

Yohn Edison Polo Garzon

Retroanálise da Cortina Instrumentada da Ferrovia São Paulo - Santos (FEPASA - KM 74)

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel Co-Orientador: Prof. Pedricto Rocha Filho

Rio de Janeiro Julho de 2015

Yohn Edison Polo Garzon

Retroanálise da Cortina Instrumentada da Ferrovia São Paulo - Santos (FEPASA - KM 74)

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Celso Romanel
Orientador

Departamento de Engenharia Civil - PUC-Rio

Prof. Pedricto Rocha Filho

Co-Orientador

Departamento de Engenharia Civil - PUC-Rio

Prof. José Tavares Araruna Júnior

Departamento de Engenharia Civil - PUC-Rio

Prof. Fernando Saboya Albuquerque Júnior

Universidade Estadual do Norte Fluminense

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 20 Julho de 2015.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Yohn Edison Polo Garzon

Graduou-se em Engenharia Civil pela Universidade Nacional da Colômbia (Sede Manizales) em 2010. Ingressou no mesmo ano ao curso de especialização em Ruas e Transporte na mesma universidade. Ingressou no mestrado de engenharia civil em 2013, na Pontifícia Universidade Católica do Rio, desenvolvendo Dissertação na linha de pesquisa de Geotécnica Experimental.

Ficha Catalográfica

Garzon, Yohn Edison Polo

Retroanálise da Cortina Instrumentada da Ferrovia São Paulo - Santos (FEPASA - KM 74) / Yohn Edison Polo Garzon; Orientador: Celso Romanel; Co-orientador: Pedricto Rocha Filho. – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Civil, 2015.

(161) f.: il. (color.); 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015.

Inclui referências bibliográficas

Engenharia civil – Teses. 2. Instrumentação. 3.
 Estruturas de contenção. 4. Tirantes. 5. Eletroníveis. I.
 Romanel, Celso. II. Filho, Rocha Pedricto. III. Pontifícia
 Universidade Católica do Rio de Janeiro. Departamento de
 Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Primeiro agradeço a Deus pela vida e pela saúde, e por me dar tantas oportunidades maravilhosas na vida toda.

Para os meus pais Emilio e Gloria, quem com seu exemplo da vida criaram em mim os melhores valores como pessoa.

Para minha esposa Johana e minha filha Sofia, quem deixaram seu país e sua casa, para vir e acompanhar-me neste tempo, seu apoio foi essencial.

Ao professor Pedricto Rocha, obrigado pela oportunidade de trabalhar com você, sem dúvida sem seu apoio acadêmico não houvera sido possível a finalização de meu mestrado.

Ao professor Luis Gusmão pela sua orientação e ajuda no manejo dos eletroníveis e do sistema de aquisição de dados.

Aos professores da pós-graduação da PUC-Rio, que em cada aula entregam mais do que conhecimento, entregam sua experiência e qualidade de pessoas, obrigado por tudo o ensinado nesses anos.

Ao meu grande amigo Francisco Cruz, quem virou um anjo para nossa família, Deus abençoe sempre.

Aos meus caros amigos, Daniel Velez, Juan Manuel, Laura, Nelson, Juan Pablo, que com sua amizade, carinho e apoio, fizeram deste tempo, um tempo mais grato.

A todos os funcionários do Departamento de Engenharia Civil da PUC-Río, em especial à Rita Leite.

