

Michel da Cunha Tassi

Estudo sobre recalques em camada de solo mole submetida a 18 anos de compressão unidimensional – o caso Terra Encantada

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Engenharia Civil pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: José Tavares Araruna Júnior Co-Orientador: Sandro Salvador Sandroni

> Rio de Janeiro Fevereiro de 2015

Michel da Cunha Tassi

Estudo sobre recalques em camada de solo mole submetida a 18 anos de compressão unidimensional - o caso Terra Encantada

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Tavares Araruna Júnior Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Sandro Salvador Sandroni Co-Orientador SEA – Sandroni Engenheiros Associados

Prof. Alberto de Sampaio Ferraz Jardim Sayão Departamento de Engenharia Civil – PUC-Rio

Prof. Ian Schumann Marques MartinsUniversidade Federal do Rio de Janeiro

Prof^a. Maria Esther Soares Marques Instituto Militar de Engenharia

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 10 de fevereiro de 2015.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Michel da Cunha Tassi

Graduou-se em Engenharia de Fortificação e Construção pelo Instituto Militar de Engenharia em 2007, ingressando no curso de mestrado em Engenharia Civil (Geotecnia) em 2012. Planejou e coordenou diversos serviços de terraplenagem e pavimentação. Áreas de interesse: geotecnia experimental, instrumentação geotécnica, aterro sobre solos moles e obras de terra.

Ficha Catalográfica

Tassi, Michel da Cunha

Estudo sobre recalques em camada de solo mole submetida a 18 anos de compressão unidimensional – o caso Terra Encantada / Michel da Cunha Tassi; orientador: José Tavares Araruna Júnior; co-orientador: Sandro Salvador Sandroni. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2015.

v., 247 f.: il.; 29,7 cm

Dissertação (Mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil - Teses. 2. Solos Muito Moles 3. Análise de Recalques 4. Ensaios de Laboratório 5. Ensaios de Campo 6. Instrumentação Geotécnica de Campo I. Araruna Júnior, J.T. (José Araruna). II. Sandroni, Sandro S. (Sandro Sandroni). III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título

CDD: 624

Agradecimentos

Ao Exército Brasileiro por ter me proporcionado a oportunidade de cursar o mestrado em tempo integral. Aos professores do Departamento de Engenharia de Fortificação e Construção do Instituto Militar de Engenharia, que confiaram em mim para representar a Instituição em um Estabelecimento de Ensino civil. Ao General Ratton, comandante do IME que viabilizou minha liberação para realizar este curso.

Ao Prof. Alberto Sayão, que em fins de 2011 me recebeu na PUC-Rio e abriu as portas do Departamento de Engenharia Civil para que eu pudesse me matricular no curso. Agradeço-o, ainda, por ter aceitado compor a banca examinadora.

Ao Prof. José Araruna, por ter aceitado participar desta pesquisa e por ter conseguido, junto ao Departamento de Química da PUC-Rio, a realização dos ensaios de caracterização de água.

Ao professor e orientador Sandro Sandroni, pela paixão contagiante pela geotecnia e por toda confiança em mim depositada para estudar um tema que lhe é tão caro. Agradeço pela oportunidade do convívio e pelas inúmeras discussões onde me senti plenamente à vontade para discordar e, com isso, absorver uma gama de conhecimentos práticos e teóricos que me trouxeram a um patamar diferenciado de compreensão do assunto.

Ao Prof. Ian Martins, da COPPE/UFRJ, de quem não tive oportunidade de ser aluno formal, no banco escolar, mas com quem passei a perceber nuances em Mecânica dos Solos até então inéditas para mim. Agradeço não só pela acolhida calorosa no Laboratório de Reologia e pelas longas horas de atenção a mim dispensadas, mas principalmente por ter criado um ambiente propício à absorção de conhecimentos em um nível dificilmente alcançado em sala de aula.

À Prof^a. Maria Esther, pelo auxílio nas questões administrativas do Instituto Militar de Engenharia e pelas diversas conversas sobre geotecnia que tivemos, onde tive oportunidade de sanar várias dúvidas e assimilar conceitos antes obscuros.

