

Raphael do Vale Amaral Gomes

Crawling the Linked Data Cloud

Tese de Doutorado

Thesis presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio as partial fulfillment of the
requirements for the degree of Doutor em Ciências -
Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
May 2015

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Raphael do Vale Amaral Gomes

Crawling the Linked Data Cloud

Thesis presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio as
partial fulfillment of the requirements for the degree of Doutor.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado
 Departamento de Informática – PUC-Rio

Prof. Daniel Schwabe
 Departamento de Informática – PUC-Rio

Profa. Giseli Rabello Lopes
UFRJ

Prof. Alberto Henrique Frande Laender
UFMG

Prof. Geraldo Bonorino Xexéo
UFRJ

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, May 12th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

 All rights reserved

 Raphael do Vale Amaral Gomes
Graduated in Computer Science at the Pontifical University
of Rio de Janeiro in 2006 and obtained her M.Sc. Degree in
Computer Science from the Pontifical University of Rio de
Janeiro in 2010.

 Bibliographic data

Gomes, Raphael do Vale Amaral

 Crawling the Linked Data Cloud / Raphael do Vale
Amaral Gomes ; advisor: Marco Antonio Casanova. – 2015.

 118 f. : il. ; 30 cm

 Tese (Doutorado em Informática) – Pontifícia
Universidade Católica do Rio de Janeiro, Rio de Janeiro,
2015.

 Inclui bibliografia

 1. Informática – Teses. 2. Buscadores Focados. 3.
Recomendação de triplesets. 4. Linked Data. I. Casanova,
Marco Antonio. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CCD: 004

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

To my girls.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Acknowledgements

Foremost, I would like to thank my advisor Prof. Marco Antonio Casanova for the

continuous support during my PhD studies and research, for his patience,

motivation, enthusiasm, friendship, and immense knowledge. I truly could not

imagine being able to finish this work without his help.

Besides my advisor, I would like to thank two other researchers in special:

Prof. Giseli Rabello Lopes and Prof. Luiz André P. Paes Leme. Their help,

knowledge and friendship contributed to many parts of this work.

My sincere thanks to Prof. Luiz Fernando Bessa Seibel for introducing me

the academy.

I would also like to thank my parents, Walter do Amaral Gomes Filho and

Maria de Fatima do Vale Gomes, and my brother, Gabriel do Vale Amaral

Gomes, for supporting me and giving me the strength to conclude this research.

Finally, I would like to thank my wife, Mariana Ribeiro do Vale for all the

support during those years that we have been together, specially these last ones.

Her patience, work, help and love certainly made this work possible.

Last but not least, I would like to thank my daughter, Lara Ribeiro do Vale,

for giving me a new direction and a new sense in life.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Abstract

Gomes, Raphael do Vale Amaral; Casanova, Marco Antonio (Advisor).
Crawling the Linked Data Cloud. Rio de Janeiro, 2015. 118p. D.Sc. Thesis -
Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

The Linked Data best practices recommend to publish a new tripleset using

well-known ontologies and to interlink the new tripleset with other triplesets.

However, both are difficult tasks. This thesis describes frameworks for metadata

crawlers that help selecting the ontologies and triplesets to be used, respectively,

in the publication and the interlinking processes. Briefly, the publisher of a new

tripleset first selects a set of terms that describe the application domain of interest.

Then, he submits the set of terms to a metadata crawler, constructed using one of

the frameworks described in the thesis, that searches for triplesets which

vocabularies include terms direct or transitively related to those in the initial set of

terms. The crawler returns a list of ontologies that are used for publishing the new

tripleset, as well as a list of triplesets with which the new tripleset can be

interlinked. Hence, the crawler focuses on specific metadata properties, including

subclass of, and returns only metadata, which justifies the classification “metadata

focused crawler”.

Keywords

Focused Crawler; Tripleset Recommendation; Linked Data.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Resumo

Gomes, Raphael do Vale Amaral; Casanova, Marco Antonio (Orientador).
Coleta de Dados Interligados. Rio de Janeiro, 2015. 118p. Tese de Doutorado
- Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

As melhores práticas de dados interligados recomendam que se utilizem

ontologias bem conhecidas de modo a facilitar a ligação entre um novo conjunto

de triplas RDF (ou, abreviadamente, tripleset) e os já existentes. Entretanto,

ambas as tarefas apresentam dificuldades. Esta tese apresenta frameworks para

criação de buscadores de metadados que ajudam na seleção de ontologias e na

escolha de triplesets que podem ser usados, respectivamente, nos processos de

publicação e interligação de triplesets. Resumidamente, o administrador de um

novo tripleset deve inicialmente definir um conjunto de termos que descrevam o

domínio de interesse do tripleset. Um buscador de metadados, construído segundo

os frameworks apresentados na tese, irá localizar, nos vocabulários dos triplesets

existentes, aqueles que possuem relação direta ou indireta com os termos

definidos pelo administrador. O buscador retornará então uma lista de ontologias

que podem ser utilizadas para o domínio, bem como uma lista dos triplesets

relacionados. O buscador tem então como foco os metadados dos triplesets,

incluindo informações de subclasse, e a sua saída retorna somente metadados,

justificando assim chama-lo de “buscador focado em metadados”.

Palavras-chave

Buscadores Focados; Recomendação de triplesets; Linked Data.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Table of Contents

1 Introduction 14	

1.1. Motivation 14	

1.2. Contributions 15	

1.3. Thesis Outline 16	

2 Background 17	

2.1. Linked Data Concepts and Tools 17	

2.2. Evaluation of tools 19	

3 Related Work 21	

3.1. Traditional Web Crawlers 21	

3.2. Linked Data Crawlers 22	

3.3. Tripleset Recommendation 23	

4 A Linked Data Crawling Strategy 25	

4.1. Introduction 25	

4.2. Examples of the Proposed Crawling Strategy 25	

4.2.1. A schematic example 25	

4.2.2. A Concrete Use Case 27	

4.3. Breadth-First Search for New Terms 28	

4.4. Parameters 29	

4.5. Crawling Queries and URI Dereferencing 30	

4.6. Using VoID to Extract more Information about Triplesets 32	

4.7. Summary 32	

5 A Proof of Concept of the Metadata Crawling Strategy 33	

5.1. Introduction 33	

5.2. Experiments 33	

5.2.1. Organization of the Experiments 33	

5.2.2. Results 35	

5.2.3. A comparison with SWGET 41	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

5.3. Lessons Learned 45	

6 CrawlerLD – An Optimized Implementation of the Metadata Crawling

Strategy 47	

6.1. Introduction 47	

6.2. Improvements to the crawling queries 48	

6.3. A Processor Architecture 49	

6.4. Experiments 51	

6.4.1. Organization of the Experiments 51	

6.4.2. Results 52	

6.4.3. A new comparison with SWGET 56	

6.5. Lessons Learned 60	

7 DIST-CrawlerLD – An Actor Model-based Implementation of the

Metadata Strategy 62	

7.1. Introduction 62	

7.2. The actor model 63	

7.3. An Actor Model-based Architecture 64	

7.3.1. Software Architecture 64	

7.3.2. Tripleset availability test 65	

7.3.3. A Brief Description of the Main Actors 66	

7.3.4. Controlling Distributed Crawling 68	

7.3.5. External Interfaces 70	

7.4. Experiments 74	

7.5. A Performance Comparison with Previous Implementations 83	

7.5.1. Resources Consumption Analysis 83	

7.5.2. Processing Time Analysis 88	

7.5.3. Distributed Computing Performance 91	

7.6. An Evaluation of the Linked Data Cloud and the Used Ontologies 93	

7.7. A Behavior Evaluation of the Crawled Resources at Each Level 101	

8 . Conclusions and Suggestions for Future Work 107	

8.1. Conclusions 107	

8.2. Suggestions for Future Work 108	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Bibliography 111	

Annex A – Pseudo-code of the Basic Implementation of Chapter 4 114	

Annex B – Pseudo-code of CrawlerLD and DIST-CrawlerLD 116	

Annex C – A Brief Tutorial to Create a Processor in DIST-CrawlerLD 117	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

List of Figures

Figure 1. Legend of both strategies 26	

Figure 2. Traditional focused crawling strategy 26	

Figure 3. Thesis strategy on focused crawling 27	

Figure 4. Crawling levels. 29	

Figure 5. Example of provenance. 29	

Figure 6. Template query to obtain a subset of the crawling results. 31	

Figure 7. Template of the inverted SPARQL query. 31	

Figure 8. Property query. 50	

Figure 9. Applying grouping function to calculate the number of instances. 51	

Figure 10. Alternative instance counter query. 51	

Figure 11. An example of the Actor Model. 64	

Figure 12. CrawlerLD modules and dependencies 65	

Figure 13. CrawlerLD actors message exchange. 67	

Figure 14. Utilities Semantic Web actors message exchange. 68	

Figure 15. Creating a new crawling task 72	

Figure 16. List of tasks 72	

Figure 17. Crawling Task detail (part 1/2) 73	

Figure 18. Crawling Task detail (part 2/2) 73	

Figure 19. CrawlerLD execution pattern. 86	

Figure 20. DIST-CrawlerLD execution pattern. 87	

Figure 21. Linked Open Data cloud 2014 state 93	

Figure 22. DBPedia:AcademicJournal average 101	

Figure 23. DBPedia:Bibliogragic_database average 101	

Figure 24. DublinCore:Article average 102	

Figure 25. DublinCore:Conference average 102	

Figure 26. DublinCore:EditedBook average 102	

Figure 27. DublinCore:Journal average 102	

Figure 28. DublinCore:Manuscript average 103	

Figure 29. DublinCore:Periodical average 103	

Figure 30. DublinCore:Thesis 103	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

Figure 31. DublinCore:ThesisDegree 103	

Figure 32. Schema:Article average 104	

Figure 33. Schema:EducationEvent average 104	

Figure 34. Schema:PublicationIssue average 104	

Figure 35. Schema:PublicationVolume average 105	

Figure 36. Schema:ScholarlyArticle average 105	

Figure 37. All resources average 105	

Figure 38. Handling calculation messages. 117	

Figure 39. Registering a processor 118	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

List of Tables

Table 1. Namespace abbreviation. 34	

Table 2. Related terms. 36	

Table 3. Performance evaluation. 40	

Table 4. Number of terms found using swget. 41	

Table 5. Comparison between SWGET and the Basic Crawler 42	

Table 6. Related terms 54	

Table 7. Performance evaluation 56	

Table 8. Number of terms found using swget. 57	

Table 9. Comparison between SWGET and CrawlerLD. 57	

Table 10. Distribution aware parameters 70	

Table 11. REST Commands available. 70	

Table 12. Namespace abbreviation 74	

Table 13. mo:MusicArtist result 77	

Table 14. mo:MusicalWork result 77	

Table 15. dbpediaOntology:MusicalWork result 78	

Table 16. dbpediaOntology:Song result 78	

Table 17. dbpediaOntology:Album result 79	

Table 18. dbpediaOntology:MusicalArtist result 80	

Table 19. dbpedia:Single result 80	

Table 20. mo:Composition and wordnet:synset-music-nount-1 results 80	

Table 21. Publication domain results 82	

Table 22. Time consumed (in minutes) for the Music domain 89	

Table 23. Time consumed (in minutes) for the Publications domain. 90	

Table 24. Results for DIST-CrawlerLD in a complex scenario. 91	

Table 25. Results applying tripleset availability test 91	

Table 26. Time consumed by actor model single machine and distributed 92	

Table 27. Additional statistics for DIST-CrawlerLD in a distributed mode 92	

Table 28. Additional statistics applying tripleset availability test 92	

Table 29. Publication domain resources and recall 97	

Table 30. Availability of triplesets classified in the publications domain 98	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

1
Introduction

1.1.
Motivation

The Linked Data best practices (Bizer et al., 2009) recommend publishers of

triplesets to use well-known ontologies in the triplication process and to link their

triplesets with other triplesets. However, despite the fact that extensive catalogues

of open ontologies and triplesets are available, such as DataHub1, most publishers

typically do not adopt ontologies already in use. They usually link their triplesets

only with popular ones, such as DBpedia2 and Geonames3. Indeed, according to

Nikolov and Martínez-Romero (Nikolov and d'Aquin, 2011; Nikolov et al. 2012;

Martínez-Romero, 2010), linkage to popular triplesets is favored for two main

reasons: the difficulty of finding related open triplesets; and the strenuous task of

discovering instance mappings between different triplesets.

This thesis describes three crawlers that address the problem of finding

vocabulary terms and triplesets to assist publishers in the triplification and the

linkage processes. Unlike typical Linked Data crawlers, the proposed crawlers

focus on metadata with specific purposes, illustrated in what follows.

In a typical scenario, the publisher of a tripleset first selects a set T of terms

that describe an application domain. Alternatively, he could use a database

summarization technique (Saint-Paul et al., 2005) to automatically extract T from

a set of triplesets.

Then, the publisher submits T to the crawler, that will search for tripleset

which vocabularies include terms direct or transitively related to those in T by, for

example, the “subset of” metadata relationship. The crawler returns a list of terms

and triplesets, as well as provenance data indicating how the output was

generated.

1 http://datahub.io
2 http://dbpedia.org
3 http://www.geonames.org

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

15

For example, if the publisher selects the term “Music” from WordNet, the

crawler might return the term “Hit music” and might indicate that “BBC Music” is

a tripleset where “Hit music” occurs.

Lastly, the publisher inspects the list of terms and triplesets returned, with

respect to his tripleset, to select the most relevant vocabularies for the

triplification process and the best triplesets to use in the linkage process, possibly

with the help of recommender tools. We stress that the crawler was designed to

help recommender tools for Linked Data, and not to replace them.

1.2.
Contributions

This thesis proposes a new way to crawl metadata from the Linked Data cloud. By

adopting SPARQL crawling queries, coupled with a breadth-first strategy, we are

able to create crawlers that are capable of finding a new terms and triplesets

related to an initial set of terms, without losing precision, when compared to other

crawling tools.

In more detail, the first contribution of this thesis is a strategy to crawl

metadata from the Linked Data cloud. Unlike other crawling strategies, we do not

just follow links from one tripleset to the other, but we discover which terms and

triplesets are semantically related to an initial set of terms by, for example, the

“subset of” metadata relationship. The crawling strategy relies on SPARQL

crawling queries to discover the new terms and triplesets: each crawling query

captures a specific metadata relationship or just counts the number of instances of

a class.

The second contribution is to prototype metadata crawling tools that

implement the crawling strategy. By adopting SPARQL crawling queries, we

simplify the metadata crawling process, since the tools do not require to store all

the data they need, thereby reducing the amount of data processed. We

implemented three tools with increasingly sophisticated architecture.

The third contribution is to model the metadata crawling tools as

frameworks so that anyone is able to plug in new crawling techniques. Indeed, it

will help other researchers to use tools already implemented to traverse the Linked

Data cloud, with minimal development effort.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

16

The final contribution of this thesis is the use of the Actor Model to create a

crawling tool, with improved performance, that explores distributed computing

throughout the crawling process. Despite the changes, all other contributions were

preserved when moving to the Actor Model.

Finally, we remark that Chapter 5 reflects a paper published in 2014 in the

16th International Conference on Enterprise Information Systems (ICEIS)

(Gomes et al., 2014), which won the Best Paper Award in the area of Software

Agents and Internet Computing. Chapter 6 is the result of a second paper

published in the 16h International Conference, ICEIS 2014, Revised Selected

Papers Series: Lecture Notes in Business Information Processing (Gomes et al.,

2015). Finally, Chapter 7, describes the Actor-based implementation, which be

submitted for publication.

1.3.
Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 presents a brief

description of common concepts used in the rest of the thesis. Chapter 3 describes

the metadata crawling strategy proposed and introduces a use case that will be

adopted in the remaining chapters. Chapter 4 introduces a proof-of-concept

implementation of the crawling strategy to test its adequacy. Chapter 5 details an

optimized implementation, re-engineered as a crawling framework. Chapter 6

presents our last implementation, a crawling framework that uses the Actor Model

(Hewitt et al., 1973) to address issues related to performance and distribution. The

optimized implementation is called CrawlerLD and the Actor Model-based

implementation is called DIST-CrawlerLD. Chapter 7 contains the conclusions

and outlines suggestions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

17

2
Background

2.1.
Linked Data Concepts and Tools

This section briefly reviews basic Linked Data concepts and tools that will be

used throughout the thesis.

The Linked Data principles advocate the use of RDF (Manola et al., 2004),

RDF Schema (Brickley at al., 2004) and other technologies to standardize

resource description.

RDF describes resources and their relationships through triples of the form

(s, p, o), where: s is the subject of the triple, which is an RDF URI reference or a

blank node; p is the predicate or property of the triple, which is an RDF URI

reference, and it specifies how s and o are related; and o is the object, which is an

RDF URI reference, a literal or a blank node. A triple (s, p, o) may also be

denoted as “<s><p><o>”.

A tripleset is just a set of triples. In this paper, we will use dataset and

tripleset interchangeably.

RDF Schema is a semantic extension of RDF to cover the description of

classes and properties of resources. OWL (W3C OWL Working Group, 2012) in

turn extends RDF Schema to allow richer descriptions of schemas and ontologies,

including cardinality and other features.

RDF Schema and OWL define the following predicates that we will use in

the rest of the thesis:

• rdfs:subClassOf indicates that the subject of the triple defines a

subclass of the class defined by the object of the triple

• owl:sameAs indicates that the subject denotes the same concept as the

object

• rdfs:seeAlso indicates that the subject is generically related to the

object

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

18

• owl:equivalentClass indicates that both the subject and the object

are classes and denote the same concept

• rdf:type indicates that the subject is an instance of the object

For example, the triple

<dbpedia:Sweden> <rdf:type> <dbpedia:Country>.

indicates that the resource dbpedia:Sweden is an instance of the class

dbpedia:Country.

Triplesets are typically available on the Web as SPARQL endpoints

(Prud’hommeaux et al., 2012) or as file dumps (large files containing all the data

from a tripleset, or small files containing only the relevant data for a defined

term). A third option is through URL dereferencing, which means that the

resource contains descriptive data about itself so it is possible to discover more

data simply by reading the resource content.

SPARQL is a query language and a protocol. As a query language, it works

similarly to SQL: it is possible to query databases over a specific resource, join

resources and limit data to a determined parameter. As a protocol, it defines the

query interface (HTTP), how requests should be made (POST or GET) and how

the data should be returned (via a standard XML). Thus, an agent can perform

queries on a dataset and acquire knowledge to create new queries and so on.

On March 2013, the SPARQL 1.1 specification (Garlik et al., 2013) was

published with added SQL-like grouping functions. It allowed us, for instance, to

count the number of triples with a given property. For example, this extension

allows counting the number of instances of a class C in a tripleset, that is, to count

how many triples in the tripleset have rdf:type as property and C as object.

VoID (Alexander et al., 2009) is an ontology used to define metadata about

triplesets. A VoID document is a good source of information about a tripleset,

such as the classes and properties it uses, the size of the tripleset, and etc.

Let d be a tripleset and V be a set of VoID metadata descriptions. The

classes and properties used in d can be extracted from tripleset partitions defined

by the properties void:classPartition and void:propertyPartition that

occur in V. Class partitions describe sets of triples related to subjects of a

particular class. Property partitions describe sets of triples that use a particular

predicate. These partitions are described by the properties void:class and

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

19

void:property respectively. The set of vocabulary terms used in d can be

generated by the union of all values of the properties void:class and

void:property. In some cases, the VoID description of a tripleset does not

define partitions, but specifies a list of namespaces of the vocabularies used by the

tripleset with the void:vocabulary predicate. One can enrich the set of

vocabulary terms used in d with such a list.

Finally, the Web site Datahub.io stores descriptions of some of the triplesets

in the Linking Open Data Cloud (LOD Cloud). The Web site is built using an

open source tool called Ckan4, which has mechanisms to programmatically

discover triplesets published in the LOD Cloud.

2.2.
Evaluation of tools

Throughout this thesis, we will compare our approach with other state-of-art

approach for semantic web crawling. To have a fair comparison, we adopted three

different metrics that are widely used in the literature for this kind of comparison.

1. Precision – identifies the number of relevant resources when

compared to all resources found by the crawler (in our case). It is

defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑅𝐿𝑇
𝑅𝑇

where:

• RLT = number of relevant resources retrieved
• RT = number of resources retrieved

Precision shows how the tool handles the values it found in order to retrieve

only the relevant resources.

