2 Mecânica da Fratura

Este capítulo destina-se a apresentar os conceitos básicos da Mecânica da Fratura. Desta forma, quatro seções são apresentadas. A primeira seção apresenta os primeiros estudos na Mecânica da Fratura. A segunda seção apresenta o fator de intensidade de tensão, parâmetro importante para a MFLE. A terceira seção aborda três novos parâmetros na MF, parâmetros esses que deram origem a MFEP, o campo HRR, a integral *J* e o CTOD. A quarta seção apresenta as ideias iniciais da MFC propostas por Dugdale e Barenblatt, a extensão das ideias iniciais da MFC para modelos numéricos juntamente com alguns modelos numéricos considerados importantes para a construção desta nova área da MF.

2.1 O Início da Mecânica da Fratura

A Mecânica da Fratura teve início com Inglis (1913), que estudou entalhes elípticos em placas planas. Nesse trabalho, Inglis obteve o fator de concentração de tensão (K_r). Quando o raio da ponta do entalhe tende a zero ($r \rightarrow 0$), temse aí a definição teórica de trincas, cujo campo de tensões tende ao infinito em suas pontas.

Griffith (1920), estudando o mesmo problema de Inglis (1913) utilizou um princípio energético para resolver o problema, mas ignorou a singularidade do modelo matemático. Chegando então a definição de Taxa de Alívio da Energia Potencial, conforme mostra a Equação (2.1).

$$G = -\frac{\partial E_P}{\partial A}$$
(2.1)

onde:

Irwin (1957) chamou G de força de extensão da trinca. Esse parâmetro é um dos pilares da MFLE (Castro e Meggiolaro, 2009). O cálculo analítico de G requer uma análise global das tensões e deformações em todos os pontos da peça, o que normalmente não é uma tarefa trivial.

2.2 A Mecânica da Fratura Linear Elástica

Westergaard (1939) apresentou uma função de tensão a qual resolvia o problema de uma placa infinita carregada bi-axialmente (Placa de Griffith). Esta mesma função foi utilizada por Irwin (1957) para introduzir o conceito do Fator de Intensidade de Tensão (K), segundo a Equação (2.2):

$$\sigma_{ij} = \frac{K_I}{\sqrt{2\pi r}} g_{ij}(\theta) \tag{2.2}$$

A obtenção da expressão do K_I para a placa de Griffith foi obtida independentemente por Williams (1957), que usou o primeiro termo de uma série trigonométrica com infinitos termos, e por Irwin (1957) que utilizou uma função de tensão, que ficou conhecida como função de tensão de Westergaard. O campo de tensões obtido a partir de K_I é mostrado na Equação (2.3):

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = \frac{K_{I}}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \begin{cases} 1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \\ 1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) \end{cases}$$
(2.3)

As equações (2.2) e (2.3) mostram o comportamento do campo de tensões em qualquer corpo trincado, solicitado em modo I de carregamento, a partir do valor de K_I .

De maneira geral, a ocorrência das formas básicas de deformação na propagação de trincas, chamadas modos fundamentais de fratura, depende do tipo de solicitação à qual a fissura é submetida. Cada modo está relacionado a um fator de concentração de tensão (Figura 2.1).

Figura 2.1: Modos básicos de deformação de uma trinca.

A relevância de cada modo de fratura no processo de propagação depende da resistência que o material oferece aos esforços causados por cada um dele. Para cada modo de ruptura a Equação (2.2) pode ser decomposta nas seguintes formas:

$$\sigma_{ij}^{I} = \frac{K_{I}}{\sqrt{2\pi r}} g_{ij}^{I}(\theta)$$
(2.4)

$$\sigma_{ij}^{II} = \frac{K_{II}}{\sqrt{2\pi r}} g_{ij}^{II}(\theta)$$
(2.5)

$$\sigma_{ij}^{III} = \frac{K_{III}}{\sqrt{2\pi r}} g_{ij}^{III}(\theta)$$
(2.6)

onde cada uma das equações depende da distância radial da ponta r, do ângulo θ e dos seus respectivos fatores de intensidade de tensão, K_I , K_{II} e K_{III} .

Evidentemente é muito difícil um corpo vir a fraturar em decorrência de um único modo de fratura, sendo mais comum que a fratura ocorra pela superposição de dois ou mais modos puros, caracterizando assim o modo misto de fratura (Figura 2.2).