Ao Prof. Franklin Antunes, pela enorme boa vontade e disposição para transmitir seus profundos conhecimentos de geologia, que me forneceram uma visão mais abrangente sobre esse campo.

À Geoforma, especialmente ao Prof. Edgar Odebrecht, pela realização de todos os ensaios de prospecção, fornecimento de tubos amostradores e coleta de amostras indeformadas desta dissertação. Ao Fernando Mántaras, pela preocupação com a qualidade dos ensaios de piezocone e pelos conhecimentos compartilhados sobre a prática e a teoria do ensaio.

À Geoprojetos pelo empréstimo do nível óptico empregado no início do trabalho e por ter designado o Eng. Divalter Melo para me apoiar em campo durante a fase inicial da pesquisa, pessoa a quem faço um agradecimento especial pela atenção que sempre dedicou a mim em diversas oportunidades, muitas delas abrindo mão de seu horário de lazer.

Ao Departamento de Engenharia Cartográfica do Instituto Militar de Engenharia, pelo empréstimo do nível óptico empregado ao longo desta pesquisa, e em especial ao Eduardo e ao Marco, que com profissionalismo, competência e boa vontade fizeram o levantamento planialtimétrico do terreno aqui estudado.

Aos técnicos Rogério e Alex, do Departamento de Engenharia Civil da PUC-Rio, que me acompanharam ao campo para instalar o poço de monitoramento e coleta de água, e por terem se disponibilizado para me auxiliar em diversas ocasiões.

Aos laboratoristas Amauri, do Laboratório de Geotecnia e Meio Ambiente da PUC-Rio, Carlinhos e "Luizão", do laboratório de Geotecnia da COPPE/UFRJ, pela paciência e pelos ensinamentos transmitidos durante a execução dos ensaios de laboratório desta dissertação.

Aos colegas Vítor Aguiar e Diego Silva, da COPPE/UFRJ, pela recepção no Laboratório de Reologia, pelo auxílio nas leituras dos ensaios de longo prazo e pelo rodízio nas tortuosas trocas de ar condicionado necessárias ao bom funcionamento do laboratório. Ao colega Fernando Azevedo, da PUC-Rio, pelo valioso apoio em campo em tarefas atinentes a esta pesquisa.

À equipe da Biblioteca da PUC-Rio, em particular ao Diógenes, que no decorrer do curso conseguiu mais de 70 artigos científicos por mim solicitados.

À Rita, secretária do DEC, pela grande paciência e boa vontade na resolução das questões administrativas da PUC-Rio.

À Vice Reitoria para Assuntos Acadêmicos (VRAC) pela concessão da bolsa de isenção de pagamento que possibilitou a realização deste curso.

E, finalmente, à minha querida Carla, por toda a compreensão pelos incontáveis momentos de ausência, pelo incentivo diuturno ao longo de todo o trabalho e por ter vibrado com os resultados obtidos em cada etapa desta pesquisa tanto quanto (ou mais do que !) eu.

Resumo

Tassi, Michel da Cunha; Araruna Júnior, José Tavares (Orientador); Sandroni, Sandro Salvador (Co-orientador). **Estudo sobre recalques em camada de solo mole submetida a 18 anos de compressão unidimensional – o caso Terra Encantada**. Rio de Janeiro, 2014. 247p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo do presente trabalho é estudar a compressibilidade de um aterro de grandes dimensões construído há 18 anos na Barra da Tijuca (Rio de Janeiro) sobre de solo extremamente mole com aproximadamente 4 metros de espessura, onde foram observados recalques pós-construtivos de grande magnitude. A espessura constante do aterro e pouca variabilidade de espessura da camada mole envolvida permitem assumir condições de compressão próximas unidimensional. Para o estudo, foi instalada instrumentação para medição de recalques por nivelamento geométrico de precisão. Um procedimento específico foi desenvolvido para possibilitar a medição de baixíssimas variações no desnível. Esse acompanhamento transcorreu por um período de 21 meses e mostrou que o aterro lançado 18 anos atrás continua em compressão. Foi realizada, também, uma campanha de ensaios de campo, contemplando CPTu (piezocone), dissipação e palheta, ensaios de caracterização completa em laboratório, incluindo ensaios químicos e mineralógicos, e ensaios oedométricos de longa duração em amostras indeformadas tipo Shelby. Por fim, com base em todas essas informações, procurou-se estimar os recalques ainda por ocorrer, especulando, ao final, sobre o tempo necessário para a estabilização dos recalques.

