all previous nodes the operator depends on were executed. If it 

is available, the controller assigns it to an available instance group slot. If there 
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are no instance group slots available, the node is skipped and will be considered 

again in the next loop. 

When an operator is selected for execution in an instance group slot, its Pig 

Latin script is parsed by the system’s core and the input parameters are replaced. 

Once the final script is obtained, it is sent to the cloud for execution. 

 

4.2.2.2. 
Two-level parallelism 

ICP achieves two levels of parallelism. Once an operator is executed in the 

cloud, ICP parallelizes its operations depending on the number of available 

processing units (logical cores). This is the operator-level parallelism. 

Since in cloud environments the costs drop dramatically, it is not 

uncommon to have cloud systems with hundreds or even thousands of machines. 

With this compute power, it is possible to divide the cloud infrastructure in 

different instance groups and run one operator in each group at the same time, 

achieving graph-level parallelism. 

It is noteworthy that this form of parallelism is constrained by the operators 

and graph characteristics. Even with more compute power, if an operator depends 

on the output of another operator it will not be possible to run them in parallel. 

This aspect will be clearly exemplified in the experimental analysis reported in the 

next chapter. 

 

4.2.2.3. 
Fault tolerance 

As the results of each operator are stored in an auxiliary cloud storage 

service, it allows users to easily recover from errors. If an operator fails because 

one of its MapReduce jobs has failed or for any other particular reason, users do 

not have to re-execute the graph from the beginning, it is possible to just re-

execute the failed operator and continue the interpretation from that point on. 

This characteristic may also save significant time for users when they are 

still building their interpretation models. They can re-execute only the operator 

they are working on without having to execute the whole graph again. The fact 

that partial results are stored also may help users to build their interpretation 
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models as they can compare the results of each operator and understand step by 

step what is happening in the interpretation. Although the architecture provides 

this mechanism, the development of a graphical user interface is still necessary in 

order to allow users to fully benefit from it. 

 

4.3. 
Data distribution 

As stated before, ICP deals with raster and vector data at the same time. 

This section presents data representation and data partitioning strategies, giving 

special focus to how raster data are handled in the platform. 

 

4.3.1. 
Data representation 

In ICP, images are stored in tiles. Each image tile is represented by two 

files. The first one is a TIF file, that is a subset of the image itself, including all 

bands; and a META file that holds information about the image tile. Here is the 

META file description: 

 
Line 1: number of bands 

Line 2: image width 

Line 3: image height 

Line 4: geographic west 

Line 5: geographic north 

Line 6: geographic east 

Line 7: geographic south 

 

The vector data is stored in a way that it can be processed by Pig. Pig 

supports several data formats and the one chosen for ICP was JSON (JavaScript 

Object Notation). JSON is a widely-adopted, human-readable text format. It is an 

open standard that is usually used as an alternative to XML. Here is the 

description of the vector data file: 

 
{“geometry”:“WKT format”,“properties”:{“key1”:“value1”,…}} 
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Each line in a file represents a polygon or image object. The vector object is 

composed by two fields: geometry and properties. The geometry is expressed in 

another widely used format called Well-Known Text (WKT). It is a text markup 

language for representing vector geometry objects. The format was proposed by 

the Open Geospatial Consortium (OGC) (OGC15) and is supported in almost all 

spatial databases. With WKT it is possible to represent nearly any 2D geometry. 

The properties field holds the properties of a vector object. An object has 

some basic properties like tile label, crs (coordinate reference system), iiuuid 

(InterIMAGE Universally Unique Identifier), class, and membership, but the 

number of properties may grow as new features are computed during the 

execution of an interpretation. 

Side data like auxiliary vector data, semantic network and fuzzy sets are 

represented in a serialized object file. 

 

4.3.2. 
Data partitioning 

ICP achieves computational parallelism by partitioning the input data with 

respect to a geographic tile grid. The platform allows the interpretation of more 

than one image at the same time. The images may come from different sensors 

and have different pixel resolutions. When it is the case, the system considers the 

maximum resolution in order to partition the images. 

As input images may be spatially disjoint, the geographic tile grid is built 

considering a given Coordinate Reference System (CRS) and is independent of 

the boundaries of the images. The tile size is defined in pixels and defaults to 512 

as suggested by Sample and Ioup (Sample10). 

In order to label the geographic tiles a space-filling curve (Sagan94) was 

used, more specifically a z-order curve (Figure 11 (a)). It maps a 

multidimensional space to one dimension and preserves locality. The resulting 

ordering can be regarded as the order one would get from a depth-first traversal of 

a quadtree (Figure 11 (b)). 
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(a) (b) 

Figure 11: z-order (a) and quadtree representation (b). 

 

If we name each quadrant, say w-x-y-z (Figure 11 (a)), the lower-left tile in 

the quadtree shown in Figure 11 (b) would have the following label: www. This 

procedure is also known as locality preserving hashing (Indyk97), where the 

relative distance between input values is preserved in the relative distance 

between output hash values. Another interesting property of these hash values is 

that by just adding or dropping a letter it is possible to easily walk through the 

tree, reaching different hierarchical levels. When no hierarchical (recursive) 

operation is needed, the system also provides a basic tile label with numeric 

values. 

As an example, let us consider Figure 12. It shows an image and the 81 

geographic tiles that were computed for it based on the reference system 

EPSG:32723 - WGS 84 / UTM zone 23S. All the tile labels start with xwwxx, 

which means that the 5th hierarchical level contains all the tiles that intersect the 

image. After that, each tile label has yet 10 more levels until the leaves of the 

quadtree are reached. Figure 12 also shows the tile label and number for the tiles 

in each corner of the image. For the tile in the lower-left corner, the image 

presents the last four levels of the quadtree in different colors. 
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Figure 12: geographic tile representation. 

 

Image tiles are not stored on HDFS; they are stored in an auxiliary cloud 

storage service and retrieved only when spectral information are needed. This 

mechanism will be explained in details in the next section. 

Regarding image objects, the system may partition them using two different 

methods, depending on the operation. As an image object may intersect more than 

one tile, in the cases where replication is needed ICP uses multiple assignment 

(Figure 13 (a)), assigning an object to all the tiles it intersects; when there is no 

replication the platform uses multiple matching (Figure 13 (b)), where an object is 

assigned to a single tile. If the object intersects more than one tile, it is assigned to 

the tile with the lowest label, called original tile. 

 

 
(a) 

 
(b) 

Figure 13: multiple assignment (a) and multiple matching (b). 
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Image objects are stored on HDFS. They are distributed in the cluster and 

replicated according to MapReduce’s replication factor. 

 

4.3.3. 
Raster data 

As stated before, ICP works with raster and vector data at the same time. 

One of the challenges in ICP was the definition of how to deal with both data 

types in MapReduce. While the systems presented in Chapter 3 which emulate 

spatial databases use geographic polygons as MapReduce’s main input, the other 

systems which are focused on image processing use the images themselves. 

In fact, it is not straightforward to represent image data in MapReduce since 

MapReduce is tailored for text data. This is an important consideration as all 

MapReduce features were developed having text data in mind, including 

compression algorithms. However, these systems were quite successful at 

proposing new data representation techniques to overcome this limitation. 

In ICP, there were three options. The first option (1) was to consider image 

object data (vector data) as MapReduce’s main input and load image data 

separately. The second option (2) was to do the opposite: consider image data as 

MapReduce’s main input and load vector data separately, and finally, the third 

one (3) was to consider both, image and vector data, as MapReduce’s main input 

at the same time. 

A first consideration is that the granularity of vector data is much higher 

than image data. As an example, an image of 32,000x32,000 pixels that was used 

in our experiments has 3.8 GB on disk. During the interpretation, the number of 

image objects that were created reached 8 million, what represents around 23.2 

GB of data on disk. A volume of data that is more suitable for MapReduce. 

A second consideration is that image data are not prevalent in an 

interpretation. If we think about the whole chain of operations that make up an 

interpretation model in ICP, the computation of spectral features represents a 

small part of it. Once image data are considered and the spectral features are 

computed the rest of the interpretation is interested only in the computed spectral 
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features, not in the image itself. As an example, the whole land use interpretation 

model executed in our experiments does not use image data whatsoever. 

The first consideration makes option 2 to not seem so appealing, as a large 

set of vector data would have to be loaded from an auxiliary storage service. The 

second consideration also indicates that option 3 is not interesting as image data 

would have to be loaded, distributed and replicated on HDFS even when their 

processing represent a small fraction of the whole interpretation. Another 

drawback of option 3 is to have two different file types in MapReduce, one 

tailored for vector data and one for image data. This would make the system more 

complex. 

For these reasons, ICP implements option 1. This approach considers image 

data as auxiliary data. It means they are not part of MapReduce main input data, 

but are loaded from an auxiliary storage service. In this approach, MapReduce 

input is only composed by image object data and image data are loaded on 

demand. One drawback of this approach is that image data have to be loaded from 

another storage service in the cloud and this may incur in performance loss. 

However, the performance in these cases depends on where image data are stored. 

In our experiments, for example, image tiles were stored on the same cloud 

service, sharing the same network as the processing machines, making these 

latencies imperceptible. 

In order to minimize network communication, a strategy was created. 

Before the data of a specific image tile are considered within an operator, the 

image objects are grouped by tile. Therefore, for all the objects that intersect that 

image tile, it is loaded just once. Another strategy is to compute all spectral 

features that will be used in an operator at once. This way, the same image tile 

does not have to be loaded several times. The operation type for this approach is 

presented in section 4.5.2.1. 

 

4.4. 
Distributed processing 

This section presents the distributed environment ICP is designed for and 

explains how the distributed processing takes place. 
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4.4.1. 
Distributed environment 

Hadoop works with clusters and cloud environments. In fact, local clusters 

are a particular case of cloud environments where the machines are usually 

homogeneous and geographically close to each other. 

One important aspect of local clusters is that they are expensive. The cost of 

setting up a local cluster is not only related to the cost of the computers 

themselves, but also to electric power and maintenance costs. Another 

consideration is that if more compute power is needed, a solution is to buy more 

machines, but this also involves a demand for more space that is not always 

available. 

For these reasons, ICP was designed for cloud environments (section 2.2). 

These systems usually offer much cheaper prices and charge users in a per-use 

basis, what enables their use by students and scientists without the resources to set 

up a local cluster. 

As stated before, since clusters are a particular case of cloud environments, 

the platform also works with clusters. In fact, the platform works even in a single 

desktop as long as Hadoop and Pig are properly installed and configured. 

 

4.4.2. 
Cloud processing 

ICP’s cloud processing relies on Hadoop and Pig frameworks for 

MapReduce processing and data flow execution. As mentioned earlier, before 

execution, input data is partitioned (4.3.2) and sent to the cloud. After that, ICP 

analyzes the operator graph and executes each operator, by sending its Pig Latin 

script to the cloud for execution (4.2.2.1). 

Once the operator’s Pig Latin script is sent to the cloud, the Pig framework 

analyzes the script and compiles it into MapReduce jobs that will be executed in a 

distributed fashion according to the number of available machines (K) (Figure 14). 

In our experience the overhead of using the Pig framework is negligible as the 

compilation time takes only a few seconds. 
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Figure 14: Cloud processing in detail. 

 

The framework reads the Pig configuration parameters that are set in the 

script and is also responsible for loading the required libraries and shipping them 

to the machines that will execute the operator. Pig’s parser also optimizes the 

script in order to produce less complex MapReduce jobs. 

When the jobs are executed, Hadoop MapReduce reads the operator’s input 

data from an auxiliary cloud storage service. Since one operator can be compiled 

into one or more MapReduce jobs, all temporary files are stored and read from 

HDFS. When all the jobs that compose the operator finish executing, the final 

result is stored back in the auxiliary cloud storage service. 

If more than one instance group is available in the cloud, the execution is 

slightly different. If there are T instance groups available (Figure 7), instead of 

waiting for one operator to finish to execute the next one, ICP can execute up to T 

operators in parallel. This can speed up the processing depending on the operators 

that are being executed and the graph structure. 

Although the compilation of the Pig Latin script in MapReduce jobs is 

automatic, both frameworks – Hadoop and Pig – provide dozens of configuration 

parameters that allow users to finely tune the behavior of both systems. 
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4.5. 
ICP’s operations 

It is possible to think of an operator as a set of high-level operations. Each 

operation is represented by a set of Pig Latin commands and UDFs that work 

together to perform a specific task. In this section, ICP’s operation types are 

presented.  

 

4.5.1. 
Spatial-blind operation 

This is the distributed operation type that does not rely on spatial locality. In 

this operation type, the objects are processed in a distributed fashion according to 

their original distribution on HDFS. The computation is performed and the results 

are stored on the output objects’ properties field. Examples of this operation type 

are morphological feature computation, spatial filtering and classification. These 

three examples are described below and a list with all spatial-blind operations 

implemented in ICP can be found in Appendix C. 

 

4.5.1.1. 
Morphological features 

Morphological features need only the geometry of an image object to be 

computed. Once the geometry is passed to the function, features like area and 

centroid can be computed in a distributed fashion. 

 

4.5.1.2. 
Spatial filtering 

In order to perform spatial operations efficiently, ICP relies on two 

structures, a global tile grid and on-demand R-tree-based spatial indexes. ICP 

relies on the JTS library for index and geometric operations (JTS15). Since data is 

partitioned in tiles, spatial operations can be processed in a filter-and-refine 

fashion (Figure 15). Although there is a spatial aspect to these operations, they are 

spatial-blind because they do not care about the location of the image object in the 

cloud. 
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Figure 15: filter-and-refine workflow. 

 

In the filter step, image objects that do not intersect the target regions can be 

quickly filtered out. The global tile grid is queried for each target region and a list 

with the intersecting tiles is created. After that, image objects that are not assigned 

to one of these tiles are discarded. Target regions are geographic regions defined 

by the user that represent the areas they want to process. 

In the refinement step, the objects that passed the first coarse filter are 

checked against the precise geometric predicate, which is more computationally 

expensive. Only the objects that pass the second test are kept. 

ICP provides two types of filters: intersection and containment. The first 

verifies which image objects intersect the given target regions while the second 

verifies the image objects that are within the target regions. After an intersection 

filter, ICP also provides a UDF that can clip the image objects with respect to the 

given target regions. 

When spatial indexes are needed, R-trees are created with the Sort-Tile-

Recursive (STR) algorithm (Rigaux02) which maximize space utilization and 

fairly minimize overlaps between nodes in comparison to basic R-Trees. 

The general algorithm for this operation is the following: 

 

1. Load tile grid. 

2. Load target regions. 

3. Compute a list with the tiles that intersect the target regions. 

4. Filter objects based on the tile list. 

5. Filter refinement (optional: clipping). 
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Load tile grid. The tile grid is loaded from an auxiliary cloud storage 

service. A spatial index is created. 

Load target regions. The vector objects that represent the target regions are 

loaded from an auxiliary cloud storage service. A spatial index is created. 

Compute a list with the tiles that intersect the target regions. The global 

tile grid index is queried for each target region. A list is created with all the tiles 

they intersect. 

Filter objects based on the tile list. This step represents a coarse filter 

where the objects that are not assigned to the tiles in the list are filtered out. 

Filter refinement. The remaining objects are filtered by checking the 

precise geometric predicate - intersection or containment – in relation to the target 

regions. The target regions’ spatial index is used for fast lookup. In this step, the 

objects may also be clipped. 

 

4.5.1.3. 
Classification 

Classification functions like Bayesian Classifier, Random Forest, Decision 

Tree and SVM are also examples of this operation type. Their general algorithm is 

presented below: 

 

1. Load sample data. 

2. Train classifier. 

3. Classify objects. 

 

Load sample data. Sample data is loaded from an auxiliary cloud storage 

service. 

Train classifier. The classifier is trained with the given sample data. 

Classify objects. Objects are classified using the trained classifier. 

 

4.5.2. 
Spatial-aware operation with replication 

This operation type relies on spatial locality. Objects are grouped according 

to the geographic tile they are assigned to and boundary objects are replicated 
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taking into account all the geographic tiles they intersect (multiple assignment). 

This is the general algorithm: 

 

1. Intersecting tiles computation. 

2. Object replication. 

3. Object grouping by tile. 

4. Partial results computation. 

5. Object grouping by original tile. 

6. Partial results combination. 

 

Intersecting tiles computation. In this step, each object gets a list with all 

the tiles they intersect. The tile with the lowest label is assigned as original tile. 