A CAPES e a PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Polo Garzon, Yohn Edison; Romanel, Celso; Rocha filho, Pedricto. Retroanálise da Cortina Instrumentada da Ferrovia São Paulo - Santos (FEPASA - KM 74). Rio de Janeiro, 2015. 161 p. Dissertação de Mestrado. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho apresenta um estudo sobre uma estrutura de contenção projetada para a duplicação da ferrovia FEPASA no Km 74 entre Santos e São Paulo, que consiste em uma cortina ancorada por tirantes. Essa estrutura foi instrumentada a fim de se medirem as cargas nos tirantes com uso de células de carga elétricas instaladas na cabeça dos mesmos. As medições de carga nos tirantes foram feitas durante os ensaios de recebimento, no momento da incorporação e também após a conclusão da obra. As cargas nos tirantes sofrem redução de seu valor no momento imediato a sua incorporação, durante a construção e após da data de terminação das obras da cortina. Constatou-se que houve perda de carga nos tirantes ao longo do tempo, chegando a 54% de perda em um deles. Enfatizando a importância da instrumentação de campo para compreender melhor o comportamento das estruturas, na parte inicial desta dissertação é apresentado um desenvolvimento teórico e calibração de dezesseis eletroníveis como proposta para a medição de deslocamentos horizontais em obras geotécnicas.

Palayras-chave

Instrumentação; Estrutura de contenção; Tirantes, Eletroníveis.

Abstract

Garzon, Yohn Edison Polo; Romanel, Celso (Advisor); Rocha filho, Pedricto (Co-Advisor). Backanalysis of the São Paulo - Santos Railway Anchored Wall (FEPASA - KM 74). Rio de Janeiro, 2015. 161 p.

Dissertação de Mestrado. Departamento de Engenharia Civil, Pontifícia

Universidade Católica do Rio de Janeiro.

This work presents a study about a retaining structure designed for the

duplication of the rail FEPASA on the 74th km between Santos and São Paulo.

This structure, an anchored retaining wall, was instrumented in the anchors heads

with strain gauges in order to monitor its loads. The load measurements occurred

during the performance test, locking and also after the works were concluded. A

decrease on anchors loads is noticed in the moment immediately after the locking,

during construction and after the works finished. It was observed that a loss of

load in the anchors occurred to a maximum of 54%. Highlighting the relevance of

field monitoring to better understand the structures behavior, in the first part of

this dissertation we present a theoretical background as well as the calibration of

sixteen electrolevels as a proposal for the measurement of horizontal

displacements in Geotechnical works.

Keywords

Instrumentation; Retaining wall; Anchors, Electrolevels.

Sumário

1 . Introdução	21	
1.1. Comentários gerais	21	
1.2. Objetivos	22	
1.3. Organização do trabalho	23	
2 . Revisão Bibliográfica	25	
2.1. Introdução	25	
2.2. Conceitos básicos em instrumentação	26	
2.3. Critérios para execução	30	
2.4. Frequência de leitura	33	
2.5. Medidores de deslocamentos	34	
2.5.1. Conceitos de Instrumentos	34	
2.5.2. Alguns equipamentos utilizados	37	
2.6. Cortinas Ancoradas	42	
2.6.1. Tirantes	43	
2.6.2. Modos de Ruptura em Cortinas Ancoradas	48	
2.6.3. Cálculo do Empuxo Sobre a Cortina	49	
2.6.4. Método de Costa Nunes e Velloso (1963)	53	
2.6.5. Análise da estabilidade global do sistema de contenção	54	
2.6.6. Capacidade de carga das ancoragens	57	
2.6.7. Deslocamentos em Estruturas de Contenção e Movimentos		
de Solo Associados	62	
2.6.8. Cargas em Tirantes	75	
3 . Eletroníveis: Montagem, princípio de funcionamento,		
calibração e sistema de aquisição de dados.	79	
3.1. Introdução	79	
3.2. Princípio básico de funcionamento dos eletroníveis	80	
3.3. Montagem		