Palavras-chave:

Solos moles; compressibilidade; adensamento; medição de recalques; nivelamento geométrico; ensaios de laboratório; ensaios de campo.

Abstract

Tassi, Michel da Cunha; Araruna Júnior, José Tavares (Advisor); Sandroni, Sandro Salvador (Co-Advisor). **Settlement study on a soft soil layer under 18 years of one-dimensional consolidation – the Terra Encantada case**. Rio de Janeiro, 2014. 247p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The aim of this work is to study the compressibility of a large dimension embankment built 18 years ago at Barra da Tijuca (Rio de Janeiro) over a layer of extremely soft soil with thickness of about 4 meters, where large post-constructive settlements were observed. The constant thickness of the embankment and the low variability of the soft soil thickness allow one dimensional condition to be assumed. Geotechnical instrumentation has been installed for monitoring settlements by optical levelling. A specific procedure has been developed which allows measurement of very small settlement changes. Monitoring took place over 21 months and showed that the embankment built 18 years ago is still settling. Field tests have been carried out comprising CPTu with dissipation, vane shear test. Characterization tests, including chemical and mineralogical, and oedometric consolidation long term tests on undisturbed Shelby tube samples have also been carried out. Based on the collected data, an attempt at forecasting future settlements has been carried out including speculations about the time needed for the stabilization of the settlements.

Keywords:

Soft soils; compressibility; consolidation; measurement of settlements; optical levelling; laboratory tests; field tests.

Sumário

1. Introdução	17
1.1. Motivação e objetivo do trabalho	17
1.2. Organização da dissertação	19
2. Revisão bibliográfica	21
2.1. Considerações iniciais	21
2.2. Teoria do adensamento	21
2.2.1. Teoria de adensamento de Terzaghi & Frölich (1936) – teoria clássica	22
2.2.2. Implicações das grandes deformações	25
2.2.2.1. Submersão do aterro	25
2.2.2.2. Diminuição da distância de drenagem	26
2.3. Obtenção de parâmetros	27
2.3.1. A partir de ensaios de laboratório	28
2.3.2. A partir de ensaios de campo	29
2.3.2.1. Compressibilidade virgem	29
2.3.2.2. Tensão de sobreadensamento	30
2.3.2.3. Coeficiente de adensamento	31
2.4. Compressão secundária	34
2.4.1. Aspectos gerais	34
2.4.2. Magnitude da compressão secundária	35
2.5. Método de Asaoka	39
2.6. Casos de observação de recalque por longo período	42
3. Descrição do local	47
3.1. Histórico	47
3.2. Situação após o asfaltamento	50
3.3. Acompanhamento de recalques no início da obra	52
3.4. Ensaios executados antes da obra	55
3.5. Definição dos locais de estudo	58
3.6. Estudos desenvolvidos em terrenos vizinhos	60
4. Atividades em campo	65
4.1. Considerações iniciais	65
4.2. Ensaios de piezocone (CPTu) e ensaios de dissipação	66
4.2.1. Ensaios realizados	67
4.2.2. Cálculo do coeficiente de adensamento	73

76 78 81 82
81
_
82
84
84
84
85
86
86
86
88
89
90
90
94
95
97
100
102
102
107
108
128
137
137
139
141
141
144
144
144
145
146
147

