

Marina Polónia Rios

Efeito de amortecedores no comportamento dinâmico de edifícios altos sob cargas de vento

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Sebastião Artur Lopes de Andrade Co-orientador: Prof. Paulo Batista Gonçalves

Rio de Janeiro Maio de 2015

Marina Polónia Rios

Efeito de amortecedores no comportamento dinâmico de edifícios altos sob cargas de vento

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sebastião Artur Lopes de Andrade Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Paulo Batista Gonçalves Co-orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

Prof. José Guilherme Santos da Silva Universidade do Estado do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 8 de maio de 2015.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Marina Polónia Rios

Formou-se em Engenharia Civil na Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) em 2011. Apresentou trabalho de pesquisa de análise da utilização de amortecedores como forma de reduzir o efeito do vento em edifícios altos.

Ficha Catalográfica

Rios, Marina Polónia

Efeito de amortecedores no comportamento dinâmico de edifícios altos submetidos a cargas de vento / Marina Polónia Rios ; orientador: Sebastião Artur Lopes de Andrade ; co-orientador: Paulo Batista Gonçalves. – 2015.

136 p.. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015. Inclui bibliografia

1. Engenharia civil – Teses. 2. Estrutura. 3. Edifícios altos. 4. Dinâmica. 5. Vento. 6. Amortecedores. I. Andrade, Sebastião Artur Lopes de. II. Gonçalves, Paulo Batista. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Aos meus orientadores Prof. Paulo Batista Gonçalves e Prof. Sebastião Artur Lopes de Andrade, agradeço pela dedicação e estímulo durante a realização desse trabalho.

Aos meus colegas e amigos da Cerne Engenharia e Projetos, pela compreensão e apoio ao longo do período do mestrado. Agradeço em especial ao amigo Rafael Medeiros, por sua grande ajuda e incentivo na realização desse trabalho.

Agradeço aos meus pais e à minha irmã, por compreenderem e estarem sempre ao meu lado, acreditando na minha capacidade e dando-me força para conquistar o meu objetivo.

Ao meu namorado, Raoni, por seu carinho e dedicação ao longo desse período, me apoiando em todos os momentos.

Às minhas amigas, pelo incentivo para concluir esse trabalho.

A todos os professores, funcionários e colegas de mestrado, que, de alguma forma, contribuíram para a realização deste trabalho.

À PUC-Rio, pela concessão de Bolsa de Isenção de taxas escolares para a realização do curso.

Resumo

Rios, Marina Polónia; Andrade, Sebastião Artur Lopes (Orientador); Gonçalves, Paulo Batista (Co-Orientador). **Efeito de amortecedores no comportamento dinâmico de edifícios altos sob cargas de vento**. Rio de Janeiro, 2015. 136 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O aumento da altura dos edifícios, aliado ao surgimento de materiais mais resistentes, faz com que as estruturas sejam cada vez mais esbeltas. Com isso, a ação do vento se torna um importante fator a ser considerado nesses projetos. A sua característica dinâmica provoca efeitos de vibração nas estruturas que devem ser analisados, em especial em relação ao conforto do usuário, afetado por deslocamentos e acelerações elevadas. Este estudo aborda a utilização de amortecedores fluidos como forma de reduzir a resposta dinâmica das estruturas submetidas a cargas de vento. A carga de vento consiste em um evento aleatório, devendo ser analisada estatisticamente. Desta forma, foi adotado o Método dos Ventos Sintéticos para definir o carregamento de vento aplicado à estrutura. Os amortecedores empregados na estrutura são fluidos, altamente viscosos, portanto seu comportamento pode ser considerado linear. A avaliação do comportamento da estrutura foi realizada pelo programa computacional Robot Structural Analysis. Foi feita uma análise estática afim de realizar o pré-dimensionamento da estrutura. Em seguida, fez-se uma análise dinâmica para a estrutura submetida ao carregamento de vento, com o objetivo de se analisar a influência dos amortecedores. Foram definidos cinco modelos estruturais, com diferentes configurações de amortecedores, de forma a encontrar a sua melhor distribuição na estrutura para reduzir a resposta a níveis aceitáveis de conforto para os usuários.

Palavras-chave

Edifícios altos; dinâmica de estruturas; cargas de vento; amortecedores fluidos.

Abstract

Rios, Marina Polónia; Andrade, Sebastião Artur Lopes (Advisor); Gonçalves, Paulo Batista (Co-Advisor). **Effect of Dampers on the Dynamic Behaviour of Tall Buildings under Wind Loads.** Rio de Janeiro, 2015. 136 p.. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

With the increase in building height and the development of more resistant materials, structures are becoming more flexible. This has made the consideration of wind loads an important factor to be considered in their projects. The dynamic characteristic of these loads causes important vibration effects in these structures due to their low vibration frequencies, which must be considered in design, especially regarding the users comfort, affected by high displacements and acceleration. This study analyses the use of fluid dampers in order to reduce the dynamic response of the structure under wind loading. The wind load is a random phenomenon, and must be studied statistically. In the present work the Synthetic Wind Method has been adopted in order to generate the variation of the wind load in time. The dampers applied to the structure are fluid dampers, highly viscous, so its behavior can be considered linear. The computer software Robot Structural Analysis is used to study the structural behavior. An analysis considering the wind as an equivalent static load is adopted for the preliminary design. Then, a dynamic analysis is conducted, considering the structure under a time varying wind loading, to investigate the effect of the fluid dampers on the response. Five models are investigated, with different configurations for the dampers, in order to define the best configuration and obtain acceptable levels of displacements and acceleration.