Object replication. Here, the objects are replicated according to each tile 

they intersect. The copies of the same object have the same iiuuid. All copies, 

except the original object, have a special field called iirep, which allows the 

system to remove them when they are no longer necessary. 

Object grouping by tile. In this step, all image objects (including replicated 

ones) are grouped by tile. 

Partial results computation. In this step, the corresponding image tile is 

loaded. The computation is performed considering only the intersection between 

the object and the geographic tile. Partial results are stored in the output objects. 

Object grouping by original tile. In this step, all objects are grouped by 

their original tile. 

Partial results reduction. In the final step, the partial results of the objects 

with the same iiuuid are combined and all replicated objects are discarded. 

 

Examples of this operation type are the computation of spectral and 

topological features, and spatial conflict resolution. These three operations are 

explained in detail below. Since the general operation algorithms are similar, the 

discussions will focus on the partial results computation and partial results 

reduction steps. 
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4.5.2.1. 
Spectral Features 

In this operation type, after the image objects are grouped by tile, a UDF 

named Partial Spectral Features is called (Figure 16). This UDF receives the 

spectral features to be computed as an input parameter. The function loads the 

corresponding image tile from an auxiliary cloud storage service. Once the image 

tile is loaded, the UDF computes the partial values for all the required spectral 

features, for each image object. If the image object intersects other tiles, only the 

intersection with the current tile is considered. When all the partial values are 

computed, a new field called spectral features is added to the object’s property 

field, where the partial values are written. 

When the objects are regrouped by original tile, another UDF is called: 

Final Spectral Features (Figure 16). In this UDF, all objects with the same iiuuid 

are grouped. These objects represent the copies of the same object that have been 

created in the replication step. Once the copies are gathered together, partial 

values are combined and the final feature value is stored in the object’s property 

field of the original object. After that, the original object is written in the output 

and the copies are deleted. 

Up to now, the implemented spectral features are mean, maximum pixel 

value, minimum pixel value, band ratio, brightness, band mean arithmetic, 

amplitude value and standard deviation (feature definitions can be found in 

Appendix E). 
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Figure 16: spectral features operation. 

 

4.5.2.2. 
Spatial Resolve 

Like InterIMAGE, ICP allows different segmentation algorithms (or 

different segmentation parameters) to be considered in the same interpretation 

model. This characteristic leads to spatial conflicts when, for the same geographic 

region, there is more than one object hypothesis. 

Because of its architecture, even when the segmentations are the same, 

InterIMAGE creates a copy of the object hypothesis for each class it was assigned 

to. For example, if there is a specific segmentation for vegetation classes – and 

there are two classes, trees and grass – the same image object is duplicated, one 

for each class. The object copies, later on, undergo a procedure called spatial 

conflict resolution. 

In ICP, there are three approaches for spatial conflict resolution. In the first 

one, called fuzzy spatial resolution (Figure 17), when the same image object has 
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to be classified in two different classes, a special property is created for that object 

called classification. This property, in fact, keeps a list of class names and 

membership values. Thus, it is possible to have the same image object classified 

as grass with membership 0.4 and classified as trees with membership 0.8. This 

greatly avoids data replication and simplifies the classification process. In this 

case, when the final classification is calculated, the system basically takes the 

class with the highest membership value. This is an example of a spatial-blind 

operation (section 4.5.1). 

 

 

Figure 17: fuzzy spatial resolution. 

 

When segments produced by the same segmentation are processed in 

different operators, it is not possible to apply this approach, since the system 

creates one object hypothesis for each operator. In this case, ICP applies a simple 

spatial resolution (Figure 18). As hypotheses that cover the same geographic 

region have the same iiuuid, the system groups the hypotheses by iiuuid and takes 

the hypothesis with the higher membership. The other copies are discarded. This 

approach is simpler than the one implemented in InterIMAGE, that uses in this 

case, the same approach used for segments produced by different segmentations. 

This is an example of a spatial-aware operation without replication (section 4.5.3). 

 

 

Figure 18: simple spatial resolution. 
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When there is a spatial conflict between objects originated in different 

segmentations, ICP follows the same approach as InterIMAGE, called spatial 

conflict resolution (Figure 19). In this approach, image objects are ordered 

ascendingly by their membership values and inserted in a list. After that, the 

objects in this list are rasterized and written on an auxiliary label image (the 

rasterization method selects the pixels of which centers lie within the image 

object). The procedure continues until all objects are written. In the end, the image 

objects with higher membership values remain in the label image while the others 

are overwritten during the process. After that, the system applies a vectorization 

on the label image and collects the winning objects and writes them in the output. 

During a spatial conflict resolution, some objects may be completely 

discarded. The remaining objects may keep their original shape, have their areas 

reduced or even divided in two or more objects. It is usual to reset all objects’ 

non-basic properties after this process as previously computed spectral and 

morphological features may have changed. This is a spatial-aware operation with 

replication and its distributed strategy will be explained below. 

 

 

Figure 19: spatial conflict resolution. 

 

When the objects belonging to the same tile are grouped, this operation type 

calls a UDF named Partial Spatial Resolve (Figure 20). As seen before, this UDF 

creates a list with all the objects in ascending order of membership value and 

iterates through this list rasterizing these objects and writing them on an auxiliary 

label image. This process continues until all objects are written. In the end, the 

objects with higher membership values remain in the label image while the others 

are overwritten during the process. Again, if an object intersects more than one 

tile, only the intersection with the current tile is considered. Finally, the function 

applies a vectorization on the label image and builds the image objects again. 
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When the objects are regrouped by their original tile, another UDF is called: 

Final Spatial Resolve (Figure 20). This UDF groups the objects with the same 

iiuuid’s and merges them creating a new object. If there are disjoint parts, the 

function creates new objects for them. In the end, all the objects created in this 

function receive new iiuuid’s and have their properties reset. 

 

 

Figure 20: spatial resolve operation. 
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4.5.3. 
Spatial-aware operation without replication 

This operation type relies on spatial locality. In this case, objects are 

grouped according to the geographic tile they are assigned to. No replication is 

needed (multiple matching). This is the general algorithm: 

 

1. Object grouping by original tile. 

2. Operation computation. 

 

Object grouping by original tile. In this step, all objects are grouped by 

original tile. 

Operation computation. The computation is done and the results are stored 

on the output objects’ properties map. 

 

One example of this operation type is the function Simple Spatial Resolution 

(section 4.5.2.2). This function resolves spatial conflicts between object 

hypotheses that cover the same geographic region, i.e., objects generated by the 

same segmentation algorithm. In the distributed strategy, image objects are 

grouped by original tile. The objects with the same iiuuid are compared and the 

winner hypothesis is the one with the highest membership value. The other object 

hypotheses for the same iiuuid are discarded. 

 

4.5.3.1. 
Topological Features 

In the partial results computation step, this operation type calls a UDF called 

Partial Topological Features (Figure 21). This UDF loads the global tile grid and 

creates a STR R-tree-based spatial index. After that, the function also creates a 

spatial index on the input image objects. 

For each image object (target), the function verifies the intersecting objects 

(neighboring objects). Then, it computes a list with all the intersecting tiles of 

each target-neighbor object pair. The partial topological features are only 

computed if both objects have the same original label (lowest tile label). This 

precludes a topological feature from being computed more than once for objects 
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that intersect more than one tile. When all the partial values are computed, a new 

field called topological features is added to the object’s property field, where the 

partial values are written. 

In the partial results reduction step, another UDF is called: Final 

Topological Features (Figure 21). In this UDF, all objects with the same iiuuid 

are grouped. These objects represent the copies of the same object that have been 

created in the replication step. Once the copies are grouped together, partial values 

are combined and the final feature value is stored in the object’s property field of 

the original object. After that, the original object is written in the output and the 

copies are deleted. 

The implemented topological features are: number of, border to, relative 

border to, area of and relative area of (feature definitions can be found in 

Appendix E). 

 

 

Figure 21: topological features operation. 
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4.5.4. 
Recursive operation 

In this operation type, a recursive procedure takes place. Considering the 

hash values that represent the geographic tiles (as seen in section 4.3.2), it is 

possible to go up in the tile hierarchy by just dropping a letter from the tile label. 

 

 

Figure 22: recursive operation. 

 

The operation (Figure 22) starts from the lowest level of the quad-tree and 

performs the same computation on every level until it reaches the last level. The 

last level is not necessarily the top level of the quadtree, but the level that is large 

enough to geographically contain the input image(s) (section 4.3.2). 

For example, if an object has the following tile label, wxyz, it would be 

grouped in the first step with all the other objects assigned to the same tile. In the 

second step, this object would be grouped with all objects belonging to the super-

tile wxy. In the last two steps, it would be grouped with the objects that belong to 

super-tiles wx and w, respectively. In the last step, all objects would be grouped in 

the same machine and the processing would stop. 

This approach has limitations as the processing reaches the highest levels of 

the quadtree. In these levels, parallelism is hampered because there are fewer tiles 

to work with. Another issue in the highest levels is related to memory problems, 

as many objects may be grouped in the same machine. 

There are two approaches to mitigate these limitations. In the first approach 

the computation should progressively reduce the number of objects in each step. 
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One example of this approach is an operation that merges neighboring objects that 

belong to the same class. 

This operation aims at merging the image objects of the same class (or 

classes) that are connected. The classes to be merged are passed as an input 

parameter. In the first step, the objects are grouped according to the lowest level 

of the quadtree. The operation recursively considers the neighboring objects of 

each object and merges the ones that belong to the same class. When the step is 

finished, the number of objects is reduced since many objects were merged. The 

operation, then, regroups the image objects according to the upper level of the 

quadtree and repeats the procedure. The process continues until the last level is 

reached. 

If the first approach still presents memory problems or the nature of the 

computation does not allow the reduction of the number of objects in each step, 

the computation should be such that part of the objects (that will no longer be 

needed) can be saved to an auxiliary cloud storage service in each step. This 

approach would process progressively fewer image objects at each step. Another 

option could be the combination of both approaches. 

 

4.5.5. 
Hierarchical features 

This operation type refers to a different kind of hierarchy. While the 

previous operation type refers to a recursive computation that is performed on 

each level of the geographic tile quad-tree representation, this one refers to a 

spatial computation that is carried out on objects that have a hierarchical relation. 

It is a special case of a spatial-aware operation that does not rely on geographic 

tile information. 

In this operation type, an object that is in a lower position in the object 

hierarchy carry information about its parent object, i.e. the object that contains 

that object. An example of when this kind of hierarchical relation is created is 

when the spatial filtering with clipping is executed (section 4.5.1.2). This 

operation, besides clipping the objects according to a number of target regions, 

also stores on each object the iiuuid of the target region object (parent object) that 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
InterIMAGE Cloud Platform (ICP) 76 

contains it. This operation type relies on this sort of information to compute 

hierarchical features. The general algorithm is shown below: 

 

1. Object co-grouping by the parent object’s iiuuid. 

2. Operation computation. 

 

Operation co-grouping by the parent object’s iiuuid. In this step, the 

parent object and its child objects are grouped by the parent object’s iiuuid. 

Operation computation. Once the parent object and its child image objects 

are grouped, hierarchical features can be computed. 

 

In this operation, after the parent and child objects are grouped, hierarchical 

features are computed for the parent object based on its child objects. For 

example, this operation can compute the number of child objects that belong to a 

specific class. This operation can also compute aggregated features based on the 

properties of the child objects. An example would be the computation of the mean 

rectangularity or the total area of child objects that belong to a certain class. 

There is an issue related to this operation that will be better exemplified in 

the results of the experiments (section 5.5.1). If the parent object is very large, this 

operation can incur in memory issues, since a potential high number of objects 

will be grouped in the same machine. 

Up to now, the implemented aggregation functions are count, max, min, 

mean and sum. These functions can be applied to any feature child objects have in 

common (feature definitions can be found in Appendix G). 
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5 
Results and experimental analysis 

This chapter presents the software prototype and the experiments performed 

to validate the proposed architecture. 

 

5.1. 
Software prototype 

To implement the architecture proposed in this work a software prototype 

was developed. The prototype was coded in Java and contains five packages 

described below: 

 

• interimage-core – this package implements core functionalities like 

communication with the cloud, data management and interpretation control. 

• interimage-geometry – this package implements vector data 

functionalities such as geometric and topological operations. 

• interimage-data – this package implements raster data functionalities like 

the computation of spectral features. 

• interimage-datamining – this package implements classification 

functionalities such as fuzzy rules and machine learning algorithms.  

• interimage-operators – this package implements basic low-level image 

processing operators that are released with the platform. 

• interimage-common – this package implements basic Java classes and 

UDFs that are used by the other packages. 

 

There is no graphical user interface up to now. To facilitate the creation of 

an interpretation project, some mechanisms were developed to import an 

interpretation project created in the previous version of InterIMAGE. It is possible 

to define the input images, input shapefiles, semantic network and decision rules 

on InterIMAGE and then import the project to ICP. This process is not yet 

completely automated but still can save significant time. 
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5.1.1. 
Data staging 

Figure 23 shows ICP’s folder structure. Before executing an interpretation 

model, ICP uploads input and configuration data to a local cluster or a cloud 

service. These data are stored in a folder called interimage. This folder has a 

simple organization. It contains two folders: lib and scripts. 

 

 

Figure 23: ICP’s folder structure. 

 

The lib folder contains all the libraries necessary to execute ICP. The 

platform has six libraries: core, common, data, geometry, datamining and 

operators. The core library is not shipped to the cluster, but stays on the client 

machine. Besides these libraries, the system is also shipped with several external 

libraries that are responsible for image and geometric operations. 

The scripts folder contains a special Pig Latin script that defines the UDFs 

that are available in the platform. When a new UDF is added to the system, this 

file has to be updated in order to make it available to the user. 

The folder interimage contains also the project folders. A project folder is 

created along with the project and contains all the project files. The project folder 

has the following structure: 

The first level is defined by the tile size. This way it is possible to have 

different tile sizes coexisting in the same project folder. Below there are two 

folders: resources and tiles. The resources folder contains resources like fuzzy 
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sets, semantic networks and the tile grid. It is in this folder that image tiles (folder 

images) and input vector objects (folder shapes) are stored. The tiles folder holds 

information about the geographic tiles and will be used mainly as input for 

segmentation operators. 

 

5.2. 
Dataset 

The land cover and land use classification models used in the experiments 

were proposed by Novack (Novack09; Novack10). For his experiments, Novack 

had originally an area delimited by the following geographic coordinates: S 23º 

38’ 33”, W 46º 24’ 47”, S 23º 35’ 58” and W 46º 41’ 35”. The area has 25 km2 

and comprises part of Vila Sônia, Vila Andrade, Morumbi, Santo Amaro and 

Itaim Bibi districts in the city of São Paulo. 

Since his goal was to run the same classification models on eCognition and 

InterIMAGE, he had to cut the original QuickBird image into smaller subsets 

because both systems could not process the whole scene which had 8,000x8,0000 

pixels. For eCognition, he selected subsets of 4,000x4,000 pixels. For 

InterIMAGE, the limit was even smaller: subsets of 1,500x1,500 pixels. Novack 

used InterIMAGE 0.092 and Definiens Developer 7.0 (eCognition was called 

Definiens in 2009) in his experiments. 
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Figure 24: image subset 4K. 

 

For the present work, one of the subsets of 4,000x4,000 (4K) pixels was 

selected (Figure 24). It is a QuickBird image with 0.61m of spatial resolution and 

4 bands (blue, green, red and infrared). As ICP has as its main goal to process 

very large datasets, the image was replicated to reach image sizes as large as 

8,000x8,000 (8K), 16,000x16,000 (16K) and 32,000x32,000 (32K) pixels. The 

objective of this configuration is to assess if ICP is able to process much larger 

images than the previous version of InterIMAGE and the commercial suite 

eCognition can handle. 

Novack (Novack09) used machine learning algorithms for the calibration of 

the segmentation parameters. As the calibration was performed using the 

segmentation program based on the algorithm proposed by Baatz and Schäpe 

(Baatz00), present in the original version of InterIMAGE, it was possible to use 

the software to segment the image using the same parameters. Two segmentations 

were performed. One for vegetated areas (PS1), and one for roofs and swimming 

pools (PS2) (Table 1). 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
Results and experimental analysis 81 

Table 1: parameter sets applied for vegetated areas (PS1), and for roofs and swimming 

pools (PS2). 