2. Recall – compares the relevant resources found to the whole set of

relevant resources available. It is defined as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 012
01

where:

• RLT = number of relevant resources retrieved

4 http://ckan.org/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

20

• RL = number of relevant resources

Recall shows how good the tool is to discover all relevant resources.

3. F-Measure (F1 score) (Manning et al., 2008) – tests the accuracy of a

tool. It considers both precision and recall is defined, as follows:

F1 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In other words, the F1 score can be interpreted as the weighted average of

precision and recall.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

21

3
Related Work

3.1. Traditional Web Crawlers

Web crawling is a common task on the Web (Baeza-Yates and Berthier, 1999).

Since the beginning of the World Wide Web (WWW), unstructured information

distributed in dozens of servers are being indexed in order to facilitate the search.

Web Crawlers are tools intended to discover information on Web sites and can be

classified as: exhaustive and topical (or focused) crawlers. Exhaustive crawlers

meet the needs of the general population of Web users. On the other hand, topical

crawlers are activated in response to a particular information need as they expect

an initial input to start (Srinivasan et al., 2005).

In the specific area of topical crawlers, we highlight the following

contributions next. FishSearch (De Bra et al., 1994) is one of the first proposals

for focused crawlers. The system works as follows: the user provides a starting

URL and a match condition, which could be a set of keywords or a regular

expression. The crawler starts to search for pages and saves those in which the

content matches the specified condition. In order to decide which page the tool

will crawl next, the system uses a priority queue of unvisited URLs with the

priority being defined by a simplified scoring module. SharkSearch (Herscovici et

al., 1998) is an evolution of the FishSearch crawler that uses more contextual data

to calculate a cosine-based relevance score to define the priority.

De Assis (De Assis et al., 2009) presents a genre-aware approach to focused

crawling. In addition to searching for any relevant information related to the initial

input, the proposed algorithm focuses on documents of a specified genre.

Furthermore, the paper states that Web focused crawlers normally use some kinds

of contextual information to estimate the benefit of a URL:

- Link Context: is the information available nearby the link to the URL

on the Web page.

- Ancestor Pages: uses the content of the ancestors’ pages to determine

the relevance of the URL.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

22

- Web Graph: uses a Web sub-graph around the page associated with the

URL to decide whether to follow the URL.

3.2.
Linked Data Crawlers

The crawlers proposed in this thesis are similar to topical crawlers as they

expect an initial input to start their crawling. However, while Web crawlers read

unstructured information, Linked Data crawlers – such as ours – work with

structured information, in the form of RDF triples. Furthermore, the crawlers

proposed in this thesis use RDF metadata information (such as rdfs:subClassOf

and owl:sameAs) as contextual information, which is far simpler than what

topical crawlers consider as contextual information.

We now describe some of the most popular Linked Data crawlers available.

Ding et al. (2005) present a tool created by Swoogle to discover new triplesets.

The authors describe a way of ranking Web objects in three granularities: Web

documents (Web pages with embedded RDF data), terms and RDF Graphs

(triplesets). Each of these objects has a specific ranking strategy.

Hartig (Hartig et al., 2009) introduces a Semantic Web client that considers

all the Linked Data as a single SPARQL Endpoint that will fill the resultset based

on its crawling. The crawling method works following RDF links from one

resource to another.

LDSpider (Isele et al., 2010) is another example of a Linked Data crawler.

Similarly to the crawlers proposed in this thesis, LDSpider starts with a set of

URIs as a guide to parse Linked Data.

Fionda et al. (2012) present a language, called NAUTILOD, which allows

browsing through nodes of a Linked Data graph. They introduced a tool, called

swget (semantic web get), which evaluates expressions of the language. An

example would be: “find me information about Rome, starting with its definition

in DBpedia and looking in DBpedia, Freebase and the New York Times

databases”.
swget <dbp:Rome>

(<owl:sameAs>)* -saveGraph-domains {dbpedia.org,

 rdf.freebase.com, data.nytimes.com}

The Linked Data crawlers just described have some degree of relationship

with the proposed crawlers, though none has exactly the same goals. The crawlers

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

23

proposed in this thesis focus on finding metadata that are useful to design new

triplesets. Furthermore, rather than just dereferencing URIs, they adopts SPARQL

crawling queries to improve recall, as explained in Section 4.5.

The crawlers proposed in this thesis depend on SPARQL endpoints, which

are by nature a valuable and sometimes sporadic resource. Berners-Lee (Berners-

Lee, 2006), in one of the first papers introducing the Linked Data, wrote: “to make

the data be effectively linked, someone who only has the URI of something must

be able to find their way to the SPARQL endpoint.” Besides, many triplesets do

not have a valid SPARQL endpoint (see section 7.6). Three recent papers tried to

address this issue using different approaches.

Linked Data Fragments (Verborgh et al., 2014) argue that, instead of having

a generic query interface that accepts any sort of queries and, therefore, suffers

from performance issues, the publisher should create low-cost queryable data that

use client CPU in addition to server processing. The solution, although feasible,

depends on the implementation of new servers and clients able to process this new

type of information.

The LOD Laundromat (Wouter et al., 2014), on the other hand, provides a

more viable approach: instead of expecting endpoints and clients to change, it

provides a large set of triplesets from the Linked Data in a third endpoint. This

endpoint, in addiction, undergoes a cleaning process in order to facilitate

automatic processing by other tools.

Contrasting with the LOD Laundromat, Roomba (Assaf et al., 2015) is a

tool that proposes to extract, validate, correct and generate linked dataset profiles.

The created profile may help evaluate a tripleset for a decision process and avoid

spamming triplesets.

3.3.
Tripleset Recommendation

We now comment on how the proposed crawlers relate to recommender

tools for Linked Data.

Some generic recommender tools use keywords as input. Nikolov et al.

(2011, 2012) use keywords to search for relevant resources, using the label

property of the resources. Indeed, a label is a property used to provide a human-

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

24

readable version of the name of the resource5. A label value may be inaccurate, in

another language or simply be a synonymous of the desired word. There is no

compromise with the schema and its relationships. Therefore, the risk of finding

an irrelevant resource is high.

Martínez-Romero et al. (2010) propose an approach for the automatic

recommendation of ontologies based on three points: (1) how well the ontology

matches the set of keywords; (2) the semantic density of the ontology found; and

(3) the popularity of the tripleset on the Web 2.0. They also match a set of

keywords to resource label values, in a complex process.

The crawlers proposed in this thesis may be used as a component of a

recommender tool, such as those just described, to locate: (1) appropriate

ontologies during the triplification of a database; (2) triplesets to interlink with a

given tripleset. We stress that the crawlers were not designed to be a full

recommender tool, but rather to be a component of one such system.

5 http://www.w3.org/TR/rdf-schema/#ch_label

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

25

4
A Linked Data Crawling Strategy

4.1.
Introduction

This chapter first introduces the crawling approach adopted in the remaining

chapters.

Then, it describes the proposed metadata crawling strategy. Section 4.3

covers how the strategy simulates a breadth-first search for new terms and

triplesets, whereas Section 4.5 discusses the use of SPARQL crawling queries and

URI dereferencing to find new terms and triplesets.

The chapter concludes with a brief discussion on how to use VoID to extract

more information about triplesets.

4.2.
Examples of the Proposed Crawling Strategy

4.2.1. A schematic example

Figure 2 and Figure 3 compare the traditional focused crawling strategy and the

strategy proposed in this thesis. Figure 1 explains the symbols presented in both

figures, where the directions of the arrows indicate in which side the resource was

found.

A traditional crawler uses an element already visited to locate other

elements directly related to it. For example, in Figure 2, the crawler is able to

move from element A to elements B and C, which will be crawled at a second

level.

The strategy presented in this thesis (Figure 3) uses the traditional strategy

and adds other ways to discover elements, with the help of SPARQL queries, as

detailed in Section 4.5. In the example, from element A, the crawler finds

elements B and C, as in previous example, but it is also able to find elements F, G,

H and I using SPARQL queries. Such queries are applied over all triplesets

available in datahub.io and some common ontologies.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

26

Figure 3 also illustrates another specific scenario: when a third ontology

describes the relationship between two elements – note that M and G are related

by an RDF triple stored elsewhere (represented by the dashed box in Figure 3).

Figure 1. Legend of both strategies

Figure 2. Traditional focused crawling strategy

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

27

Figure 3. Thesis strategy on focused crawling

4.2.2. A Concrete Use Case

Consider a user who wants to publish as Linked Data a relational database d

storing music data (artists, records, songs, etc.). A metadata crawler designed

along the strategy proposed in this thesis will help the user publish d as follows.

First, the user has to define an initial set T of terms to describe the

application domain of d. Suppose that he selects just the term dbpedia:Music,

taken from DBpedia.

The user will then invoke the metadata crawler, passing T as input. The

crawler will query the Datahub.io catalogue of Linked Data triplesets to crawl

triplesets searching for new terms that are directly or transitively related to

dbpedia:Music. The crawler focuses on finding new terms that are defined as

subclasses of the class dbpedia:Music, or that are related to dbpedia:Music by

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

28

owl:sameAs or rdfs:seeAlso properties. The crawler will also count the number

of instances of the classes found.

The crawler will return: (1) the list of terms found, indicating their

provenance – how the terms are direct or transitively related to dbpedia:Music

and in which triplesets they were found; (2) for each class found, an estimation of

the number of instances in each tripleset visited; and (3) a list relating the VoID

data of each tripleset with each one of the terms found.

The user may take advantage of the results that the crawler returned in two

ways. They may manually analyze the data and decide: (1) which of the probed

ontologies found they will adopt to triplify the relational database; and (2) to

which triplesets the crawler located they will link the tripleset they are

constructing. Alternatively, they may submit the results of the crawler to separate

tools that will automatically recommend the ontologies to be adopted in the

triplification process, as well as the triplesets to be used in the linkage process

(Leme et al., 2013; Lopes et al., 2013).

For example, suppose that the crawler finds two subclasses,

opencyc:Love_Song and opencyc:Hit_Song, of wordnet:synset-music-noun-

1 in the ontology opencyc:Music. Suppose also that the crawler finds large

numbers of instances of these subclasses in two triplesets, musicBrains and

bbcMusic. The user might then decide that opencyc:Music is a good ontology to

adopt in the triplification process, and that musicBrains and bbcMusic are good

triplesets to use in the linkage process.

4.3.
Breadth-First Search for New Terms

We assume that the metadata crawling process receives as input:

• A set of catalogues that identify SPARQL endpoints and RDF dumps,

possibly augmented with manually informed triplesets. The end-points and

dumps used are collectively called input triplesets, or simply triplesets in

what follows.

• A set of terms T, called the initial crawling terms. Such terms are typically

selected from generic ontologies, such as WordNet, DBpedia, and

Schema.org , albeit this is not a requirement for the crawling process.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

29

The crawling strategy dictates that the crawler must simulate a breadth-first

search for new terms. Level 0 contains the initial set of terms T. The set of terms

of each new level is computed from those of the previous level with the help of

the crawling queries and URI dereferencing, as described in Section 0, except for

rdf:type, which is used only to count the number of instances found. Figure 4

illustrates the level-based crawling strategy.

Figure 4. Crawling levels.

The crawling frontier is the set of terms found that have not yet been

processed. To avoid circular references, we mark the terms that have already been

processed.

For each new term found, the crawler creates a list that indicates the

provenance of the term: how the term is directly or transitively related to an initial

term and in which tripleset(s) it was found. That is, the crawler identifies the

sequence of relationships it traversed to reach a term, such as in the following

example:
wordnet:synset-music-noun-1 -> owl:sameAs -> OpenCyc:Music ->

rdfs:subClassOf -> OpenCyc:LoveSong ->

instance -> 500 instances.

Figure 5. Example of provenance.

4.4.
Parameters

Since the number of terms may grow exponentially from one level to the

next, we prune the search by limiting:

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

30

• The number of levels of the breadth-first search the tool will crawl

to. If a small number of levels is defined, the tool may be unable to

reach relevant resources (recall). But, if a larger number of levels is

defined, the tool may start to lose its precision. Chapter 7 shows a

complete evaluation of the parameters.

• The maximum number of terms probed. This parameter restricts the

number of terms that will be crawled. In some experiments, we

noticed that a higher level of terms probed can increase the time of

the experiment, without gaining relevant information in the same

proportion.

• The maximum number of terms probed for each term in the crawling

frontier. Similarly to the previous parameter, it restricts the number

of crawling resources that were found when crawling a previous

resource. The idea of this argument is to balance the number of

resources crawled throughout the tool.

• The maximum number of terms probed in each tripleset, for each

term in the crawling frontier. It is similar to the previous parameter,

but it also restricts the dataset where the resources will be searched.

In some experiments, we noticed that a single dataset retrieved over

a thousand relevant resources. Since the dataset was the first to be

processed, any other resource found by the crawler will be ignored

by the previous parameter. This parameter avoids this case by

creating a new restriction.

4.5.
Crawling Queries and URI Dereferencing

The crawling queries find new terms that are related to the terms obtained in the

previous level through the following crawling properties: rdfs:subClassOf,

owl:sameAs and rdfs:seeAlso. Hence, these queries are respectively called

subclass, sameAs and seeAlso queries.

Figure 6 shows one of the templates of the crawling queries that obtain

terms related to a known term t through the crawling property p.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

31

SELECT distinct ?item
WHERE { ?item p <t> }

Figure 6. Template query to obtain a subset of the crawling results.

For the properties owl:sameAs and rdfs:seeAlso, the crawler must also

use the template query of Figure 7. For each term t to be crawled, it inverts the

role of t, as shown in Figure 7, when the predicate p is owl:sameAs and

rdfs:seeAlso, since these predicates are reflexive, and it is reasonable that the

description of the term itself will be explained in that order. However, the crawler

must not invert the role of t when the predicate p is rdfs:subClassOf, since this

predicate is not reflexive.

SELECT distinct ?item
WHERE { <t> p ?item }

Figure 7. Template of the inverted SPARQL query.

Consider the crawling property rdfs:subClassOf. Suppose that C and C’

are classes defined in triplesets S and S’, respectively, and assume that C’ is

declared as a subclass of C through a triple of the form

(C’, rdfs:subClassOf, C)

Triples such as this are more likely to be included in the tripleset where the

more specific class C’ is defined than in the tripleset where the more generic class

C is defined. Hence, after finding a class C, the crawler must search for subclasses

of C in all triplesets it has access using the template of Figure 6.

Another case occurs when the relationship between C and C’ is defined in a

third schema S”. Similar to the previous example, we need a subclass query over

S” to discover that the relationship between C and C’. S’’ is obtained by

dereferencing the URI of C’. In most cases, the returned tripleset is the complete

ontology where C’ is defined, while in some other cases only a fragment of the

ontology where C’ is defined is returned.

A special type of crawling query is obtained by replacing p in Figure 6 with

rdf:type. However, in this case, only the overall number of instances found and

the total number of instances for each tripleset are retrieved and stored in the

result set of the crawling process.

Finally, the crawling process also uses URI dereferencing as follows: for

each term that will be crawled, the tool accesses its URI RDF content. The content

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

32

will them be interpreted as new, small, tripleset to which the same SPARQL

queries are applied, as shown in Figure 6 and Figure 7.

4.6.
Using VoID to Extract more Information about Triplesets

The crawler will eventually collect a large number of terms and count the number

of instances of a reasonable number of classes, declared in many triplesets. These

data can be used to extract more metadata about a tripleset by parsing its VoID

description, as follows.

For each tripleset t in the catalogues the crawler uses, if t has a VoID

description V, the crawler retrieves all objects o from triples of the form

(s, void:class, o) declared in V. The resources retrieved are compared to all

resources the crawler already located. Each new resource found is saved and

returned as part of the final output of the entire crawling operation, with an

indication that it is also related to tripleset t through a VoID description.

Although the crawling process has limiting parameters to avoid time-

consuming tasks, the processing of VoID descriptions is simple enough and,

therefore, not subjected to limitations.

4.7.
Summary

At a very high level of abstraction, , the strategy presented in this thesis can

be described as the following pseudo-code (more detailed descriptions will be

available in the following chapters).

CRAWLER(maxLevels, Terms, Catalogues; Provenance)

Parameters: maxLevels - maximum number of levels of the breadth-first search
input: Terms - a set of input terms
 Catalogues - a list of catalogues of triplesets
output: Provenance - a provenance list for the terms in Q
begin
 var currentLevel = 0
 var nextLevelTerms = []
 while currentLevel < maxLevels
 foreach term T on Terms:
 foreach catalogue C on Catalogues
 Query C to count the number of instances of T
 Query C to search for relationship properties T and add to nextLevelTerms
 Add all provenance of the queries above to Provenance
 end
 end
 Terms = nextLevelTerms
 end
 return Provenance
end

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

33

5
A Proof of Concept of the Metadata Crawling Strategy

5.1.
Introduction

To evaluate the concept described in Chapter 4, we created a simple tool, in which

its pseudo-code is shown in Annex A. The tool was implemented in Java using

the framework Apache Jena6 to resolve Linked Data resources.

The tool was only created to evaluate the metadata crawling strategy and

how it performed, when compared with other Linked Data crawlers. Chapters 6

and 7 describe implementation alternatives that address the performance issues

observed in the proof-of-concept implementation.

In the rest of this thesis, we refer to this first implementation simply as the

proof of concept crawler.

5.2.
Experiments

5.2.1.Organization of the Experiments

We evaluated the proof of concept crawler over triplesets described in

Datahub.io. The tool was able to recover 317 triplesets with SPARQL endpoints.

However, despite this number, it could run queries on just over half of the

triplesets due to errors in the query parser, or simply because the servers were not

available.

To execute the tests, we separated three set of terms related to the music and

publication application domains. To create the initial crawling terms, we used

three generic ontologies, WordNet, DBpedia, and Schema.org, as well ontologies

specific to each domain, as described in Section 5.2.2.

WordNet is a lexical database that presents different meanings for the same

word. For example, the term wordnet:synset-music-noun-1 means “an artistic

6 https://jena.apache.org/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

34

form of auditory communication incorporating instrumental or vocal tones in a

structured and continuous manner”7. In addition, the term wordnet:synset-

music-noun-28 is defined as “any agreeable (pleasing and harmonious) sounds;

"he fell asleep to the music of the wind chimes"”.

DBpedia is the triplified version of the Wikipedia database. The

triplification process is automatically accomplished and the current English

version has already 2.5 million classified items.

Schema.org is the most recent ontology of all three. It focuses on HTML

semantics and was created by Google, Bing, and Yahoo. Therefore, Schema.org is

now used by many triplesets9. Schema.org is also developing other ways to

increase the search results by creating a mapping with other ontologies, such as

DBpedia and WordNet.

We elected these three ontologies as the most generic ones. All three have a

collection of terms that covers numerous domains and could be used together to

determine an initial set that represents the user’s intentions. Of course, if a user

has good knowledge about a domain, they can adopt more specific ontologies to

determine the initial crawling terms. In the examples that follow, we use the

abbreviations shown in Table 1.

Table 1. Namespace abbreviation.

Abbreviation Namespace
akt http://www.aktors.org/ontology/portal#
bbcMusic http://linkeddata.uriburner.com/about/id/entity/http/www.bbc.co.uk/music/
dbpedia http://dbpedia.org/resource/
dbtune http://dbtune.org/
freebase http://freebase.com/
freedesktop http://freedesktop.org/standards/xesam/1.0/core#
lastfm http://linkeddata.uriburner.com/about/id/entity/http/www.last.fm/music/
mo http://purl.org/ontology/mo/
musicBrainz http://dbtune.org/musicbrainz/
nerdeurocom http://nerd.eurecom.fr/ontology#
opencyc http://sw.opencyc.org/2009/04/07/concept/en/
schema http://schema.org/
twitter http://linkeddata.uriburner.com/about/id/entity/http/twitter.com/
umbel http://umbel.org/

7 http://goo.gl/TIKswe
8 http://goo.gl/TIKswe
9 http://schema.rdfs.org/mappings.html

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

35

wordnet http://wordnet.rkbexplorer.com/id/
yago http://yago-knowledge/resource/

The experiments used the following parameters (see section 4.3), arbitrarily

defined. Section 7 presents a complete evaluation of these parameters:

• Number of levels: 2

• Maximum number of terms probed: 40

• Maximum number of terms probed for each term in the crawling

frontier: 20

• Maximum number of terms probed in each tripleset, for each term in

the crawling frontier: 10

The experiments ran over Azure Virtual Machines10, using an A4 instance

(8 cores, 14GB of RAM).