6.2.3. Mira	148
6.2.4. Sistema tripé-mira	149
6.3. Procedimento de medição	150
6.3.1. Primeiro momento	150
6.3.2. Segundo momento	153
6.4. Resultados das medições	156
6.4.1. Local 1	156
6.4.2. Local 3	158
6.4.3. Local 4	160
6.4.4. Coerência dos resultados	161
6.5. Erros	162
6.5.1. Erro de colimação vertical	163
6.5.2. Erro de curvatura terrestre	164
6.5.3. Erro de refração e reverberação	165
6.5.4. Erro de verticalidade do eixo principal	165
6.5.5. Erro de verticalidade da mira	166
6.5.6. Erro de pontaria	167
6.5.7. Erro de índice e graduação da mira	168
6.5.8. Erro devido à variação de temperatura	169
6.6. Incerteza da medição	170
6.7. Resumo das leituras	173
7. Análise dos resultados	174
7.1. Qualidade das amostras indeformadas	174
7.2. Obtenção de parâmetros do solo virgem	180
7.2.1. A partir dos ensaios da obra	180
7.2.2. A partir de comparação com ensaios em terrenos próximos	188
7.2.2.1. Ensaios de laboratório	189
7.2.2.2. Ensaios de campo	189
7.2.3. Modelo geotécnico do solo virgem	194
7.3. Obtenção de parâmetros do solo após o carregamento	196
7.3.1. A partir dos ensaios de laboratório	196
7.3.2. A partir dos ensaios de campo	197
7.3.2.1. Tensão de sobreadensamento	197
7.3.2.2. Coeficiente de adensamento	200
7.3.3. Modelo geotécnico do solo após carregamento	201
7.4. Obtenção de parâmetros a partir dos dados de instrumentação	201
7.4.1. Recalque anterior ao início das leituras	202
7.4.2. Coeficiente de adensamento	204

7.4.3. Extrapolação do recalque para a data do asfaltamento	205
7.4.4. Curva de recalque total	206
7.4.5. Coeficiente de compressão secundária (Ca)	208
7.5. Análise da magnitude dos recalques – compressão	212
7.5.1. Recalque final (primário + secundário)	212
7.5.1.1. Através de formulações específicas	212
7.5.1.2. Através da curva de compressão reconstituída	215
7.5.1.3. Através do método de Asaoka	217
7.5.2. Recalque atual	219
7.5.2.1. Pelas medições de recalque desde o início da obra	219
7.5.2.2. Pela variação de índice de vazios	220
7.5.2.3. Pela posição da base da camada mole e do nível d'água	221
7.5.3. Considerações sobre a magnitude dos recalques	223
7.6. Análise do tempo dos recalques – adensamento	227
7.6.1. Dissipação dos excessos de poropressão	227
7.6.2. Estabilização dos recalques	232
7.6.2.1. A partir da velocidade de recalques atual	233
7.6.2.2. Através da equação logarítmica ajustada às medições de recalque	233
7.6.2.3. Pela desaceleração da velocidade de deformação	234
7.6.3. Considerações sobre o adensamento	235
7.7. Considerações finais	236
8. Conclusões e sugestões	237
8.1. Conclusão	237
8.2. Sugestão para pesquisas futuras	239
Referências Bibliográficas	241

Lista de Símbolos

Romanos

a	coeficiente angular do ajuste (no método de Asaoka)
b	coeficiente linear do ajuste (no método de Asaoka)
C_{a}	Relação de áreas do tubo amostrador
C_{i}	Relação de folga interna do tubo amostrador
C_{α}	Coeficiente de compressão secundária
C_c	Índice de compressão do solo
C_{r}	Índice de recompressão do solo
$C_{\rm s}$	Índice de descompressão do solo
CR	Razão de compressão virgem
D	Diâmetro da palheta
D_b	Diâmetro do bico do tubo amostrador
D_{e}	Diâmetro externo do tubo amostrador
D_{i}	Diâmetro interno do tubo amostrador
c_h	Coeficiente de adensamento horizontal
$c_{h \; piezo}$	Coeficiente de adensamento calculado pelo ensaio CPTu
c_{v}	Coeficiente de adensamento vertical
dz	Espessura da subcamada considerada (na fórmula de Bjerrum)
e	Índice de vazios
e_0	Índice de vazios inicial
f_s	Atrito da luva do cone
G_{s}	Densidade real dos grãos
H_{t}	Desnível medido em "t"
H_{at}	Altura de aterro
H_0	Espessura inicial da camada em adensamento
H_{d}	Distância de drenagem
I_r	Índice de rigidez do solo
IP	Índice de plasticidade
k_{h}	Coeficiente de permeabilidade horizontal
$k_{\rm v}$	Coeficiente de permeabilidade vertical
K_1, K_2	Fatores de correlação empíricos para tensão de sobreadensamento
	(ensaio CPTu)