Parameter set Scale Shape Compactness Band weights 

PS1 21 0.25 0.61 0.24,0.07,0.42,0.26 

PS2 40 0.7 0.8 1.0,1.0,1.0,0.0 

 

To segment shadow areas, a thresholding procedure was carried out on 

InteIMAGE, selecting the pixels of a brightness image (sum of the four spectral 

bands divided by four) with values below 20. 

For the classification of red objects (ceramic tile roofs and bare soil), 

Novack used GLCM-based texture features (Haralick73) on eCognition. On 

InterIMAGE, an auxiliary shapefile with the class Bare Soil was imported because 

the texture features available on InterIMAGE were incompatible with the same 

features available on eCognition. The same procedure was adopted in our 

experiments because ICP does not yet provide texture-based features. 

As the image was replicated to simulate larger datasets, the segmentations 

and auxiliary shapefiles had to be replicated as well. Table 2 describes the images, 

segment sets and auxiliary shapefiles used in the experiments. 

 

Table 2: image sizes, number of objects and file sizes of input segment sets and auxiliary 

shapefiles. 

 4K 8K 16K 32K 

Image size (pixels / size) 
4,001x4,000 8,002x8,000 16,004x16,000 32,008x32,000 

61 MB 244 MB 976 MB 3.81 GB 

segments for vegetated 
areas (# / size) 

62,405 249,620 998,480 3,993,920 

160 MB 660 MB 2.58 GB 10,0 GB 

segments for roofs and 
swimming pools (# / 
size) 

50,890 203,560 814,240 3,256,960 

193 MB 787 MB 3.07 GB 12,0 GB 

segments for shadows 
(# / size) 

10,168 40,672 162,688 650,752 

14 MB 58.8 MB 235 MB 897 MB 

polygons of bare soil (# / 
size) 

794 3,176 12,704 50,816 

991 KB 3.87 MB 15.5 MB 61.7 MB 

polygons of blocks (# / 
size) 

204 816 3,264 13,056 

4.96 MB 19.8 MB 79.5 MB 316 MB 
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5.3. 
Cloud environment 

Although the cloud service selected for the experiments was Amazon Web 

Services (AWS), the system can be easily extended to work with any cloud 

service (e.g. Microsoft Azure). The Java libraries, input and auxiliary data were 

stored on an Amazon S3 bucket, following the scheme presented in section 5.1.1. 

Amazon EMR (Elastic MapReduce) was used for processing. With this 

service it is possible to select machines that have Hadoop and Pig already installed 

and the characteristics of the machines can be easily customized. The available 

machine types range from basic computers to high-performance nodes. In our 

experiments, we used m1.xlarge machines. These are 64-bit computers, with 4 

physical cores (8 logical cores), 15 GB of RAM and 4 disks of 420 GB. Hadoop 

and Pig configuration parameters can also be easily changed. 

Hadoop version was 2.4 with the following parameters: 

 

• Replication factor: 3 

• Block size: 64 MB 

• Speculative execution: off 

• Hadoop compression: Snappy 

• Java heap size: 1.5 GB 

 

 Pig version was 0.12. File split combination and temporary file 

compression were turned on. 

 

5.4. 
Land cover classification 

This first set of experiments consisted of three steps. Firstly, the land cover 

interpretation model was executed using a single instance group where absolute 

processing times and speedups were evaluated. Later on, in order to investigate 

the graph-level parallelism, the same investigation was carried out for multiple 

instance groups. 

To build the land cover classification model, Novack (Novack09) defined 

the semantic network shown below (Figure 25). The classes and their hierarchical 
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structure were defined after visual inspection of the image and a visit to the site. 

In the end, eleven classes were created: Grass, Trees, Ceramic tile roofs, Bare 

soil, Dark asbestos tile roofs or new asphalt, Grey asbestos tile roofs or asphalt, 

Clear asbestos tile roofs or concrete, Bright roofs, Blue-colored roofs, Swimming 

pools and Shadow. Class definitions can be found in his dissertation (Novack09). 

 

 

Figure 25: land cover semantic network. 

 

After that, using some sample segments and a decision tree algorithm, 

Novack determined the most relevant attributes and respective thresholds to 

classify the segments according to the classes defined previously. The decision 

trees given by the classification algorithm helped him to define the decision rules 

in InterIMAGE and eCognition. 

In order to emulate the same experiment, the decision rules for each 

classification used in InterIMAGE were translated to Pig Latin and became 

operators in ICP. The semantic network was also reproduced. Figure 26 presents 

the final operator graph. 
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Figure 26: land cover operator graph. 

 

• Operator 1 imports the segments obtained from the segmentation for 

vegetated areas performed on InterIMAGE. 

• Operator 2 imports the segments obtained from the segmentation for 

non-vegetated areas performed on InterIMAGE. 

• Operator 3 imports the shadow segments obtained with the 

thresholding procedure on InterIMAGE. 

• Operator 4 classifies Grass and Trees segments according to the 

decision rules translated from the original project. 

• Operator 5 classifies several roofs and Swimming pools segments 

according to the decision rules translated from the original project. 

• Operator 6 classifies Ceramic Tile Roof and Bare Soil segments 

according to the decision rules translated from the original project. 

• Operator 7 resolves spatial conflicts and generates the final 

classification. 
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The Pig Latin scripts of each operator are analyzed by Pig and compiled 

automatically into MapReduce jobs. The MR jobs of each operator are described 

below: 

 

Table 3: MapReduce jobs for the land cover interpretation model. 

 Job Job type 

Operator 1 #1 Map only 

Operator 2 #2 Map only 

Operator 3 #3 Map only 

Operator 4 #4 Map-Reduce 

#5 Map-Reduce 

Operator 5 #6 Map-Reduce 

#7 Map-Reduce 

Operator 6 #8 Map-Reduce 

#9 Map-Reduce 

#10 Map-Reduce 

#11 Map-Reduce 

Operator 7 #12 Map-Reduce 

#13 Map-Reduce 

 

The Pig Latin script of each operator is presented in Appendix H. The whole 

interpretation model takes 13 MR jobs to complete (Table 3). The first three jobs 

have only the Map phase, while the others have both, Map and Reduce phases. 

 

5.4.1. 
Single instance group 

In this step, all images (4K, 8K, 16K and 32K) were executed in a single 

instance group with 2, 4, 8, 16 and 32 machines. Each experiment was executed 5 

times and the average processing time was taken. As m1.xlarge instances have 8 

logical cores and one machine is the MapReduce master, the corresponding 

processing units are 8, 24, 56, 120 and 248. The results are shown in Figure 27. 
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Figure 27: processing time for the experiments using a single instance group. 

 

The graph shows that the processing time decreases as the number of 

processing units increases. The reduction rate depends on the image size and the 

number of processing units. As the image size increases, the operators can benefit 

more from the available processing units achieving a higher parallelism. For 

smaller images, as the instance group size increases, some processing units 

become idle and parallelism is not improved, producing an almost steady 

processing time. 

One can understand the causes of this behavior by looking at the distributed 

processing flow. Image 4K, for example, has 62,405 input objects for Operator 1. 

This number of objects corresponds to 160 MB on disk (Table 2). As 

MapReduce’s block size is set to 64 MB, this operator executes only 3 map tasks. 

This means that even for the smallest instance group, with only 2 machines, the 8 

available processing units are already underutilized for this operator. For larger 

images, processing units start being underutilized for larger instance groups. 

For image 8K, it starts on the 4-machine instance group (24 processing 

units). As the input size on disk is equal to 660 MB, 11 map tasks are executed for 
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32K 42.989 15.951 8.208 5.551 3.780
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Operator 1. For images 16K and 32K, 42 and 161 map tasks for Operator 1 are 

launched, respectively. Therefore, they can benefit from all processing units until 

the 8-machine instance group for image 16K, and until the 16-machine group for 

image 32K. 

The same reasoning applies for the map phases of all operators because the 

parallelization of map tasks is only defined by the size of the input. The larger the 

image (number of image objects), the more operators can benefit from the 

available processing units, achieving higher parallelism. In fact, MapReduce does 

not perform well with several small files (Aji13). In order to mitigate this 

problem, Pig has a mechanism called split combination that joins small input files 

until they reach the block size. This feature is turned on by default in ICP. 

Map parallelism is highly sensitive to the block size. Although block sizes 

of 64 MB and 128 MB are the two most common configurations, it is possible to 

change the block size in the Hadoop configuration file. Higher block sizes 

produce fewer tasks and minimize the parallelism possibilities. However, having a 

block size too small may make the overhead of managing the splits and of map 

task creation begin to dominate the total job execution time (White12). This 

tradeoff must be considered before changing this feature. 

For the reduce phase, the logic is different. The reduce phase depends on the 

number of keys that are sent to reduce tasks. In ICP, reduce phases are forced by 

GROUP BY Pig Latin commands that group image objects together based on the 

geographic tile they belong to. So, in order to discuss reduce parallelism, let us 

take a look at Table 4 that shows the number of geographic tiles for each image. 

 

Table 4: number of tiles for each image. 

 4K 8K 16K 32K 

# geographic tiles 81 256 1,024 3,969 

 

For image 4K, for example, there are 81 geographic tiles. It means that until 

the 8-machine instance group (56 processing units) all processing units are used. 

For the 16- and 32-machine instance groups, the processing units are 

underutilized. This reasoning is valid for all operators that have a reduce phase. In 

this case, the amount of work each reduce task will perform depends on two 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
Results and experimental analysis 88 

things. Firstly, on the number of objects assigned to each tile which varies from 

one operator to another; and, secondly, on the number of tiles that are assigned to 

each reducer. The fewer machines available, the more tiles are processed per 

reducer. All the other images use all the available processing units in the reduce 

phase for all instance group sizes, considering that the largest instance group has 

32 machines and 248 processing units. 

MapReduce uses by default a hash function to determine the reduce tasks 

that will process each reduce key. As ICP uses strings to represent geographic 

tiles, there was an unbalance in the number of keys sent to each reducer. This 

unbalance was imperceptible when the number of keys was much larger than the 

number of available reduce slots, but was quite strong when these numbers got 

closer to each other. This problem was solved by using a numeric representation 

of each tile (considering only the tiles that actually intersect the image). This way, 

the default Partitioner of MapReduce was overwritten with a simple modulo 

operation which produced very good results. 

As stated before, reduce parallelism is sensitive to the number of geographic 

tiles. Thus, the size of the geographic tile (in meters) and, ultimately, the size of 

the image tile (in pixels) plays a key role in defining the parallelism level of the 

reduce phase. Larger tiles produce fewer reduce tasks and minimize parallelism 

possibilities. However, having smaller tiles means grouping more objects in the 

same machine, which may incur in memory issues. This tradeoff must be 

considered before defining the tile size. 

The experiments show that MapReduce provides its maximum performance 

for larger images since small images underutilize compute resources. That is why 

Figure 27 shows a steeper curve for images 16K and 32K. As the number of 

processing units increases, the operator can take advantage of more processing 

units, improving the performance. 

In absolute numbers, the whole interpretation for image 4K took 2,351s 

(~39m) with an 8-machine instance group and 1,854s (~31m) with a 32-machine 

instance group. For image 32K, the total processing time was 42,989s (~12h) for a 

2-machine instance group and 3,780 (~1h) for a 32-machine instance group. These 

results show that it is possible in ICP to process an image of 32,000x32,000 pixels 

with only two machines without incurring in memory issues. 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



 
Results and experimental analysis 89 

Taking the 2-machine instance group (8 processing units) as a basis for 

comparison, Figure 28 shows the speedups for different instance group sizes. 

 

 

Figure 28: speedups of different group sizes in comparison to a 2-machine group size (8 

processing units). 

 

For the reasons presented before, the highest speedups were obtained for the 

largest images since they benefit more from the available processing units. For the 

4-machine instance group (24 processing units) the image 4K achieved a speedup 

of 1.19 while the image 32K achieved a speedup of 2.70. The latter is a very 

interesting result if we consider that the number of processing cores was tripled. 

For the 8-machine, 16-machine and 32-machine instance groups the 

speedups grew, but not linearly with the image size. For the images 4K and 8K, 

the main reason is that at a certain point they start to not use all the processing 

units, underutilizing the available processing power. For the other images, 16K 

and 32K, a reason is the network communication between the map and reduce 

phases (sort and shuffle), when the objects are grouped by tile. The larger the 

number of machines, the more time consuming is this procedure. For an increase 
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of 7x, 15x and 31x in the number of processing units (in comparison to a 2-

machine instance group), the 8-machine, 16-machine and 32-machine instance 

groups obtained a speedup of 5.24, 7.74 and 11.37, respectively, for image 32K. 

In this context, it is interesting to analyze the efficiency graph (Figure 29). 

This graph shows that for the same number of processing units, as we increase the 

image size, the efficiency increases too. It means that in our experiments we did 

not saturate the processing capability of the configurations with different instance 

group sizes and a larger image could be executed in each of them. 

For these experiments, the graph also shows that the efficiency decreases as 

the number of processing units increases. This is due to the increase in the 

network communication, as discussed before. Although this is true for these 

results, we expect that as we saturate the processing capability of a configuration 

with a specific number of processing units, increasing the number of machines 

may increase the efficiency as well. 

 

 

Figure 29: efficiency of different group sizes in comparison to a 2-machine group size (8 

processing units). 
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It is noteworthy that Hadoop is tailored for large datasets (gigabytes and 

larger) (Holmes12). Thus, as the graph (Figure 28) shows, the largest images led 

to the highest speedups. As an example, only the images 16K and 32K produced 

inputs larger than one gigabyte. However, the other images are considered in the 

experiments to show that the system also works satisfyingly on small images. 

 

5.4.2. 
Multiple instance groups 

In the second step, all images (4K, 8K, 16K and 32K) were executed in 3 

instance groups having 2, 4, 8, 16 and 32 machines. Again, the average processing 

time was taken out of 5 executions. The number of parallel instance groups was 

chosen automatically by the system by analyzing the graph structure (Figure 26). 

It is possible to limit this value by setting a maximum level of graph parallelism in 

ICP’s configuration file (Appendix B). The underlying idea is to benefit from the 

cloud environment, where increasing the number of machines is much cheaper 

than in a cluster, and to achieve graph parallelism by running operators in parallel. 

By using 3 instance groups, the land cover interpretation model was executed in 

three waves (Figure 30). In the first wave, operators 1, 2 and 3 were executed. The 

second wave executed operators 4, 5 and 6. Finally, the last wave executed 

Operator 7. The results are shown in Figure 31. 

 

 

Figure 30: land cover interpretation execution waves using 3 instance groups. 
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Figure 31: processing time for the experiments considering all images and instance group 

sizes for a 3-instance-group configuration. 

 

The curves are similar to the graph shown in Figure 27, except for the 

absolute processing times. Figure 31 shows that for the same images and instance 

group sizes, the whole interpretation took less time to complete by taking 

advantage of graph parallelism. Image 4K, for example, took 2,351s (~39m) in a 

single 2-machine instance group, while using 3 groups of 2 machines it reached 

1,333s (~22m), a speedup of 1.84. For image 32K, the interpretation took 3,780s 

(~1h) in a 32-machine instance group, while it reached 2,328s (~39m) using 3 

groups of 32 machines, a speedup of 1.62. In fact, the speedups did not vary 

much. For all images and instance group sizes, the speedups ranged from 1.47 to 

1.93 (Figure 32). 

One interesting aspect refers to the operators and the graph structure. The 

land cover graph structure allowed 3 operators to run in parallel for the two first 

waves, while the last wave had only one operator running and two idle instance 

groups. At a first glance this may seem a good tradeoff, however depending on the 

total processing time of the operators that are executed in each wave, the gain 
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might be modest. In this case, the first wave (the first three operators) represents, 

in average, around 8% of the processing time whereas the second wave represents 

around 34%. It means that the last operator, which is not running in parallel due to 

its dependency on the other operators’ results, accounts for 58% of the whole 

processing time, in average. Thus, although three instance groups are available, 

the intrinsic sequential structure of this specific graph limits the maximum 

speedup that can be reached. 

That is also why the speedups decrease for larger images (Figure 32). The 

larger the image, the more time the third wave takes to complete, accounting for a 

higher percentage of the whole processing time. This is due to the complexity of 

the spatial resolution method that is executed in this operator. For image 4K, for 

example, the last operator represented 47% of the whole processing time, for a 2-

machine instance group. For image 32K, using the same number of machines, the 

last operator accounted for 68% of the interpretation processing time. A similar 

increase was also observed for the other instance group sizes. 