5.2.2. Results

Music Domain

We chose music as the first domain to evaluate the basic crawler and elected three

ontologies, DBpedia, WordNet and the Music Ontology11, to select the initial

crawling terms. The Music Ontology is a widely accepted ontology that describes

music, albums, artists, shows, and some specific subjects.

The initial crawling terms were:
mo:MusicArtist
mo:MusicalWork
mo:Composition
dbpedia:MusicalWork
dbpedia:Song
dbpedia:Album
dbpedia:MusicalArtist
dbpedia:Single
wordnet:synset-music-noun-1

In what follows, we will first comment on the results obtained at Level 1,

for each initial term. Then, we will proceed to discuss how the new terms obtained

in Level 1 were processed at Level 2.

10 https://azure.microsoft.com
11 http://musicontology.com/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

36

Table 2 (a) shows the results of Level 1 for mo:MusicalArtist. At Level 2,

for each of the terms mo:MusicGroup and mo:SoloMusicArtist, the basic

crawler obtained similar results: nearly 2,000 resources were found in the

triplesets bbcMusic and musicBrainz:data, which are large databases about the

music domain; and the seeAlso query pointed to an artist, lastfm:Hadas. As

seeAlso provides additional data about the subject, we speculate that the result the

basic crawler returned represents a mistake made by the database creator.

Table 2(b) shows the results of Level 1 for mo:MusicalWork. Note that the

basic crawler found a variety of instances from multiple databases, mainly on

universities. At Level 2, when processing mo:Movement, the basic crawler found a

seeAlso reference to lastfm:Altmodisch.

At Level 1, when processing mo:Composition, the basic crawler found 13

instances, but no related terms.

Table 2(c) shows the results of Level 1 for the first DBpedia term,

dbpedia:MusicalWork. The basic crawler found 5 subclasses from DBpedia and

more than 20,000 subclasses from the yago tripleset. This unusual result is due to

the segmentation used by yago. For example, there are subclasses that segment

records by artist, by historical period, and even by both. The first three terms,

dbpedia:Album, dbpedia:Song and dbpedia:Single, will be analyzed in the

next paragraphs since they are also in the initial set of terms.

Table 2. Related terms.

Query type Description
(a) Related terms for mo:MusicArtist

subclass mo:MusicGroup
mo:SoloMusicArtist

instance 103,541 instances, mostly from lastfm

(b) Related terms for mo:MusicalWork
subclass mo:Movement

instance 16,833 instances found in multiple databases like dbtune
and academic music databases

(c) Related terms for dbpedia:MusicalWork
subclass dbpedia:Album

dbpedia:Song
dbpedia:Single
dbpedia:Opera
dbpedia:ArtistDiscography
and 21,413 classes from yago

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

37

sameAs dbpedia:MusicGenre
umbel:MusicalComposition

seeAlso lastfm:Syfin
lastfm:Kipling
lastfm:Pandemic
lastfm:Ardcore
lastfm:Lysis
lastfm:Freakhouse
lastfm:Saramah
lastfm:Akouphen
lastfm:Freakazoids
lastfm:Cyrenic
lastfm:Phender
twitter:Ariadne_bullet

instance 145,656 instances
(d) Related terms for dbpedia:Song

Own URL dbpedia:EurovisionSongContestEntry

sameAs schema:MusicRecording

subclass dbpedia:EurovisionSongContestEntry

seeAlso lastfm:Apogee
lastfm:Brahman
lastfm:Anatakikou
lastfm:Sakerock
lastfm:8otto
lastfm:Cro-Magon
lastfm:Ladz
Plus 7 lastfm resources in Japanese

instance 10,987 instances from multiple language versions of dbpedia,
lastfm and others

(e) Related terms for dbpedia:Album
Own URL freebase:en.Album

opencyc:Album

subclass nerdeurocom:Album
and 17,222 subclasses, mostly from yago

sameAs schema:MusicAlbum
freebase:en.Album
dbpedia:Sophomore_Album
and some dbpedia:Album classes from
other Wikipedia languages

instance 100,090 instances from multiple language versions of
dbpedia and others

(f) Related terms for dbpedia:MusicalArtist
seeAlso lastfm:Krackhead

sameAs dbpedia:Musician
umbel:MusicalPerformer

subclass dbpedia:Instrumentalist
dbpedia:BackScene
and 2,178 subclasses from yago

instance 49,973 instances from multiple language versions of dbpedia
(g) Related terms for dbpedia:Single

seeAlso last.fm:Toxin
last.fm:Dethrone

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

38

last.fm:Burdeos
last.fm:Sylence
twitter:joint_popo
last.fm:Toximia
last.fm:Alcoholokaust
last.fm:Electromatic
last.fm:Mighty+Atomics

subclass 3,414 subclasses, the majority from yago

instance 44,623 instances

At Level 2, the processing of dbpedia:Opera returned no results and the

processing of dbpedia:ArtistDiscography returned 3,423 instances, but no new

term. The processing of umbel:MusicalComposition returned 1,809 instances,

and dbpedia:MusicGenre retrieved 7,808 new instances.

Table 2(d) shows the results of Level 1 for dbpedia:Song. The basic

crawler found the most diversified results in terms of query types and query

results. It was able to identify resources in different languages (such as Portuguese

and Greek), which was only possible because it focused on metadata. Crawlers

that use text fields (Nikolov and d'Aquin, 2011) can only retrieve data in the same

language as that of initial terms.

At Level 2, when processing dbpedia:EurovisionSongContestEntry, the

basic crawler obtained three subclasses from yago, a sameAs relationship with

schema:MusicRecording and found the same result of dbpedia:Song for the

seeAlso property. The other resource probed on the Level 2 was

schema:MusicRecording, which returned no instances or new crawling terms.

Table 2(e) shows the results of Level 1 for dbpedia:Album. The processing

of this term also produced an interesting result. The sameAs query found a small

number of unique relationships, but found some dbpedia:Album in other

languages. One may highlight the opencyc:Album class, for which the basic

crawler was able to find 245 instances.

Table 2(f) shows the results of Level 1 for dbpedia:MusicalArtist. The

processing of this term exhibited results similar to those obtained by processing

dbpedia:Album, in terms of quantity of subclasses. Therefore, it was possible to

recover results in multiple languages.

On Level 2, when processing dbpedia:Musician, the basic crawler found

over 163 sameAs terms, the majority of them pointing to DBpedia in other

languages (even in non-latin alphabets). On the other hand, the seeAlso query

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

39

found over 50 terms, but none of them seems related to the subject. When

processing umbel:MusicalPerformer, the basic crawler retrieved one subclass,

umbel:Rapper, and over 6,755 instances from a variety of triplesets.

Table 2(g) shows the results of Level 1 for dbpedia:Single. As for other

resources from DBpedia, the basic crawler was able to find a large number of

subclasses from yago tripleset. In addition, it found more than 40,000 instances

from different triplesets in many languages.

The last term probed in Level 1 was wordnet:synset-music-noun-1. The

basic crawler found a sameAs relationship with an analogue term from another

publisher: wordnet:synset-music-noun-1. At Level 2, the basic crawler found

a new sameAs relationship to opencyc:Music.

Finally, we remark that, when we selected the terms to evaluate, we

expected to find relationships between DBpedia and Music Ontology, which did

not happen. In addition, we found much better results using terms from DBpedia

than from the Music Ontology, which is specific to the domain in question. The

definition of links between the Music Ontology and DBpedia could increase the

popularity of the former. For example, if the term mo:MusicArtist were related

to the term dbpedia:MusicalArtist, crawlers such as ours would be able to

identify the relationship. Also, matching or recommendation tools would benefit

from such relationship.

Publications domain

For the second domain, we focused on two ontologies, Schema.org and Aktors12,

which are commonly used by publications databases. We selected the following

terms:
schema:TechArticle

schema:ScholarlyArticle

akt:Article-Reference

akt:Article-In-A-Composite-Publication

akt:Book, akt:Thesis-Reference akt:Periodical-Publication

akt:Lecturer-In-Academia

akt:Journal

12 http://www.aktors.org

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

40

The results were quite simple. While the queries based on Schema.org

practically returned no results, queries on Aktors returned enough instances, but

with no complex structure. A quick analysis showed that almost all triplesets were

obtained from popular publications databases (such as DBLP, IEEE, and ACM)

by the same provider (RKBExplorer), which used the Aktors ontology. In

addition, the Aktors ontology is not linked to other ontologies, which lead to an

almost independent cluster in the Linked Data cloud.

The VoID processing, as discussed in Section 4.6, was not able to find any

new information. In fact, in a more detailed analysis, it was clear that VoID seems

to be a neglected feature. From the initial 317 triplesets, only 102 had the VoID

description stored in Datahub.io, and only 8 had any triple with the property

void:class (which were not related to our test domains).

Processing times

Table 3 shows the processing time for each experiment. In general, the time spent

to process each term was directly related to the number of terms found (some

exceptions apply due to bandwidth issues).

Table 3 shows that the minimum time was 14 minutes, when no new terms

were found, but the maximum time depended on the number of new terms in the

crawling frontier, and how the network (and the endpoints) responded.

Finally, we observe that the processing time can be optimized, provided

that: (1) the endpoints queries have lower latency; (2) the available bandwidth is

stable across the entire test; (4) cache features are used; (3) queries are optimized

to reduce the number of requests.

Table 3. Performance evaluation.

Term Proc. time (minutes)
Music domain

mo:MusicArtist 70

mo:MusicalWork 28

mo:Composition 14

dbpedia:MusicalWork 183

dbpedia:Song 163

dbpedia:Album 173

dbpedia:MusicalArtist 167

dbpedia:Single 186

wordnet:synset-music-noun-1 24

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

41

Publications domain
schema:TechArticle 29

schema:ScholarlyArticle 47

akt:Article-Reference 14

akt:Article-In-A-Composite-Publication 28

akt:Book 14

akt:Thesis-Reference 14

akt:Periodical-Publication 28

akt:Lecturer-In-Academia 14

akt:Journal 14

5.2.3. A comparison with SWGET

We opted for a direct comparison between the proof-of-concept crawler and swget

for three reasons. First, there is no benchmark available to test Linked Data

crawlers such as ours, and it is nearly impossible to manually produce one such

(extensive) benchmark. Second, swget is the most recent crawler available online.

Third, it was fairly simple to setup an experiment for swget similar to that

described in Section 5.2.2 for the music domain. We decided to restrict the

evaluation to the music domain, since the publication domain does not have

relationships between ontologies that can lead for new triplesets (see section

5.2.2).

Briefly, the experiment with swget was executed as follows. Based on the

examples available at the swget website, we created the following template to run

queries (where t’ is the term to be probed and q’ the current crawling property):
t’ -p <q’> <2-2>

The above query means “given a term t’, find all resources related to it using

the predicate q’ expanding two levels recursively.

Then, we collected all terms swget found from the same initial terms of the

music domain used in Section 5.2, specifying which crawled property swget

should follow. Table 4 shows the number of terms swget found, for each term and

crawling property.

Table 4. Number of terms found using swget.

Term subclass sameAs seeAlso type

mo:MusicArtist 4 0 0 3

mo:MusicalWork 7 0 0 3

mo:Composition 0 0 0 3

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

42

dbpedia:MusicalWork 16 1 0 3

dbpedia:Song 6 1 0 3

dbpedia:Album 6 1 0 3

dbpedia:MusicalArtist 9 1 0 3

dbpedia:Single 6 1 0 3

Based on the experiments with swget and the basic crawler, we compiled the

list of terms shown in Table 5. We excluded the terms retrieved from yago to

avoid unbalancing the experiment in favor of the basic crawler. Then, we

manually inspected the terms and marked, in Table 5, those that pertain to the

music domain, and those that swget and the basic crawler found.

Table 5. Comparison between SWGET and the Basic Crawler

Terms retrieved by swget or crawler Manual
Validation

Swget Crawler

(Terms retrieved by swget)
dbpedia:MusicalWork - - -
1 dbpedia:Song Y Y Y
2 dbpedia:Single Y Y Y
3 dbpedia:Album Y Y Y
4 dbpedia:Work N Y N
5 dbpedia:ArtistDiscography Y Y Y
6 dbpedia:Opera Y Y Y
7 dbpedia:EurovisionSongContestEntry Y Y Y
8 owl:Thing N Y N
9 dbpedia:Software N Y N

10 dbpedia:RadioProgram N Y N
11 dbpedia:Cartoon N Y N
12 dbpedia:TelevisionSeason N Y N
13 dbpedia:Film N Y N
14 dbpedia:Website N Y N
15 dbpedia:CollectionOfValuables N Y N
16 dbpedia:WrittenWork N Y N
17 dbpedia:Musical Y Y N
18 dbpedia:Artwork N Y N
19 dbpedia:LineOfFashion N Y N
20 dbpedia:TelevisionShow N Y N
21 dbpedia:TelevisionEpisode N Y N
22 dbpedia:Song Y Y Y
23 dbpedia:Single Y Y Y
dbpedia:MusicalArtist - - -
24 dbpedia:Artist N Y N
25 schema:MusicGroup Y Y N
26 dbpedia:Sculptor N Y N
27 dbpedia:Painter N Y N
28 dbpedia:Actor N Y N

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

43

29 dbpedia:ComicsCreator N Y N
30 dbpedia:Comedian N Y N
31 dbpedia:FashionDesigner N Y N
32 dbpedia:Writer N Y N
33 dbpedia:Person N Y N
dbpedia:Song - - -
 (No new term retrieved swget)
dbpedia:Album - - -
 (No new term retrieved swget)
dbpedia:Single - - -
 (No new term retrieved swget)
mo:MusicArtist - - -
34 mo:SoloMusicArtist Y Y Y
35 foaf:Agent Y Y N
36 mo:MusicGroup Y Y Y
37 foaf:Person Y Y N
38 foaf:Organization Y Y N
mo:MusicalWork - - -
39 mo:Movement Y Y Y
40 frbr:Work N Y N
41 frbr:ScholarlyWork N Y N
42 frbr:ClassicalWork N Y N
43 frbr:LegalWork N Y N
44 frbr:LiteraryWork N Y N
45 frbr:Endeavour N Y N
46 wordnet:Work~2 N Y N
mo:Composition - - -
 (No term retrieved)

(Terms retrieved only by crawler)
47 umbel:MusicalComposition Y N Y
48 schema:MusicRecording Y N Y
49 freebase:en.Album Y N Y
50 opencyc:Music Y N Y
51 opencyc:Album Y N Y
52 nerdeurocom:Album Y N Y
53 schema:MusicAlbum Y N Y
54 dbpedia:Sophomore_Album Y N Y
55 dbpedia:Musician Y N Y
56 umbel:MusicalPerformer Y N Y
57 umbel:Rapper Y N N
58 dbpedia:Instrumentalist Y N Y
59 dbpedia:BackScene N N Y
60 dbpedia:MusicGenre Y N Y
61 freebase:en.Album Y N Y

 36 items from lastfm Y N Y
 2 items from twitter N N Y

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

44

The results detailed in Table 5 can be summarized by computing the

precision and recall obtained by swget and the basic crawler for the list of terms as

follows:

• Column Headers / Values:
o Manual Validation:

§ Y = term relevant for the Music domain
§ N = term not relevant for the Music domain

o Retrieved by swget and retrieved by Basic Crawler:
§ Y = term retrieved by swget or Basic Crawler
§ N = term not retrieved by swget or Basic Crawler

• Terms retrieved by swget or Basic Crawler:
o Retrieved terms: 99
o Relevant terms that were retrieved (identified by “Y” in column

“Manual Validation”): 66
• Terms retrieved by swget:

o Retrieved terms: 46
o Relevant terms that were retrieved (identified by rows with the pattern

(Y,Y,-)): 16
o Precision = 16 / 46 = 0.35
o Recall = 16 / 66 = 0.24

• Terms retrieved by the Basic Crawler:
o Retrieved terms: 63
o Relevant terms that were retrieved (identified by rows with the pattern

(Y,-,Y)): 60
o Precision = 60 /63 = 0.95
o Recall = 60/66 = 0.91

Briefly, both tools archive the following metric’s value:
swget: precision = 35% recall = 24%

basic crawler: precision = 95% recall = 91%

These results should be interpreted as follows. Swget achieved a much lower

precision since it finds more generic and more specific terms at the same time,

while the basic crawler only searches for the more specific terms. This feature

creates undesirable results for the purposes of focusing on an application domain.

For example, using rdfs:subClassOf as predicate and dbpedia:MusicalWork as

object, swget returned dbpedia:Work, a superclass at the first level. At the next

level, swget then found resources such as dbpedia:Software and dbpedia:Film,

each of them subclasses of dbpedia:Work, but unrelated to the Music domain.

The basic crawler achieved a better recall in part since, given two classes

defined in different triplesets, it was able to uncover relationships between the

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

45

classes described in a third tripleset. Indeed, swget processed

umbel:MusicalPerformer using properties rdfs:subClassOf and owl:sameAs.

Our expectation was that it would be able to find the class

dbpedia:MusicalWork, as the basic crawler div, which did not happen. A quick

analysis showed that the relationship between both classes was not described in

any of the original triplesets, but in a third tripleset,
http://linkeddata.uriburner.com/.

This behavior should not be regarded as defect of swget though, but a

consequence of working with a general-purpose crawler, rather than a metadata

focused crawler, such as ours.

To conclude, the simple proof of concept crawler was able to outperform

the state-of-art crawling tool for the semantic web. However, our tool had

performance issues that must to be addressed.

5.3.
Lessons Learned

In this section, we highlight the main lessons learned from the first

implementation of a crawler that follows the strategy proposed in Chapter 4. We

first enumerate some aspects that may influence the crawling results, such as the

settings of the parameters and the availability of sufficient information about the

crawled triplesets.

Parameter setting. Since, in the basic crawler, the set of terms of each new level is

computed from that of the previous level, the number of terms may grow

exponentially. We defined some parameters to prune the search. Hence, the user

must adequately set such parameters to obtain results in reasonable time, without

losing essential information.

Choosing the initial crawling terms. In the music domain experiments, we started

with terms from three different triplesets, DBpedia, WordNet, and Music

Ontology, the first two being more generic than the last one. It seems that the

resources defined in the Music Ontology are not interlinked (directly or indirectly)

with the more popular triplesets. This limitation is related to the fact that some

triplesets do not adequately follow the Linked Data principles, in the sense that

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

46

they do not interlink their resources with resources defined in other relevant

triplesets.

Ontologies describing the domain of interest. The basic crawler proved to return

more useful data when there are relationships among the metadata. In the

experiments using the publications domain, the basic crawler returned a simplified

result, because all triplesets related to the initial crawling terms used the same

ontology to describe their resources. In general, the larger the number of triplesets

in the domain, the more useful the results of the basic crawler will be.

VoID description. The VoID processing seems to be an adequate solution to a

faster access to tripleset information. Despite the VoID expressivity, most

triplesets used in our experiments had a simplistic VoID description available.

Hence, the basic crawler hardly found new data using the VoID descriptions.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

47

6
CrawlerLD – An Optimized Implementation of the Metadata
Crawling Strategy

6.1.
Introduction

The implementation presented in Chapter 5 showed that the proposed metadata

crawling strategy was effective. Indeed, probing resources by level and using

crawling queries to discover new resources returned better results, when compared

to a state-of-art crawler.

We may, however, enumerate points that need to be improved and points

that need to be corrected:

Organization – It is possible to divide the previous implementation into four

steps: dereferencing, property crawling, instance counter, and VoID analysis. All

these steps are distributed throughout the implementation, without a clear

separation.

Expanding techniques – The previous implementation had four clearly defined

processors, but the entire crawling mechanism might be used for other purposes

beyond those identified so far. Thus, it is desired to provide a plug-and-play

mechanism to allow other developers to create their own crawling processor.

Conversely, these custom processors might be useful for metadata crawling.

Time performance – Although we extracted good results, the time spent waiting

for a response is infeasible. In our latest experiments, the best result time was 14

minutes (nothing was found) and the worst, 3 hours. We have to improve the

processing time to make the crawling strategy feasible.