Figura 2.2: Fratura sob modo misto I-II: (a) configuração de carregamento; (b) tensões atuantes na fratura (Whittaker *et al.* 1992).

No problema de modo misto, segundo a MFLE, o valor da tensão total é a soma das contribuições individuais de cada componente de tensão.

$$\sigma_{ij}^{(total)} = \sigma_{ij}^{(I)} + \sigma_{ij}^{(II)}$$
(2.7)

A Equação (2.7) é decorrente da superposição linear. Assim como a tensão, a energia total liberada no processo de fratura é dada por:

$$G_C = G_{IC} + G_{IIC} \tag{2.8}$$

A utilização de K para representar o campo de tensões só é válida se a zona plástica for relativamente pequena quando comparada com as outras dimensões da peça, por exemplo, o tamanho da trinca.

Smith (1975) enfatizou que o uso de K para representar a intensidade do campo de tensões só é válido a partir de certa distância da ponta da trinca, pois muito próximo surge a singularidade. Assim, o uso do fator de intensidade de tensão se torna inadequado para determinar o estado de tensões na vizinhança bem próxima da ponta da trinca.

2.3 A Mecânica da Fratura Elasto-Plástica

Com as limitações que a MFLE apresentou em relação à sua formulação e até mesmo às singularidades existentes, tornou-se necessária uma nova área na MF com o intuito de ser mais abrangente em relação à MFLE. Surge então a MFEP.

Wells (1961, 1963) propôs o parâmetro *Crack Tip Opening Displacement* - CTOD, muito utilizado na MFEP. Este parâmetro caracteriza a capacidade do material se deformar plasticamente antes da ruptura, medindo o afastamento entre as duas faces da trinca pré-existente em frente a ponta da trinca (Figura 2.3).

Figura 2.3: Conceito de CTOD.

onde π representa o afastamento entre as faces da trinca.

O conceito de fator de intensidade de tensão é aplicável a materiais com um comportamento global linearmente elástico ou nas quais a zona plástica seja muito reduzida. No entanto, se a zona plástica for extensa, outros conceitos se fazem necessários, como por exemplo, o conceito de Integral *J*.

O conceito de integral J foi introduzido por Rice (1968), que propôs uma integral de linha, em torno da ponta de uma trinca, invariante para qualquer percurso utilizado, desde que se inicie na face inferior e termine na face superior da trinca. Como o caminho de integração é qualquer, pode-se evitar as regiões com deformações plásticas através da escolha adequada do percurso de integração, o que simplifica a análise.

Hutchinson (1968, b), e Rice e Rosengren (1968) mostraram, de forma independente, que J caracteriza a intensidade do campo de tensões em materiais elásticos não lineares. Ambos os trabalhos usaram a equação de Ramberg-Osgood para descrever a relação entre deformação e tensão, conforme mostra a Equação (2.9).

$$\mathcal{E} = \frac{\sigma}{E} + \alpha_e \left(\frac{\sigma}{S_Y}\right)^{ne}$$
(2.9)

onde:

E é o módulo de Young;

ne é o expoente de encruamento;

 S_{γ} é a tensão de escoamento.

Esses dois trabalhos mostraram que os campos de tensões e de deformações variam em uma taxa igual a $\frac{1}{r}$ na vizinhança da pontada trinca.

O campo de tensões e de deformações obtidos a partir de J podem ser vistos pelas Equações (2.10) e (2.11):

$$\sigma_{ij} = k_{\sigma 1} \left(\frac{J}{r}\right)^{\frac{1}{ne+1}}$$
(2.10)

$$\varepsilon_{ij} = k_{\varepsilon 1} \left(\frac{J}{r}\right)^{\frac{ne}{ne+1}}$$
(2.11)

onde:

 $k_{\sigma 1}$ e $k_{\varepsilon 1}$ são constantes definidas de acordo com as condições de contorno; r é uma das coordenadas polares; ne é o expoente de encruamento.

2.4 A Mecânica da Fratura Coesiva

É evidente que análises fundamentadas puramente em conceitos da MFLE e/ou MFEP não possuem base física consistente para representar como os mecanismos de falha ocorrem na realidade. As soluções conduzem a campos singulares, dificultando o cálculo de tensões e deformações. Adicionalmente, existe uma grande dificuldade de implementação computacional da teoria clássica.