Another question arises in view of the aforementioned results, specifically if 

the speedup pays off the costs of running the interpretation on more machines. As 

stated before, the last wave keeps two instance groups idle. This may incur in high 

unnecessary costs depending on the cloud service prices and on the processing 

time of the last operator. Therefore, using multiple instance groups in parallel 

have a high potential to speed up the processing time but it depends mostly on the 

graph structure of a given interpretation. 
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Figure 32: speedups between three and single instance groups. 

 

As an example of the costs of running a single experiment for the single 

instance group in a cloud infrastructure, Table 5 shows the costs for AWS. For 

image 32K, using 248 processing units (32 machines), a user would pay in 

average US$ 13.54 to process the whole land cover model in about 1 hour. 
 

Table 5: costs of a single experiment for the single instance group. 

Processing units 
8 24 56 120 248 

Images 

4K US$ 0.70 US$ 1.40 US$ 2.80 US$ 5.60 US$ 11.20 

8K US$ 0.77 US$ 1.47 US$ 2.87 US$ 5.67 US$ 11.27 

16K US$ 2.64 US$ 1.94 US$ 3.34 US$ 6.14 US$ 11.74 

32K US$ 10.74 US$ 7.94 US$ 7.94 US$ 7.94 US$ 13.54 

 

5.4.3. 
Classification qualitative analysis 

It is beyond the scope of this work to assess quantitatively the classification 

accuracy; nevertheless it is interesting to visually verify how the land cover 
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classification performed in ICP (Figure 33 (a)) compares to the original image 

(Figure 33 (b)). A visual inspection shows that the obtained classification is very 

consistent with image 4K. It is possible to easily correlate the image objects 

classified in ICP and the image objects represented in Figure 33 (a). 

 

 
(a) 
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(b) 

 Trees  Grey Abestos Tile Roof 

 Grass  Bright Grey Abestos Tile Roof 

 Ceramic Tile Roof  Bright Roofs 

 Bare Soil  Blue-colored Roofs 

 Shadow  Swimming Pools 

 Dark Abestos Tile Roof   

Figure 33: image 4K (a) and land cover classification for image 4K (b). 

 

5.5. 
Land use classification 

The second set of experiments consisted of the same three steps as the 

previous one. Firstly, the land use interpretation model was executed using a 

single instance group. Absolute processing times and speedups were evaluated. 

After that, the same investigation was carried out for multiple instance groups. 

To build the land use classification model, Novack (Novack09) defined the 

semantic network shown in Figure 35. The class definitions and the semantic 

network structure were defined by visual interpretation of the image and based on 
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the land use map of the city of São Paulo for 2005 (PMSP15). The land use 

classification was performed per city block. Figure 34 shows the shapefile of city 

blocks. 

 

 

 

Figure 34: shapefile of city blocks. 

 

Some classes present in the official map were discarded because they could 

not be classified automatically using remote sensing. In the end, nine classes were 

defined: Industrial services (IS), Favelas (F), Horizontal residential of high 

standard (HRHS), Horizontal residential of low standard (HRLS), Vertical 

residential of high standard (VRHS), Vertical services (VS), Mixed residential 

services (MRS), Partially unoccupied land (PUL) and Sport clubs (SC). Class 

definitions can be found in (Novack09). 
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Figure 35: land use semantic network. 

 

After the definition of the semantic network, some land cover classes had to 

be defined to produce the input for the land use model. These new classes are 

listed below: 

• Building Shadow – shadows with more than 200 m2. 

• Big Blue – blue objects with more than 1900 m2. 

• Big Bright – bright objects with more than 1900 m2. 

• Big Bright Grey – bright grey objects with more than 1900 m2. 

• Big Grey – grey objects with more than 1900 m2. 

• Big Dark – dark objects with more than 1900 m2. 

• Big Roofs – blue, bright, bright grey, grey and dark objects with 

more than 1900 m2. 

• Various Roofs – blue, bright, bright grey, grey and dark objects 

with less than 1900 m2. 

 

Besides these classes, the classes Vegetation (Trees and Grass), Pools and 

Ceramic Roof were also imported. After that, the attributes selected by the visual 

interpretation of the image were visually explored and the thresholds and fuzzy 

sets were defined (Novack09). This information was used to build the decision 

rules on InterIMAGE. 

Once again, the decision rules for each classification used in InterIMAGE 

were translated to Pig Latin and became operators in ICP. The semantic network 

was also reproduced in ICP. Figure 36 presents the final operator graph. 
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Figure 36: land use operator graph. 

 

• Operator 1 imports the land cover classes, merges neighbor objects 

that belong to the same class and generates new classes. 

• Operator 2 computes the hierarchical features that will be used to 

classify the blocks. From this point on, the land cover segments are 

discarded. 

• Operators 3 to 11 classify the blocks into the different land use 

classes: 

o Operator 3 – Sport Clubs 

o Operator 4 – Vertical Services 

o Operator 5 – Vertical Residential of High Standard 

o Operator 6 – Partially Unoccupied Land 

o Operator 7 – Horizontal Residential of Low Standard 

o Operator 8 – Horizontal Residential of High Standard 

o Operator 9 – Mixed Residential Services 
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o Operator 10 – Industrial Services 

o Operator 11 – Favelas 

• Operator 12 resolves spatial conflicts and generates the final 

classification. 

 

The Pig Latin scripts of each operator are analyzed by Pig and compiled 

automatically into MapReduce jobs. The MR jobs of each operator are described 

below: 

 

Table 6: MapReduce jobs for the land use interpretation model. 

 Job Job type 

Operator 1 #1 Map-Reduce 

#2 Map only 

Operator 2 #3 Map-Reduce 

Operator 3 #4 Map only 

Operator 4 #5 Map only 

Operator 5 #6 Map only 

Operator 6 #7 Map only 

Operator 7 #8 Map only 

Operator 8 #9 Map only 

Operator 9 #10 Map only 

Operator 10 #11 Map only 

Operator 11 #12 Map only 

Operator 12 #13 Map-Reduce 

 

The Pig Latin script of each operator is presented in Appendix I. The whole 

interpretation model takes 13 MR jobs to complete (Table 6). Operators 3 to 11 

have single Map-only jobs. Operator 1 has two jobs, one with Map and Reduce 

phases and one with only the Map phase. Operators 2 and 12 have single jobs, 

with both Map and Reduce phases. 

 

5.5.1. 
Single instance group 

In these experiments, all images (4K, 8K, 16K and 32K) were analyzed in a 

single instance group having 2, 4, 8, 16 and 32 machines. Each experiment was 
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executed 5 times and the average processing time was taken. As m1.xlarge 

instances have 8 logical cores and one machine is the Hadoop master, the 

corresponding processing units are 8, 24, 56, 120 and 248. The results are shown 

in Figure 37. 

 

 

Figure 37: processing time for the experiments using a single instance group. 

 

The analysis of this graph leads to similar conclusions as the ones drawn 

from the previous set of experiments. As the number of processing units grows, 

the processing time decreases. The reduction rate of the processing time depends 

on the image size and the number of processing units. As the image size increases, 

the operators can benefit more from the available processing units achieving a 

higher parallelism. Smaller images produce an almost steady processing time as 

the instance group size increases. This is because some processing units start to 

become idle and parallelism is not improved. 

As for the analysis of the processing flow, this graph has a peculiar 

characteristic. Operators 1 and 2 are the only ones that handle a high number of 

objects. Operator 1 imports the land cover objects, merge neighbor objects that 
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belong to the same class and generate new classes for the land use interpretation 

model. After that, Operator 2 aggregates some features like area and count of 

these classes into the city blocks level (section 4.5.5), discarding the land cover 

objects in the end. From Operator 3 on, the operators only process the city blocks. 

Each operator is presented in detail in Appendix I. 

In Operator 1, for example, image 4K has 121,496 input objects. This 

number corresponds to 303 MB on disk. As MapReduce’s block size is equal to 

64 MB, this operator executes 5 map tasks. This means that even for the smallest 

instance group, with 2 machines, the 8 available processing units are already 

underutilized for this operator. 

For image 8K, the input size on disk is equal to 1.2 GB for Operator 1. 

Thus, 20 map tasks are executed and processing units are fully utilized until the 4-

machine instance group (24 processing units). For image 16K, 77 map tasks are 

launched for an input size of 4.9 GB. Processing units are fully utilized until the 

16-machine instance group. Operator 2 presents a similar reasoning. 

For operators 3 to 12, the map phases had as input the city block objects for 

each image. As shown in Table 7, the number of city blocks per image is low, by 

far not comparable to the number of image objects produced by image 

segmentation. These city block objects have for images 4K, 8K, 16K and 32K, 

respectively, 4.96 MB, 19.8 MB, 79.5 MB and 316 MB on disk. Thus, they 

represent a major underutilization of instance groups compute power. In fact, all 

these operators took less than 1 minute to execute individually. Although this data 

size is not big enough to achieve the best performance on MapReduce, they show 

that the system can also process small datasets efficiently. 

For the reduce phases of operators 1 and 2, the parallelism is defined by the 

number of city blocks. This is because in these operators, the parallelism unit is 

not the geographic tile, but the city block. Table 7 shows the number of city 

blocks for each image. 

 

Table 7: number of city blocks for each image. 

 4K 8K 16K 32K 

# city blocks 204 816 3,264 13,056 
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For image 4K, for example, there are 204 city blocks. It means that until the 

16-machine instance group (120 processing units) all processing units are used. 

For the 32-machine instance group, from the 248 processing units, 44 remain idle. 

All other images use all the available processing units in the reduce phase for all 

the instance group sizes, considering that the larger instance group has 32 

machines and 248 processing units. For operator 12, the geographic tile was used 

as parallelism unit. 

In absolute numbers, the land use interpretation, for image 4K, took 2,099s 

(~35m) with a 2-machine instance group and 1,760 (~29m) with a 32-machine 

instance group. For image 16K, the total processing time was 11,956s (~3h) for a 

2-machine instance group and 2,616 (~43m) for a 32-machine instance group. As 

in the previous set of experiments, the distributed architecture allowed a faster 

image processing by using more machines. 

Taking the 2-machine instance group (8 processing units) as a basis for 

comparison, Figure 38 shows the speedups for different instance group sizes. 

 

 

Figure 38: speedups of different group sizes in comparison to a 2-machine group size (8 

processing units). 
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As in the previous set of experiments, the highest speedups were obtained 

for the largest images, since they benefit more from the available processing units. 

For the 4-machine instance group (24 processing units) the image 4K achieved a 

speedup of 1.13 while the image 16K achieved a speedup of 2.45. 

The speedups obtained for this interpretation model are not much different 

from the speedups obtained for the land cover interpretation model. Images 4K 

and 8K do not present good speedups mainly because at a certain point they start 

to not use all the processing units, underutilizing the available processing power. 

Image 16K takes more advantage of the available processing units and present 

better speedups. As stated in the discussions of the previous set of experiments, 

the speedups for the largest instance groups are impaired by the network 

communication between the map and reduce phases. The larger the number of 

machines, the heavier is this procedure. 

If we analyze the efficiency graph (Figure 39), we see that for the same 

number of processing units, as the image size is increased, the efficiency increases 

too. This means that in these experiments the processing capability of the 

configuration with different instance group sizes was not saturated. In these cases, 

the graph shows that the efficiency decreases as the number of processing units 

increases, due to the increase in the network communication. However, as a 

specific configuration of machines is saturated, increasing the number of 

processing units may increase the efficiency. 
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Figure 39: efficiency of different group sizes in comparison to a 2-machine group size (8 

processing units). 

 

Image 32K is not present in this analysis because it produced out-of-memory 

errors during the execution of the experiments. This issue has two explanations.  

The first one is related to the parallelism unit. As stated before, instead of the 

geographic tile, the parallelism unit in most of the operators in this set of 

experiments was the city block. As some city blocks are larger, in area, than the 

geographic tiles, this may have led to city blocks with a large number of objects 

that could not fit in the memory of a single machine. That is also why the tile size 

chosen for ICP was 512 (in pixels). Larger tile sizes would lead to memory issues, 

as more objects would be considered at the same time. 

The second explanation is that Operator 1 creates new classes, based on the 

input land cover classes. Objects of the input classes Blue, Bright, Bright Grey, 

Grey and Dark are replicated to the new classes Big Blue, Big Bright, Big Bright 

Grey, Big Grey, Big Dark, Big Roofs and Various Roofs, and during the 

processing, the number of objects is greatly increased. The combination of both 

situations led to the memory issues experienced during the experiments. 
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In MapReduce, as in any computation, there is a tradeoff between memory 

and processing. In these experiments, machines have 15 GB of RAM and 8 

logical cores. If we reserve 3 GB for MapReduce standard processes, there are 12 

GB for Map and Reduce tasks. Considering that a machine can have up to 8 tasks 

running at the same time, ICP sets 1.5 GB of maximum memory for each process 

in the Java heap memory. 

A solution for this memory issue would be to increase the available memory 

for each task. In order to do that, the number of concurrent tasks would have to be 

reduced from 8 to 6, or 4 tasks. This would provide each task with 2 GB or 3 GB 

of RAM, but parallelism would be reduced. 

 

5.5.2. 
Multiple instance groups 

In the second step, all images (4K, 8K, 16K and 32K) were executed in 3 

instance groups with 2, 4, 8, 16 and 32 machines. Again, the average processing 

time was taken out of 5 experiments. The number of parallelization instance 

groups automatically chosen by ICP was 9. However, running 9 instance groups 

would be very expensive. Thus, the number of instance groups was set to 3, as in 

the previous set of experiments. 

By using 3 instance groups, the land use interpretation model was executed 

in six waves. In the first two waves, operators 1 and 2 were executed. In the third 

wave, operators 3, 4 and 5 were executed, and the fourth wave executed operators 

6, 7 and 8. In the fifth wave, operators 9, 10 and 11 were executed, and the last 

wave executed operator 12. The results are shown in Figure 40. 
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Figure 40: processing time for the experiments considering all images and instance group 

size for a 3-instance-group configuration. 

 

The graph is similar to the graph obtained for a single instance group 

configuration (Figure 37). Figure 40 shows that for the same images and instance 

group sizes, the interpretation took less time to complete by using 3 instance 

groups. Image 4K, for example, took 2,099s (~35m) in a single 2-machine 

instance group, while using 3 groups of 2 machines it reached 1,436s (~24m), a 

speedup of 1.46. For image 16K, the whole interpretation took 2,616s (~43m) in a 

32-machine instance group, while it reached 1,818s (~30m) using 3 instance 

groups of 32 machines, a speedup of 1.44. As in the previous set of experiments, 

the speedups did not vary much. For all images and instance group sizes, they 

ranged from 1.06 to 1.60 (Figure 41). 

The interpretation could only benefit from the parallel instance groups in 

operators 3 to 11, where the six operators are executed in three waves. As 

operators 1, 2 and 12 have to be executed sequentially, they are executed in 

separate waves and two instance groups remain idle in these cases. For the land 

use interpretation model, the first wave represents, in average, around 55% of the 

processing time while the other waves account for 8% to 11% percent of the 
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whole processing time. As in the previous set of experiments, although there are 3 

instance groups available, the intrinsic sequential structure of the graph limits the 

maximum speedup that can be reached. 

The speedups decrease for larger images (Figure 41) because as images get 

larger, the first wave (operator 1) takes more time to complete, accounting for a 

higher percentage of the whole processing time. This is due to the complexity of 

the Merge Neighbors operation that is executed in this operator. For image 4K, for 

example, operator 1 represented 53% of the whole processing time, for a 2-

machine instance group. For image 16K, using the same number of machines, the 

first operator accounted for 89% of the processing time. A similar increase was 

also observed for the other instance group sizes. 

Although the graph structure allows a higher level of parallelism – 9 

instance groups – this would not be interesting as the speedup would probably not 

pay off the cloud service costs. This tradeoff must be analyzed for each 

interpretation model. An interpretation model in which the part that can be 

parallelized in multiple instance groups represents a high percentage of the whole 

processing time would benefit much more from this mechanism and produce 

higher speedup values. Finally, the image 32K was not considered in these 

experiments for the same reasons mentioned previously. 
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Figure 41: speedups between multiple and single instance groups. 