3.4. Procedimento de calibração	84
3.4.1. Eletronível de referência	87
3.4.2. Eletroníveis A01 a A16	89
3.5. Sistema de aquisição de dados	91
3.5.1. Data logger	91
3.5.2. Sistema de Monitoramento de Eletroníveis	93
4 . Aspectos Gerais da Obra Estudada.	95
4.1. Cortina Ancorada	95
4.2. Tirantes Utilizados	98
4.2.1. Materiais	98
4.2.2. Montagem dos Tirantes	98
4.2.3. Instalação dos Tirantes	102
4.3. Sequência de construção	104
4.4. Caracterização do subsolo	106
4.5. Descrição Geral da Instrumentação da estrutura de	
Contenção	108
5 . Resultados e Análises.	112
5.1. Ensaios de Recebimento Característicos dos Tirantes.	112
5.1.1. Ensaios abaixo da "Linha C"	113
5.1.2. Ensaios pertos da "Linha A"	115
5.1.3. Ensaios acima da "Linha C".	117
5.1.4. Ensaios pertos da "Linha B".	118
5.2. Análises da Capacidade de Carga dos Tirantes	121
5.2.1. Método da NBR 5629 (2006)	121
5.2.2. Método de Ostermayer (1975)	123
5.2.3. Método de Bustamante e Doix (1985)	124
5.3. Comportamento dos Tirantes Instrumentados	125
5.3.1. Seção 34 da Cortina.	125
5.3.2. Seção 38 da Cortina.	127
5.3.3. Seção 45 da Cortina.	128
5.3.4. Seção 48 da Cortina.	130
5.3.5. Seção 51 da Cortina.	131

5.3.6. Seção 54 da Cortina.	133			
5.3.7. Seção 57 da Cortina.	135			
5.3.8. Seção 60 da Cortina.	136			
5.3.9. Seção 66 da Cortina.	138			
5.3.10. Seção 69 da Cortina.	139			
5.4. Comparação entre os valores de carga medidos e os teóricos				
encontrados na literatura.	141			
5.4.1. Verificação da Estabilidade pelo Método de Costa Nunes e				
Velloso (1963)	142			
5.4.2. Forças nos tirantes pelo diagrama de empuxo proposto por				
Terzaghi e Peck (1967) e pela FHWA (USA 1999).	143			
5.4.3. Retroanálise dos parâmetros de resistência				
6 . Conclusões e Sugestões.	151			
6.1. Conclusões	151			
6.2. Sugestões	153			
Referência s Bibliográficas	154			

Lista de Figuras

Figura 1. Diferencia entre exatidão e precisão (Dunnicliff 1988).	29
Figura 2. Transdutor pneumático fechado com dois tubos e leitura	
de fluxo de gás (Dunnicliff, 1988)	35
Figura 3. Esquema do sensor de corda vibrante (Dunnicliff, 1988)	35
Figura 4. Esquema de LVDT (Dunnicliff. 1988)	37
Figura 5. Extensômetro magnético (Gil <i>et. al.,</i> 2008)	38
Figura 6. Componentes do Extensômetro Horizontal de Hastas	
Múltiplas (Belitardo e Pereira, 2001, com modificações)	40
Figura 7. Principio de operação do inclinômetro (Dunnicliff, 1988)	42
Figura 8. Partes constituintes de um tirante (YASSUDA e DIAS,	
1996).	44
Figura 9. Modos de ruptura em cortinas ancoradas (STROM e	
EBELING, 2002).	49
Figura 10. Diagramas empíricos de Terzaghi e Peck (1967).	50
Figura 11. Distribuição de tensões sobre cortina multiescorada,	
proposto por Gaba <i>et al.</i> (2003).	52
Figura 12. Análise de Estabilidade pelo método de Costa Nunes e	
Velloso (GeoRio, 2000).	53
Figura 13. Tipos de ruptura na análise de estabilidade global em	
estruturas ancoradas (More, 2003).	54
Figura 14. Superfície de ruptura interna simplificada (Yassuda e	
Dias, 1996).	56
Figura 15. Capacidade de carga de ancoragens executadas em	
solos argilosos. (Ostermayer, 1975)	59
Figura 16. Capacidade de carga de ancoragens executadas em	
solos granulares. (Ostermayer, 1975)	59
Figura 17. Correlações empíricas para determinação de qs em	
areias e pedregulhos (Bustamante e Doix, 1985, apud More,	
2003).	61
Figura 18. Correlações empíricas para determinação de qs em	
siltes e argilas (Bustamante e Doix, 1985).	62