 \mathbf{z}

L Comprimento da mira LL Limite de liquidez LP Limite de plasticidade M Torque máximo – ensaio de palheta Coeficiente de deformação volumétrica m_{v} Coeficiente angular do ajuste (método da raiz do tempo) m **OCR** Razão de sobre-adensamento tensão vertical efetiva inicial no centro da subcamada (Bjerrum) p_0 tensão de sobreadensamento no centro da subcamada (Bjerrum) p_c Resistência de ponta – ensaio CPTu q_c Resistência de ponta corrigida – ensaio CPTu q_t Razão entre a compressão primária e a compressão total r R Raio do cone (CPTu) RR Razão de recompressão do solo S_{11} Resistência não drenada Resistência não drenada obtida no ensaio de palheta S_{u palheta} T Temperatura T_{v} Fator tempo vertical T^* Fator tempo modificado – interpretação dos dados de dissipação T^* Fator tempo modificado – para grandes deformações Espessura da parede do tubo amostrador t t Tempo Tempo para ocorrência do adensamento primário t_{100} Tempo para ocorrência do adensamento primário t_p **TMO** Teor de matéria orgânica U Excesso de poro-pressão normalizado $U_{\rm v}$ Grau de adensamento vertical médio

U Excesso de poro-pressão normalizado

U_v Grau de adensamento vertical médio

u_e Excesso de poro-pressão no tempo t

u₀ Excesso de poro-pressão inicial

u₂ Poro-pressão na base do cone – ensaios de piezocone

z Distância vertical de um ponto ao topo da camada em adensamento

Quantidade de subcamadas (na fórmula de Bjerrum)

Gregos

α	Coeficiente de dilatação térmica linear
α	Parâmetro adimensional da correlação de Mayne e Mitchell
Δ	Indica variação no módulo de parâmetros
$\epsilon_{ m v}$	Deformação vertical
$\mathring{\boldsymbol{\epsilon}}_v$	Velocidade de deformação vertical (o mesmo que dε/dt)
ι	Incerteza associada ao processo de nivelamento geométrico
γ	Peso específico do solo
γ_{aterro}	Peso específico do aterro
γ_{nat}	Peso específico natural do solo
γ_{sat}	Peso específico saturado do solo
$\gamma_{\rm w}$	Peso específico da água
γ_{sub}	Peso específico submerso do solo
μ	fator de correção de Bjerrum
μ	Média da amostra
ρ	Recalque total
$\rho_{\rm f}$	Recalque final
ρ_{pf}	Recalque primário final
ρ_{sf}	Recalque secundário final
σ	Desvio padrão da amostra
σ_{v}	Tensão vertical total
σ'_{v0}	Tensão vertical efetiva inicial de campo
σ'_v	Tensão vertical efetiva
σ'_p	Tensão de sobreadensamento
θ	Inclinação (em graus) da mira falante com a vertical
ω	Teor de umidade do solo

Em um jantar, muitas décadas atrás, pediu-se ao físico Robert W. Wood que respondesse ao brinde: "À física e à metafísica.". [...] Wood respondeu aproximadamente o seguinte: o físico tem uma ideia. Quanto mais pensa nela, mais sentido lhe parece que tem. Ele consulta a literatura científica. Quanto mais lê, mais promissora a ideia se torna. Assim preparado, vai ao laboratório e concebe um experimento para comprová-la. [...] Ao final de todo seu trabalho, depois de uma minuciosa experimentação, verifica-se que a ideia não tem valor. Assim, o físico a descarta, libera sua mente da confusão do engano e segue em frente para alguma outra coisa. A diferença entre a física e a metafísica, concluiu Wood enquanto erguia sua taça, [...] é que a metafísica não tem laboratório.

Carl Sagan, O mundo assombrado pelos demônios – a ciência como uma vela na escuridão