 

5.5.3. 
Classification qualitative analysis 

It is beyond the scope of this work to assess quantitatively the classification 

accuracy; nevertheless it is interesting to visually verify how the land use 

classification performed in ICP (Figure 42 (b)) compares to the original image 

(Figure 42 (a)). Although a visual inspection shows that most classified city 

blocks are consistent with image 4K, there is a block near the upper-right corner 

that is clearly misclassified. In the original image (Figure 42 (a)), we see a soccer 

stadium and a large pool which indicates that the correct class should be Sport 

Club and not Favela. This may have been caused by a threshold in the land use 

model that was not precisely translated from Novack’s model (Novack09) or by a 

misclassification in the land cover model that may have influenced the land use 

classification. 
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(a) 

 

 
(b) 

 Industrial Services  Vertical Services 

 Favelas  Mixed Residential Services 

 Horizontal Residential of High Standard  Partially Unoccupied Land 

 Horizontal Residential of Low Standard  Sport Clubs 

 Vertical Residential of High Standard   

Figure 42: image 4K (a) and land use classification for image 4K (b). 
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6 
Conclusions 

The architecture presented in this work provides a cloud-based, distributed 

platform for object-based image analysis that enables the interpretation of very 

large image datasets. The platform achieves robustness by partitioning the data 

with respect to a geographic tile grid and delivers good performance by 

distributing processing across potentially hundreds or thousands of machines. 

This novel architecture allows images and vectors (polygons) to be 

processed together using the MapReduce model. While vectors are treated as 

MapReduce’s main input, image tiles are loaded on demand from an auxiliary 

storage service. This approach delivers a simple and powerful architecture that 

takes advantage of MapReduce’s ability to deal with text data while image data 

are considered in the interpretation process only when image-related features are 

needed. In the cases where image data are considered, ICP provides strategies that 

minimize network communication by grouping image objects according to the 

geographic tiles and by computing all requested spectral features at once. 

ICP provides two knowledge representation components – the semantic 

network and the operator graph. While the semantic network represents only 

declarative knowledge, the operator graph is responsible for representing the 

procedural knowledge and for controlling the interpretation strategy. It is a 

flexible and powerful structure that allows different types of operators to be easily 

combined in an interpretation model, making it easy for experts to embed their 

knowledge into the system. 

The operator graph provides two levels of parallelism. In the operator level, 

each operator is executed in the cloud in a distributed fashion exploring the 

maximum parallelism available. In the graph level, it allows users to divide their 

cloud infrastructure in separate instance groups and execute different operators in 

each group in parallel, enabling a potential performance gain depending on the 

graph and operators’ characteristics. By storing operators’ partial results in a 
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cloud storage service, the architecture also allows users to interactively create 

their interpretation models and easily recover from errors. 

The architecture allows the inclusion of new operators that can be written in 

the high-level language called Pig Latin. This language makes it easier for non-

technical users to extend the system by writing new operators that perform 

specific image interpretation tasks. This mechanism also allows operators to be 

created upon other existing operators. For example, an operator that classifies 

vegetation can be included in another operator that classifies land cover classes. If 

the system does not provide all the necessary functions one needs to create an 

interpretation model, the Pig Latin language itself is extensible through the use of 

UDFs (User Defined Functions) which can be created in a growing number of 

programming languages. 

Raster and vector input data are partitioned according to a Space Filling 

Curve technique which enables the system to easily work on different levels of the 

geographic grid. This mechanism preserves locality information and allows 

operators to work with image tiles and image objects in multiple geographic 

scales. 

ICP implements distributed strategies for spectral, topological and 

hierarchical feature computation; spatial conflict resolution and recursive 

computations. These strategies were designed for the MapReduce model and 

utilize its map and reduce primitives to work with very large datasets in a 

distributed computing environment. 

All these features were implemented in a software prototype called ICP. 

Devised as a collection of Java libraries, the platform allows users to embed their 

knowledge into the system and execute an interpretation model in parallel 

transparently. In order to validate the platform, experiments were carried out using 

two classification models on a QuickBird image of an area of the São Paulo 

municipality. 

The results obtained show that the system presents some robustness to large 

datasets (in the order of gigabytes), although a deeper investigation is necessary to 

confirm that this is also true for larger datasets (in the order of terabytes, for 

example). In the experiments performed, ICP was able to process images of up to 

32,000x32,000 pixels (~3.81 GB), with up to 8 million image objects (~23.2 GB). 
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These datasets are dozens to hundreds of times larger than any dataset that could 

be executed in eCognition or InterIMAGE. 

It is also possible to attest some scalability. The results showed that, in 

general, the speedups increased with the number of processing units. It is clear 

that the gain was higher for the largest images since they could benefit more from 

the available processing units. This result is consistent with the efficiency 

measures. They showed that the images used in the experiments did not saturate 

the processing power of any of the processing unit configurations. Because of this, 

increasing the number of processing units did not increase the efficiency. These 

results suggest there is a cutoff point where increasing the processing units for a 

specific image does not improve the speedup. In the case where the experiments 

got close to this saturation point, the efficiency came to 90%. This result indicates 

that increasing the image size for this processing unit configuration would soon 

saturate its processing power. In such a scenario, increasing the number of 

processing units would likely improve the efficiency. 

In the experiments with multiple instance groups, the parallelism was 

impaired by the characteristics of the graphs in which sequential operators 

accounted for a high percentage of the whole processing time, limiting the 

speedups. However, the experiments indicate that graph-level parallelism may 

reduce significantly the processing time depending on the operator graph’s 

characteristics. 

Lastly, the technologies ICP is built upon, more specifically Hadoop and 

Pig, are open-source and have a large supporting community. These 

characteristics indicate that these technologies are reliable and are likely to evolve 

in a fast pace. Besides that, the fact that ICP is oriented towards cloud 

environments enables its use by students and scientists without the resources to set 

up a local cluster since most cloud services offer cheap prices and charge users in 

a per-use basis. 

 

6.1. 
Platform limitations 

This section presents a summary of the limitations of the platform as it is 

today. For some discussions about possible solutions and future developments, the 
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reader should refer to the respective section, when indicated, and the section 

Future Research (6.2). 

The first important limitation of the platform regards the operation type 

called Recursive Operation. As discussed in the respective section (4.5.4), this 

operation must be further developed in order to be robust to a larger number of 

algorithms. The way it is designed today, it can lead to poor parallelism and 

memory issues when the processing reaches the highest levels of the hierarchical 

structure. Section 4.5.4 presents an alternative approach that should be tested on 

large datasets to assess its feasibility. 

Another limitation regards the hierarchical features computation (section 

4.5.5). As discussed in the respective section and in the results of the experiments 

(section 5.5.1), when the parent objects get larger, this operation may lead to 

memory issues, since many image objects are grouped in the same machine. The 

next section presents an alternative approach to solve this problem. 

Another important limitation is related to image processing algorithms. The 

platform was tested using basic spectral features which can be easily aggregated 

using the algorithm presented in section 4.5.2.1. However, the consideration of 

more complex features like texture features would require a more robust 

management of image tiles. Although the architecture does not impede the 

computation of such features, it is not possible to compute them in the platform as 

it is today. 

There is a limitation regarding the cloud service the platform can be used 

with. Although it is extensible to other services, the platform is only readily 

integrated to Amazon Web Services. Besides that, some features, e.g. the fault 

tolerance mechanism explained in section 4.2.2.3, depend heavily on a graphical 

user interface to be fully available to the end user. 

Finally, the default Java image library that was used to cut the image tiles 

(JAI15) is not robust to very large images. This does not limit the distributed 

processing of very large images as the processing in the cloud is performed by 

ImgLib2 (Pietzsch12), but limits the capability of the system to generate image 

tiles for images larger than 46,000x46,000 pixels. This library should be replaced 

by a more robust one in the near future. 
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6.2. 
Future research 

During the development of this thesis some directions for future researches 

emerged. Firstly, it would be interesting to assess the robustness of the proposed 

architecture on different datasets. Although the platform was conceived to 

interpret several images with different spatial resolutions simultaneously, the 

performed experiments did not evaluate this feature. Future experiments could 

also consider larger images and images from different sensors. 

The second one regards image segmentation. It is one of the most important 

steps in image analysis and there is no trivial solution for distributed systems. 

Proposing a distributed image segmentation algorithm was out of the scope of this 

thesis, and is certainly a necessary step towards making ICP a fully operational, 

distributed, image analysis software alternative. 

Another consequence of this thesis would be the development of an intuitive 

graphical interface. The reason for this feature is twofold. On the one hand, it 

would allow users of the original system to easily migrate to the new platform, as 

they will find in ICP an interface as user-friendly as the one provided by 

InterIMAGE. On the other hand, without a proper user interface, ICP hampers its 

use by its end-users: geologists, geographers, etc. A related desirable feature 

would be the development of a middleware that would allow the interaction with 

the system as a web service. 

Another interesting direction is related to other types of data. ICP was 

developed targeting remote sensing data but there is no architectural limitation 

that would impede its use on other types of data like medical images (including 

three-dimensional data). It would also be interesting to extend the platform with 

multi-temporal classification methods. 

It would be interesting to investigate the performance impact of varying the 

tile size, as its size is not only related to the parallelism level but also to the 

number of image objects that is considered in the same machine. Hopefully, it will 

be possible to create a mechanism that may suggest or select the best tile size 

based on performance and segmentation granularity. The objective of such a 

mechanism would be to deliver the best possible performance without incurring in 

memory issues. 
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A related feature regards the hierarchical features computation. The system 

must be robust to any parent object size. This type of computation must be 

improved in order to compute the hierarchical features of large objects (that are 

likely to have a large number of sub-objects) without incurring in memory issues. 

A possible strategy would be to compute these features using an algorithm similar 

to the one presented in section 4.5.2, where partial results are computed in parallel 

before the final result is obtained. 

Another interesting feature would be to create a mechanism that allows 

developers to inform the system about the computational cost of each operator. 

This way, the system could provide the user with suggestions about the necessary 

computational infrastructure (number of processing units) and graph parallelism 

level (number of instance groups) for a specific interpretation model. 

Another direction is related to MapReduce and Pig. They are two general-

purpose frameworks that expose hundreds of parameters to their users. Although 

some parameters were mentioned and discussed in the thesis, tuning and 

investigating every parameter and how they affect performance constitutes a 

separate research that was not in the scope of this work. 

Finally, as everything related to technology, distributed system technologies 

continue to evolve. Hadoop ecosystem itself launches a new framework every 

year, sometimes oriented towards specific data types, at other times seeking better 

performances. One example is the Apache Spark framework (Spark15) launched 

last year that claims to be the Hadoop MapReduce next generation. It is a never-

ending objective to keep studying and evaluating these new technologies and how 

they can help to improve system performance and simplify data analysis. 

 

6.3. 
Final considerations 

Available image data are growing in a fast pace and the tools for image 

analysis must continue to evolve accordingly. The final objective of these tools is 

to allow scientists and data analysts to process this increasing amount of image 

data in a faster and more reliable way. Therefore, authorities and decision makers 

can have in their hands timely information to make better decisions and improve 

people’s lives. 
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This project was designed to provide a robust platform that can handle huge 

image datasets by distributing data and processing across many computers in a 

cloud computing environment. The objective of proposing and validating a 

software platform for this purpose was also fulfilled. 

The architecture is generic enough to be used with different images and 

sensors. It also allows the construction of very powerful interpretation models by 

providing a flexible graph structure and multiple semantic networks which 

facilitates the modeling of the user’s knowledge. 

The results are promising and future research is encouraged including 

experiments with other images and interpretation models. Moreover, distributed 

tools for image analysis are still very incipient, being available mainly in 

expensive commercial softwares. Thus, the development of free, open-source 

tools for such analysis is always welcome. 
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Appendix 

A.  
Pig Latin 

 
Data Model 

Pig has two basic categories of data types: scalar types and complex types. 

Scalar types are simple types that contain a single value and appear in most 

programming languages: int, long, float, double, chararray and bytearray. 

Complex types are types that can contain other types, including other 

complex types. Pig has three complex data types: map, tuple and bag. 

A map is a collection of mappings from chararrays to data elements. The 

chararray is called a key and the element is referred to as the value. The key is 

used as an index to find the corresponding value. There is no requirement that the 

elements in a map must be of the same type. A typical map representation would 

be: [‘id’#1, ‘class’#‘trees’]. 

A tuple is a fixed-length, ordered collection of data elements. It is divided 

into fields, where each field contains a data element. A tuple is analogous to an 

SQL row, with the fields being table columns. Because a tuple is ordered, it is 

possible to reference the fields in a tuple by position. It is possible to associate a 

schema to a tuple, describing the field’s names and types. This allows Pig to type-

check the data and allows users to reference the fields by name. A typical tuple 

representation would be: (1, ‘trees’). 

A bag is an unordered collection of tuples. Because it has no order, it is not 

possible to reference tuples in a bag by position. Like tuples, it is possible to 

associate a schema to a bag. Bag is the only type in Pig that is not required to fit 

into memory, Pig has the ability to spill bags to disk when necessary. A typical 

bag representation would be: {(1, ‘trees’), (2, ‘grass’), (3, ‘bare 

soil’)}. 
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Pig Latin commands 
This section briefly describes the most important Pig Latin commands. 

 

LOAD and STORE. The LOAD statement loads data into a Pig Latin script. This 

command defines where the input data is and how it is going to be read (converted 

into Pig’s data model). The output of any command is a data set or a relation. 

 
objects = LOAD ‘objects.txt’ USING MyLoadFunc() AS (id:int, 

tile:chararray, class:chararray, geometry:chararray); 

  

In the above statement, the LOAD command is loading the file objects.txt 

using the load UDF MyLoadFunc. Any load UDF can be plugged to a LOAD 

command. The clause AS defines the schema of the output dataset. 

The STORE command is analogous: 

 
STORE objects INTO ‘objects.txt’ USING MyStoreFunc(); 

 

FOREACH..GENERATE. This command applies a set of expressions to every 

tuple in a data set.  

 
new_objects = FOREACH objects GENERATE id, tile, class, geometry, 

area(geometry); 

 

The above command processes each tuple of the relation objects 

independently and returns an output tuple. The first fields of the output tuple are 

the id, tile, class and geometry fields of the input tuple, and the last field of 

the output tuple is the result of applying the evaluation UDF area to the geometry 

field of the input tuple. Any evaluation UDF can be used in a FOREACH command. 

 

FILTER. This command allows users to retain some tuples and discard 

others according to a predicate. 

 
valid_objects = FILTER objects BY isValid(geometry); 
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The above statement discards the objects with invalid geometries. The 

predicate is coded within the filter UDF isValid. The FILTER command supports 

comparison operators (==, !=, etc.) and logical connectors (AND, OR, etc.). Any 

filter UDF can be used in a FILTER command. 

 

(CO)GROUP. This command collects together records with the same key. It 

forces a reduce phase. 

 
grouped_objects = COGROUP objects1 BY tile, objects2 BY tile; 

 

This statement groups two different image object datasets based on the 

geographic tile information. For readability, GROUP is used when only one relation 

is being grouped. 

 

B.  
Configuration files 

 

Main configuration file 
ICP has a configuration file where the user can define some parameters that 

will determine the system’s behavior. The main parameters are the following: 

 

• interimage.tileSize – defines the tile size in pixels. Default: 512. 

• interimage.clusterSize – defines the number of machines in each cluster 

(or instance group). Default: 8. 

• interimage.maxNumberOfClusters – defines the maximum number of 

concurrent clusters (or instance groups). The system will try to parallelize 

the execution as much as possible, what might incur in high costs. This is, 

therefore, a critical parameter that controls the maximum parallelization 

level. Default: 1. 

• interimage.cores – defines the number of physical cores in a cluster node. 

The system executes automatically 2 tasks per physical core. Default: 4. 

• interimage.storageService – defines the cloud service to be used. So far, 

only AWS is supported. 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



Appendix 132 

 

The following parameters are specific for AWS. They show how cloud 

service specific parameters can be passed to the system. 

 

• interimage.aws.accessKey – AWS account access key. 

• interimage.aws.secretKey – AWS account secret key. 

• interimage.aws.S3Bucket – AWS S3 bucket name. 

• interimage.aws.logging – defines the S3 folder where the logs will be 

copied to. If left blank, no copy is made. 

• interimage.aws.instanceType – defines the instance type. Default: 

m1.xlarge. 