Figura 19. Movimentos na superficie do solo, devido a construção	
de cortina de estacas em argila rija: (a) movimentos horizontais;	0.5
(b) movimentos verticais (Gaba et al., 2003).	65
Figura 20. Comportamento de deslocamentos em estruturas de	
contenção ancoradas (Gaba et al., 2003).	66
Figura 21. Relação entre o fator de segurança contra	
levantamento de fundo, definido por Terzaghi (1943) e o máximo	
deslocamento horizontal da cortina (Mana e Clough, 1981).	67
Figura 22. Deslocamento lateral da parede como porcentagem da	
profundidade de escavação versus rigidez do sistema de suporte	
(Clough et al., 1989).	68
Figura 23. Máximos deslocamentos horizontais observados em	
cortinas para escavações em argila de Londres (St John et al.,	
1992).	69
Figura 24. Deslocamentos horizontais e verticais em paredes	
assentes em argila rija, devido à escavação em frente à cortina	
(Gaba <i>et al.</i> , 2003).	70
Figura 25. Deslocamentos verticais em paredes assentes em	
areia, devido à escavação em frente à parede (Gaba et al., 2003).	71
Figura 26. Variação do máximo deslocamento horizontal com a	
profundidade de escavação (Moorman, 2004).	72
Figura 27. Valores de recalques superficiais obtidos por Wang et	
al. (2010), plotados no gráfico proposto por Peck (1969).	73
Figura 28. Deslocamentos máximos laterais versus profundidade	
de escavação: (a) cortinas construídas pelo método de escavação	
de cima para baixo; (b) cortinas relativamente rígidas construídas	
pelo método de baixo para cima; (c) cortinas de estacas metálicas	
(Wang et al., 2010).	75
Figura 29. Distribuição de carga ao longo do bulbo do tirante,	
medida por Li et al. (1988).	76
Figura 30. Distribuição de carga ao longo do tirante, medida por	
Briaud et al., 1998, para carga de trabalho igual a 400kN.	77
Figura 31. Distribuição de carga ao longo do tirante, medida por	
Iten e Pzrin (2010); (a) 340 kN; (b) 400kN.	77

Figura 32. Rotação de um corpo rígido (Toledo, 2009)	79				
Figura 33. Vista do cilindro protetor (Dimensões em milímetros)					
Figura 34. Detalhe da parte interna do cilindro.	81				
Figura 35. Funcionamento do eletronível.	82				
Figura 36. Detalhe da variação da altura do liquido eletrolítico					
entre os eletrodos.	82				
Figura 37. Circuito elétrico de conexão dos eletroníveis com os					
condicionadores (Wha,1999).	83				
Figura 38. Curvas de sensibilidade dos eletroníveis					
(www.frederickscom.com)	83				
Figura 39. Barra de calibração dos eletroníveis (Laboratório PUC-					
Rio)	85				
Figura 40. Calibração dos eletroníveis utilizando o SME.	85				
Figura 41. Detalhe da fixação do eletronível à barra de calibração	86				
Figura 42. Detalhe do sistema de calibração do eletronível.	86				
Figura 43. Relação para as leituras do SME e Mini Data-logger					
para o eletronível de referência com valor médio de 3.67E-05	88				
Figura 44. Curvas de calibração para os eletroníveis A01 a A16	90				
Figura 45. Fatores de calibração dos eletroníveis A01 a A16	90				
Figura 46. Detalhes do mini data logger e da conexão com os					
eletroníveis.	92				
Figura 47. Vista dos equipamentos do Sistema de Monitoramento					
de Eletroníveis.	94				
Figura 48. Esquema da Cortina Ancorada. (Adaptado de Zeitoune,					
1982).	96				
Figura 49. Seção típica da Cortina Ancorada. (Adaptado de					
Zeitoune, 1982).	97				
Figura 50. Esquema do Tirante Tipo Utilizado. (Adaptado de					
Zeitoune, 1982).	99				
Figura 51. Seção Transversal do Tirante Tipo Utilizado. (Adaptado					
de Zeitoune, 1982).	100				
Figura 52. Detalhe "A" que apresenta o esquema do trecho					
ancorado dos tirantes. (Adaptado de Zeitoune, 1982).	101				

