

Ian Monteiro Nunes

Agrupamento de Registros Textuais Baseado em Similaridade Entre Textos

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Informática da PUC-Rio como requisito parcial para obtenção do título de Mestre em Informática. Aprovada pela Comissão Examinadora abaixo assinada.

Orientador: Prof. Ruy Luiz Milidiú

Rio de Janeiro

Setembro de 2008

Ian Monteiro Nunes

Agrupamento de Registros Textuais Baseado em Similaridade Entre Textos

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre pelo Programa de Pósgraduação em Informática do Departamento de Informática do Centro Técnico e Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ruy Luiz Milidiú

Orientador

Departamento de Informática - PUC-Rio

Prof. Marco Antonio Casanova

Departamento de Informática – PUC-Rio

Prof. Rubens Nascimento Melo

Departamento de Informática - PUC-Rio

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de janeiro, 04 de abril de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ian Monteiro Nunes

Graduou-se em Engenharia de Computação na PUC-Rio em 2003. Desenvolveu diversos sistemas para o meio corporativo, sendo hoje usados por empresas de abrangência nacional. Responsável pela área de pesquisa e desenvolvimento da empresa Dínamo DM desde 2004.

Ficha catalográfica

Nunes, Ian Monteiro

Agrupamento de registros textuais baseado em similaridade entre textos / Ian Monteiro Nunes ; orientador: Ruy Luiz Milidiú. – 2008.

69 f.; 30 cm

Dissertação (Mestrado em Informática)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

Informática – Teses. 2. Aprendizado de máquina. 3.
 Mineração de textos. 4. Deduplicação. 5. Recuperação de informação. I. Milidiú, Ruy Luiz. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III Título.

CDD: 004

Agradecimentos

Aos meus pais, Ivan e Isabel, por todo carinho, atenção, amor, apoio, paciência e tudo mais ao longo de toda a minha vida.

Ao meu orientador professor Ruy Luiz Milidiú pela parceria, disposição e ensinamentos em todas as etapas deste trabalho.

Um agradecimento especial ao meu amigo Julio Brafman por toda sua colaboração no desenvolvimento deste trabalho.

Aos meus amigos Christian Nunes, Lucas Sigaud e Eduardo Gouveia por todas as discussões e ajuda dispensada a este trabalho.

Aos professores que prontamente aceitaram participar da comissão examinadora.

À PUC-Rio pelo auxílio e estrutura fornecidos, sem os quais este trabalho não poderia ter sido realizado.

Ao professor Marcus Poggi por toda a orientação e ensinamentos ao longo de toda a minha vida acadêmica.

Aos professores e funcionários do Departamento de Informática.

A todos os amigos que direta ou indiretamente participaram deste trabalho, mesmo que não tenham sido citados nominalmente, sou igualmente grato.

Resumo

Nunes, Ian Monteiro; Milidiú, Ruy Luiz. **Agrupamento de Registros Textuais Baseado em Similaridade Entre Textos**. Rio de Janeiro, 2008, 69p. Dissertação de Mestrado. Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro

O presente trabalho apresenta os resultados que obtivemos com a aplicação de grande número de modelos e algoritmos em um determinado conjunto de experimentos de agrupamento de texto. O objetivo de tais testes é determinar quais são as melhores abordagens para processar as grandes massas de informação geradas pelas crescentes demandas de *data quality* em diversos setores da economia. O processo de deduplicação foi acelerado pela divisão dos conjuntos de dados em subconjuntos de itens similares. No melhor cenário possível, cada subconjunto tem em si todas as ocorrências duplicadas de cada registro, o que leva o nível de erro na formação de cada grupo a zero. Todavia, foi determinada uma taxa de tolerância intrínseca de 5% após o agrupamento. Os experimentos mostram que o tempo de processamento é significativamente menor e a taxa de acerto é de até 98,92%. A melhor relação entre acurácia e desempenho é obtida pela aplicação do algoritmo K-Means com um modelo baseado em trigramas.

Palavras-chave

Aprendizado de máquina; mineração de textos; deduplicação; recuperação de informação.

Abstract

Nunes, Ian Monteiro; Milidiú, Ruy Luiz. **Clustering Text Structured Data Based on Text Similarity**. Rio de Janeiro, 2008, 69p. MSc. Dissertation. Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

This document reports our findings on a set of text clustering experiments, where a wide variety of models and algorithms were applied. The objective of these experiments is to investigate which are the most feasible strategies to process large amounts of information in face of the growing demands on data quality in many fields. The process of deduplication was accelerated through the division of the data set into individual subsets of similar items. In the best case scenario, each subset must contain all duplicates of each produced register, mitigating to zero the cluster's errors. It is established, although, a tolerance of 5% after the clustering process. The experiments show that the processing time significantly lower, showing а 98.92% precision. The best accuracy/performance relation is achieved with the K-Means Algorithm using a trigram based model.

Keywords

Machine learning; text mining; deduplicate; information retrieval.