• interimage.aws.bidPrice – defines the bid price for the SPOT market. If 

the price in the market goes above this threshold, the instances are 

shutdown. Default: 0.35. 

• interimage.aws.amiVersion – defines the AMI (Amazon Machine Image) 

version. Defaults to version 3.3.1 which provides the latest versions of 

Hadoop and Pig. 

• interimage.aws.region – defines the AWS region. So far, only us-eat-1a 

is supported. 

• interimage.aws.market – defines whether the instances will be acquired 

in the SPOT market or ON_DEMAND. SPOT instances are usually cheaper. 

Default: SPOT. 

 

Operator configuration file 
In ICP, operators are defined as Pig Latin scripts. In order to add a new 

operator to the system, the user has to provide an XML file that defines the Pig 

Latin script template, among other information. Here is an example of the 

configuration file of the operator Import Segmentation, used in the experiments: 

 
<?xml version="1.0" encoding="UTF-8"?> 

<operators> 

<operator name="ImportSegmentation" oldName="TA_ShapeFile_Import"> 

 

<input type="String">INPUT_PATH</input> 

<input type="String">CLASS</input> 
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<input type="Double">RELIABILITY</input> 

 

<input type="URL">INPUT_ROI</input> 

<output type="URL">OUTPUT_ROI</output> 

 

<template> 

 

DEFINE II_CalculateTiles 

br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles

('$TILES_FILE','single','$MIN_RESOLUTION','negative'); 

 

--Loads image objects 

load = LOAD '$INPUT_PATH' USING 

org.apache.pig.builtin.JsonLoader('geometry:chararray, 

data:map[chararray], properties:map[bytearray]'); 

 

--Filters out objects with invalid geometries 

selection = FILTER $LAST_RELATION BY II_IsValid(geometry, 

properties, ''); 

 

--Computes tile info 

projection = FOREACH $LAST_RELATION GENERATE geometry,  

II_ToProps(II_CalculateTiles(geometry, 

properties#'tile'),'tile',properties) AS properties; 

 

--Imports another operator. In this case, an operator 

that imports target regions 

BEGIN IF $INPUT_ROI 

INCLUDE ImportROI 

END IF $INPUT_ROI 

 

--Sets objects’ class 

projection = FOREACH $LAST_RELATION GENERATE geometry,  

II_ToProps('$CLASS','class',properties) AS properties; 

 

--Sets objects’ membership 

projection = FOREACH $LAST_RELATION GENERATE geometry,  

II_ToProps($RELIABILITY,'membership',properties) AS 

properties; 

 

</template> 

 

<description> 
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Operator that imports an existing segmentation. The 

operator also accepts target regions, an output class and 

membership values. 

</description> 

 

<author>Rodrigo Ferreira</author> 

 

</operator> 

</operators> 

 

The operator tag defines the operator name. It is also possible to define a 

field oldName that may be used in the future to associate the operators in ICP and 

the operators in InterIMAGE. 

The operator tag has input, output, template, description and author as sub-

tags. The input tags define the input parameters and their data types. The template 

tag defines the Pig Latin script template. The script may refer to any UDF present 

in the default libraries or added by the user. It also may contain some special 

terms beginning with the $ symbol. These terms are variables that will be replaced 

by explicit parameters of the operator or by default parameters of the system. 

These are the main default parameters: 

 

• $IMAGES_PATH – URL of the image tiles. 

• $SHAPES_PATH – URL of the folder with vector data. 

• $TILES_FILE – URL of the file with geographic tile information. 

• $FUZZYSETS_FILE – URL of the file that contains fuzzy sets 

information. 

• $SEMANTICNET_FILE – URL of the semantic network file. 

• $TILES_PATH – URL of the folder with geographic tile information. 

• $TILE_SIZE_METERS – tile size in meters. 

• $MIN_RESOLUTION – minimum resolution among all input images. 

• $PARALLEL – default parallel capacity of the cluster (number of 

processing units). 

• $CRS – default coordinate reference system (accepts EPSG codes). 
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To implement some specific functionalities, ICP implements a preprocessor 

for the original Pig Latin language. It is possible for example to insert an IF clause 

that only considers a specific part of the code if an input parameter is set. This 

preprocessor also allows the operator designer to use terms like 

$LAST_RELATION, what makes it easier to write Pig Latin templates. In Pig, all 

relations must be directly addressed. 

The INCLUDE command is also a preprocessor command. With this 

command it is possible to include an operator into another one. This is a powerful 

mechanism that allows very complex operators to be built by combining other 

operators. 

 

C.  
Spatial-blind operations 

• Morphological operations 

o Angle – the main angle of an image object. It is obtained by 

calculating the smallest surrounding ellipse, and the angle of 

the longest radius of the ellipse corresponds to the object’s 

angle. 

o Area – the real area of the image object (in meters). 

o Buffer – computes a buffered polygon around the image 

object. 

o Centroid – centroid of the image object. 

o Compactness – computed according to the following 

formula: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃/𝐴
√𝐴

, where P is the object’s 

perimeter and A is the object’s area. 

o Convex Hull – computes the convex hull of a given image 

object. 

o Density – the density of an image object is calculated by the 

ratio between its area and its radius (the maximum distance 

between the polygon centroid and all its vertices). 

o Ellipse Fit – finds the smallest surrounding ellipse and 

returns the ratio between the image object’s area and the 

ellipse’s area. 
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o Envelope – object’s geographic bounding box. 

o Fractal Dimension – computed according to the following 

formula: 𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑐𝑐 = 2
log (𝑃4)

log𝐴
, where P is the 

object’s perimeter and A is the object’s area. 

o Gyration Radius – this attribute equals the mean distance 

between each pixel in the image object and the image object 

centroid. 

o Length – the longest side of the smallest surrounding 

rectangle. 

o Length Width Ratio – calculates the ratio between the 

length and the width of an image object. 

o Perimeter – object’s perimeter 

o Perimeter Area Ratio – calculates the ratio between the 

perimeter and the area of an image object. 

o Rectangle Fit – finds the smallest surrounding rectangle and 

returns the ratio between the image object’s area and the 

rectangle area. 

o Roundness – computed according to the following formula: 

𝑓𝑐𝑟𝑐𝑟𝑐𝑐𝑐𝑐 = 1 − 𝐴
𝜋𝑅2

, where A is the object’s area. 

o Shape Index – computed according to the following 

formula: 𝑐ℎ𝑐𝑐𝑐𝑎𝑐𝑟𝑐𝑎 =  𝑃
4√𝐴

, where P is the object’s 

perimeter and A is the object’s area. 

o Smallest Surrounding Ellipse – computes the smallest 

surrounding ellipse. 

o Smallest Surrounding Rectangle – computes the smallest 

surrounding rectangle. 

o Width – the smallest side of the smallest surrounding 

rectangle. 

 

• Data Mining Operations 

o Bayesian Classifier – classifies image objects using a 

Bayesian classifier. 
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o Decision Tree Classifier – classifies image objects using a 

decision tree classifier. 

o Membership – computes the membership value of an 

attribute according to a given fuzzy set. 

o Random Forest Classifier – classifies image objects using a 

random forest classifier. 

o SVM Classifier – classifies image objects using a SVM 

classifier. 

 

• Other operations 

o Spatial Clip – clips image objects based on the given target 

regions. 

o Spatial Filter – filters image objects based on the given 

target regions. 

o Replicate – replicates image objects according to the 

geographic tiles they intersect. 

o Calculate Tiles – computes the geographic tiles an image 

object intersects. 

o Is Valid – verifies if an image object has a valid geometry. 

o To Props – adds a new property to the image object’s 

properties field. 

o To Classification – adds a new classification to the 

classification list. 

o Classify – classifies an image object based on its 

classification list. 

o Select Class – selects the objects that belong to the given 

class. 

o Min – computes the minimum value of all input values. 

o Mul – computes the product of all input values. 

o Sum – sums all input values. 

o Mean – computes the mean value of all input values. 

o Max – computes the maximum value of all input values. 
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D.  
Spatial-aware operations 

• Simple Spatial Resolve – resolves spatial conflicts between image 

objects that have the same geometry. 

 

E.  
Spatial-aware operations with replication 

• Spectral Features 

o Mean – mean value of the pixels found inside an image 

object for the given image band. 

o Maximum pixel value – the maximum pixel value found 

inside an image object for the given image band. 

o Minimum pixel value – the minimum pixel value found 

inside an image object for the given image band. 

o Band ratio - represents the amount that a given layer 

contributes to the total brightness of an image object. 

o Brightness - represents the brightness of an image object. 

o Band mean arithmetic – adds, multiplies, divides or 

subtracts the mean values of two given image bands. 

o Amplitude value - represents the difference between the 

maximum and minimum pixel values of an image object for 

the given image layer. 

o Standard deviation - the standard deviation represents the 

numerical data dispersion degree of pixel values surrounding 

the mean for a given image band. 

 

• Spatial Resolve – resolves spatial conflicts between image objects 

with different geometries. 

 

• Topological Features 

o Number of – number of neighboring objects of an image 

object that belong to the given class. 
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o Border to – border length (in meters) an image object shares 

with neighboring objects of a given class.  

o Relative border to – the ratio between the border length an 

image object shares with neighboring objects of a given class 

and the object’s area. 

o Area of – the total area (in meters) of neighboring objects 

that belong to a given class. 

o Relative area of – the ratio between the total area of 

neighboring objects that belong to a given class and the 

object’s own area. 

 

F.  
Recursive operations 

• Merge Neighbors – merges the connected image objects that belong 

to the same class. 

 

G.  
Hierarchical features 

• Min – computes the minimum value of a specific feature for all 

child objects that belong to a given class. 

• Max – computes the maximum value of a specific feature for all 

child objects that belong to a given class. 

• Count – computes the number of child objects that belong to a given 

class. 

• Mean – computes the mean value of a specific feature of for all 

child objects that belong to a given class. 

• Sum – computes the sum of the values of a specific feature for all 

child objects that belong to a given class. 
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H.  
Land cover operators 

Operator 1 

Defines 

DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','single','0.6000000237999484','negative','id'); 

Job #1 – Map 

load_1 = LOAD 
's3n://…/interimage/project/512/resources/shapes/segmentation_vegetation.json' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
selection_1 = FILTER load_1 BY II_IsValid(geometry, properties, ''); 
 
projection_1 = FOREACH selection_1 GENERATE geometry, 
II_ToProps(II_CalculateTiles(geometry, properties#'tile'),'tile',properties) AS 
properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry,  
II_ToProps('None','class',properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry,  
II_ToProps(0.3,'membership',properties) AS properties; 
 
STORE projection_3 INTO 's3n://…/interimage/project/512/results/op1_segmentation' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 43: Pig Latin script for Operator 1. 

 

Operator 1 is compiled into a single map-only job. This operator imports a 

JSON file with the segmentation for vegetated areas. After that, invalid 

geometries are filtered out and object tiles, class names and membership values 

are set. 

 

Operator 2 

Defines 

DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','single','0.6000000237999484','negative','id'); 

Job #2 – Map 

load_1 = LOAD 
's3n://…/interimage/project/512/resources/shapes/segmentation_non_vegetation.json' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
selection_1 = FILTER load_1 BY II_IsValid(geometry, properties, ''); 
 
projection_1 = FOREACH selection_1 GENERATE geometry,  
II_ToProps(II_CalculateTiles(geometry, properties#'tile'),'tile',properties) AS 
properties; 
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projection_2 = FOREACH projection_1 GENERATE geometry, 
II_ToProps('None','class',properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, 
II_ToProps(0.3,'membership',properties) AS properties; 
 
STORE projection_3 INTO 's3n://…/interimage/project/512/results/op2_segmentation' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 44: Pig Latin script for Operator 2. 

 

Operator 2’s Pig Latin script is similar to Operator 1’s. The only difference 

is that the segmentation imported is meant for non-vegetated areas. 

 

Operator 3 

Defines 

DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','single','0.6000000237999484','negative','id'); 

Job #3 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/resources/shapes/segmentation_shadow.json' 
USING org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
selection_1 = FILTER load_1 BY II_IsValid(geometry, properties, ''); 
 
projection_1 = FOREACH selection_1 GENERATE geometry, 
II_ToProps(II_CalculateTiles(geometry, properties#'tile'),'tile',properties) AS 
properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry,  
II_ToProps('Shadow','class',properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry,  
II_ToProps(0.3,'membership',properties) AS properties; 
 
STORE projection_3 INTO 's3n://…/interimage/project/512/results/op3_shadow' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 45: Pig Latin script for Operator 3. 

 

Operator 3’s Pig Latin script is similar to the previous two. The imported 

segmentation is the result of the thresholding procedure performed on 

InterIMAGE and the objects are classified as hypotheses of the Shadow class. 

 

Operator 4 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
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DEFINE SpectralFeatures 
br.puc_rio.ele.lvc.interimage.data.udf.SpectralFeatures('https://s3.amazonaws.com/…/interi
mage/project/512/resources/images/','mean2 = mean(image_layer2);mean3 = 
mean(image_layer3);ratio4 = ratio(image_layer4);', 
'https://s3.amazonaws.com/…/interimage/project/512/resources/tilenames.ser'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','multiple','0.6000000237999484','negative','id'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('BareSoil,Blue,Bright,BrightGrey,Ceramic
Roof,Dark,Grass,Grey,Pools,Shadow,Trees'); 

Job #4 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op1_segmentation' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
SF_B = FOREACH load_1 GENERATE geometry,  II_ToProps(II_CalculateTiles(geometry, 
properties#'tile'),'tile',properties) AS properties; 
 
SF_C = FOREACH SF_B GENERATE FLATTEN(II_Replicate(geometry, properties)) AS 
(geometry:chararray, properties:map[]); 
 
SF_D = GROUP SF_C BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #4 – Reduce 

SF_E = FOREACH SF_D GENERATE FLATTEN(SpectralFeatures(SF_C)) AS (geometry:chararray, 
properties:map[]); 

Job #5 – Map 

SF_F = GROUP SF_E BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #5 – Reduce 

group_1 = FOREACH SF_F GENERATE FLATTEN(II_CombineSpectralFeatures(SF_E)) AS 
(geometry:chararray, properties:map[]); 
 
selection_1 = FILTER group_1 BY II_IsValid(null, properties, 'mean2,mean3,ratio4'); 
 
selection_2 = FILTER selection_1 BY properties#'ratio4' > 0.2988; 
 
projection_1 = FOREACH selection_2 GENERATE geometry,  
II_ToClassification('Grass',II_Min(II_Membership('ml2grass',properties#'mean2'), 
II_Membership('ml3grass',properties#'mean3')),properties) AS properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry,  
II_ToClassification('Trees',II_Min(II_Membership('ml2trees',properties#'mean2'), 
II_Membership('ml3trees',properties#'mean3')),properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, II_Classify(properties) AS 
properties; 
 
STORE projection_3 INTO 's3n://…/interimage/project/512/results/op4_vegetation' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 46: Pig Latin script for Operator 4. 

 

In this script, image segments are classified between Grass and Trees. The 

script was obtained by translating the original decision rule to Pig Latin. The 
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general procedures of the script are the spectral features computation as presented 

in section 4.5.2 and the classification of the objects based on the computed 

features and given fuzzy sets. 

In the map phase of Job 4, the segmentation imported in Operator 1 is read 

and the segments are replicated and grouped by tile. In the reduce phase, the 

spectral features are calculated for each image object. 

In the map phase of Job 5, objects are regrouped by tile (original tile). After 

that, in the reduce phase, objects’ spectral features are combined and the 

membership values are computed based on the fuzzy sets. Then, the final class is 

computed. 