rigura 53. Seção geológico-geolechica no local de estudo.	
(Adaptado de Zeitoune, 1982).	107
Figura 54. Esquema de instrumentação de tirante durante a sua	
protensão (Dunnicliff, 1988).	108
Figura 55. Ensaio de recebimento do tirante 57D, carga x	
deslocamentos totais.	114
Figura 56. Repartição entre deslocamentos elásticos e plásticos	
do Tirante 57D, carga x deslocamentos totais.	114
Figura 57. Ensaio de recebimento do tirante 51D, carga x	
deslocamentos totais.	116
Figura 58. Repartição entre deslocamentos elásticos e plásticos	
do Tirante 51D, carga x deslocamentos totais.	116
Figura 59. Ensaio de recebimento do tirante 66C, carga x	
deslocamentos totais.	117
Figura 60. Repartição entre deslocamentos elásticos e plásticos	
do Tirante 66C, carga x deslocamentos totais.	118
Figura 61. Ensaio de recebimento do tirante 45A, carga x	
deslocamentos totais.	119
Figura 62. Repartição entre deslocamentos elásticos e plásticos	
do Tirante 45A, carga x deslocamentos totais.	120
Figura 63. Capacidade de carga das ancoragens média de 550	
para as condições do caso em estudo pelo Método de Ostermayer	
(1975)	123
Figura 64. Resistência ao cisalhamento na interface solo bulbo	
média de qs = 60 kPa para as condições do caso em estudo pelo	
Método de Bustamante e Doix (1985)	124
Figura 65. Curva Carga contra Tempo dos Tirantes	
instrumentados da Seção 34.	126
Figura 66. Perdas e Ganhos de Carga dos Tirantes	
instrumentados da Seção 34.	127
Figura 67. Curva Carga contra Tempo dos Tirantes	
instrumentados da Seção 38.	128
Figura 68. Perdas e Ganhos de Carga dos Tirantes	
instrumentados da Secão 38.	128

Figura	69.	Curva	Ca	ırga	con	ra	ı empo	aos	Tirantes	
instrum	entad	os da Seç	ão 4	45.						129
Figura	70.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão 4	45.						130
Figura	71.	Curva	Ca	ırga	conf	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão 4	48.						131
Figura	72.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão 4	48.						131
Figura	73.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão s	51.						133
Figura	74.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão t	51.						133
Figura	75.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão t	54.						134
Figura	76.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão t	54.						135
Figura	77.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão t	57.						136
Figura	78.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão t	57.						136
Figura	79.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão (30.						137
Figura	80.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão (30.						138
Figura	81.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão (66.						139
Figura	82.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrum	entad	os da Seç	ão (66.						139
Figura	83.	Curva	Ca	ırga	cont	ra	Tempo	dos	Tirantes	
instrum	entad	os da Seç	ão (69.						140
Figura	84.	Perdas	е	Gan	hos	de	Carga	dos	Tirantes	
instrumentados da Seção 69.									140	
Figura 85. Diagramas de pressão de terras propostos para areias.									144	

Figura 86. Diagrama aparente para estruturas com multiplos	
tirantes.	145
Figura 87. Envoltória de Forças medidas em campo e estimadas	
pelos Diagramas de empuxo propostos para a seção 57 pela	
FHWA e por Terzaghi e Peck (1967).	147
Figura 88. Envoltória de Forças medidas em campo e estimadas	
pelos Diagramas de empuxo propostos para a seção 45 pela	
FHWA e por Terzaghi e Peck (1967).	148
Figura 89. Valores retro analisados do coeficiente de empuxo	
lateral.	149
Figura 90. Valores retro analisados do ângulo de atrito mobilizado.	150