Com isso, no intuito de contornar os problemas existentes na MFLE e da MFEP, foi desenvolvida uma nova teoria, a Mecânica da Fratura Coesiva (MFC).

2.4.1 Teoria de Dugdale para materiais dúcteis

O modelo de Dugdale (1960) caracteriza-se como uma das primeiras propostas de avaliação do comprimento da zona plástica que se forma durante o processo de fraturamento em materiais dúcteis. Dugdale propôs uma teoria que se baseia em um critério uniaxial de tensões. Assim, ele utilizou como base de seus estudos o problema de uma placa de aço infinita, com corte interno de comprimento 2a, sujeita a uma tensão uniforme de tração $\overline{\sigma}$, aplicada nas bordas da chapa, com direção perpendicular ao corte interno (Figura 2.4).

Figura 2.4: Modelo de Dugdale: (a) Geometria da região de fraturamento efetivo, (b) Sistemas de forças atuantes durante a evolução da fratura.

Conforme a Figura 2.4, pode-se perceber que o modelo de fratura de Dugdale considera que o comprimento físico da região onde a fratura se processa pode ser substituído por um comprimento efetivo da trinca. Este comprimento efetivo é expresso por:

$$2a_{ef} = 2a + 2s$$
 (2.12)

Onde:

 a_{ef} é a metade do comprimento efetivo da região de fraturamento;

a é a metade do comprimento da região em que o processo da fratura se encontra concretizado;

S é a metade do comprimento da zona plástica que se forma na ponta da trinca.

Considerando que ocorre uma compensação entre as contribuições das tensões de tração aplicada e a tensão de escoamento do material (S_y), Dugdale pôde admitir que as tensões na ponta da trinca tivessem ordem de grandeza finita. Ao contornar a questão de singularidade, o mesmo assumiu que o comportamento mecânico do material constituinte da placa poderia ser representado por uma relação constitutiva elasto-plástica perfeita.

2.4.2 Teoria de Barenblatt para materiais frágeis

Barenblatt (1959, 1962) foi o primeiro a propor, de forma efetiva, a consideração do efeito de forças coesivas no estudo de fraturas em materiais frágeis. O seu estudo teve como fundamento a premissa de que deveria haver equilíbrio das superfícies fraturadas sob a solicitação de forças externas.

Barenblatt se fundamentou em conceitos geométricos e em alguns conceitos da Teoria da Elasticidade, chegando à solução geral para tensão normal de tração presente em uma superfície fraturada,

$$\sigma_N = \frac{K}{\sqrt{\tilde{\beta}}} + QF \tag{2.13}$$

Onde:

K é o fator de intensidade de tensão;

 $\tilde{\beta}$ é a distância do plano de fratura ao contorno da superfície fraturada;

QF é uma constante que tem um valor finito qualquer.

Devido à variável $\tilde{\beta}$ no denominador da Equação (2.13) torna-se evidente que o valor da tensão na ponta trinca vai ao infinito. Então, para garantir que isso não aconteça e que se tenha um valor finito, uma das soluções seria restringir a forma geométrica das superfícies fraturadas, de modo a que se tenha o fator de intensidade de tensão nulo (K = 0). Assim sendo, a forma encontrada para respeitar o critério exposto seria assumir uma geometria cuspidal (Figura 2.5). Esta geometria tem como características o fato de que as faces apresentam um fechamento bem suave na ponta da trinca e a energia liberada, quando há uma pequena mudança no contorno da superfície fraturada, é praticamente nula.

Figura 2.5: Modelo do contorno da Superfície fraturada na Teoria de Barenblatt.

Para desenvolver uma teoria de fratura coesa e concisa, Barenblatt admitiu a presença de forças moleculares de coesão agindo na ponta da trinca. Nesta região a distancia entre as faces opostas da superfície fraturada é pequena e a atração mútua das mesmas é de ordem elevada.