 

Operator 5 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE SpectralFeatures 
br.puc_rio.ele.lvc.interimage.data.udf.SpectralFeatures('https://s3.amazonaws.com/…/interi
mage/project/512/resources/images/','brightness = brightness(image);mean1 = 
mean(image_layer1);bandMeanDiv31 = bandMeanDiv(image_layer3,image_layer1);maxPixVal1 = 
maxPixelValue(image_layer1);ratio2 = ratio(image_layer2);', 
'https://s3.amazonaws.com/…/interimage/project/512/resources/tilenames.ser'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','multiple','0.6000000237999484','negative','id'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('BareSoil,Blue,Bright,BrightGrey,Ceramic
Roof,Dark,Grass,Grey,Pools,Shadow,Trees'); 

Job #6 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op2_segmentation' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
SF_B = FOREACH load_1 GENERATE geometry,  II_ToProps(II_CalculateTiles(geometry, 
properties#'tile'),'tile',properties) AS properties; 
 
SF_C = FOREACH SF_B GENERATE FLATTEN(II_Replicate(geometry, properties)) AS 
(geometry:chararray, properties:map[]); 
 
SF_D = GROUP SF_C BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #6 – Reduce 

SF_E = FOREACH SF_D GENERATE FLATTEN(SpectralFeatures(SF_C)) AS (geometry:chararray, 
properties:map[]); 

Job #7 – Map 

SF_F = GROUP SF_E BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 
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Job #7 – Reduce 

group_1 = FOREACH SF_F GENERATE FLATTEN(II_CombineSpectralFeatures(SF_E)) AS 
(geometry:chararray, properties:map[]); 
 
selection_1 = FILTER group_1 BY II_IsValid(null, properties, 
'brightness,mean1,bandMeanDiv31,maxPixVal1,ratio2'); 
  
wfeatures_1 = FOREACH selection_1 GENERATE geometry, 
II_ToProps(II_Area(geometry),'area',properties) AS properties; 
 
projection_1 = FOREACH wfeatures_1 GENERATE geometry, ( CASE WHEN properties#'brightness' 
> 208.0 THEN II_ToClassification('Bright', 1.0, properties) ELSE properties END ) AS 
properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, ( CASE WHEN (properties#'ratio2' < 
0.2976) OR ((properties#'ratio2' > 0.2976) AND (properties#'maxPixVal1' < 116.0)) THEN 
II_ToClassification('Dark',II_Min(II_Membership('ml1dark',properties#'mean1'), 
II_Membership('bdark',properties#'brightness')),properties) ELSE properties END ) as 
properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, ( CASE WHEN (properties#'ratio2' < 
0.2976) OR ((properties#'ratio2' > 0.2976) AND (properties#'maxPixVal1' < 116.0)) THEN 
II_ToClassification('Grey',II_Min(II_Membership('ml1grey',properties#'mean1'), 
II_Membership('bgrey',properties#'brightness')),properties) ELSE properties END ) AS 
properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, ( CASE WHEN (properties#'ratio2' < 
0.2976) OR ((properties#'ratio2' > 0.2976) AND (properties#'maxPixVal1' < 116.0)) THEN 
II_ToClassification('BrightGrey',II_Min(II_Membership('ml1brightgrey',properties#'mean1'), 
II_Membership('bbrightgrey',properties#'brightness')),properties) ELSE properties END ) as 
properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, ( CASE WHEN (properties#'ratio2' < 
0.355) AND (properties#'brightness' < 208.0) AND (properties#'bandMeanDiv31' < 1.5) AND 
(properties#'maxPixVal1' > 116.0) AND (properties#'ratio2' > 0.2976) THEN 
II_ToClassification('Blue', 0.0, properties) ELSE properties END ) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, ( CASE WHEN (properties#'ratio2' > 
0.355) OR ((properties#'ratio2' < 0.355) AND (properties#'area' < 80.0)) THEN 
II_ToClassification('Pools', 0.0, properties) ELSE properties END ) AS properties; 
 
selection_2 = FILTER projection_6 BY II_HasClassification(properties); 
 
projection_7 = FOREACH selection_2 GENERATE geometry, II_Classify(properties) AS 
properties; 
 
STORE projection_7 INTO 's3n://…/interimage/project/512/results/op5_other_classes' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 47: Pig Latin script for Operator 5. 

 

In this script, image segments are classified in Bright, Dark, Grey, 

BrightGrey, Blue and Pools classes. The general procedures of the script are the 

spectral features computation as presented in section 4.5.2 and the classification of 

the objects based on the computed features and given fuzzy sets. 

In the map phase of Job 6, the segmentation imported in Operator 2 is read 

and the segments are replicated and grouped by tile. In the reduce phase, the 

spectral features are calculated for each segment. 
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In the map phase of Job 7, objects are regrouped by tile (original tile). After 

that, in the reduce phase, objects’ spectral features are combined and the 

membership values are computed based on the fuzzy sets. Then, the final class is 

computed. 

 

Operator 6 

Defines 

DEFINE SpectralFeatures 
br.puc_rio.ele.lvc.interimage.data.udf.SpectralFeatures('https://s3.amazonaws.com/…/interi
mage/project/512/resources/images/','bandMeanDiv31 = 
bandMeanDiv(image_layer3,image_layer1);','https://s3.amazonaws.com/…/interimage/project/51
2/resources/tilenames.ser'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','multiple','0.6000000237999484','negative','id'); 
 
DEFINE SpatialResolve 
br.puc_rio.ele.lvc.interimage.data.udf.SpatialResolve('0.3600000285599387','https://s3.ama
zonaws.com/…/interimage/project/512/resources/images/','image','https://s3.amazonaws.com/…
/interimage/project/512/resources/tilenames.ser','BareSoil,Blue,Bright,BrightGrey,CeramicR
oof,Dark,Grass,Grey,Pools,Shadow,Trees'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('BareSoil,Blue,Bright,BrightGrey,Ceramic
Roof,Dark,Grass,Grey,Pools,Shadow,Trees'); 

Job #8 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op2_segmentation' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
SF_B = FOREACH load_1 GENERATE geometry,  II_ToProps(II_CalculateTiles(geometry, 
properties#'tile'),'tile',properties) AS properties; 
 
SF_C = FOREACH SF_B GENERATE FLATTEN(II_Replicate(geometry, properties)) AS 
(geometry:chararray, properties:map[]); 
 
SF_D = GROUP SF_C BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #8 – Reduce 

SF_E = FOREACH SF_D GENERATE FLATTEN(SpectralFeatures(SF_C)) AS (geometry:chararray, 
properties:map[]); 

Job #9 – Map 

SF_F = GROUP SF_E BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #9 – Reduce 

group_1 = FOREACH SF_F GENERATE FLATTEN(II_CombineSpectralFeatures(SF_E)) AS 
(geometry:chararray, properties:map[]); 
 
selection_1 = FILTER group_1 BY II_IsValid(null, properties, 'bandMeanDiv31'); 
 
selection_2 = FILTER selection_1 BY properties#'bandMeanDiv31' > 1.5; 
 
projection_1 = FOREACH selection_2 GENERATE geometry,  II_ToClassification('CeramicRoof', 
0.8, properties) AS properties; 
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ceramicroof_1 = FOREACH projection_1 GENERATE geometry, II_Classify(properties) as 
properties; 

Job #10 – Map 

load_2 = LOAD 's3n://…/interimage/project/512/resources/shapes/bare_soil' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
selection_3 = FILTER load_2 BY II_Area(geometry) >= 0.3600000285599387; 
 
projection_2 = FOREACH selection_3 GENERATE geometry, II_ToClassification('BareSoil', 1.0, 
properties) AS properties; 
 
baresoil_1 = FOREACH projection_2 GENERATE geometry, II_Classify(properties) AS 
properties; 
 
union_1 = UNION ceramicroof_1, baresoil_1; 
 
SF_B = FOREACH union_1 GENERATE geometry,  II_ToProps(II_CalculateTiles(geometry, 
properties#'tile'),'tile',properties) AS properties; 
 
SF_C = FOREACH SF_B GENERATE FLATTEN(II_Replicate(geometry, properties)) AS 
(geometry:chararray, properties:map[]); 
 
SF_D = GROUP SF_C BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #10 – Reduce 

SF_E = FOREACH SF_D GENERATE FLATTEN(SpatialResolve(SF_C)) AS (geometry:chararray, 
properties:map[]); 

Job #11 – Map 

SF_F = GROUP SF_E BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #11 – Reduce 

group_2 = FOREACH SF_F GENERATE FLATTEN(II_MergeResolved(SF_E)) AS (geometry:chararray, 
properties:map[]); 
 
STORE group_2 INTO 's3n://…/interimage/project/512/results/op6_ceramic_roof' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 48: Pig Latin script for Operator 6. 

 

In this script, image segments are classified between BareSoil and 

CeramicRoof. The general procedures of this script are the spectral features and 

spatial resolve computations as presented in section 4.5.2 and the classification of 

the objects based on the computed features. 

In the map phase of Job 8, the segmentation imported in Operator 2 is read 

and the segments are replicated and grouped by tile. In the reduce phase, the 

spectral features are calculated for each segment. 

In the map phase of Job 9, objects are regrouped by tile (original tile). After 

that, in the reduce phase, objects’ spectral features are combined and CeramicRoof 

objects are classified. 
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In the map phase of Job 10, the auxiliary shapefile with BareSoil objects is 

imported. The objects are classified and joined with CeramicRoof objects. Then, 

all objects are replicated and grouped by tile. In the reduce phase, spatial conflicts 

are resolved. 

Finally, in the map phase of Job 11 objects are regrouped by tile (original 

tile) and, in the reduce phase, resolved objects are merged. 

 

Operator 7 

Defines 

DEFINE II_SelectClass 
br.puc_rio.ele.lvc.interimage.common.udf.SelectClass('https://s3.amazonaws.com/.../interim
age/project/512/resources/semanticnetwork.ser'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://s3.amazonaws.com/…/inte
rimage/project/512/resources/tiles.ser','multiple','0.6000000237999484','negative','id'); 
 
DEFINE SpatialResolve 
br.puc_rio.ele.lvc.interimage.data.udf.SpatialResolve('0.3600000285599387','https://s3.ama
zonaws.com/…/interimage/project/512/resources/images/','image','https://s3.amazonaws.com/…
/interimage/project/512/resources/tilenames.ser','BareSoil,Blue,Bright,BrightGrey,CeramicR
oof,Dark,Grass,Grey,Pools,Shadow,Trees'); 

Job #12 – Map 

load_1 = LOAD 
's3n://…/interimage/project/512/results/op4_vegetation,s3n://…/interimage/project/512/resu
lts/op5_other_classes,s3n://…/interimage/project/512/results/op3_shadow,s3n://…/interimage
/project/512/results/op6_ceramic_roof' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry,  ( CASE WHEN 
II_SelectClass(properties#'class','Shadow') THEN II_ToProps(1.0, 'membership', properties) 
ELSE properties END ) AS properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry,  ( CASE WHEN 
II_SelectClass(properties#'class','Red') THEN II_ToProps(0.8, 'membership', properties) 
ELSE properties END ) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry,  ( CASE WHEN 
II_SelectClass(properties#'class','OtherClasses') THEN II_ToProps(0.4, 'membership', 
properties) ELSE properties END ) AS properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry,  ( CASE WHEN 
II_SelectClass(properties#'class','Vegetation') THEN II_ToProps(0.6, 'membership', 
properties) ELSE properties END ) AS properties; 
 
SF_B = FOREACH projection_4 GENERATE geometry,  II_ToProps(II_CalculateTiles(geometry, 
properties#'tile'),'tile',properties) AS properties; 
 
SF_C = FOREACH SF_B GENERATE FLATTEN(II_Replicate(geometry, properties)) AS 
(geometry:chararray, properties:map[]); 
 
SF_D = GROUP SF_C BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #12 – Reduce 

SF_E = FOREACH SF_D GENERATE FLATTEN(SpatialResolve(SF_C)) AS (geometry:chararray, 
properties:map[]); 
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Job #13 – Map 

SF_F = GROUP SF_E BY properties#'tile' PARTITION BY 
br.puc_rio.ele.lvc.interimage.common.TilePartitioner PARALLEL $PARALLEL; 

Job #13 – Reduce 

group_1 = FOREACH SF_F GENERATE FLATTEN(II_MergeResolved(SF_E)) AS (geometry:chararray, 
properties:map[]); 
 
STORE group_1 INTO 's3n://…/interimage/project/512/results/op6_all' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 49: Pig Latin script for Operator 7. 

 

In this script, all objects from operators 3, 4, 5 and 6 are read and classified 

according to a crisp membership value. After that, spatial conflicts are resolved 

(as seen in section 4.5.2). 

In the map phase of Job 12, the objects generated by operators 3, 4, 5 and 6 

are read, their membership values are set and the objects are replicated and 

grouped by tile. In the reduce phase, spatial conflicts are resolved. 

Finally, in the map phase of Job 13 objects are regrouped by tile (original 

tile) and, in the reduce phase, resolved objects are merged. 

 

I. Land use operators 

Operator 1 

Defines 

DEFINE II_MergeNeighbors 
br.puc_rio.ele.lvc.interimage.geometry.udf.MergeNeighbors('BigBlue,BigBright,BigBrightGrey
,BigDark,BigRoofs,BigGrey,BuildingShadow,CeramicRoof,Pools,VariousRoofs,Vegetation'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://…/interimage/project/51
2/resources/tiles.ser','single','0.6000000237999484','negative','id'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('BigBlue,BigBright,BigBrightGrey,BigDark
,BigRoofs,BigGrey,BuildingShadow,CeramicRoof,Pools,VariousRoofs,Vegetation'); 
 
DEFINE II_SpatialFilter 
br.puc_rio.ele.lvc.interimage.geometry.udf.SpatialFilter('https://…/interimage/project/512
/resources/shapes/blocks.ser','https://…/interimage/project/512/resources/tiles.ser','inte
rsection','id'); 
 
DEFINE II_SpatialClip 
br.puc_rio.ele.lvc.interimage.geometry.udf.SpatialClip('https://…/interimage/project/512/r
esources/shapes/blocks.ser','https://…/interimage/project/512/resources/tiles.ser','0.3600
000285599387','0.6000000237999484','id'); 

Job #1 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op6_all' USING 
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org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_CalculateTiles(geometry, properties#'tile'),'tile',properties) AS 
properties; 
 
selection_1 = FILTER projection_1 BY II_SpatialFilter(geometry, properties#'tile'); 
 
projection_2 = FOREACH selection_1 GENERATE FLATTEN(II_SpatialClip(geometry, data, 
properties)) AS (geometry:chararray, data:map[chararray], properties:map[]); 
 
group_1 = GROUP projection_2 BY properties#'parent'; 

Job #1 – Reduce 

merged_1 = FOREACH group_1 GENERATE FLATTEN(II_MergeNeighbors(projection_2)) AS 
(geometry:chararray, data:map[chararray], properties:map[]); 
 
wfeatures_1 = FOREACH merged_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 

Job #2 – Map 

projection_3 = FOREACH wfeatures_1 GENERATE geometry, data, ( CASE WHEN (properties#'area' 
> 200.0) AND (properties#'class' == 'Shadow') THEN 
II_ToClassification('BuildingShadow',1.0,properties) ELSE properties END ) as properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, ( CASE WHEN 
(properties#'area' > 1900.0) AND (properties#'class' == 'Blue') THEN 
II_ToClassification('BigBlue',1.0,properties) ELSE properties END ) as properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, data, ( CASE WHEN 
(properties#'area' > 1900.0) AND (properties#'class' == 'Bright') THEN 
II_ToClassification('BigBright',1.0,properties) ELSE properties END ) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, data, ( CASE WHEN 
(properties#'area' > 1900.0) AND (properties#'class' == 'BrightGrey') THEN 
II_ToClassification('BigBrightGrey',1.0,properties) ELSE properties END ) as properties; 
 
projection_7 = FOREACH projection_6 GENERATE geometry, data, ( CASE WHEN 
(properties#'area' > 1900.0) AND (properties#'class' == 'Grey') THEN 
II_ToClassification('BigGrey',1.0,properties) ELSE properties END ) as properties; 
 
projection_8 = FOREACH projection_7 GENERATE geometry, data, ( CASE WHEN 
(properties#'area' > 1900.0) AND (properties#'class' == 'Dark') THEN 
II_ToClassification('BigDark',1.0,properties) ELSE properties END ) as properties; 
 
projection_9 = FOREACH projection_8 GENERATE geometry, data, ( CASE WHEN 
II_SelectClass(properties#'class','Vegetation') THEN 
II_ToClassification('Vegetation',1.0,properties) ELSE properties END ) as properties; 
 
projection_10 = FOREACH projection_9 GENERATE geometry, data, ( CASE WHEN 
properties#'class' == 'CeramicRoof' THEN II_ToClassification('CeramicRoof',1.0,properties) 
ELSE properties END ) as properties; 
 
projection_11 = FOREACH projection_10 GENERATE geometry, data, ( CASE WHEN 
properties#'class' == 'Pools' THEN II_ToClassification('Pools',1.0,properties) ELSE 
properties END ) as properties; 
 
selection_2 = FILTER projection_11 BY II_HasClassification(properties); 
 
others_1 = FOREACH selection_2 GENERATE geometry, data, II_Classify(properties) AS 
properties; 
 
selection_3 = FILTER wfeatures_1 BY (properties#'area' > 1900.0) AND ((properties#'class' 
== 'Blue') OR (properties#'class' == 'Bright') OR (properties#'class' == 'BrightGrey') OR 
(properties#'class' == 'Grey') OR (properties#'class' == 'Dark')); 
 
big_roofs_1 = FOREACH selection_3 GENERATE geometry, data, 
II_ToClassification('BigRoofs',1.0,properties) AS properties; 
 

DBD
PUC-Rio - Certificação Digital Nº 1113689/CA



Appendix 150 

big_roofs_2 = FOREACH big_roofs_1 GENERATE geometry, data, II_Classify(properties) AS 
properties; 
 
selection_4 = FILTER wfeatures_1 BY (properties#'area' <= 1900.0) AND ((properties#'class' 
== 'Blue') OR (properties#'class' == 'Bright') OR (properties#'class' == 'BrightGrey') OR 
(properties#'class' == 'Grey') OR (properties#'class' == 'Dark')); 
 
various_roofs_1 = FOREACH selection_4 GENERATE geometry, data, 
II_ToClassification('VariousRoofs',1.0,properties) AS properties; 
 
various_roofs_2 = FOREACH various_roofs_1 GENERATE geometry, data, II_Classify(properties) 
AS properties; 
 
union_1 = UNION others_1, big_roofs_2, various_roofs_2; 
 
STORE union_1 INTO 's3n://…/interimage/project/512/results/op7_new_classes' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 50: Pig Latin script for Operator 1. 