Lista de Tabelas

Tabela 1. Tipos de solo contido (Gaba <i>et al.</i> , 2003).	51
Tabela 2. Coeficientes de ancoragem kf (NBR 5629, 2006).	58
Tabela 3. Coeficiente de majoração do diâmetro do bulbo devido à	
injeção (BUSTAMANTE e DOIX, 1985, apud MORE, 2003).	61
Tabela 4. Fatores de calibração dos eletroníveis A01 a A16	91
Tabela 5. Sequência de ensaio de recebimento para os tirantes	
tipo 8ø8mm.	103
Tabela 6. Sequência de ensaio de recebimento para os tirantes	
tipo 10ø8mm.	103
Tabela 7. Tirantes que ficaram abaixo da "Linha C" da NBR 5629	
no gráfico de carga contra deformação.	115
Tabela 8. Tirantes que ficaram acima da "Linha C" da NBR 5629	
no gráfico de carga contra deformação.	118
Tabela 9. Tirantes que ficaram pertos da "Linha B" da NBR 5629	
no gráfico de carga contra deformação.	120
Tabela 10. Avaliação dos Parâmetros de Resistência e de	
deformabilidade em Função do SPT (correlações empíricas).	121
Tabela 11. Capacidade de cargas dos tirantes analisados para	
cada nível da cortina segundo o Método da NBR 5629 (2006)	123
Tabela 12. Forças finais nos tirantes e somatório em toneladas.	142
Tabela 13. Valores de carga nos tirantes utilizando os diagramas	
de empuxo propostos pelo FHWA.	147

Lista de Símbolos

Romanos

A Área da superfície potencial de ruptura

c Coesão do solo

De Diâmetro médio adotado para o trecho ancorado

Dp Diâmetro da perfuração do trecho ancorado

E Módulo de YoungFC Fator de calibração

FC_{MDL} Fator de calibração do eletronível de referência para o Mini Data-Logger

FC_{ref} Fator de calibração do eletronível de referência

FC_{SME} Fator de calibração para o SME

FS Fator de segurança
GF Fator de medição

h Espaçamento vertical entre os suportes da parede

H1 Profundidade do primeiro tirante

Hn+1 Profundidade inferior ao enésimo tirante

I Momento de inércia da área da seção da parede por metro

I1 Empuxo ativo atuante na cunha critica

la Empuxo ativo atuante na parede de contenção

kf Coeficiente de ancoragem

L Comprimento

Lb Comprimento do bulbo de ancoragem

Ll Comprimento do trecho livre
Lle Comprimento livre efetivo

LVDT Transformador variável diferencial linear

N_{SPT} Número de golpes do ensaio SPT

P Carga de pressão que estabiliza o corte

P Peso próprio da cunha

qs Resistência ao cisalhamento

R Resistência elétrica

RB Carga de reação na base da cortina

SME Sistema de Monitoramento de Eletroníveis

Su Resistência ao cisalhamento não drenada do solo

T Capacidade de carga do bulbo

T_H Componente horizontal da força do tirante

TL Carga total de pressão de terra

U Perímetro médio da seção transversal da ancoragem

W Peso da cunha critica

y Deflexão

Gregos

α Angulo de inclinação da ancoragem com a horizontal

β Coeficiente de majoração do diâmetro do bulbo devido à injeção

γ_w Peso específico da água

δ Angulo de atrito entre a parede e o solo

ΔL Variação de leitura dos eletroníveis

ΔL_{MDL} Variação de leitura dos eletroníveis no Mini Data Logger

ΔL_{SME} Variação de leitura dos eletroníveis no SME

ΔR Variação da resistência elétrica

ε Deformação

Ø Ângulo de rotação

θcr Inclinação da superfície potencial de ruptura

ΣMA Somatório dos momentos atuantes na massa de soloΣMR Somatório dos momentos resistentes na massa de solo

φ Angulo de resistência ao cisalhamento do solo