De forma simplificada, as forças coesivas de Barenblatt fundamentaram-se em três hipóteses básicas:

- O comprimento *d* da região da ponta da trinca é pequeno quando comparado a todo o tamanho da superfície fraturada;
- ii. A formação da seção normal à superfície fraturada na região da ponta da trinca não depende das forças atuantes no sistema e sempre se apresenta da mesma maneira para um dado material independente das condições a que esteja submetido;
- iii. As faces opostas de superfícies fraturadas se unem suavemente na ponta da trinca, o que equivale a afirmar que as tensões na ponta da trinca são de ordem finita.

Na Teoria de Barenblatt, a geometria da trinca pode ser entendida como a composição das regiões I e II (Figura 2.5). Na região I, as faces opostas mantêm-se com um nível de afastamento tal que permite a desconsideração da presença de forças coesivas; na região II existe um elevado grau de interação entre as faces opostas.

2.4.3 Modelo Polinomial de Needleman

Needleman (1987) propôs um modelo computacional com base nos conceitos iniciais de Dugdale e Barenblatt. Esse modelo continuava a seguir a ideia de forças coesivas nas vizinhanças da trinca, no entanto tinha o diferencial de sua formulação ser baseada no trabalho de separação entre as superfícies da trinca.

De maneira geral, a ideia de Needleman foi admitir que a relação constitutiva da interface coesiva partisse do princípio que o vetor de tensões coesivas dependesse de um vetor de deslocamentos relativos (Δ_n , Δ_t) entre as interfaces opostas de uma trinca qualquer.

E que essas tensões coesivas seriam obtidas a partir de uma função potencial qualquer. Assim, considerando a existência de um potencial $\psi(\Delta_n, \Delta_t)$.

$$\psi(\Delta_n, \Delta_t) = -\int_0^{\Delta} (T_n \, d\Delta_n + T_t \, d\Delta_t) \tag{2.14}$$

onde:

 T_n e T_t são as componentes normal e tangencial, respectivamente, do vetor de tensões coesivas.

O vetor de tensões coesivas pode ser obtido em função dos deslocamentos relativos entre as interfaces, a partir das seguintes relações:

$$T_n = -\frac{\partial \psi}{\partial \Delta_n} \tag{2.15}$$

$$T_t = -\frac{\partial \psi}{\partial \Delta_t} \tag{2.16}$$

Com a função potencial tendo a seguinte forma:

$$\psi(\Delta_n, \Delta_t) = \frac{27}{4} \sigma_{\max} \delta \begin{cases} \frac{1}{2} \left(\frac{\Delta_n}{\delta}\right)^2 \left[1 - \frac{4}{3} \left(\frac{\Delta_n}{\delta}\right) + \frac{1}{2} \left(\frac{\Delta_n}{\delta}\right)^2 \right] \\ + \frac{1}{2} \overline{\alpha} \left(\frac{\Delta_t}{\delta}\right)^2 \left[1 - 2 \left(\frac{\Delta_n}{\delta}\right) + \frac{1}{2} \left(\frac{\Delta_n}{\delta}\right)^2 \right] \end{cases}$$
(2.17)

onde:

 $\sigma_{\rm max}$ É a máxima tensão suportada pela interface;

 $\overline{\alpha}$ É o coeficiente de cisalhamento relativo à rigidez normal da interface (parâmetro de acoplamento);

 δ É o comprimento característico.

Aplicando as definições das Equações (2.15) e (2.16) obtêm-se as seguintes expressões:

$$T_{n} = -\frac{27}{4}\sigma_{\max}\left\{\frac{\Delta_{n}}{\delta}\left[1-2\left(\frac{\Delta_{n}}{\delta}\right)+\left(\frac{\Delta_{n}}{\delta}\right)^{2}\right]+\overline{\alpha}\left(\frac{\Delta_{t}}{\delta}\right)^{2}\left(\frac{\Delta_{n}}{\delta}-1\right)\right\} \quad (2.18)$$

$$27 \qquad \left[\left(\Delta_{n}\right)\left[-\left(\Delta_{n}\right)-\left(\Delta_{n}\right)^{2}\right]\right]$$

Figura 2.6: Tensões coesivas da interface em um processo de separação puramente normal.

Fonte: Needleman, 1987.

Devido à forma do potencial, o primeiro modelo de Needleman apresenta a limitação de não permitir o rompimento das ligações interfaciais em modo II puro.