To address these issues, we created a second implementation, engineered as

a framework, in which its pseudo-code is listed in Annex B. In the rest of this

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

48

thesis, we refer to this second implementation as the optimized crawler or

CrawlerLD. We continue to refer to the implementation described in Chapter 5 as

the basic crawler.
The optimized crawler also receives as input a set of initial crawling terms

T. Given T, the optimized crawler uses a list C of processors, described in Section

6.3, in successive levels (see Section 4.3), to extract new terms from the triplesets

listed in the catalogues. Each processor annotates the provenance of its crawled

data and returns a list of terms to be crawled in the next level, after filtering, based

on parameters specified by the user (see also Section 4.3). Besides an architecture

based on processors, the optimized crawler incorporates improvements to the

crawling queries, outlined in Section.6.2.

As described in Section 6.4, to evaluate the optimized crawler, we reapplied

the experiments detailed in Section 5.2.

6.2.
Improvements to the crawling queries

The optimized crawler incorporates several changes to the crawling queries to

reduce the number of request and improve the precision of the results. The

changes will be better illustrated in Section 6.3.

Replacement of rdfs:seeAlso by owl:equivalentClass.

In the evaluation of the basic crawler, we discovered that the rdfs:seeAlso

property would decrease the precision of the crawling task. We therefore replaced

it by owl:equivalentClass, which is mostly used to map ontologies. For

example, the schema.org ontology has RDF mapping files that use

owl:equivalentClass to create relationships to other consolidated ontologies

(such as DBPedia).

Property query changed.

The basic crawler searched each property individually, increasing the number of

queries it had to execute. The optimized crawler uses a unique query (see Figure

8) that combines all properties. In fact, we reduced the number of queries by 5

(three properties and two that are reflexive), for each crawling resource.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

49

Instance counter changed.

The basic crawler asked for all instances of a resource that are stored in the

endpoint of each tripleset, this query have two disadvantages: (1) it spends too

much bandwidth; (2) it creates overhead to the endpoint and also to the tool. To

address this problem, we changed the query to use a grouping function (see

section 6.3 - Instance Counter processor).

6.3.
A Processor Architecture

CrawlerLD, the optimized crawler, includes three processors, described further in

this section.

Dereference processor

The first processor is responsible for extracting information of the resource itself.

As described in Section 4.5, it tries to find new resources using the properties

owl:sameAs, owl:equivalentClass, and rdfs:subclassOf. For each such

property, the processor applies a SPARQL query to extract new information. The

following template illustrates how each query works, where p is one of the above

properties and t is the crawling term itself; the values assigned to the variable

?item are resources to be crawled in a next level.
SELECT distinct ?item

WHERE {<t> p ?item}

Given that owl:sameAs and owl:equivalentClass are reflexive, the

processor also applies SPARQL queries generated by a new code template, with

the subject and object inverted:
SELECT distinct ?item

WHERE {?item p <t>}

Property processor

This processor is responsible for crawling other datasets. It uses a special

SPARQL query, which runs over each dataset discovered in DataHub and

manually added as described Section 4.3. The motivation is to extract information

that is not directly related to the resources already processed. Given the crawling

term t that will be processed by the crawler and a dataset d that uses t to describe a

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

50

fraction of its data. While a conventional crawling algorithm is not able to find d

since t does not have any reference to d. This crawler, on the other hand, traverses

all datasets available and is able to find the relationship between d and t.

The processor uses the SPARQL template shown in Figure 8, where t is the

resourced being crawled. Note that this SPARQL template essentially combines

all templates shown in Figure 6 and Figure 7, which avoids the overhead of

calling the SPARQL endpoint several times.

SELECT distinct ?property ?item

WHERE {

 { ?item owl:sameAs <t>.}

 UNION { <t> owl:sameAs ?item.}

 UNION { ?item owl:equivalentClass <t>.}

 UNION { <t> owl:equivalentClass ?item.}

 UNION { ?item rdfs:subClassOf <t>.}

 ?item ?property <t>. }

Figure 8. Property query.

Note that, for each term t to be crawled, the template inverts the role of t (for

the details, see lines 7 and 9 of the code in Annex B), when the predicate is

owl:sameAs and owl:equivalentClass, since these predicates are reflexive.

However, the crawler does not invert the role of t, when the predicate is

rdfs:subClassOf, since this predicate is not reflexive.

For example, in the specific case of the crawling property

rdfs:subClassOf, suppose that C and C’ are classes defined in triplesets S and

S’, respectively, and assume that C’ is declared as a subclass of C through a triple

of the form

(C’, rdfs:subClassOf, C)

Triples such as this are more likely to be included in the tripleset where the

more specific class C’ is defined than in the tripleset where the more generic class

C is defined. Hence, after finding a class C, the crawler has to search for

subclasses of C in all triplesets it has access to, using the template above.

Another case occurs when the relationship between C and C’ is defined in a

third ontology S”. Similar to the previous example, we need a subclass query over

S” to discover that C’ is a subclass of C. S’’ is obtained by dereferencing the URI

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

51

of C’. In most cases, the returned tripleset is the complete ontology where C’ is

defined, while in some other cases only a fragment of the ontology where C’ is

defined is returned.

Instance Counter processor

The last processor extracts information about the quantity of instances available in

each dataset for each crawling term. It runs queries over all datasets, using the

same principle as the property processor. To reduce the bandwidth, the processor

uses grouping functions (Figure 9) to query datasets.

SELECT distinct (count(?instance) AS ?item)

WHERE { ?instance rdf:type <%s> . }

Figure 9. Applying grouping function to calculate the number of instances.

Unfortunately, grouping functions are only available in SPARQL 1.1

(Garlik et al., 2013) and above. Therefore, the processor also crawls the remaining

datasets using an alternative query (Figure 10), which spends more bandwidth.

SELECT distinct ?item

WHERE { ?item rdf:type <%s> . }

Figure 10. Alternative instance counter query.

6.4.
Experiments

6.4.1. Organization of the Experiments

To evaluate the optimized crawler, we re-executed the experiments described in

Section 5.2. In addition, we added more triplesets extracted from DataHub.io and

reached 1,042 datasets that had a SPARQL endpoint or a RDF Dump. We also

added the mapping ontologies that relate Schema.org to other popular

ontologies13. However, over half of these datasets are duplicated, and the

optimized crawler was able to run queries on just over 35% of triplesets due to

errors in the query parser, or simply because the servers were not available. In

13 http://schema.rdfs.org/mappings.html

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

52

addition, over 6 months separated both experiments (January, 2014 and July,

2014), which could also affect the comparison.

To summarize, even after six months and having a larger list of triplesets,

we were not able to find relationships between DBpedia and Music Ontology. We

again found much better results using terms from DBpedia than Music Ontology.

Also, when comparing the optimized version against the basic crawler described

in Chapter 5, we discovered that the optimized crawler found less resources than

the previous one. Indeed, we found that some triplesets were not available at the

time of our experiment. The results for the publications domain were quite similar

to those for the basic crawler, reported in Section 5.2.2.

The experiments ran over Azure Virtual Machines14, using an A7 instance

(8 cores, 56GB of RAM).

The rest of this section may be skipped on a first reading since it shows

results very similar to those of Section 5.2. The reader may go directly to the topic

Processing times in Section 6.4.2, which shows significant differences between

the optimized and the basic implementations.

6.4.2. Results

The experiments involved the same domains of the first crawler, Music and

Publications, and the same parameters, arbitrarily defined. Section 7 presents a

complete evaluation of the parameters:

• Number of levels: 2.

• Maximum number of terms probed: 40.

• Maximum number of terms probed for each term in the crawling

frontier: 20.

• Maximum number of terms probed in each tripleset, for each term in the

crawling frontier: 10.

Music Domain

The first domain used to evaluate the crawler was Music and three ontologies

were elected to select the initial crawling terms, DBpedia, WordNet and Music

14 https://azure.microsoft.com

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

53

Ontology15. The Music Ontology is a widely accepted ontology that describes

music, albums, artists, shows and some specific subjects.

The initial crawling terms were:
mo:MusicArtist

mo:MusicalWork

mo:Composition

dbpedia:Album

dbpedia:MusicalArtist

dbpedia:Single

dbpedia:MusicalWork

dbpedia:Song

wordnet:synset-music-noun-1

Next, we comment on the results obtained in Level 1, for each initial term.

Then, we discuss how the new terms obtained in Level 1 were processed in Level

2.

Table 6(a) shows the results of Level 1 for mo:MusicalArtist. On Level 2,

for each of the terms mo:MusicGroup and mo:SoloMusicArtist, the crawler

obtained different results: while mo:MusicGroup recovered over 1.5 million

instances over three datasets, mo:SoloMusicArtist did not find any new result.

Table 6(b) shows the results of Level 1 for mo:MusicalWork. Note that the

crawler found a variety of instances from multiple databases. On Level 2, when

processing mo:Movement, the crawler did not find any new instance or class.

Table 6(c) shows the results of Level 1 for the first DBpedia term,

dbpedia:MusicalWork. The crawler found 5 subclasses from DBpedia and over a

million instances in 13 datasets, with 8 being DBpedia in different languages

(such as French, Japanese, Greek, and others), which was only possible because it

focused on metadata. Crawlers that use text fields (Nikolov et a., 2011) can only

retrieve data in the same language as that of initial terms.

The first three terms, dbpedia:Album, dbpedia:Song, and

dbpedia:Single, will be analyzed in the next paragraphs since they are also in

the initial set of terms.

On Level 2, the processing of dbpedia:Opera returned no results and the

processing of dbpedia:ArtistDiscography returned 48,784 instances, but no

new term.

15 http://musicontology.com/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

54

Table 6. Related terms

Query type Description
(a) Related terms for mo:MusicArtist

subclass mo:MusicGroup, mo:SoloMusicArtist

instance 2,647,957 instances from over four datasets
(b) Related terms for mo:MusicalWork

subclass mo:Movement

instance 1,166,365 instances found in multiple databases
(c) Related terms for dbpedia:MusicalWork

subclass dbpedia:Album, dbpedia:Song, dbpedia:Single,
dbpedia:Opera, dbpedia:ArtistDiscography

instance 939,480 instances from 13 datasets
(d) Related terms for dbpedia:Song
equivalentclass schema:MusicRecording

subclass dbpedia:EurovisionSongContestEntry

instance 35,702 instances from 9 datasets
(e) Related terms for dbpedia:Album
equivalentclass schema:MusicAlbum

instance 871,348 instances from 13 datasets
(f) Related terms for dbpedia:MusicalArtist

instance 424,152 instances from 19 datasets
(g) Related terms for dbpedia:Single

instance 305,041 instances from 10 datasets

Table 6(d) shows the results of Level 1 for dbpedia:Song. The crawler was

able to find a relationship with other generic dataset (Schema.org) and also found

a variety of resources from DBpedia in different languages.

On Level 2, when processing dbpedia:EurovisionSongContestEntry, the

crawler found 7,807 instances from 7 datasets. The other resource probed on the

Level 2 was schema:MusicRecording, which returned 38,464 instances and no

new crawling terms.

Table 6(e) shows the results of Level 1 for dbpedia:Album. The processing

of this term also found schema:MusicAlbum and a large number of instances. On

Level 2, the tool was able to find 662,409 instances of schema:MusicAlbum, but

no new resource.

Table 6(f) shows the results of Level 1 for dbpedia:MusicalArtist. The

tool was not able to find any new related resource, but it found a large number of

datasets that have instances of this class.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

55

Table 6(g) shows the results of Level 1 for dbpedia:Single. The tool

found more than 300 thousand instances from triplesets in many languages.

The last term probed in Level 1 was wordnet:synset-music-noun-1. The

crawler found a sameAs relationship with an analogue term from another

publisher: http://www.w3.org/2006/03/wn/wn20/instances/synset-music-

noun-1.

Publications domain

For the second domain, we focused on two ontologies, Schema.org and Aktors16,

which are commonly used by publications databases. We selected the following

terms:
schema:TechArticle

schema:ScholarlyArticle

akt:Article-Reference

akt:Article-In-A-Composite-Publication

akt:Book, akt:Thesis-Reference akt:Periodical-Publication

akt:Lecturer-In-Academia

akt:Journal

The results for the publications domain were quite similar to those for the

basic crawler, reported in Section 5.2.2. Both ontologies (Schema.org and Aktors)

returned a small number of instances, but with no complex structure. A quick

analysis showed that almost all triplesets were obtained from popular publications

databases (such as DBLP, IEEE and ACM) by the same provider (RKBExplorer),

which uses the Aktors ontology. In addition, the Aktors ontology is not linked to

other ontologies, which lead to an almost independent cluster in the Linked Data

cloud.

Processing times

Table 7 shows the processing time for each experiment with the optimized

crawler. In general, the time spent to process each term was directly related to the

number of terms found (some exceptions apply due to bandwidth issues). The

16 http://www.aktors.org

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

56

experiment was performed on a virtual machine hosted by Microsoft Azure17 with

56GB and two AMD Opteron™ 4171 processors.

Table 7 shows that the minimum time was 4 minutes, when no new terms

were found, but the maximum time depended on the number of new terms in the

crawling frontier, and how the network (and the endpoints) responded.

Finally, we observe that the processing time can be optimized, provided

that: (1) the endpoints queries have lower latency; (2) the available bandwidth is

stable across the entire test; (3) cache features are used.

Table 7. Performance evaluation

Term Proc. time
(minutes)

Music domain
mo:MusicArtist 11
mo:MusicalWork 8
mo:Composition 4
dbpedia:MusicalWork 22
dbpedia:Song 11
dbpedia:Album 8
dbpedia:MusicalArtist 4
dbpedia:Single 4
wordnet:synset-music-noun-1 11

Publications domain
schema:TechArticle 4
schema:ScholarlyArticle 4
akt:Article-Reference 4
akt:Article-In-A-Composite-Publication 8
akt:Book 5
akt:Thesis-Reference 5
akt:Periodical-Publication 4
akt:Lecturer-In-Academia 5
akt:Journal 4

6.4.3. A new comparison with SWGET

In this section, we compare the optimized crawler again with swget for the

music domain, but in a different scenario, as explained in Section 6.4.1. To

mitigate the tripleset availability problem, we executed swget simultaneously with

17 http://azure.microsoft.com/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

57

the optimized implementation. Table 8 shows the number of new terms swget

found for each initial term and crawling property.

Table 8. Number of terms found using swget.

Initial Term Crawling Property
subclass sameAs equivalentclass type

mo:MusicArtist 6 0 0 0
mo:MusicalWork 8 0 0 0
dbpedia:MusicalWork 21 0 0 0
dbpedia:Song 7 0 1 0
dbpedia:Album 6 0 1 0
dbpedia:MusicalArtist 10 0 0 0
dbpedia:Single 6 0 0 0

Based on the experiments with swget, we compiled a list of terms shown in

Table 9. Then, we manually inspected the terms and marked those that pertain to

the Music domain and those that swget and this crawler found.

Table 9. Comparison between SWGET and CrawlerLD.

Terms retrieved by swget or
CRAWLER-LD

Manual
Validation Swget Crawler

(Terms retrieved by swget)
dbpedia:MusicalWork - - -

1 dbpedia:Song Y Y Y
2 dbpedia:Single Y Y Y
3 dbpedia:Album Y Y Y
4 dbpedia:Work N Y N
5 dbpedia:ArtistDiscography Y Y Y
6 dbpedia:Opera Y Y Y

7 dbpedia:EurovisionSongContestEntry Y Y Y

8 owl:Thing N Y N
9 dbpedia:Software N Y N

10 dbpedia:RadioProgram N Y N
11 dbpedia:Cartoon N Y N
12 dbpedia:TelevisionSeason N Y N
13 dbpedia:Film N Y N
14 dbpedia:Website N Y N

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

58

15 dbpedia:CollectionOfValuables N Y N

16 dbpedia:WrittenWork N Y N
17 dbpedia:Musical Y Y N
18 dbpedia:Artwork N Y N
19 dbpedia:LineOfFashion N Y N
20 dbpedia:TelevisionShow N Y N
21 dbpedia:TelevisionEpisode N Y N

dbpedia:MusicalArtist - - -
22 dbpedia:Artist N Y N
23 schema:MusicGroup Y Y N
24 dbpedia:Sculptor N Y N
25 dbpedia:Painter N Y N
26 dbpedia:Actor N Y N
27 dbpedia:ComicsCreator N Y N
28 dbpedia:Comedian N Y N
29 dbpedia:FashionDesigner N Y N
30 dbpedia:Writer N Y N
31 dbpedia:Person N Y N

dbpedia:Song - - -
32 schema:MusicRecording Y Y Y
33 dbpedia:MusicalWork Y Y N

dbpedia:Album - - -
34 schema:MusicAlbum Y Y Y

dbpedia:Single - - -

(No new term retrieved
swget)

mo:MusicArtist - - -
35 mo:SoloMusicArtist Y Y Y
36 foaf:Agent N Y N
37 mo:MusicGroup Y Y Y
38 foaf:Person N Y N
39 foaf:Organization N Y N
40 foaf:Group N Y N

mo:MusicalWork - - -
41 mo:Movement Y Y Y
42 frbr:Work N Y N
43 frbr:ScholarlyWork N Y N
44 frbr:ClassicalWork N Y N
45 frbr:LegalWork N Y N
46 frbr:LiteraryWork N Y N

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

59

47 frbr:Endeavour N Y N
48 wordnet:Work~2 N Y N

mo:Composition
 (No terms retrieved)

(Terms retrieved only by CRAWLER-LD)
 (No terms retrieved)

The results can be summarized by computing the precision, recall and

balanced F-measure (F1) obtained by swget and the optimized implementation for

the list of terms as follows:

• Column Headers / Values:
o Manual Validation:

§ Y = term relevant for the Music domain
§ N = term not relevant for the Music domain

o Retrieved by swget and retrieved by CRAWLER-LD:
§ Y = term retrieved by swget or CRAWLER-LD
§ N = term not retrieved by swget or CRAWLER-LD

• Terms retrieved by swget or CRAWLER-LD:
o Retrieved terms: 48
o Relevant terms that were retrieved (identified by “Y” in column

“Manual Validation”): 14
• Terms retrieved by swget:

o Retrieved terms: 48
o Relevant terms that were retrieved (identified by rows with the pattern

(Y,Y,-)): 14
o Precision = 14 / 48 = 0.2917
o Recall = 14 / 14 = 1.0
o F1-Measure = 2 * ((0.2917*1.0) / (0.2917+1.0)) = 0.4516

• Terms retrieved by CRAWLERLD:
o Retrieved terms: 11
o Relevant terms that were retrieved (identified by rows with the pattern

(Y,-,Y)): 11
o Precision = 11 / 11 = 1.0
o Recall = 11 / 14 = 0.7857
o F1-Measure = 2 * ((1.0*0.7857) / (1.0+0.7857)) = 0.8800

Briefly, both tools archive the following metric value:
swget:

 Precision = 29.17% Recall = 100% F1 = 45.16%

Optimized crawler:

 Precision = 100% Recall = 78.57% F1 = 88.00%

Recall from Section 5.2.3 that, when we compared the basic crawler with

swget for the music domain, we obtained the following results:

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

60

swget: Precision = 35% Recall = 24%

Basic crawler: Precision = 95% Recall = 91%

The new results (for swget versus the optimized crawler) are therefore

somewhat similar to the old ones (for swget versus the basic crawler). Comparing

precision, swget fell over 5%, while the optimized crawler increased to 100%. On

the other hand, the recall of swget jumped from 24% to 100%, and the optimized

crawler decreased nearly 12,5%. However, we observe that some triplesets present

in the first experiment were not available at the time of this second experiment.

Indeed, some triplesets that also returned relevant resources in Chapter 5 (and

swget was unable to discover) were offline. This accounts for the increase in the

recall of swget.

 Analyzing the overall quality of the crawlers using F-measure, our crawler

outperformed swget, obtaining an F1 result almost twice as large as that of swget.

Thus, in this experiment, our crawler was able to find a better balance between

recall and precision values than swget.

To conclude, we noticed a decrease in performance when comparing this

implementation with proof-of-concept crawler tool in section 5, although this

implementation also outperform SWGET. We can enumerate the difference

between each version of our approach as follows:

1 – Some datasets were not available at the time of the evaluation.

Unfortunately, these datasets were responsible for many links found in our

previous evaluation;

2 – Our decision to remove the seeAlso property as a crawling property. The

property decreased our precision in the proof-of-concept approach and we found

out that precision was was important than recall.