Sumário

1 IN	ITRODUÇÃO	13
2 FI	RAMEWORK PARA APRENDIZADO DE MÁQUINA	17
2.1.	PROCESSO, CARACTERÍSTICAS E BENEFÍCIOS	17
2.2.	DESCRIÇÃO DAS ETAPAS DO PROCESSO	19
2.2.1.	LIMPEZA	19
2.2.2.	Validação	20
2.2.3.	PADRONIZAÇÃO	22
2.2.4.	QUALIFICAÇÃO	25
2.2.5.	SEGMENTAÇÃO	26
2.2.6.	DEDUPLICAÇÃO	28
3 AI	PRENDIZADO DE MÁQUINA - CONCEITOS BÁSICOS	30
4 S	OLUÇÕES	32
4.1.	ESTRATÉGIAS	32
4.1.1.	SEM PARTICIONAMENTO	32
4.1.2.	COM PARTICIONAMENTO	32
4.2.	BASE VERDADE	33
4.3.	BASE DE TESTE	33
4.4.	ERRO	33
4.5.	ESTRATÉGIA VETORIAL	34
4.5.1.	AGRUPAMENTOS	34
4.5.1.	1. Algoritmos	34
4.5.1.	1.1. K-Means	34
4.5.1.	1.1.1. Descrição	34
4.5.1.	1.1.2. Pseudocódigo	35
4.5.1.	1.2. K-Medoid	35
4.5.1.	1.2.1. Descrição	35
4.5.1.	1.2.2. Pseudocódigo	36
4.5.1.	1.3. GNG	36
4.5.1.	1.3.1. Descrição	36
4.5.1.	1.3.2. Pseudocódigo	38
4.5.2.	REPRESENTAÇÃO	39
4.5.2.	1. Completa	39
4.5.2.	2. Tipos de token	39

4.5.2.2.1. Caractere	.39
4.5.2.2.2. Digrama	.40
4.5.2.2.3. Trigrama	.40
4.5.2.3. Pesos	.40
4.5.2.4. Tamanhos	.41
4.5.2.5. Heurísticas Lingüísticas	.41
4.5.3. EXPERIMENTOS	. 43
4.5.3.1. <i>Corpus</i>	.43
4.5.3.2. Metodologia	.44
4.5.3.2.1. Primeira etapa	.44
4.5.3.2.2. Segunda etapa	.47
4.5.3.3. Resultados	48
4.5.3.4. K-Means	49
4.5.3.5. GNG	52
4.5.3.6. K-Medóide	54
4.6. ESTRATÉGIA NÃO-VETORIAL	54
4.6.1. AGRUPAMENTO	. 55
4.6.1.1. Algoritmos	55
4.6.1.1.1. Modóide	55
4.6.1.1.2. Medóide	55
4.6.1.1.2.1. Pseudocodigo	56
4.6.2. REPRESENTAÇÃO	56
4.6.3. CENTRÓIDE	56
4.6.3.1. Seleção estatística	56
4.6.3.1.1. Moda posicional	56
4.6.3.1.1.1. Moda do registro inteiro	59
4.6.3.1.1.2. Moda de cada palavra e média de palavras	60
4.6.3.1.2. Medóide	61
4.6.3.1.2.1. Aleatório	61
4.6.3.1.2.2. Múltiplos	61
4.6.3.1.3. Combinando Medóide e Modóide	61
4.6.3.2. Medidas de confiança	62
4.6.3.3. Heurísticas Lingüísticas	62
4.6.4. EXPERIMENTOS	62
4.6.4.1. Metodologia	.62
4.6.4.2. Resultados	63
4.6.4.2.1 K-Modóide	. 63

4.6	5.4.2.2. K-Modóide híbrido com K-Medóide	.64
5	RESULTADO FINAL	65
6	CONCLUSÕES	66
7	OS PRÓXIMOS PASSOS	67
8	REFERÊNCIAS	.68

Índice de tabelas

Tabela 1: Tempos para comparação dois-a-dois	15
Tabela 2: Identificação de termos impróprios e/ou obscenos	19
Tabela 3: Evolução da validação dos dados	21
Tabela 4: Endereços validados após tratamento	22
Tabela 5: Endereços sem validação	22
Tabela 6: Padronização de unidades monetárias e de medidas	23
Tabela 7: Padronização de veículos	24
Tabela 8: Qualificação	26
Tabela 9: Deduplicação	29
Tabela 10: Exemplo de representação completa	39
Tabela 11: Tokens por caractere.	39
Tabela 12: Tokens por digrama.	40
Tabela 13: Tokens por trigrama.	40
Tabela 14: Pesos para caracteres inicial e final	41
Tabela 15: Diferentes pesos até o centro	41
Tabela 16: Fonemas do português brasileiro	43
Tabela 17: Taxas de erro da primeira rodada da primeira etapa	45
Tabela 18: Taxas de erro da segunda rodada da primeira etapa	45
Tabela 19: Resultados para K-Means com caracteres como tokens	49
Tabela 20: Resultados para K-Means com digramas como tokens	50
Tabela 21: Resultados para K-Means com trigramas como tokens	51
Tabela 22: Resultados para GNG com caracteres como tokens	52
Tabela 23: Resultados para GNG com digramas como tokens	52
Tabela 24: Resultados para GNG com trigramas como tokens	53
Tabela 25: Resultados para K-Medóide	54
Tabola 26: Dados para evemple	57

Tabela 27: Matriz de freqüência total	57
Tabela 28: Matriz de freqüência para a primeira palavra	58
Tabela 29: Matriz de freqüência para segunda palavra	58
Tabela 30: Moda de todo o registro – dados originais	59
Tabela 31: Moda de todo o registro – novos dados	59
Tabela 32: Dados para exemplo	60
Tabela 33: Matriz de freqüências	60
Tabela 34: Resultados obtidos pelo K-Modóide	63
Tabela 35: K-Modóide híbrido com K-Medóide	64
Tabela 36: Resultado final	65

Índice de figuras

Figura 1: CRM no mercado brasileiro	.14
Figura 2: Data quality	18
Figura 3: Padronização de nomes de universidades	24
Figura 4: Resultado da Padronização de cargos	25
Figura 5: Ação segmentada de venda	28
Figura 6: Erro	33
Figura 7: Pseudocódigo para o <i>K-Means</i>	35
Figura 8: Pseudocódigo para o K-Medóide	36
Figura 9: Pseudocódigo para o GNG original pelo autor	38
Figura 10: Pseudocódigo para o K-Modóide	56