2.4.4 Modelo Exponencial/Polinomial de Needleman

Needleman (1990, a) propôs um novo modelo de fratura coesiva em que a única diferença entre este novo modelo e o anterior foi o potencial sugerido. Este segundo trabalho teve como base teórica as análises experimentais de Rose *et al.* (1981, 1983). O novo potencial é expresso pela seguinte equação:

$$\psi(\Delta_n, \Delta_t) = \frac{9}{16} \sigma_{\max} \delta \begin{cases} 1 - \left[1 + \tilde{z} \left(\frac{\Delta_n}{\delta} \right) - \frac{\bar{\alpha} \, \tilde{z}^2}{2} \left(\frac{\Delta_t}{\delta} \right)^2 \right] \\ + \exp \left[-\tilde{z} \left(\frac{\Delta_n}{\delta} \right) \right] \end{cases}$$
(2.20)

onde $\overline{z} = \frac{16e}{9}$ e $e = \exp(1)$.

Aplicando a definição das equações (2.15) e (2.16) a equação (2.20), têmse:

$$T_{n} = -\sigma_{\max} e \left[\tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) - \frac{1}{2} \bar{\alpha} \tilde{z}^{2} \left(\frac{\Delta_{t}}{\delta} \right)^{2} \right] \exp \left[-\tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) \right] (2.21)$$
$$T_{t} = -\sigma_{\max} e \left[\bar{\alpha} \tilde{z} \left(\frac{\Delta_{t}}{\delta} \right) \right] \exp \left[-\tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) \right]$$
(2.22)

Figura 2.7: Comparativo entre as tensões coesivas normais para um processo puramente normal para os potenciais polinomial Needleman (1987) e o exponencial/polinomial Needleman (1990a).

Fonte: Needleman, 1990a.

A única diferença deste modelo em relação ao anterior é de que a relação constitutiva incorporada é mais consistente do ponto de vista físico. No entanto, este novo modelo continua a apresentar o problema de não possuir a representação de processos onde se contenha cisalhamento puro.

2.4.5 Modelo Exponencial/Periódico de Needleman

Sabendo que os deslocamentos relativos entre as interfaces dependem das componentes normal e tangencial, Needleman (1990, b) propôs um novo modelo que contemplasse não apenas deslocamentos normais, mas também cisalhantes. Tendo como resultado deslocamentos entre as interfaces coesivas de ordem elevadas.

O novo potencial de Needleman (1990, b) tem como base os estudos de Rose *et at.* (1981, 1983) para a representação de tensões coesivas puramente normais. E para as tensões coesivas tangenciais, Needleman baseou-se na periodicidade do arranjo dos átomos das redes cristalinas, assumindo assim que as tensões cisalhantes apresentavam uma variação periódica em relação aos deslocamentos tangenciais da interface coesiva. O novo potencial é dado por:

$$\psi(\Delta_n, \Delta_t) = \frac{\sigma_{\max} e \delta}{\tilde{z}} \begin{cases} 1 - \left[1 + \frac{\tilde{z} \Delta_n}{\delta} - \bar{\beta} \tilde{z}^2 \left[1 - \cos\left(\frac{2\pi \Delta_t}{P_t}\right)\right]\right] \\ \times \exp\left[-\tilde{z}\left(\frac{\Delta_n}{\delta}\right)\right] \end{cases}$$
(2.23)

onde:

 P_t É o período da variação das tensões coesivas cisalhantes em relação aos deslocamentos tangenciais da interface coesiva;

 $\overline{\beta}$ É um parâmetro de cisalhamento do modelo.

Aplicando-se as definições (2.15) e (2.16) a expressão (2.23), chega-se a:

$$T_{n} = -\sigma_{\max} e \left\{ \tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) - \overline{\beta} \tilde{z}^{2} \left[1 - \cos \left(\frac{2\pi \Delta_{t}}{P_{t}} \right) \right] \right\}$$

$$\exp \left[-\tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) \right]$$
(2.24)

Figura 2.8: Tensões coesivas normais na interface para um processo de separação puramente normal.

Fonte: Needleman, 1990b.

$$T_{t} = -\sigma_{\max} e \left[2\pi \overline{\beta} \tilde{z} \left(\frac{\delta}{P_{t}} \right) \operatorname{sen} \left(\frac{2\pi \Delta_{t}}{P_{t}} \right) \right] \exp \left[-\tilde{z} \left(\frac{\Delta_{n}}{\delta} \right) \right]$$
(2.25)

Figura 2.9: Tensões coesivas tangenciais na interface para um processo de separação puramente tangencial.