3 – Some unexpected behaviors were identified from performance issues

like a high memory footprint.

6.5.
Lessons Learned

In this section, we highlight the main lessons learned from the development of the

optimized crawler and the results of our experiments.

Reducing the number of request. Our crawling strategy demands a high number of

requests to each tripleset. Hence, creating ways to reduce this number would

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

61

improve performance. Our approach, primarily implemented on the property

processor, combines all queries into a single one, using the UNION clause and

processing the result set locally.

Tripleset availability. Even with a larger set of triplesets, the optimized crawler

was not able to find some resources found by the basic crawler. The output of a

crawler based on SPARQL queries is indeed volatile and depends on tripleset

availability at the moment of the execution of the crawler. A solution to reduce the

unpredictability of a result is to use previous results as a foundation for the new

one.

Distribution. With the solutions proposed in this chapter, we reduced the number

of queries we made to each tripleset. Although, the processing times of the

optimized crawler reduced significantly, to reach better results we will need to

adopt a distributed, scalable architecture.

Architectural problems. The optimized crawler presented in this chapter, although

faster than the basic crawler, has many performance problems that need to be

addressed. Due to the memory consumption problems, we were only able to

execute crawling tasks that started with just one initial term. Also, any resource

that returned a large number of new resources created difficulties when probed. In

fact, we were only able to run the experiments described in Section 6.4, using a

machine that had 54GB of main memory.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

62

7
DIST-CrawlerLD – An Actor Model-based Implementation of
the Metadata Strategy

7.1.
Introduction

Earlier implementations of the crawling strategy had problems that need to be

addressed in order to increase usability and decrease resource consumption:

1. High memory footprint – previous experiments have shown that the

amount of available memory may be insufficient, depending on the

specified task parameters. One of our experiments topped 50GB of heap

memory and stopped working at the third crawling level. This issue

showed us that our tool is not scalable.

2. Time consuming – for each crawling term, CrawlerLD need to make

several queries to distributed triplesets. Each term would take 15 to 30

minutes to process. If we process a hundred terms we will need 50 hours

in the worst case, which is infeasible.

3. Scalability – the crawler is “locked” into a single machine. In complex use

case scenarios, this limitation will be an issue. The tool need to be able to

process using more than one machine.

4. Lack of a user interface – every process in CrawlerLD (optimized

implementation) is done through command lines. Even the crawler’s result

has to be analyzed through files and unfriendly tools.

This chapter describes how we addressed the first three topics by adopting

the actor model; the solution for the fourth topic also benefited from this

approach.

The new implementation, called DIST-CrawlerLD, should be viewed as a

re-engineering of CrawlerLD, the optimized implementation of Chapter 6. Hence,

both tools have the same inputs and use the notion of processor to implement the

crawling strategy. Whenever necessary, we will continue to refer to the

implementation described in Chapter 5 as the basic implementation.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

63

7.2.
The actor model

This section briefly reviews concepts from the Actor Model, adopted in the

implementation of the metadata crawling tool described in this chapter.

The reactive manifesto18 is a document elaborated by developers to make

better scalable software. Briefly, a reactive software must have the following

characteristics:

• Responsiveness – to respond in a timely manner, if at all possible.

• Resilience – To stay responsive in the face of a failure.

• Elasticity – To stay responsive under varying workload.

• Be message driven – To rely on asynchronous message-passing and

to establish a boundary between components that ensures loose

coupling, isolation, location transparency, and provide the means to

delegate errors as messages.

First presented by Hewitt (Hewitt et al., 1973), the actor model is one of the

models that address all characteristics of the reactive manifesto. It is described as

a model of concurrent computation, in which an actor is an isolated computing

unit. An actor has its own state and only one thread executing at a time. This

computing unit receives messages, makes decisions, and can create other actors or

send new messages to address its objective. The actor model also encourages the

separation of the software into small pieces of code that are engineered to receive

and send messages to other pieces of code.

Figure 11 shows an example of the actor model. The execution flow starts

with Actor 0 sending a message to Actor 3. Actor 3 evaluates the content of the

message and decides if it needs to send new requests to Actors 1 and 2. While

both actors are processing their messages, Actor 1 sends a new request to Actor 2,

which is not immediately processed, since Actor 2 is still processing the message

from Actor 3. After processing both messages, Actor 2 sends a reply to Actor 0.

Note that Actor 0 will not be blocked during such processing: once it sends the

message to Actor 3, it can address other messages while waiting for the message

from Actor 2.

18 http://www.reactivemanifesto.org/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

64

Figure 11. An example of the Actor Model.

The model was chosen to be applied on the crawler for a number of reasons:

1. It uses a responsive design: the code is not blocked by another

thread, since it does not have to wait for another task to finish.

CrawlerLD suffers from blocking thread issues since, it has to wait

a processor to complete its task before sending a result.

2. It addresses the module by adopting the actors model, which is

similar to our concept of processors (section 6.3).

3. The message exchange between actors can be automatically queued

without any effort from our part;

4. It facilitates creating a distributed version of the tool.

7.3.
An Actor Model-based Architecture

7.3.1. Software Architecture

To make DIST-CrawlerLD easier to develop and deploy, we modularized the tool

as follows (see Figure 12):

• CrawlerLD.core – the core system, embeds all logic created to crawl the

LOD cloud. It can be used as an API for other tools and allows any third-

party developer to create new processors. This module heavily uses the

UtilitiesSemanticWeb library to crawl the LOD cloud.

• CrawlerLD.gui – integrates the REST service (for a microservice

architecture) and the graphical user interface. It uses the CrawlerLD.core

as its backend.

• CrawlerLD.command-line – allows the user to crawl the LOD cloud

using a command prompt interface.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

65

• CrawlerLD.distribution – is designed to be deployed over remote

machines to enable distributed computing. It encapsulates all dependencies

needed to run the tool in a distributed environment.

• UtilitiesSemanticWeb (USW) – a library created to facilitate access to the

LOD cloud. It uses Apache Jena and is able to execute several SPARQL

requests to remote and local endpoints and retrieve new datasets from

DataHub.

The next sections describe some of the implementation details of the

CrawlerLD.core, the UtilitiesSemanticWeb and the CrawlerLD.gui modules.

Figure 12. CrawlerLD modules and dependencies

7.3.2. Tripleset availability test

A large number of triplesets are available at the Linked Data cloud and can be

accessed using the datahub.io catalog. This catalog, however, is not updated

frequently. In special, it may fail to report when a resource is no longer available.

In our experience, when crawling the Linked Data, we noted that a

considerable fraction of the datahub.io resources has some kind of availability

problem. In special, two problems are worth mentioning: (1) when the resource

does not exist in the specified URL, or (2) when the server that manages the

resource is not able to respond in a reasonable time.

Dist-CrawlerLD has a special tripleset cleanup procedure to eliminate bad

resources before any crawling task. The procedure works as follows: for each

tripleset indexed by the tool, the tool will verify if it has a valid SPARQL

Endpoint or RDF Dump file and, if the dataset does not have any of them, the tool

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

66

removes the tripleset. By valid, we mean that the resource must respond to a valid

HEAD request in a reasonable time (10 seconds). HEAD requests expect that the

server returns only the HTTP Header of a resource, and they are commonly used

to verify the availability, the file size, or if the resource has changed since the last

request.

From almost 550 triplesets available, DIST-CrawlerLD eliminated over 150

of them using this technique, without sacrificing the end result. Section 7.5.2 will

show how this test affected the performance of the crawler.

7.3.3. A Brief Description of the Main Actors

Figure 13 summarizes how the actor model was applied to construct DIST-

CrawlerLD. In this thesis, we adopted the Akka Framework19, an Actor-based

runtime for managing concurrency, elasticity, and resilience on the Java Virtual

Machine.

 CrawlerLDMainActor is the actor responsible for receiving the user input

and for managing the final result. It will create several LevelActors, one for each

level specified by the user, as explained in Section 4.3. For each resource at a

predefined level, CrawlerLDMainActor will send a CalculateResource message

to the corresponding LevelActor. This actor is just responsible for indicating

when a level is finished.

For each CalculateResource a LevelActor receives, it will create one

ResourceActor to handle the resource. The ResourceActor will identify and

create every processor that is eligible to run in the task (each processor instance is

also an actor in the DIST-CrawlerLD architecture). The ResourceActor will send

a Calculate message for each Actor Processor (DefererenceProcessor,

NumberOfInstancesProcessor or PropertyQueryProcessor). Note that one

processor will be represented by an actor for each resource specified.

A processor will execute its task and, once finished, will send a

ResourceProcessed message back to ResourceActor, with the data crawled. The

ResourceActor, as a state machine, will process the ResourceProcessed message

and wait for the others processors. As soon as all processors send their

ResourceProcessed messages, the ResourceActor will send a ResourceProcessed

19 http://akka.io/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

67

message to the LevelActor, which will simply pass it to CrawlerLDMainActor,

using the ResourceProcessedFromLevel message. The CrawlerLDMainActor

will merge its current state with the new information available inside the message

and will make it available to the user. Once all resources from the level are

processed, the LevelActor will send the LevelFinished message to the

CrawlerLDMainActor to evaluate which resources will be at the next level,

repeating the process until no more resources are available, or the maximum

number of resources or the maximum number of levels parameters are reached.

Figure 13. CrawlerLD actors message exchange.

Figure 14 shows how the three processors currently implemented –

DereferenceProcessor, NumberOfInstancesProcessor and

PropertyQueryProcessor – extract information from the LOD cloud. Note that,

in Figure 14, these actors will be collectively referred to as processor whereas, in

Figure 13, they retain their original name.

The SparqlQuerierMasterActor is a special type of actor, since only one

instance of this actor exists in the tool. It manages a pool of SparqlQuerierActor

instances to avoid a large number of locked threads. Since Apache Jena only

makes synchronous calls to the endpoints, we had to introduce this actor to handle

multiple threads. The SparqlQuerierMasterActor also implements a balancing

pool (see Section 7.3.4).

Once a processor receives a Calculate message, it will formulate a SPARQL

query and send it to the SparqlQuerierMasterActor with a list of datasets that it

wants to crawl. The SparqlQuerierMasterActor will start one

SparqlQuerierActor for each chosen dataset using the ProcessSparqlOnDataset

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

68

message. Once it receives the resultset from an input dataset, the

SparqlQuerierActor will send a SparqlResultset message to the

SparqlQuerierMasterActor, which will pass it to the processor and check if any

dataset is missing. As soon as the last SparqlQuerierActor returns its result, the

SparqlQuerierMasterActor will send the QueryFinishedMessage message to the

processor; the message also includes information about any error that happened

during the querying process.

We stress that, from the performance perspective, the major difference

between DIST-CrawlerLD and CrawlerLD lies in how a processor handles

messages. In CrawlerLD, a processor waited for all results before sending data

back to the crawler. By contrast, in DIST-CrawlerLD, a processor keeps getting

new data, processing it and eliminating what is not useful anymore. The Jena

resultset (the culprit of the large memory footprint) is handled inside the

SparqlResultset message and is eliminated by a processor right after it receives the

SparqlResultSset message.

Figure 14. Utilities Semantic Web actors message exchange.

7.3.4. Controlling Distributed Crawling

In this section, we briefly comment on how messages are distribute to remote

actors in DIST-CrawlerLD.

The Akka framework provides a simple round-robin algorithm that chooses

which actor will receive the next message. This solution is suitable for tasks that

spend the same average time to conclude. However, this is not the case for DIST-

CrawlerLD: each dataset may have different latencies and resultsets. In the worst

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

69

case scenario, the tasks that consume more time may be sent to the same actor so

that, while other actors may be idle, a single actor may be assigned to an

increasing queue of tasks.

Another approach is to create a customized balancing pool. Briefly, using a

balancing pool, the mailbox of each remote actor will always be empty and the

actor will receive a new request message on-demand: once it finishes a task, it will

receive a new one. All messages are stored in an internal queue of the pool, which

will be consumed as remote actors select the available tasks.

While the balancing pool has a better performance for the worst-case

scenario, the round-robin algorithm wins on the best-case scenario, since each

actor will typically have a message to process. Using the balancing pool, an actor

may have to wait between the SparqlResultset and ProcessSparqlOnDataset

messages (the latency will increase in a distributed environment, which implies

that a SparqlQuerierActor may stay idle for some time before receiving a new

calculation message). A possible solution would be to guarantee that at least two

messages are available for each actor, a strategy not explored by the current

implementation of DIST-CrawlerLD.

Recall that serialization is the process of taking objects and converting their

state information into a form that can be stored or transported. In the current

implementation, while most messages were automatically serialized, the

SparqlResultset message had to be changed as it contains the resultset. The change

focused on creating another SparqlResultset message that caches the entire

resultset and enables serialization. This change could affect the overall

performance and is only enabled if the configuration “distributionEnabled” is set

to true.

To conclude, Table 10 shows all distribution-aware parameters of DIST-

CrawlerLD.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

70

Table 10. Distribution aware parameters

Parameter Description
distributionEnabled Enables the tool to serialize the messages between remote

machines. Is must be enabled to allow distributed
computing or some messages will fail to serialize.

useRouter Indicates if the system should use a built-in router of a
custom balancing pool. The balancing pool is
recommended in distribution environments.

numberOfActors Used by the distributed balancing pool, indicates how
many SparqlQuerierActor should be create.

remoteActors A list of crawlerLD.distribution modules that will equally
receive the actors. Kept empty to run locally.

7.3.5. External Interfaces

CrawlerLD.gui is the module responsible for responding to Web requests sent to

DIST-CrawlerLD. It is engineered to be very simple to deploy, as it relies on

some CrawlerLD.core and USW classes and can be used with the

CrawlerLD.distribution module. Any user should be capable to use DIST-

CrawlerLD by issuing only one command-line instruction.

Recall that the Representational State Transfer (REST - Fielding et a.,

2002) style is an abstraction of the architectural elements within a distributed

hypermedia system (Fielding and Taylor 2002). A REST Service is a service that

responds to a HTTP Request, this request may have a complex structure and may

expect another complex structure as response. Table 11 shows the commands

available to any system that wants to use DIST-CrawlerLD.

Table 11. REST Commands available.

Path Description
/datasets List all datasets available to crawl over the Linked Data.
/processors List all processors available to use in the crawling task.
/tasks Show all tasks ran or that are being runed by the tool. It gives little

information about each task, sufficient to know if it is still running,
how much time it spent, and how many URI resources it has already
probed.

/taskDetail Gives all details of a specified task: the crawling, probed, and found
resources, and the relationships and provenance of each finding.
Shows all parameters specified at the beginning of the task, how
much time each resource spent on the crawling task, and many more
information.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

71

/newTask Start a new crawling task. It receives the datasets to be crawled, the
processors to be used and the parameters specified in section 4.3.

The current user interface is just an example of what is possible to

implement using the REST Service. It was designed to facilitate the performance

evaluation tasks. A demo is available at http://crawlerld-

service.cloudapp.net:1002/. The rest of this section shows examples of the

user interface.

Figure 15 shows how a user can create a new task to the crawler. The user

have to set the initial resources and parameters (as shown in section 4.3), and they

are allowed to define which processor will be used as well as which datasets will

be crawled. After clicking “new task button”, the tool will show a list of tasks that

were processed, or that are being processed (Figure 16). The screen shows only

the most relevant information of a task, such as its identifier, current status,

current level, number of resources probed until the moment, and its start time and

last update time.

Clicking in “more details”, the crawler will expose all details available

about the selected task (Figure 17 and Figure 18). At this screen, the user is able

to evaluate all parameters of the task and how the task performed. The user can

select each one of the crawled resources to observe which resources ‘found’ the

selected one and which were found by the resource itself. In addition, it is possible

to identify in which property each resource was found.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

72

Figure 15. Creating a new crawling task

Figure 16. List of tasks

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

73

Figure 17. Crawling Task detail (part 1/2)

Figure 18. Crawling Task detail (part 2/2)

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

74

7.4.
Experiments

The experiments were organized as in Section 6.4.1. However, since DIST-

CrawlerLD was able to crawl deeper into the LOD cloud, we repeat the

description of the experiments with the new crawling results for the music and

publications domains. This became necessary since there was a time interval of

over six months between the CrawlerLD and DIST-CrawlerLD evaluations.

 In the examples that follow, we used the abbreviations shown in Table 12.

Table 12. Namespace abbreviation

Abbreviation Namespace
akt http://www.aktors.org/ontology/portal#
dbpediaOntology http://dbpedia.org/ontology/
dbpediaResource http://dbpedia.org/resource/
dbpediaYago http://dbpedia.org/class/yago/
mo http://purl.org/ontology/mo/
nerdeurocom http://nerd.eurecom.fr/ontology#
opencyc http://sw.opencyc.org/concept/
opencycJune2008 http://sw.opencyc.org/2008/06/10/concept/
schema http://schema.org/
umbel http://umbel.org/umbel/sc/
openlinksw http://www.openlinksw.com/schemas/rdfs/
W3 http://www.w3.org/ns/ma-ont#
swcyc http://sw.cyc.com/concept/
cseLehigh http://swat.cse.lehigh.edu/onto/swetodblp_ontology.owl#
Lsdis http://lsdis.cs.uga.edu/projects/semdis/opus#
knowledgeweb http://knowledgeweb.semanticweb.org/semanticportal/OWL/Doc

umentation_Ontology.owl#
bibTeX http://purl.org/net/nknouf/ns/bibtex#
Swportal http://sw-portal.deri.org/ontologies/swportal#
ontoware http://swrc.ontoware.org/ontology#
marcont http://www.marcont.org/ontology/marcont.owl#

Results for the Music Domain

We decided to repeat the same evaluation to: (1) validate that DIST-CrawlerLD

was capable of recovering similar resources or more resources than CrawlerLD;

(2) compare the performance (processing time and resource consumption) of both

implementations in the same scenario; (3) evaluate how the LOD Cloud changed

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

75

in six months (the time elapsed between the CrawlerLD and DIST-CrawlerLD

evaluations).

The initial crawling terms were the same as in Section 5.4.2.
mo:MusicArtist

mo:MusicalWork

mo:Composition

dbpedia:Album

dbpedia:MusicalArtist

dbpedia:Single

dbpedia:MusicalWork

dbpedia:Song

wordnet:synset-music-noun-1

In what follows, we will first comment on the results obtained in Level 0,

for each initial term. Then, we will proceed to discuss how the new terms obtained

in Level 0 were processed at Level 1, creating the set of terms in Level 2 (which

was not processed by DIST-CrawlerLD due to parameter restriction).

Briefly, DIST-CrawlerLD was able to discover more resources from

different ontologies using less resources and time. Table 13 to Table 20 shows the

resources found by each crawling resource, the results marked in bold were not

discovered by CrawlerLD, six months from the time of this evaluation.

Table 13 shows the result of processing the initial crawling term

mo:MusicArtist. DIST-CrawlerLD found around 2 million instances in the LOD

cloud and additional resources to be processed at Level 1. These results clearly are

specializations of mo:MusicArtist and sum over 1.2 million instances. In

addition, a new ontology, umbel, was found. Level 2 includes all resources

related to what was found in Level 1. Moreover, two new ontologies, openlinksw

and opencyc, were found.

Table 11 shows the result of processing the initial crawling term

mo:MusicalWork. DIST-CrawlerLD found over 800 thousand instances. At Level

1, DIST-CrawlerLD did not found any new resource, but it discovered a new

metadata relationship with other ontologies.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

76

Table 15 shows the result of processing the initial crawling term

dbpedia:MusicalWork. DIST-CrawlerLD found seven resources from DBpedia

and one from Opencyc. At Level 2, DIST-CrawlerLD was able to find a mixture

of new resources and ontologies such as: dbpediaResource, another namespace

from DBPedia that represents, not definitions, but pages in Wikipedia, and other 4

ontologies, nerdeurocom, schema, w3 and swcyc.

Table 16 shows the result of processing dbpedia:Song. DIST-CrawlerLD

found the most diversified results in terms of query types and query results. It was

able to identify resources in different languages (such as Portuguese and Greek),

which was only possible because it focused on metadata. Crawlers that use text

fields (Nikolov and d'Aquin, 2011) can only retrieve data in the same language as

that of initial terms.

Table 17 shows the result of processing dbpedia:Album. DIST-CrawlerLD

was able to find again instances in different languages. It also found other

ontologies: nerdeurocom, w3, schema, opencyc and swcyc. The resource

opencyc:Mx4rwLmi3JwpEbGdrcN5Y29ycA refers to a definition of Album in

opencyc ontology and returned 284 instances.