 

In the map phase of Job 1, the objects coming from the land cover 

classification are read, clipped and grouped by city block. In the reduce phase, the 

neighboring objects belonging to the same class are merged. 

In the map phase of Job 2, objects are replicated in new classes. 

 

Operator 2 

Defines 

DEFINE II_AggregationFeatures 
br.puc_rio.ele.lvc.interimage.geometry.udf.AggregationFeatures('max_area_pools = 
max(area,Pools);max_rect_building_shadow = 
max(rectangle_fit,BuildingShadow);sum_area_vegetation = 
sum(area,Vegetation);sum_area_ceramic_roof = sum(area,CeramicRoof);count_building_shadow = 
count(BuildingShadow);count_ceramic_roof = count(CeramicRoof);sum_area_various_roofs = 
sum(area,VariousRoofs);max_rect_big_blue = max(rectangle_fit,BigBlue);max_rect_big_bright 
= max(rectangle_fit,BigBright);max_rect_big_bright_grey = 
max(rectangle_fit,BigBrightGrey);max_rect_big_grey = 
max(rectangle_fit,BigGrey);max_rect_big_dark = max(rectangle_fit,BigDark);count_big_roofs 
= count(BigRoofs);mean_rect_big_roofs = mean(rectangle_fit,BigRoofs)'); 
 
DEFINE II_CalculateTiles 
br.puc_rio.ele.lvc.interimage.geometry.udf.CalculateTiles('https://…/interimage/project/51
2/resources/tiles.ser','single','0.6000000237999484','negative','id'); 

Job #3 – Map 

blocks_1 = LOAD 's3n://…/interimage/project/512/resources/shapes/blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
blocks_2 = FOREACH blocks_1 GENERATE geometry, data, 
II_ToProps(II_CalculateTiles(geometry, properties#'tile'), 'tile', properties) AS 
properties; 
 
load_1 = LOAD 's3n://…/interimage/project/512/results/op7_new_classes' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
group_1 = COGROUP load_1 BY properties#'parent', blocks_2 BY properties#'iiuuid' PARALLEL 
8; 
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Job #3 – Reduce 

projection_1 = FOREACH group_1 GENERATE FLATTEN(II_AggregationFeatures(blocks_2, load_1)) 
AS (geometry:chararray, data:map[chararray], properties:map[]); 
 
STORE projection_1 INTO 's3n://…/interimage/project/512/results/op8_blocks' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 51: Pig Latin script for Operator 2. 

 

In the map phase of Job 3, objects and city blocks are spatially joined. In the 

reduce phase, the hierarchical features are computed (section 4.5.5). 

 

Operator 3 

Defines 

DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #4 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
selection_1 = FILTER load_1 BY (properties#'max_area_pools' > 2000.0); 
 
projection_1 = FOREACH selection_1 GENERATE geometry, data, 
II_ToClassification('SportClubs',1.0,properties) AS properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, II_Classify(properties) AS 
properties; 
 
STORE projection_2 INTO 's3n://…/interimage/project/512/results/op9_sport_clubs' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 52: Pig Latin script for Operator 3. 

 

In the map phase of Job 4, city blocks with total area of pools greater than 

2,000 are classified as Sport Clubs. 

 

 

 

Operator 4 

Defines 

DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
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noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 
 
DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 

Job #5 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
selection_1 = FILTER load_1 BY (properties#'max_rect_building_shadow' > 0.7); 
 
projection_1 = FOREACH selection_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) AS properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToClassification('VerticalServices',II_Membership('rel_area_veg_vs',properties#'rel_are
a_vegetation'),properties) AS properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, II_Classify(properties) AS 
properties; 
 
STORE projection_4 INTO 's3n://…/interimage/project/512/results/op10_vertical_services' 
USING br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 53: Pig Latin script for Operator 4. 

 

In the map phase of Job 5, city blocks are filtered by their maximum 

rectangularity of building shadows and the relative area of vegetation is used as 

input of a fuzzy set to compute the membership values for the class Vertical 

Services. 

 

Operator 5 

Defines 

DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 
 
DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 

Job #6 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
selection_1 = FILTER load_1 BY (properties#'max_rect_building_shadow' > 0.7); 
 
projection_1 = FOREACH selection_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) AS properties; 
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projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) AS properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToClassification('VerticalResidentialHighStandard',II_Membership('rel_area_veg_vrhs',pr
operties#'rel_area_vegetation'),properties) AS properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, II_Classify(properties) AS 
properties; 
 
STORE projection_4 INTO 
's3n://…/interimage/project/512/results/op11_vertical_residential_high_standard' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 54: Pig Latin script for Operator 5. 

 

In the map phase of Job 6, city blocks are filtered by their maximum 

rectangularity of building shadows and the relative area of vegetation is used as 

input of a fuzzy set to compute the membership values for the class Vertical 

residential of High Standard. 

 

Operator 6 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #7 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, ( CASE WHEN 
properties#'rel_area_vegetation' > 0.9 THEN 
II_ToClassification('PartiallyUnoccupiedLand',1.0,properties) ELSE properties END ) as 
properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, ( CASE WHEN 
(properties#'rel_area_vegetation' <= 0.9) AND (properties#'sum_area_vegetation' > 
120000.0) THEN 
II_ToClassification('PartiallyUnoccupiedLand',II_Membership('rel_area_veg_pul',properties#
'rel_area_vegetation'),properties) ELSE properties END ) as properties; 
 
selection_1 = FILTER projection_4 BY II_HasClassification(properties); 
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projection_5 = FOREACH selection_1 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_5 INTO 
's3n://…/interimage/project/512/results/op12_partially_unoccupied_land' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 55: Pig Latin script for Operator 6. 

 

In the map phase of Job 7, city block objects are read and attributes related 

to the area of vegetation objects are computed. After that, these attributes are used 

as input of a fuzzy set that computes the membership values for the class Partially 

Unoccupied Land. 

 

Operator 7 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #8 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_ceramic_roof' / 
properties#'area','rel_area_ceramic_roof',properties) as properties; 
 
projection_3 = FILTER projection_2 BY (properties#'rel_area_ceramic_roof' > 0.3); 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, data, 
II_ToClassification('HorizontalResidentialLowStandard',II_Membership('rel_area_veg_hrls',p
roperties#'rel_area_vegetation'),properties) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_6 INTO 
's3n://…/interimage/project/512/results/op13_horizontal_residential_low_stantard' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 56: Pig Latin script for Operator 7. 
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In the map phase of Job 8, city block objects are read and attributes related 

to the area of vegetation and ceramic roof objects are computed. After that, these 

attributes, together with other attributes computed in Operator 2, are used as input 

of a fuzzy set that computes the membership values for the class Horizontal 

Residential of Low Standard. 

 

Operator 8 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #9 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToClassification('HorizontalResidentialHighStandard',II_Min(II_Membership('rel_area_veg
_hrhs',properties#'rel_area_vegetation'),II_Membership('number_building_shadow_hrhs',prope
rties#'count_building_shadow'),II_Membership('number_ceramic_roof_hrhs',properties#'count_
ceramic_roof')),properties) as properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_4 INTO 
's3n://…/interimage/project/512/results/op14_horizontal_residential_high_stantard' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 57: Pig Latin script for Operator 8. 

 

In the map phase of Job 9, city block objects are read and attributes related 

to the area of vegetation objects are computed. After that, these attributes, together 

with other attributes computed in Operator 2, are used as input of a number of 

fuzzy sets to compute the membership values for the class Horizontal Residential 

of High Standard. 
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Operator 9 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #10 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_ceramic_roof' / 
properties#'area','rel_area_ceramic_roof',properties) as properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_various_roofs' / 
properties#'area','rel_area_various_roofs',properties) as properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, data, 
II_ToClassification('MixedResidentialServices',II_Min(II_Membership('rel_area_veg_mrs',pro
perties#'rel_area_vegetation'), 
II_Mean(II_Membership('rel_area_ceramic_roof_mrs',properties#'rel_area_ceramic_roof'), 
II_Membership('rel_area_various_roofs_mrs',properties#'rel_area_various_roofs'))),properti
es) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_6 INTO 
's3n://…/interimage/project/512/results/op15_mixed_residential_services' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 58: Pig Latin script for Operator 9. 

 

In the map phase of Job 10, city block objects are read and attributes related 

to the area of vegetation, various roofs and ceramic roof objects are computed. 

After that, these attributes are used as input of a number of fuzzy sets to compute 

the membership values for the class Mixed Residential Services. 

 

Operator 10 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
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mage/project/512/resources/fuzzysets.ser'); 
 
DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #11 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_ceramic_roof' / 
properties#'area','rel_area_ceramic_roof',properties) as properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_various_roofs' / 
properties#'area','rel_area_various_roofs',properties) as properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, data, 
II_ToClassification('IndustrialServices',II_Min(II_Max(II_Membership('max_rect_big_blue_is
',properties#'max_rect_big_blue'),II_Membership('max_rect_big_bright_is',properties#'max_r
ect_big_bright'),II_Membership('max_rect_big_bright_grey_is',properties#'max_rect_big_brig
ht_grey'),II_Membership('max_rect_big_grey_is',properties#'max_rect_big_grey'),II_Membersh
ip('max_rect_big_dark_is',properties#'max_rect_big_dark'),II_Membership('rel_area_various_
roofs_is',properties#'rel_area_various_roofs')),II_Max(II_Membership('max_rect_building_sh
adow_is',properties#'max_rect_building_shadow'),II_Membership('inexistence_building_shadow
_is',properties#'count_building_shadow')),II_Membership('rel_area_ceramic_roof_is',propert
ies#'rel_area_ceramic_roof'),II_Membership('rel_area_veg_is',properties#'rel_area_vegetati
on')),properties) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_6 INTO 's3n://…/interimage/project/512/results/op16_industrial_services' 
USING br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 59: Pig Latin script for Operator 10. 

 

In the map phase of Job 11, city block objects are read and attributes related 

to the area of vegetation and ceramic roof objects are computed. After that, these 

attributes, together with other attributes computed in Operator 2, are used as input 

of a number of fuzzy sets to compute the membership values for the class 

Industrial Services. 

 

Operator 11 

Defines 

DEFINE II_Membership 
br.puc_rio.ele.lvc.interimage.datamining.udf.Membership('https://s3.amazonaws.com/…/interi
mage/project/512/resources/fuzzysets.ser'); 
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DEFINE II_Classify 
br.puc_rio.ele.lvc.interimage.common.udf.Classify('Favelas,HorizontalResidentialHighStanda
rd,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServices,PartiallyU
noccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 

Job #12 – Map 

load_1 = LOAD 's3n://…/interimage/project/512/results/op8_blocks' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
projection_1 = FOREACH load_1 GENERATE geometry, data, 
II_ToProps(II_Area(geometry),'area',properties) as properties; 
 
projection_2 = FOREACH projection_1 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_vegetation' / 
properties#'area','rel_area_vegetation',properties) as properties; 
 
projection_3 = FOREACH projection_2 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_ceramic_roof' / 
properties#'area','rel_area_ceramic_roof',properties) as properties; 
 
projection_4 = FOREACH projection_3 GENERATE geometry, data, 
II_ToProps(properties#'sum_area_various_roofs' / 
properties#'area','rel_area_various_roofs',properties) as properties; 
 
projection_5 = FOREACH projection_4 GENERATE geometry, data, 
II_ToClassification('Favelas',II_Min(II_Max(II_Min(II_Membership('inexistence_big_roofs_f'
,properties#'count_big_roofs'),II_Membership('rel_area_veg_2_f',properties#'rel_area_veget
ation'),II_Membership('rel_area_various_roofs_f',properties#'rel_area_various_roofs')),II_
Min(II_Membership('existence_big_roofs_f',properties#'count_big_roofs'),II_Membership('mea
n_rect_big_roofs_f',properties#'mean_rect_big_roofs'))),II_Max(II_Membership('max_rect_bui
lding_shadow_f',properties#'max_rect_building_shadow'),II_Membership('inexistence_building
_shadow_f',properties#'count_building_shadow')),II_Membership('rel_area_ceramic_roof_f',pr
operties#'rel_area_ceramic_roof'),II_Membership('rel_area_veg_f',properties#'rel_area_vege
tation')),properties) as properties; 
 
projection_6 = FOREACH projection_5 GENERATE geometry, data, II_Classify(properties) as 
properties; 
 
STORE projection_6 INTO 's3n://…/interimage/project/512/results/op17_favelas' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 60: Pig Latin script for Operator 11. 

 

In the map phase of Job 12, city block objects are read and the total area of 

vegetation, ceramic roofs and various roofs is computed. After that, these 

attributes, together with other attributes computed in Operator 2, are used as input 

of a number of fuzzy sets to compute the membership values for the class Favelas. 

 

 

 

Operator 12 

Defines 

DEFINE II_SimpleSpatialResolve 
br.puc_rio.ele.lvc.interimage.geometry.udf.SimpleSpatialResolve('Favelas,HorizontalResiden
tialHighStandard,HorizontalResidentialLowStandard,IndustrialServices,MixedResidentialServi
ces,PartiallyUnoccupiedLand,SportClubs,VerticalResidentialHighStandard,VerticalServices'); 
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Job #13 – Map 

load_1 = LOAD 
's3n://…/interimage/project/512/results/op9_sport_clubs,s3n://…/interimage/project/512/res
ults/op10_vertical_services,s3n://…/interimage/project/512/results/op11_vertical_residenti
al_high_standard,s3n://…/interimage/project/512/results/op12_partially_unoccupied_land,s3n
://…/interimage/project/512/results/op13_horizontal_residential_low_stantard,s3n://…/inter
image/project/512/results/op14_horizontal_residential_high_stantard,s3n://…/interimage/pro
ject/512/results/op15_mixed_residential_services,s3n://…/interimage/project/512/results/op
16_industrial_services,s3n://…/interimage/project/512/results/op17_favelas' USING 
org.apache.pig.builtin.JsonLoader('geometry:chararray, data:map[chararray], 
properties:map[]'); 
 
group_1 = GROUP load_1 BY properties#'tile' PARALLEL 8; 

Job #13 – Reduce 

projection_1 = FOREACH group_1 GENERATE FLATTEN(II_SimpleSpatialResolve(load_1)) AS 
(geometry:chararray, data:map[chararray], properties:map[]); 
 
STORE projection_1 INTO 's3n://…/interimage/project/512/results/op18_all' USING 
br.puc_rio.ele.lvc.interimage.common.udf.JsonStorage(); 

Figure 61: Pig Latin script for Operator 12. 

 

In the map phase of Job 13, the city block objects from the previous 

operators are read and grouped by tile. In the reduce phase, the simple spatial 

resolve method is applied to resolve spatial conflicts. 
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