Fonte: Needleman, 1990b.

Como novidade deste novo modelo, tem-se um potencial que permite a simulação da propagação de fraturas em problemas onde as interfaces sejam submetidas a grandes deslocamentos cisalhantes.

2.4.6 Modelo Polinomial de Tvergaard

Tvergaard (1990) apresentou um modelo de fratura coesiva, de forma polinomial, que se utilizava da mesma estrutura proposta por Needleman (1987), porém com uma diferença fundamental: a não existência de um potencial para definição do vetor de tensões coesivas.

Como este modelo não possui um potencial, o trabalho de Tvergaard foi diferenciado em utilizar a ideia de deslocamento efetivo para a realização de um acoplamento parcial. O deslocamento efetivo é dado pela equação:

$$\overline{\lambda} = \sqrt{\left(\frac{\Delta_n}{\overline{\delta}_n}\right)^2 + \left(\frac{\Delta_t}{\overline{\delta}_t}\right)^2}$$
(2.26)

onde:

 $\overline{\delta}_n$ e $\overline{\delta}_t$ são comprimentos característicos nas direções normal e tangencial, respectivamente.

A partir do conceito de deslocamento efetivo Tvergaard propôs a seguinte função como base para seu modelo:

$$F(\overline{\lambda}) = \frac{27}{4} \sigma_{\max} \left(1 - 2\,\overline{\lambda} + \overline{\lambda}^2 \right) \qquad 0 \le \overline{\lambda} \le 1 \quad (2.27)$$

Admitindo que $\overline{\lambda}$ cresce monotonicamente, as expressões para as tensões coesivas da interface foram escolhidas de maneira a responder a processos de fratura puramente normal similar a reposta de Needleman (1987) e que possibilitasse o fraturamento por cisalhamento puro.

$$T_n = \frac{\Delta_n}{\overline{\delta_n}} F\left(\overline{\lambda}\right) \tag{2.28}$$

Figura 2.10: Tensões coesivas normais na interface para um processo puramente normal.

Fonte: Tvergarrd, 1990.

$$T_{t} = \overline{\xi} \, \frac{\Delta_{t}}{\overline{\delta}_{t}} F\left(\overline{\lambda}\right) \tag{2.29}$$

onde $\overline{\xi}$ é o parâmetro de acoplamento deste modelo.

Figura 2.11: Tensões tangenciais na interface para um processo de separação puramente tangencial.

Fonte: Tvergaard, 1990.

Embora este modelo não possua um potencial associado ao vetor de tensões coesivas como o de Needleman (1987), o mesmo possibilita deslocamentos tangenciais relativos entre as interfaces coesivas opostas da trinca.

2.4.7 Modelo Multilinear com Potencial de Tvergaard e Hutchinson

Este trabalho de Tvergaard e Hutchinson (1993) é uma generalização do trabalho anterior destes mesmos pesquisadores. O primeiro trabalho de Tvergaard e Hutchinson (1992) considerava um estado elasto-plástico para o material, porém só trabalhava em modo I. Já este segundo modelo, além de considerar um estado elasto-plástico, possui um potencial e admite também um vetor de tensões coesivas da interface com contribuições normais e tangenciais. O potencial proposto por Tvergaard e Hutchinson foi:

$$\psi(\Delta_n, \Delta_t) = \delta_n \int_0^{\overline{\lambda}} F(\overline{\lambda}) d\overline{\lambda}$$
(2.30)

onde:

 $F(\overline{\lambda})$ Trata-se de uma função que generaliza o comportamento das tensões coesivas;

 $\overline{\lambda}$ É o deslocamento efetivo proposto por Tvergaard (1990);

A função que generaliza o comportamento das tensões coesivas é composta pelas seguintes equações:

$$F(\overline{\lambda}) = \sigma_{\max} \frac{\overline{\lambda}}{\lambda_1}$$
 para $\overline{\lambda} < \overline{\lambda_1}$ (2.31)

$$F(\overline{\lambda}) = \sigma_{\max} \quad \text{para} \quad \overline{\lambda}_1 \le \overline{\lambda} \le \overline{\lambda}_2$$
 (2.32)

$$F(\overline{\lambda}) = \sigma_{\max} \frac{1-\overline{\lambda}}{1-\overline{\lambda_1}}$$
 para $\overline{\lambda_2} \le \overline{\lambda} \le 1$ (2.33)

Figura 2.12: Lei de separação da interface para deslocamentos efetivos.