Table 18 shows the results of processing dbpedia:MusicalArtist. The

processing of this term exhibited results similar to those obtained by processing

dbpedia:Album, in terms of quantity of subclasses. Therefore, it was possible to

recover results in multiple languages. It is interesting to observe that some new

classes were not available in older experiments. For example, all subclasses of

dbpediaOntology:MusicalArtist (such as

dbpediaOntology:Instrumentalists) did not previously exist, which indicates

that dbpediaOntology is continuously evolving.

Table 19 shows the results of Level 0 for dbpediaOntology:Single. As for

other resources from dbpediaOntology, the crawler was able to find a large

number of subclasses from opencyc tripleset. In addition, it found more than 160

thousand instances from different triplesets in many languages.

Table 20 shows the results of processing dbpediaOntology:Single. As for

other resources from dbpediaOntology, DIST-CrawlerLD was able to find a

large number of subclasses from the opencyc dataset. In addition, it found more

than 160 thousand instances from different datasets in many languages.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

77

Table 20 shows two resources is which it processing stopped at the first

level: mo:Composition and wordnet:synset-music-noun-1. While previous

resources from Music Ontology (mo namespace) showed us that the ontology is

indeed used by other datasets, Wordnet seems not to be used for the music

domain.

Table 13. mo:MusicArtist result

Level Resource Instances
1 mo:MusicArtist 1.940.977

From uriburner, openlink-lod-cache, musicbrainz, data-open-ac-uk, dbtune-
musicbrainz

2 mo:MusicGroup 449.962
2 mo:SoloMusicArtist 835.219
2 umbel:MusicPerformanceAgent 0

3

openlinksw:MusicGroup#this;
umbel:Band_MusicGroup;
umbel:MusicalPerformer;
opencycJune2008:en/MusicPerformanceAgent;
opencycJune2008:Mx4rwDSivJwpEbGdrcN5Y29ycA;
opencycJune2008:Mx4rwDSivJwpEbGdrcN5Y29ycA;
opencyc:Mx4rwDSivJwpEbGdrcN5Y29ycA

0

Table 14. mo:MusicalWork result

Level Resource Instances
1 mo:MusicalWork 797.921

From rkb-explorer-foreign, openlink-lod-cache
2 mo:Movement; umbel:AudioConceptualWork 0

3
umbel:Multi_MovementComposition;
opencyc:Mx4rwAXXLZwpEbGdrcN5Y29ycA;
opencycJune2008:Mx4rwAXXLZwpEbGdrcN5Y29ycA

0

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

78

Table 15. dbpediaOntology:MusicalWork result

Level Resource Instances
1 dbpediaOntology:MusicalWork 794.498

From dbpedia-eu, dbpedia-de, dbpedia-fr, uriburner, sztaki-lod, dbpedia-nl,
dbpedia-live, openlink-lod-cache, dbpedia, dbpedia-pt, dbpedia-el, dbpedia-ja

2 dbpediaOntology:ArtistDiscography 9.716
2 dbpediaOntology:Song 56.915
2 dbpediaOntology:NationalAnthem 0
2 dbpediaOntology:Opera 4.409
2 dbpediaOntology:ClassicalMusicComposition 1.184
2 dbpediaOntology:Single 212.183
2 dbpediaOntology:Album 656.198
2 opencyc:Mx4rwAXXLZwpEbGdrcN5Y29ycA 0

3

dbpediaResource:Rota; dbpediaResource:Chant;
dbpediaResource:Balisong;
dbpediaResource:SMP;
dbpediaResource:Mater;
dbpediaResource:Folksong;
dbpediaOntology:EurovisionSongContestEntry;
dbpediaResource:KALI; dbpediaResource:Songs;
dbpediaResource:Een; dbpediaResource:CRY;
nerdeurocom:Song; dbpediaResource:Song;
opencyc:Mx4rwP3teJwpEbGdrcN5Y29ycA;
schema:MusicRecording#this;
dbpediaResource:Popera;
dbpediaResource:Operas;
dbpediaResource:Opera;
dbpediaResource:Cd-single;
dbpediaResource:CD-single;
dbpediaResource:Singles;
dbpediaResource:Single;
opencyc:Mx4rv6i4pJwpEbGdrcN5Y29ycA;
nerdeurocom:Album; dbpediaResource:Albums;
w3:Collection; dbpediaResource:Studioalbum;
dbpediaResource:Album;
opencyc:Mx4rwLmi3JwpEbGdrcN5Y29ycA;
schema:MusicAlbum#this;
umbel:AudioConceptualWork;
swcyc:Mx4rwAXXLZwpEbGdrcN5Y29ycA;
opencyc:Mx4rwL5Y-5wpEbGdrcN5Y29ycA;
opencyc:Mx4rvrPdMZwpEbGdrcN5Y29ycA;
opencyc:Mx4rPzqQQitqEdiaugAH6RYvVQ;
opencyc:Mx4rwUwN3ZwpEbGdrcN5Y29ycA;
opencyc:Mx4rwVOgtJwpEbGdrcN5Y29ycA;
opencycJune2008:Mx4rwAXXLZwpEbGdrcN5Y29ycA

0

Table 16. dbpediaOntology:Song result

Level Resource Instances
1 dbpediaOntology:Song 28.698

From dbpedia-de, uriburner, sztaki-lod, dbpedia-nl, yovisto, dbpedia-live,
dbpedia, dbpedia-pt, dbpedia-el

2 dbpediaOntology:EurovisionSongContestEntry 5.288
2 nerdeurocom:Song 0

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

79

2 opencyc:Mx4rwP3teJwpEbGdrcN5Y29ycA 17
2 schema:MusicRecording#this 0

3

umbel:Song_CW;
swcyc:Mx4rwP3teJwpEbGdrcN5Y29ycA;
opencyc:Mx8Ngx4rwEcGC5wpEbGdrcN5Y29ycB4rwKrQ
NpwpEbGdrcN5Y29ycB4rwP3teJwpEbGdrcN5Y29ycA;
opencyc:Mx4rvVjPBZwpEbGdrcN5Y29ycA;
opencyc:Mx4r_3NStEeEEdaAAABQ2sS97g;
opencyc:Mx4rwAzWmpwpEbGdrcN5Y29ycA;
opencyc:Mx4rv49v0pwpEbGdrcN5Y29ycA;
w3:Track

0

Table 17. dbpediaOntology:Album result

Level Resource Instances
1 dbpediaOntology:Album 400.473

From dbpedia-eu, dbpedia-de, dbpedia-fr, uriburner, sztaki-lod, dbpedia-nl,
dbpedia-live, dbpedia, dbpedia-pt, dbpedia-el, dbpedia-ja

2 nerdeurocom:Album; w3:Collection; schema:MusicAlbum#this 0
2 opencyc:Mx4rwLmi3JwpEbGdrcN5Y29ycA 284

3

swcyc:Mx4rwLmi3JwpEbGdrcN5Y29ycA;
umbel:Album_CW;
opencyc:Mx4rsuAeiOYRQdaV9rYefTiDdQ;
opencyc:Mx4rrCLPHuYRQdaYGdGb966k4g;
opencyc:Mx4rpC0M3uYRQdaMgfF3U2mGqQ

0

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

80

Table 18. dbpediaOntology:MusicalArtist result

Level Resource Instances
1 dbpediaOntology:MusicalArtist 176.265

From dbpedia-eu, dbpedia-de, dbpedia-fr, uriburner, sztaki-lod, dbpedia-nl,
dbpedia, dbpedia-pt, dbpedia-el, dbpedia-ja

2 dbpediaOntology:Instrumentalist 2.718
2 dbpediaOntology:BackScene 225
2 dbpediaOntology:MusicDirector; dbpediaOntology:Singer 0
2 dbpdiaOntology:ClassicalMusicArtist 671
2 opencyc:Mx4rvVisB5wpEbGdrcN5Y29ycA 482

3

dbpediaOntology:Guitarist;
dbpediaYago:Musician;
umbel:Musician;
swcyc:Mx4rvVisB5wpEbGdrcN5Y29ycA;
opencyc:Mx4rvVjp3ZwpEbGdrcN5Y29ycA;
opencyc:Mx4rvVjqXpwpEbGdrcN5Y29ycA;
opencyc:Mx4r7wQOfEeAEdaAAABQ2sS97g;
opencyc:Mx4rHV7wICwxQdiRQdQSzSL6Dw;
opencyc:Mx4rzQXDcip_QdiIBoeuUEmDxA;
opencyc:Mx4rPzreYitqEdiaugAH6RYvVQ;
opencyc:Mx4rCThRjlILEdqAAAACs71DGQ

0

Table 19. dbpedia:Single result

Level Resource Instances
1 dbpediaOntology:Single 161.047

From dbpedia-de, uriburner, sztaki-lod, dbpedia-nl, dbpedia-live, dbpedia,
dbpedia-pt, dbpedia-el, dbpedia-ja

2 opencyc:Mx4rv6i4pJwpEbGdrcN5Y29ycA 45
3 swcyc:Mx4rv6i4pJwpEbGdrcN5Y29ycA 0

Table 20. mo:Composition and wordnet:synset-music-nount-1 results

Level Resource Instances
1 mo:Composition 796.954

From openlink-lod-cache
1 wordnet:synset-music-noun-1 0

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

81

Results for the Publications Domain

As already pointed out, we decided to repeat the same evaluation to: (1) validate

that DIST-CrawlerLD was capable of recovering similar resources or more

resources than CrawlerLD; (2) compare the performance (processing time and

resource consumption) of both implementations in the same scenario; (3) evaluate

how the LOD Cloud changed in six months (the time elapsed between the

CrawlerLD and DIST-CrawlerLD evaluations).

The initial crawling terms were the same as in Section 5.4.2:
schema:TechArticle

schema:ScholarlyArticle

akt:Article-Reference

akt:Article-In-A-Composite-Publication

akt:Book, akt:Thesis-Reference akt:Periodical-Publication

akt:Lecturer-In-Academia

akt:Journal

Table 21 summarizes the results. CrawlerLD and the basic version were not

able to find complex results for these initial crawling terms. However, six months

after the last evaluation, DIST-CrawlerLD found some new resources from other

ontologies (marked in bold). These new discovered terms indicate that the

ontologies used in this evaluation are becoming popular. New evaluations in the

future might confirm this trend.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

82

Table 21. Publication domain results

Level Resource Instances
1 schema:TechArticle 1

From uriburner
2 schema:APIReference; openlinksw:TechArticle#this 0
3 openlinksw:APIReference#this 0
1 schema:ScholarlyArticle 103

From uriburner
2 schema:MedicalScholarlyArticle; openlinksw:ScholarlyArticle 0
3 openlinksw:MedicalScholarlyArticle#this 0
1 akt:Article-Reference 1.218.625

From rkb-explorer-deepblue, rkb-explorer-budapest, rkb-explorer-roma, rkb-
explorer-newcastle, rkb-explorer-laas, rkb-explorer-deploy, rkb-explorer-pisa,
rkb-explorer-ibm, rkb-explorer-irit, rkb-explorer-curriculum, rkb-explorer-ulm,
rkb-explorer-risks, rkb-explorer-ft, rkb-explorer-eurocom, dbpedia-pt, openlink-
lod-cache

1 akt:Article-In-A-Composite-Publication 0
2 akt:News-Item 0
1 akt:Thesis-Reference 603

From rkb-explorer-newcastle, rkb-explorer-laas, rkb-explorer-ibm, rkb-
explorer-irit, rkb-explorer-eurocom, rkb-explorer-ulm, openlink-lod-cache

1 akt:Book 0
2 cseLehigh:Book; lsdis:Book 0

3
knowledgewe:Book; bibTeX:Book; swportal:Book;
ontoware:Book; marcont:Book;
cseLehigh:Edited_Book;
lsdis:Edited_Book

0

1 akt:Periodical-Publication 0
2 akt:Newspaper 0
3 akt:Daily-Newspaper 0
1 akt:Lecturer-In-Academia 37

From rkb-explorer-newcastle
1 akt:Journal 34.212

From rkb-explorer-deepblue, rkb-explorer-budapest, rkb-explorer-roma, rkb-
explorer-newcastle, rkb-explorer-lass, rkb-explorer-deploy, rkb-explorer-pisa,
rkb-explorer-ibm, rkb-explorer-irit, rkb-explorer-ulm, rkb-explorer-kaunas, rkb-
explorer-eurocom, dbpedia-pt, openlink-lod-cache

2 cseLehigh:Journal; lsdis:Journal 0
3 swportal:Journal 0

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

83

7.5.
A Performance Comparison with Previous Implementations

In this section, we compared DIST-CrawlerLD with CrawlerLD (of Chapter 6)

and the basic implementation (of Chapter 5).

7.5.1. Resources Consumption Analysis

Figure 19 and Figure 20 show the plots of the percentage of CPU time and the

amount of memory used when processing a single task, respectively, for

CrawlerLD and DIST-CrawlerLD. In both cases, the same initial resource

(dbpedia:Song) and the same parameters were used (2 levels and approximately

500 datasets). Both tasks ran in an Azure20 virtual machine with 8 cores and 56GB

of memory (STANDARD_A7 azure instance), which was provided by Azure for

Research Program21.

We note that the X axes of the plots for CrawlerLD show only in the first 10

minutes, while those for DIST-CrawlerLD show in the first hour. DIST-

CrawlerLD took longer to finish as it found more resources and crawled Level 2

(it found 227 resources, 16 were processed on both first levels – 0 and 1 - and the

other 211 resources, although eligible to be probed at next level, were not); by

contrast, the CrawlerLD did not find any new resource and stopped at Level 0,

crawling just one resource.

Also, the Y axes of the memory utilization plots are in different scales. Both

versions were configured to use at most 11 GB. However, while CrawlerLD

reached a maximum of 8 GB, DIST-CrawlerLD used only 3 GB. In fact,

CrawlerLD used much more memory than DIST-CrawlerLD, as expected. While

DIST-CrawlerLD hit 2.5 GB of memory use only at the end of Level 1 (when

processing over 15 resources), CrawlerLD hit 7 GB right at Level 0 (just 1

resource).

Another indicator of how DIST-CrawlerLD uses machine resources in a

healthier way is how the memory utilization increases. The Java Virtual Machine

(JVM) uses garbage collection (GC) to identify and free unused memory

resources. From time to time, and when JVM runs out of resources, JVM initiates

20 http://azure.microsoft.com/
21 http://research.microsoft.com/en-us/projects/azure/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

84

GC to try to free up memory. Since the execution of GC is expensive, JVM uses a

greedy algorithm to decide when to start GC: if there is memory available, avoid

its execution, if the current maximum available is reached, execute GC and try to

increase the maximum memory available by asking for more memory from the

operating system.

The memory utilization plot shows the behavior of both implementations

and how the GC behaved in each case. For CrawlerLD, memory is always

increasing, even when GC is executed (when the memory use is reduced). After

each GC execution, memory allocation always increases. For DIST-CrawlerLD,

memory allocation is also always increasing but, after GC execution, the system

returns to the same memory utilization level as before. The maximum memory

increases since JVM finds that it can increase memory to reduce the frequency

with which GC is called. In previous experiments, we found that 2 GB of

maximum memory allocation was sufficient to an 8 CPU core machine.

The percentage of CPU utilization is another health indicator. While

CrawlerLD used 50% of CPU time, on the average, DIST-CrawlerLD stayed at

10%, on the average. The high percentage of CPU use observed for CrawlerLD

could be related to how many times GC was called. On DIST-CrawlerLD, the

CPU idle behavior is expected as the system spent a considerable amount of time

waiting for triplesets responses.

Another important observation is how many queries each version ran. Recall

from Section 6.3 that DIST-CrawlerLD executes:

• Dereference processor: 1 query for each resource.

• Instance Counter processor: 1.5 query for each resource and dataset (half

of the datasets returned error when trying to group the number of

instances, which forced our processor to run a simpler query).

• Property processor: 1 query for each resource and dataset.

• The same applies to CrawlerLD. Consequently, for each crawling

resource, both tools executed:

Number of queries per resource crawled = 1 + (1.5 * D) + D = 1 + 2.5 * D

where D is the number of datasets. Since D is approximately 500 in the

experiments, the tools made approximately 1,251 queries per resource crawled.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

85

Furthermore, in the experiments, CrawlerLD crawled just one term, whereas

DIST-CrawlerLD crawled a total of 16 terms. Hence, we have:

• Number of queries executed (CrawlerLD) = 1,251

• Number of queries executed (DIST-CrawlerLD) = 20,016

Even so, comparing the maximum memory utilization, DIST-CrawlerLD

spent 2.8 times less resource than the older version.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

86

Figure 19. CrawlerLD execution pattern.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

87

Figure 20. DIST-CrawlerLD execution pattern.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

88

7.5.2. Processing Time Analysis

In this section, we evaluate the time consumed by each one of the three crawlers.

Table 22 and Table 23 show the time needed to process each resource in

each implementation and how many resources were probed in each. In addition,

we added a comparison of the tool with and without the tripleset availability test

presented in section 7.3.2. While the basic implementation spent one order of

magnitude more time than the subsequent implementation, CrawlerLD and DIST-

CrawlerLD took approximately the same time to process each term in the initial

set of terms. However, DIST-CrawlerLD retrieved more resources than

CrawlerLD. On the other hand, when using the availability test, which reduced the

number of triplesets from almost 550 to 400 (27% less triplesets), the results were

retrieved 70% faster on the average. Even with the reduced number of triplesets,

this version was able to recover all data retrieved before and, in some cases,

recover even more information. Indeed, the tripleset availability test is very

conservative and removes only the triplesets that will not return results in any

case.

Another important fact is that, due to the higher memory consumption of the

two older implementations, it was not possible to create an initial crawling term

set with more than one element. In our previous experiments, this input created

such a high memory footprint that even a 64GB memory machine was not able to

handle. DIST-CrawlerLD, on the other hand, was able to process all 9 initial

crawling terms of the Music Domain experiment in only one execution, which

consumed 4 GB of memory at most.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

89

Table 22. Time consumed (in minutes) for the Music domain

Term

Basic22 CrawlerLD DIST-
CrawlerLD

DIST-
CrawlerLD

(With
availability

test)23

Time Time Time Time

Terms crawled /
found

Terms crawled /
found

Terms crawled /
found

Terms crawled /
found

mo:MusicArtist 70 11 10 2
 3 / 2 3 / 2 4 / 11 3 / 6

mo:MusicalWork 28 8 8 1
 2 / 1 2 / 1 3 / 5 3 / 5

mo:Composition 14 4 3 < 1
 1 / 0 1 / 0 1 / 0 1 / 0

dbpedia:MusicalWor
k 183 22 24 4

 30 / +20k24 6 / 5 9 / 46 9 / 41
dbpedia:Song 163 11 12 4

 3 / 2 3 / 2 5 / 12 15 / 226
dbpedia:Album 173 8 13 3

 17 / 16 2 / 1 5 / 9 8 / 74
dbpedia:MusicalArt
ist 167 4 18 7

 15 / +2k 1 / 0 7 / 17 19 / 383
dbpedia:Single 186 4 5 3

 19 / +3k 1 / 0 2 / 2 6 / 36
wordnet:synset-
music-noun-1 24 11 3 < 1

 1 / 0 1 / 0 1 / 0 1 / 0
Average per terms crawled

(music domain) 9.98 min 4.15 min 2.60 min 0.40 min

22 The first version used the property rdfs:seeAlso instead of owl:equivalentClass, which

returned more results but with less precision.
23 The evaluation with availability test (see section 7.3.2) occurred in a different timeframe,

which justifies the result difference between both versions of DIST-CrawlerLD.
24 Some crawling tasks returned a larger number of terms, primarily from the yago tripleset.

These resources were not discoverable after the execution of the first experiment, on January 2014.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

90

Table 23. Time consumed (in minutes) for the Publications domain.

Term

Basic25 CrawlerLD DIST-
CrawlerLD

DIST-
CrawlerLD

(With
availability

test)

 Time Time Time Time

 Terms crawled /
found

Terms crawled /
found

Terms crawled /
found

Terms crawled /
found

schema:TechArticle 29 4 9 1
 N/A N/A 3 / 3 3 / 3

schema:ScholarlyArt
icle 47 4 9 1

 N/A N/A 3 / 3 2 / 2
akt:Article-
Reference 14 4 3 1

 N/A N/A 1 / 0 1 / 0
akt:Article-In-A-
Composite-
Publication

28 8 5
2

 N/A N/A 1 / 0 2 / 1
akt:Book 14 5 7 2

 N/A N/A 3 / 9 2 / 6
akt:Thesis-
Reference 14 5 2 < 1

 N/A N/A 1 / 0 1 / 0
akt:Periodical-
Publication 28 4 5 2

 N/A N/A 2 / 2 2 / 2
akt:Lecturer-In-
Academia 14 5 3 < 1

 N/A N/A 1 / 0 1 / 0
akt:Journal 14 4 7 1

 N/A N/A 3 / 3 2 / 2
Average per terms crawled

(publications domain) N/A N/A 2.78 min 0.75 min

25 The first version used the property rdfs:seeAlso instead of owl:equivalentClass, which

returned more results, but with less precision.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

91

To conclude, Table 24 and Table 25 present additional statistics for DIST-

CrawlerLD using and not using the tripleset availability test and varying the

number of levels.

Table 24. Results for DIST-CrawlerLD in a complex scenario.

Initial
resources

Number of
levels

Resources crawled Resources found Time spent (minutes)

9 2 63 756 141
9 3 201 1.083 450

Average time to process one resource 2,3

Table 25. Results applying tripleset availability test

Initial
resources

Number of
levels

Resources crawled Resources found Time spent (minutes)

9 2 64 771 81
9 3 201 1.069 257

Average time to process one resource 1,27

7.5.3.Distributed Computing Performance

All experiments above ran using a single 8 core machine. To evaluate DIST-

CrawlerLD in a distributed environment, we created 11 machines with 2 cores and

3.5 GB of memory (BASIC_A2 Azure instance) each. In addition, the frontend

ran into the previous 8 core machine, but it was configured not to not crawl any

tripleset.

Table 26 presents the different processing times for each resource when

running DIST-CrawlerLD in a single machine and in the distributed environment.

Each evaluation was executed five times so that time shown in Table 26 are

averages over all executions. Each version returned a similar number of terms to

process, but the distributed version spent half of the time on the average. In fact,

we observed that the processing time is better when the tool has many resources to

process. To prove that, we simulated the same experiment that resulted in Table

26 using all eleven machines. Table 27 and Table 28 present the data we obtained

in order to compare with Table 24 and Table 25. While the single machine

experiment reached an average of one resource crawled per 2.3 minutes, the

distributed experiment achieved an average of one resource crawled per 0.47

minutes. To process 201 resources, the first experiment took more than 7 hours,

while the distributed experiment took nearly 1.5 hours. Using the tripleset

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

92

availability test, the numbers are even lower: the average time for each crawling

resource reduced from 1,27 minutes to 0.14. The total processing reduced from 81

to 7 minutes on two levels, and from 257 to 29 minutes on three levels.

Table 26. Time consumed by actor model single machine and distributed

Term Single (1)
(seconds)

Distributed (1)
(seconds)

mo:MusicArtist 118 41
mo:MusicalWork 79 35
mo:Composition 29 16
dbpedia:MusicalWork 214 76
dbpedia:Song 350 118
dbpedia:Album 179 60
dbpedia:MusicalArtist 426 139
dbpedia:Single 145 54
wordnet:synset-music-noun-1 34 18
schema:TechArticle 78 34
schema:ScholarlyArticle 72 35
akt:Article-Reference 33 16
akt:Article-In-A-Composite-Publication 64 30
akt:Book 77 34
akt:Thesis-Reference 34 14
akt:Periodical-Publication 61 31
akt:Lecturer-In-Academia 29 14
akt:Journal 82 42

(1) Average over 5 executions.

Table 27. Additional statistics for DIST-CrawlerLD in a distributed mode

Initial
Resources

Number of
levels

Resources crawled Resources found Time spent
(minutes)

9 2 60 611 26

9 3 201 862 96

Average time to process one resource 0.47

Table 28. Additional statistics applying tripleset availability test

Initial
resources

Number of
levels

Resources crawled Resources found Time spent
(minutes)

9 2 61 612 7
9 3 201 862 29

Average time to process one resource 0.14

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

93

7.6.
An Evaluation of the Linked Data Cloud and the Used Ontologies

In this section, the Linked Open Data Cloud will be evaluated in order to

demonstrate that datasets classified in the same domain may use several,

heterogeneous ontologies, which create a difficult environment to anyone who

searches resources of a given domain.

Bizer et al. (Bizer et al., 2014) describe the state of the Linked Open Cloud

by August 2014, illustrated in Figure 21. Circles represent triplesets, and arrows

indicate relationships between two triplesets. Circles of the same color represent

triplesets classified in the same domains (the original diagram unfortunately uses a

color code to indicate the classification of triplesets). For example, the green

circles on the right of the image are triplesets of the publications domain and the

purple circles on the top-left part of the image represent triplesets classified in the

media triplesets, in which the music domain is included.

Figure 21. Linked Open Data cloud 2014 state

In this section, our goal is to verify if triplesets classified in the same domain use

different ontologies or not. We take the results reported in (Bizer et al., 2014) as

the gold standard for the purposes of classifying triplesets. We elected the

publications domain and retrieved 136 triplesets, out of which 83 triplesets had

SPARQL endpoints, while 74 had RDF dumps. Over 103 triplesets had some type

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

94

of endpoint (SPARQL or dump files) that DIST-CrawlerLD could process. But, in

fact, only 83 were actually available for the current experiment.

The evaluation started by selecting two popular ontologies for the

publication domain – Aktors, Dublin Core26 – and two generic ontologies –

DBPedia and Schema.org. In addition, we noted that some triplesets were unable

to return a valid result set when the Property Processor was executed (see section

6.3) due to the complexity of the union query. In particular, all triplesets from rkb-

explorer did not accept the union statement. For this specific evaluation, since we

were not interested in time performance, we created a new property processor that

works similarly to the Instance Counter Processor. First, it applies the complex

query (see Figure 8) of over all triplesets available and saves the datasets that

return some kind of error. Then it applies the queries introduced in section 4.5 to

the triplesets that were unable to return a valid result set for the complex query.

This approach is an effort to reach more triplesets without executing too many

queries over the endpoints.

The experimental setup was:

• Universe: the set of datasets available through the DataHub catalog

plus some ontologies (in special, schema.org and its mappings27).

• Gold standard: the classification reported in (Bizer et al., 2014).

• Selected domain: the publications domain, with 136 datasets listed in

(Bizer et al., 2014); 83 of these datasets actually available for the

experiment.

• Set of initial crawling terms: the terms listed in the first column of

Table 29, selected from Aktors and Dublin Core, two popular

ontologies for the publications domain, and DBPedia and

Schema.org, two generic domain ontologies.

• Number of levels: 5.

• Maximum number of terms probed: 2000.

• Maximum number of terms probed for each term in the crawling

frontier: 50.

26 http://dublincore.org/
27 http://schema.rdfs.org/mappings.html

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

95

• Maximum number of terms probed in a dataset, for each term in the

frontier: 30.

Table 29 shows the terms used in the evaluation, how many triplesets were

found, and the recall based on tripleset availability and precision based on the

total amount of triplesets found. The numbers show that the Aktors ontology is the

most popular ontology for the publications domain: with all resources combined,

we were able to find 39% of the triplesets in the domain, with precision of 82%.

Dublin Core had worse numbers: 18% of recall and 17% of precision. After

grouping both results, a recall of 55% and a precision of 37% was achieved.

Furthermore, only one tripleset (msc28) uses both ontologies. The generic

ontologies (DBPedia and Schema.org), on the other hand, had an insignificant

result. From six crawling terms, only one (Dbpedia:AcademicJournal) was used

by triplesets in the publications domain (in fact, only one tripleset, sztaki-lod29).

One should proceed with care to draw conclusions based on the results in

Table 29. Indeed, the recall and precision shown in Table 29 reflect several

factors, which we highlight, among others:

1 - The number of datasets actually available for the experiment.

2 - The initial set of terms selected.

3 - The number of datasets classified in publications domain that indeed use

well-known ontologies for the publications domain.

4 - The number of datasets not classified in publications domain that use

well-known ontologies for the publications domain.

The first point is a limitation of directly crawling the LOD cloud. It could be

circumvented by crawling a dump of the LOD cloud, such as the one available

from the LOD Laudromatic (Beek et al., 2014).

The second and the third points are interrelated and affect RLT, the number

of relevant datasets retrieved. Indeed, RLT is necessarily sensitive to the set of

initial terms and other experiments could be run to further assess this point. But –

and this is more important – RLT is directly affected by how many datasets

classified in the publications domain actually use well-known ontologies for the

domain. Indeed, we found that only 56% of the datasets classified in the

28 http://datahub.io/dataset/msc
29 http://datahub.io/dataset/sztaki-lod

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

96

publications domain (and available at the time of the experiment) use well-known

ontologies for the domain (i.e., Aktors and Dublin Core). The other 44% of the

available datasets use a variety of ontologies: from self-made to less popular.

The fourth point affects RT, the number of datasets retrieved. The argument

here is symmetric: a dataset d may use ontologies that pertain to the publications

domain (and hence d is retrieved), but d may not be classified in the publications

domain. Indeed, the dataset d may contain some triples that refer to publications

(and which correctly uses ontologies from the publications domain), but the main

purpose of d may not be to store publications and, hence, d is not classified in

publications domain. Based on this argument, the precision of the crawler could

be improved by rejecting datasets in which is majority of triples does not belong

to the domain in question (an expensive test, unless the catalog contains enough

information about the datasets to implement the test).

To conclude, the use of a crawler such as DIST-CrawlerLD to locate

datasets that pertain to a given domain is necessarily limited by the adherence of

dataset publishers to the Linked Data best practices (Bizer et al., 2009), as

expected. Experiments with other domains should be conducted to further assess

this conclusion.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

97

Table 29. Publication domain resources and recall

Resource Triplesets
found

Domain
triplesets
found (1)

Non-
Domain

triplesets
found

Recall
(2)

Precision
(3)

Domain ontologies
Aktors:Article-in-A-Composite-
Publication

29 27 2 33% 93%

Aktors:Article-Reference 29 26 3 31% 90%
Aktors:Book 22 17 5 20% 77%
Aktors:Journal 29 25 4 30% 86%
Aktors:Lecture-In-Academia 18 17 1 20% 94%
Aktors:Periodical-Publication 29 27 2 33% 93%
Aktors:Research-Interest 33 30 3 36% 90%
Aktors:Thesis-Reference 23 21 2 25% 91%

Total Aktors (4) 39 32 7 39% 82%
DublinCore:Article 73 9 64 11% 12%
DublinCore:Conference 17 1 16 1% 5%
DublinCore:EditedBook 5 0 5 0% 0%
DublinCore:Journal 23 0 23 0% 0%
DublinCore:Manuscript 9 1 8 1% 11%
DublinCore:Periodical 53 6 47 7% 11%
DublinCore:Thesis 8 1 7 1% 12%
DublinCore:ThesisDegree 20 1 19 1% 5%

Total Dublin Core (5) 90 15 75 18% 17%
Total Publications (6) 123 46 77 55% 37%

Generic Ontologies
Dbpedia:Bibliographic_database 7 0 7 0% 0%
Dbpedia:AcademicJournal 7 1 6 1% 14%

Total DBPedia 9 1 8 1% 11%
Schema:EducationEvent 3 0 3 0% 0%
Schema:PublicationIssue 0 0 0 0% 0%
Schema:PublicationVolume 0 0 0 0% 0%
Schema:ScholarlyArticle 3 0 3 0% 0%

Total Schema.org 3 0 3 0% 0%
Total Generic Ontologies 10 1 9 1% 1%

Total (7) 123 46 77 55% 37%

(1) Number of triplesets that used the term, out of the 83 triplesets reachable at the
time of the experiment and manually classified in (Bizer et al., 2014) in the
publications domain.

(2) Percentage of the number of triplesets that used the term over the 83 triplesets
reachable at the time of the experiment and manually classified in (Bizer et al.,
2014) in the publications domain.

(3) Percentage of the number of domain triplesets over the sum of all triplesets
found.

(4) Total number of triplesets that used any of the Aktors terms listed above.
(5) Total number of triplesets that used any of the Dublin core terms listed above.
(6) Total number of triplesets that used any of the Aktors or Dublin core terms

listed above.
(7) Total number of triplesets that used any of the Aktors, Dublin core,

Schema.org or DBPedia terms listed above.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

98

Table 30. Availability of triplesets classified in the publications domain

name SPARQL DUMP Reachable
agris Y N N
agrovoc-skos Y N N
amsterdam-museum-as-edm-lod Y Y Y
archiveshub-linkeddata Y Y Y
asjp N Y Y
bibbase Y N N
bible-ontology Y Y N
bluk-bnb Y N Y
british-museum-collection Y N N
calames N N N
core Y Y Y
data-bnf-fr N N N
data-open-ac-uk Y N N
datos-bne-es Y N Y
dcs-sheffield N Y Y
deutsche-biographie Y N Y
dewey_decimal_classification Y N N
doi N N N
dspace N N N
dutch-ships-and-sailors Y N Y
ecco-tcp-linked-data Y N N
ecs N Y Y
eur-lex-rdf Y Y N
europeana-lod-v1 Y Y N
fu-berlin-dblp Y N N
fu-berlin-project-gutenberg Y N Y
gesis-thesoz Y Y Y
glottolog N N N
hebis-bibliographic-resources Y Y Y
hedatuz Y Y Y
http-www-iwmi-cgiar-org-publications-
iwmi-working-papers

N N N

hungarian-national-library-catalog Y N Y
idreffr N N N
isidore Y N Y
italian-public-schools-linkedopendata-it Y Y N
iwmi-research-reports N N N
j-ucs-journal-of-universal-computer-
science

N N N

jiscopenbib-bl_bnb-1 Y Y Y
kaken N N N
l3s-dblp Y N Y

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

99

lcsh N Y Y
libris Y N N
libver Y Y Y
linkedlccn Y N N
lista-encabezamientos-materia Y N Y
lobid-organisations N N N
lobid-resources N N N
manchester-university-reading-lists N N N
marc-codes N N N
mesh-finnish N N N
morelab Y N Y
msc Y Y Y
multimedia-lab N N N
nalt N N N
nottingham-trent-university-resource-lists N N N
npg Y N Y
ntnusc N N N
nvd Y Y Y
nytimes-linked-open-data N Y Y
oclc-fast N N N
open-library N N N
printed-book-auction-catalogues Y N N
psh-subject-headings N Y Y
radatana Y N Y
rdf-book-mashup N N N
rkb-explorer-acm Y Y Y
rkb-explorer-budapest Y Y Y
rkb-explorer-citeseer Y Y Y
rkb-explorer-courseware Y Y Y
rkb-explorer-crm Y N Y
rkb-explorer-curriculum Y Y Y
rkb-explorer-darmstadt Y Y Y
rkb-explorer-dblp Y Y Y
rkb-explorer-deepblue Y Y Y
rkb-explorer-deploy Y Y Y
rkb-explorer-dotac Y Y Y
rkb-explorer-eprints Y Y Y
rkb-explorer-epsrc Y Y Y
rkb-explorer-era Y Y Y
rkb-explorer-eurecom Y Y Y
rkb-explorer-ft Y Y Y
rkb-explorer-ibm Y Y Y
rkb-explorer-ieee Y Y Y
rkb-explorer-irit Y Y Y
rkb-explorer-italy Y Y Y

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

100

rkb-explorer-jisc Y Y Y
rkb-explorer-kaunas Y Y Y
rkb-explorer-kisti Y Y Y
rkb-explorer-laas Y Y Y
rkb-explorer-lisbon Y Y Y
rkb-explorer-newcastle Y Y Y
rkb-explorer-nsf Y Y Y
rkb-explorer-oai Y Y Y
rkb-explorer-os Y Y Y
rkb-explorer-pisa Y Y Y
rkb-explorer-rae2001 Y Y Y
rkb-explorer-resex Y Y Y
rkb-explorer-risks Y Y Y
rkb-explorer-roma Y Y Y
rkb-explorer-southampton Y Y Y
rkb-explorer-ulm Y Y Y
rkb-explorer-unlocode Y Y Y
rkb-explorer-wiki Y Y Y
scholarometer N Y Y
semantic-library N N N
semantic-universe Y N N
semantic-web-dog-food Y N N
southampton-ecs-eprints N Y N
st-andrews-resource-lists N N N
stitch-rameau N Y Y
stw-thesaurus-for-economics Y Y Y
sudocfr Y N Y
swedish-open-cultural-heritage N Y Y
sztaki-lod Y Y Y
t4gm-info N Y N
the-european-library-open-dataset N Y N
thesaurus-datenwissen N N N
thesaurus-w Y Y N
thesesfr Y N N
ub-mannheim-linked-data N N N
university-plymouth-reading-lists N N N
university-sussex-reading-lists N N N
verrijktkoninkrijk Y N Y
viaf N N N
vivo-cornell-university N Y Y
vivo-cu-boulder N Y Y
vivo-indiana-university N Y Y
vivo-ponce N Y Y
vivo-scripps-research-institute N Y Y
vivo-university-of-florida N Y Y

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

101

vivo-weill-cornell-medical-college N Y Y
vivo-wustl N N N
ysa N Y Y
zbw-labs N N N
zbw-pressemappe20 N N N
Total: 83 74 83

7.7.
A Behavior Evaluation of the Crawled Resources at Each Level

In this section, we evaluate how the variation of the number of levels affects the

final result. Figure 22 to Figure 36 shows, for a selected number of resources from

the publication domain, the number of resources found at each level until the 10th

level. As expected, all evaluations starts with one resource at the first level, since

only one resource was processed for each evaluation. In addition, the graphs

presented uses an average of at least three tasks for each initial resource.

Furthermore, it is important to remember that the tool does not allows cyclic

references.

Figure 22. DBPedia:AcademicJournal average

Figure 23. DBPedia:Bibliogragic_database average

Based on the resources crawled, the reachability of the DBPedia ontology,

that is, after 8 levels the crawler does not find any new resources. In fact, at levels

1,00 0,75 0,75 12,58 13,08

166,17

73,67

1,33 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00 2,64

19,82

1,55 1,09
8,55

21,09

1,82 0,00 0,00
1 2 3 4 5 6 7 8 9 10

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

102

6 or 7, the crawler was able to found the majority of the resources. The graph for

AcademicJournal’ shows results which are less than 1, which indicates that not

every crawling tasks was able to crawl the third level, and so on.

Figure 24. DublinCore:Article average

Figure 25. DublinCore:Conference average

Figure 26. DublinCore:EditedBook average

Figure 27. DublinCore:Journal average

1,00

2518,08

44,50 118,00 92,67 102,08 122,92 131,67 177,75 84,83
1 2 3 4 5 6 7 8 9 10

1,00 1,80 2,40 25,30

91,10 104,60 87,70

154,60
92,40

47,40

1 2 3 4 5 6 7 8 9 10

1,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00 2,18 2,18
8,18

16,36
12,73 12,18

6,55

0,00 0,00
1 2 3 4 5 6 7 8 9 10

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

103

Figure 28. DublinCore:Manuscript average

Figure 29. DublinCore:Periodical average

Figure 30. DublinCore:Thesis

Figure 31. DublinCore:ThesisDegree

The DublinCore ontology presents the most linear series of the three

ontologies. For several resources (Figure 24, Figure 25, and Figure 29), the

number of resources increases on as the level increases. This kind of behavior

may denote that: (1) the DublinCore ontology has many internal relationships that

1,00

1,73 1,64
1,00

0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00 10,45 13,18 19,18 121,27
255,64 358,27

676,55

260,27

707,91

1 2 3 4 5 6 7 8 9 10

1,00

1,83

0,00 0,00 0,00 0,00 0 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00

0,00 0,00 0,00 0,00 0,00 0 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

104

feed the crawler with more resources, which is unlikely due to the number of

resources found; (2) the ontology is commonly accepted by database administrator

so that new ontologies are created using relationships using DublinCore to

enhance the visibility and knowledge sharing. Those graphs illustrate how a

Linked Data resource should behave.