Fonte: Tvergaard e Hutchinson, 1993.

A partir do potencial, as componentes do vetor de tensões coesivas na zona de fratura são dadas por:

$$T_{n} = \frac{\partial \psi}{\partial \Delta_{n}} = \frac{F(\lambda)}{\overline{\lambda}} \frac{\Delta_{n}}{\delta_{n}}$$
(2.34)

$$T_{t} = \frac{\partial \psi}{\partial \Delta_{t}} = \frac{F(\bar{\lambda})}{\bar{\lambda}} \frac{\delta_{n}}{\delta_{t}} \frac{\Delta_{t}}{\delta_{t}}$$
(2.35)

2.4.8 Modelo Exponencial/Exponencial de Xu e Needleman

Xu e Needleman propuseram dois modelos, porém com potenciais distintos: o tipo Exponencial/Periódico (1993, a) e o Exponencial/Exponencial (1993, b). No entanto, o modelo com potencial Exponencial/Exponencial se tornou o modelo coesivo mais difundido no meio acadêmico por conta de seus resultados.

A motivação primária para uma segunda proposta com o potencial do tipo Exponencial/Exponencial foi o fato de que o trabalho anterior não permitia falha em um material a partir de solicitações puramente tangenciais. Desta forma o potencial proposto foi:

$$\psi \left(\Delta_{n}, \Delta_{t} \right) = \Phi_{n} + \Phi_{n} \exp \left(-\frac{\Delta_{n}}{\overline{\delta}_{n}} \right) \\ \left[\left(1 - \overline{r} + \frac{\Delta_{n}}{\overline{\delta}_{n}} \right) \frac{1 - q}{\overline{r} - 1} - \left(q + \frac{\overline{r} - q}{\overline{r} - 1} \frac{\Delta_{n}}{\overline{\delta}_{n}} \right) \\ \exp \left(-\frac{\Delta_{t}^{2}}{\overline{\delta}_{t}} \right) \right]$$
(2.36)

onde,

$$q = \frac{\Phi_t}{\Phi_n} e \overline{r} = \frac{\Delta_n^*}{\overline{\delta_n}}.$$

- $\Phi_{\scriptscriptstyle n}$ é o trabalho de separação normal;
- Φ_t é o trabalho de separação tangencial;
- $\boldsymbol{\Delta}_{\!\!n}^{\!*}$ é o valor de $\boldsymbol{\Delta}_{\!\!n}\,$ depois que há a separação cisalhante completa;
- q e \overline{r} são parâmetros de acoplamento;
- $\overline{\delta}_{\!\scriptscriptstyle n}$ é o comprimento característico normal.
- $\overline{\delta_t}$ é o comprimento característico tangente.

Definindo as expressões para as tensões normal e tangencial a partir das relações (2.15) e (2.16) têm-se:

$$T_{n} = -\frac{\Phi}{\overline{\delta}_{n}} \exp\left(-\frac{\Delta_{n}}{\overline{\delta}_{n}}\right) \begin{cases} \frac{\Delta_{n}}{\overline{\delta}_{n}} \exp\left(-\frac{\Delta_{t}^{2}}{\overline{\delta}_{t}^{2}}\right) + \frac{1-q}{\overline{r}-1} \\ \left[1 - \exp\left(-\frac{\Delta_{t}^{2}}{\overline{\delta}_{t}^{2}}\right)\right] \left(\overline{r} - \frac{\Delta_{n}}{\overline{\delta}_{n}}\right) \end{cases}$$
(2.37)

Figura 2.13: Tensões coesivas na interface para um processo de separação puramente normal.

Fonte: Xu e Needleman, 1993.

Figura 2.14: Tensões coesivas na interface para um processo de separação puramente tangencial.

Fonte: Xu e Needleman, 1993.

Este modo, diferente do modelo anterior reproduz problemas onde se tenha solicitação por cisalhamento puro.