Figure 32. Schema:Article average

Figure 33. Schema:EducationEvent average

Figure 34. Schema:PublicationIssue average

1,00 7,87 8,73 1,07 3,07 12,67
38,73

71,33 68,93
87,33

1 2 3 4 5 6 7 8 9 10

1,00 1,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00 0,75
0,33

0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

105

Figure 35. Schema:PublicationVolume average

Figure 36. Schema:ScholarlyArticle average

The graphs for the Schema.org ontology shows that it currently is a useful

ontology, providing generic definitions. Article, which was the only resource to

have a significant number of related resources found, is a generic term that can be

used to describe a Journal text, a Blog Post, a conference paper and others.

Figure 37. All resources average

Figure 37 shows the average number of terms found by all resources

crawled. The graph shows a growing linear series. In other words, it is desirable to

1,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

1,00 1,20
0,67

0,13 0,00 0,00 0,00 0,00 0,00 0,00
1 2 3 4 5 6 7 8 9 10

0,00

50,00

100,00

150,00

200,00

250,00

1 2 3 4 5 6 7 8 9 10

Resources	 found	 by	 level	 (average)

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

106

crawl as many levels as possible since the crawler is able to reach more resources

at each new level. With processing time restrictions, we recommend that the

crawling task must reach at least the 5th level since it is a balance between the

number of resources found (more then half of the results will be found) and the

processing time.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

107

8.
Conclusions and Suggestions for Future Work

8.1.
Conclusions

In this thesis, we concentrated on the development of a metadata-focused crawler

for the Linked Open Data (LOD) cloud that could be used to crawl and identify

resources (triples and ontologies) that are related to a specific subject. We

addressed the challenges highlighted in Section 1.1 that are related to the

difficulty of finding related open triplesets, as the LOD cloud grows.

We may highlight the following contributions of this thesis to the area of

Linked Data crawling:

Crawling Strategy

• Crawling with SPARQL queries. Our crawler returns richer metadata than a

traditional crawler, since they use SPARQL queries, executed over all

triplesets. In particular, our crawler discovers not only the links between

resources, but also the number of instances related to the crawling terms.

• Identifying resources in different languages and alphabets. Our crawler was

able to identify resources in different languages, even in different alphabets,

through the sameAs and seeAlso queries.

• Leveraging grouping functions in SPARQL queries. Grouping functions were

introduced in SPARQL 1.1 and helped us optimize some queries and reduce

performance problems.

• Discovering relationships between resources of two triplesets described in a

third one. While using our crawler, we found cases in which a relationship

between two resources r and r’, respectively, defined in triplesets d and d’,

were described in another tripleset d”. This happens, for example, when the

ontologies used by d and d’ are only stored in a different dataset d”. In these

cases, it was necessary to crawl triplesets, other than d and d’, to find the

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

108

relationship between r and r’. A traditional crawler following links from d (or

d’) would not find any link between r and r’ because it is only declared in d”.

• Performing simple deductions. When using the provenance list generated by

the crawler, one may perform simple deductions, using the transitivity of the

subclass property, perhaps combined with the sameAs relationship. For

example, suppose that the crawler discovered that opencyc:Hit_music is a

subclass of opencyc:Music, which in turn has a sameAs relationship with

wordnet:synset-music-noun-1. Then, one may deduce that

opencyc:Hit_music is a subclass of wordnet:synset-music-noun-1.

Crawler Architecture

• A Crawler Framework. The intention when implementing CrawlerLD was to

create a tool that could be expandable. To achieve this objective, we created

the concept of processors, which can be implemented by any developer and

plugged into their tool. Furthermore, the tool is bundled with three processors

that can be enabled or disabled when the user wants to.

• Applying the actor model to crawling tasks. Introduced in 1973, the adoption

of the actor model to design applications in different domains seems to have

recently increased. All such applications share the following characteristics:

they need to be distributed, scalable, and use few resources. In this thesis, we

presented a solution to create a Linked Data Crawling Framework using the

actor model, and we evaluated how it performed in comparison with

traditional solutions.

• Distributed Linked Data Crawler. The LOD cloud has been growing steadily

(Bizer et al., 2014) as its popularity increases. It is not possible to suppose that

a single computer will be capable to crawl all LOD cloud in the following

years, in a reasonable time. In this thesis, we demonstrate how CrawlerLD can

be configured to be used in as many machines as a user wants.

8.2.
Suggestions for Future Work

As for future research, we suggest:

Improvements to the Crawler Architecture

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

109

• Create new processors that explore other Linked Data characteristics -

CrawlerLD was designed to be expansible. In other words, any developer can

create new processors that will be integrated into the core system, and that will

be used in each crawling level. Some suggestions for new processors are:	

o Linked Data Fragments (Verborgh et al., 2014) – Linked Data

Fragments are triplesets features similar to a SPARQL Endpoint.

Analogous to relational databases, we can compare SPARQL to a SQL

Query and a Linked Data Fragment to a database view. Triplesets

administrators could optimize these fragments to be more efficient than

SPARQL endpoints. The CrawlerLD could have a new processor

created only to process resources through these fragments.	

o Other properties – There are a number of properties defined in RDF

and OWL that can be used to increase precision and recall. Such

properties would be handled by specific processors.	

o VoID – Although previous tests revealed that VoID ontology is not

useful to find new data about a resource, it is a good idea to idea create

a processor to extract this kind of data. The major advantage will be to

follow it, if this behavior will be maintained in the following years.	

o SameAs processor – SameAs.org30 is library of owl:sameAs

relationships. It provides a REST API that can be used by our tool, in

order to easily discover more relationships.	

• Create a crawling ontology to model the output of a crawling task - Currently,

the output of a crawling task is a binary file that can be only processed by

CrawlerLD (though it can be parsed using the core API or Rest API). This can

be changed, so the result could be saved in an RDF file using a specific

ontology to represent the mapping (with any provenience) found. Previous

research did not find any ontology designed to represent this kind of

application.	

• Open source distribution of the Utilities Semantic Web and CrawlerLD –

There was an effort to make the tool and its libraries easy to learn and deploy.

In addition, we created an API, called Utilities Semantic Web, which is

capable of identifying new triplesets on the LOD cloud and of querying

30 http://sameas.org/

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

110

SPARQL Endpoints, RDF Dumps, and URI’s. These tools could be

distributed as open source software.

Improvements to the Crawler Performance

• Use older crawling data as cache for new ones – many crawling tasks use

resources that, in some way, appear in older tasks. Hence, caching older

results may considerably improve new crawling tasks.	

• Use the LOD Laudromatic (Beek et al., 2014) – The LOD Laudromatic takes a

snapshot of the LOD cloud and makes it available to anyone. Therefore, we

could download and replicate the snapshot to improve performance of the

crawler. This would also help compare the performance of the various

crawlers, since the LOD cloud is always evolving, which makes it difficult to

replicate experiments.	

Other Uses to the Crawler

• Evaluation of popular ontologies – Since the beginning of this project, we saw

a number of popular ontologies disappear and others become more popular.

The crawler can be used to measure the popularity of an ontology over the

LOD cloud. 	

• Create a recommender system based on the output of the crawler - our vision

for the crawler is to use it in a broader environment in which a user actually

uses a recommender system to design their tripleset. The recommender system

could use the Core API or the Rest API. An advantage of the use of the Rest

Service is that it is better aligned to the Microservices Architecture (Newman,

2015). Furthermore, a load balancer could be applied to handle multiple

crawler instances.	

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

111

Bibliography

Assaf, A., Senart, A., & Troncy, R. (2015). Roomba: Automatic
Validation, Correction and Generation of Dataset Metadata. In
Proceedings of the 24th International Conference on World Wide Web
Companion (pp. 159-162). International World Wide Web Conferences
Steering Committee.

Alexander, K., & Hausenblas, M. (2009). Describing linked datasets-on
the design and usage of void, the’vocabulary of interlinked datasets.
In In Linked Data on the Web Workshop (LDOW 09), in conjunction with
18th International World Wide Web Conference (WWW 09.

Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern information
retrieval. Vol. 463. New York: ACM press, 1999.

Beek, W., Rietveld, L., Bazoobandi, H. R., Wielemaker, J., & Schlobach,
S. (2014). LOD laundromat: a uniform way of publishing other
people’s dirty data. In The Semantic Web–ISWC 2014 (pp. 213-228).
Springer International Publishing.

Berners-Lee, Tim. Linked data-design issues. (2006). Available at
http://www.w3.org/DesignIssues/LinkedData.html

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so
far. Semantic Services, Interoperability and Web Applications: Emerging
Concepts, 205-227.

Bizer, C., A. Jentzsch, and R. Cyganiak. (2014). State of the LOD cloud:
Version 0.4. Available at http://www4.wiwiss.fu-berlin.de/lodcloud/state.

Brickley, D., Guha, R.V. (eds.). (2004). RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation 10 February 2004.

De Bra, P. M., & Post, R. D. J. (1994). Information retrieval in the
World-Wide Web: making client-based searching feasible. Computer
Networks and ISDN Systems, 27(2), 183-192.

Hewitt, C., Bishop, P., & Steiger, R. (1973, August). A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
international joint conference on Artificial intelligence (pp. 235-245).
Morgan Kaufmann Publishers Inc..

De Assis, G. T., Laender, A. H., Gonçalves, M. A., & Da Silva, A. S.
(2009). A genre-aware approach to focused crawling. World Wide
Web, 12(3), 285-319.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

112

Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., & Kolari, P. (2005).
Finding and ranking knowledge on the semantic web. In The Semantic
Web–ISWC 2005 (pp. 156-170). Springer Berlin Heidelberg.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern
Web architecture. ACM Transactions on Internet Technology (TOIT),
2(2), 115-150.

Fionda, V., Gutierrez, C., & Pirró, G. (2012, April). Semantic navigation
on the web of data: specification of routes, web fragments and
actions. In Proceedings of the 21st international conference on World
Wide Web (pp. 281-290). ACM.

Garlik, Steve H., Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1
query language. World Wide Web Consortium (2013).

Gomes, Raphael do Vale A.; Casanova, Marco A.; Lopes, Giseli Rabello;
Leme, Luiz André P. Paes. (2014). A Metadata Focused Crawler for
Linked Data. In: The 16th International Conference on Enterprise
Information Systems - ICEIS, 2014, Lisbon, Portugal. Proceedings of the
16th International Conference on Enterprise Information Systems.
SCITEPRESS - Science and Technology Publications, 2014. v.2. p.489 -
500.

Raphael do Vale, A. G., Casanova, M. A., Lopes, G. R., & Leme, L. A. P.
P. (2015). CRAWLER-LD: A Multilevel Metadata Focused Crawler
Framework for Linked Data. In Enterprise Information Systems (pp. 302-
319). Springer International Publishing.

Hartig, O., Bizer, C., & Freytag, J. C. (2009). Executing SPARQL queries
over the web of linked data (pp. 293-309). Springer Berlin Heidelberg.

Hersovici, M., Jacovi, M., Maarek, Y. S., Pelleg, D., Shtalhaim, M., & Ur, S.
(1998). The shark-search algorithm. An application: tailored Web site
mapping. Computer Networks and ISDN Systems, 30(1), 317-326.

Isele, R., Umbrich, J., Bizer, C., & Harth, A. (2010, November). LDspider:
An open-source crawling framework for the Web of Linked Data. In
9th International Semantic Web Conference (ISWC2010).

Leme, L. A. P. P., Lopes, G. R., Nunes, B. P., Casanova, M. A., & Dietze,
S. (2013). Identifying candidate datasets for data interlinking. In Web
Engineering (pp. 354-366). Springer Berlin Heidelberg.

Lopes, G. R., Leme, L. A. P. P., Nunes, B. P., Casanova, M. A., & Dietze,
S. (2013). Recommending tripleset interlinking through a social
network approach. In Web Information Systems Engineering–WISE 2013
(pp. 149-161). Springer Berlin Heidelberg.

Manola, F., Miller, E., 2004. RDF Primer, W3C Recommendation 10
February 2014.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

113

Romero, M. M., Vázquez-Naya, J. M., Munteanu, C. R., Pereira, J., &
Pazos, A. (2010). An approach for the automatic recommendation of
ontologies using collaborative knowledge. In Knowledge-Based and
Intelligent Information and Engineering Systems (pp. 74-81). Springer
Berlin Heidelberg.

Newman, Sam (2015). Building Microservices. New York: O'Reilly
Media. 280.

Nikolov, A., d'Aquin, M. (2011). Identifying Relevant Sources for Data
Linking using a Semantic Web Index. In Proc. Workshop on Linked
Data on the Web. CEUR-WS.org.

Nikolov, A., d’Aquin, M., & Motta, E. (2012). What should I link to?
Identifying relevant sources and classes for data linking. In The
Semantic Web (pp. 284-299). Springer Berlin Heidelberg.

Prud’hommeaux, E., Seaborne, A., 2008. SPARQL Query Language for
RDF, W3C Recommendation 15 January 2009.

Saint-Paul, R., Raschia, G., & Mouaddib, N. (2005, August). General
purpose database summarization. In Proceedings of the 31st
international conference on Very large data bases (pp. 733-744). VLDB
Endowment.

Srinivasan, P., Menczer, F., & Pant, G. (2005). A general evaluation
framework for topical crawlers. Information Retrieval, 8(3), 417-447.

Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E.,
& Van de Walle, R. (2014, April). Web-scale querying through linked
data fragments. In Proceedings of the 7th Workshop on Linked Data on
the Web.

Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L.,
Vander Sande, M., ... & Van de Walle, R. (2014). Querying datasets on
the web with high availability. In The Semantic Web–ISWC 2014 (pp.
180-196). Springer International Publishing.

W3C OWL Working Group, 2012. OWL 2 Web Ontology Language
Document Overview (Second Edition). W3C Recommendation 11
December 2012.

Wang, J., Wen, J. R., Lochovsky, F., & Ma, W. Y. (2004, August).
Instance-based schema matching for web databases by domain-
specific query probing. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30 (pp. 408-419). VLDB
Endowment.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

114

Annex A – Pseudo-code of the Basic Implementation of
Chapter 4

genericCrawlingQuery(d, S, t, p; R);
input: d - direction of the query (“direct” or “reverse”)
 S - a SPARQL Endpoint or a RDF Dump to be queried
 t - a crawling term
 p - a predicate
output: R - a set of terms crawled from t
begin

if d == “direct”
 then R := execute SELECT distinct ?item WHERE { ?item p <t> } over S
 else R := execute SELECT distinct ?item WHERE { <t> p ?item } over S

 return R;
end

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

115

CRAWLER(maxLevels, maxTerms, maxFromTerm, maxFromSet; T, C; Q, P, D)

Parameters: maxLevels - maximum number of levels of the breadth-first search
 maxTerms - maximum number of terms probed
 maxFromTerm - maximum number of new terms probed from each term
 maxFromSet - maximum number of terms probed from a tripleset, for each term
input: T - a set of input terms
 C - a list of catalogues of triplesets
output: Q - a queue with the terms that were crawled
 P - a provenance list for the terms in Q
 D - a provenance list of the triplesets with terms in Q

begin Q, P, D := empty;
 #levels, #terms := 0;
 nextLevel := T;
 while #levels < maxLevels and #terms < maxTerms do
 begin
 #levels := #levels + 1;
 currentLevel := nextLevel; /* currentLevel and nextLevel are queues of terms */
 nextLevel := empty;
 for each t from currentLevel do
 begin
 add t to Q;
 /* crawling by dereferencing */
 S := downloaded RDF content obtained by dereferencing t;
 R1 := empty;
 for each predicate p in { rdfs:subClassOf,owl:sameAs,rdfs:seeAlso } do
 begin
 if p == “rdfs:subClassOf” then d := “direct” else d := “inverse”;
 genericCrawlingQuery(d, S, t, p; RTEMP);
 if (RTEMP not empty)
 then begin add (t, p, RTEMP, S) to P;
 R1 := concatenate(R1, RTEMP);
 end
 end
 /* crawling by direct querying the triplesets in C */
 R2 := empty;
 for each tripleset S from the catalogues in C do
 begin
 RS := empty;
 for each predicate p in { rdfs:subClassOf,owl:sameAs,rdfs:seeAlso } do
 begin
 genericCrawlingQuery(“direct”, S, t, p; RTEMP);
 if (RTEMP not empty)
 then begin add (t, p, RTEMP, S) to P;
 RS := concatenate(RS, RTEMP);
 end
 end
 if (RS not empty)
 then begin add (t, S) to D;
 truncate RS to contain just the first maxFromSet terms;
 R2 := concatenate(R2, RS);
 end
 end
 RT := concatenate(R1, R2)
 for each u in RT do
 begin
 #termsFromTerm := #termsFromTerm +1;
 #terms := #terms +1;

 if (#termsFromTerm > maxFromTerm or #terms > maxTerms) then exit;
 add u to nextLevel;
 end
 end
 end
 return Q, P, D;
end

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

116

Annex B – Pseudo-code of CrawlerLD and DIST-CrawlerLD

CRAWLER-LD(maxLevels, maxTerms, maxFromTerm, maxFromSet; T, C, PR; Q, P, D)

Parameters: maxLevels - maximum number of levels of the breadth-first search
 maxTerms - maximum number of terms probed
 maxFromTerm - maximum number of new terms probed from each term
 maxFromSet - maximum number of terms probed from a tripleset, for each term
input: T - a set of input terms
 C - a list of catalogues of triplesets
 PR - a list of processors
output: Q - a queue with the terms that were crawled
 P - a provenance list for the terms in Q
 D - a provenance list of the triplesets with terms in Q

begin Q, P, D := empty;
 #levels, #terms := 0;
 nextLevel := T;
 while #levels < maxLevels and #terms < maxTerms do
 begin
 #levels := #levels + 1;
 currentLevel := nextLevel; /* currentLevel and nextLevel are queues of terms */
 nextLevel := empty;
 for each t from currentLevel do
 begin

 terms += terms;
 if (#terms > maxTerms) then exit;
 add t to Q;
 resourcesForEachDataset := (dataset,resourceList) := empty
 for each p from PR do
 begin
 /* use t on the processor p and save the results for each dataset */
 call (dataset,resultList) := p(t,P,D)
 add p to resourceForEachDataset
 end
 /* limiting results phase */
 resourcesFromTerm := empty
 for each dataset d from resourcesForEachDataset
 begin
 resultList := results from dataset D on term t;
 truncate resultList to contain just the first maxFromSet terms;
 resourcesFromTerm := concatenate(resultList, resourcesFromTerm);
 end
 truncate resourcesFromTerm to contain just the first maxFromTerm terms;
 nextLevel := concatenate(resourcesFromTerm, nextLevel);

 end /* t loop */

 end /* level loop */

 return Q, P, D;

end /* algorithm */

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

117

Annex C – A Brief Tutorial to Create a Processor in DIST-
CrawlerLD

DIST-CrawlerLD and its previous versions (Chapters 7 and 6, respectively)

have the ability to receive new custom-made processors. This annex will briefly

describe how to create a new processor in DIST-CrawlerLD.

A developer needs to take two steps to create a new processor on the tool:

(1) create a new class extending ProcessorActor class; and (2) register the newly

created class in ProcessorManager.

Creating a new processor

ProcessorActor is a class that saves all parameters specified by a user and

allows the developer to create any type of processor. It will not force the

developer to use a specific resource or anything related. The developer just has to

write code to handle the message Calculate (Figure 38).

Figure 38. Handling calculation messages.

If the developer wants to create a processor that makes queries in all

datasets in a distributed (if configured) way, they may simply extend the class

AbstractQuerierProcessor. All bundled processors extend this class, which is

capable of querying the LOD Cloud and returning the result in a simple way. To

extend this class, the user will need to implement the following methods:

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

118

• calculate – AbstractQuerierProcessor will tell when the

processor needs to start its processing. It can use the method

sendQuery(Query, Identifier),

sendQuery(Query,Identifier,Dataset), or sendQuery(Query,

Identifier, List<Dataset>) to send queries over datasets, using

what was shown in Section 7.3.

• processQueryResult – receives the result of a single tripleset and

allows the processor to handle the resultset appropriately.

• finishQueryResult – indicated that a query sent by the processor

(identified by identifier parameter) finished the processing on all

datasets.

Registering the processor.

Currently, this step is hardcoded and a developer needs to register by

changing the source code of ProcessorManager class. Figure 39 illustrates

how a developer should register the processor.

Figure 39. Registering a processor

Future versions of DIST-CrawlerLD will address how to simplify this

process by removing mandatory registration at ProcessorManager class.

DBD
PUC-Rio - Certificação Digital Nº 1921800/CA