Keywords

Tall buildings; structural dynamics; wind load; fluid dampers.

Sumário

1. Introdução	22
1.1. Considerações Iniciais	22
1.2. Importância e objetivos do estudo	24
1.3. Revisão Bibliográfica	25
1.4. Escopo do trabalho	31
2. O Vento e seu Efeito nas Estruturas	32
2.1. Variação do vento conforme a altura	33
2.2. Movimento turbulento dos ventos	35
2.3. Análise estática para cargas de vento	36
2.4. Resposta dinâmica da estrutura	37
2.5. Análise dinâmica para cargas de vento	38
2.5.1. Velocidade média do vento	38
2.5.2. Parcela flutuante da velocidade do vento	40
2.5.3. Método dos ventos sintéticos	44
2.6. Definição das cargas atuantes na estrutura em estudo	47
2.6.1. Carregamento de vento para o espectro de potência de	
Davenport	48
2.7. Demais efeitos provocados pelo vento	51
2.7.1. Efeito de vórtices	51
2.7.2. Efeito de martelamento	52
2.7.3. Efeito de golpe	53
2.7.4. Efeito de galope	53
2.8. Conforto dos usuários	53
3. Amortecedores	56
3.1. Introdução	56
3.2. Amortecimento inerente às estruturas	57
3.3. Amortecedores passivos, ativos, semi-ativos e híbridos	58

3.4. Resposta das estruturas a amortecedores passivos	60
3.5. Tipos de Amortecedores Passivos	61
3.5.1. Amortecedores de massa sintonizados (AMS)	61
3.5.2. Amortecedores líquidos sintonizados (ALS)	62
3.5.3. Amortecedores de impacto	63
3.5.4. Amortecedores viscoelásticos	63
3.5.5. Amortecedores por fricção	64
3.5.6. Amortecedores metálicos	65
3.5.7. Amortecedores fluidos	66
4. Análise Numérica	72
4.1. Apresentação do modelo	72
4.2. Casos estudados	80
4.2.1. Modelo 1	82
4.2.2. Modelo 2	83
4.2.3. Modelo 3	84
4.2.4. Modelo 4	85
4.2.5. Modelo 5	86
4.2.5.1. Modelo 5.1	87
4.3. Análise dinâmica pelo método dos ventos sintéticos	88
4.3.1. Modelo inicial: definição do espectro de potência a ser adotado	88
4.3.2. Modelo 1	90
4.3.3. Modelo 2	94
4.3.4. Modelo 3	96
4.3.5. Modelo 4	100
4.3.6. Modelo 5	103
4.3.7. Modelo 5.1	108
4.3.8. Resumo dos resultados	109
4.4. Variação do período de carregamento	109
4.4.1. Carga atuando em 25 segundos	110
4.4.2. Carga atuando em 50 segundos	111
4.4.3. Carga atuando em 100 segundos	112
4.4.4. Carga atuando em 150 segundos	113
4.4.5. Carga atuando em 200 segundos	114

4.5.	Crescimento gradual do carregamento	115
4.6.	Modelo com mola e amortecedor em série	117
4.7.	Variação do ângulo de fase	118
4.8.	Edifício submetido a cargas de vento calculadas pelo espectro	
de K	aimal	120
4.9.	Carregamento no caso da ressonância	122
4.10.	Comportamento na vibração livre	125
4.11.	Análise Linear x Não Linear	126
4.12.	Análise dos esforços	128
5.	Considerações finais	129
6.	Referências Bibliográficas	132

Índice de Figuras

Figura 1.1 - Edifícios acima de 400 metros existentes.	
(Wikipedia, 2014)	22
Figura 1.2 - World Trade Center (Wikipédia, 2014)	23
Figura 1.3 - Petronas Towers (Mendes, 2014)	23
Figura 2.1 - Variação do vento conforme a altura (Mendis et al., 2007)	33
Figura 2.2 - Modos de vibração da estrutura (Mendis et al., 2007)	38
Figura 2.3 - Mapa de isopletas da velocidade básica do vento V_0	
(NBR 6123, 1988)	39
Figura 2.4 - Função periódica (Blessmann, 1998).	40
Figura 2.5 - Comparação de diversos espectros de potência	
(Beça, 2010)	42
Figura 2.6 - Coeficiente de arrasto (NBR 6123, 1988)	46
Figura 2.7 - Carga de vento segundo o espectro de Davenport para	
z=36,0m	48
Figura 2.8 - Carga de vento segundo o espectro de Davenport para	
z=72,0m	48
Figura 2.9 - Carga de vento segundo o espectro de Davenport para	
z=108,0m	48
Figura 2.10 - Carga de vento segundo o espectro de Davenport para	
z=144,0m	49
Figura 2.11 - Carga de vento segundo o espectro de Davenport para	
z=172,8m	49
Figura 2.12 - Carga de vento segundo o espectro de Kaimal para	
z=36,0m	49
Figura 2.13 - Carga de vento segundo o espectro de Kaimal para	
z=72,00m	50
Figura 2.14 - Carga de vento segundo o espectro de Davenport para	
z=108,00m	50
Figura 2.15 - Carga de vento segundo o espectro de Kaimal para	
z=144,00m	50
Figura 2.16 - Carga de vento segundo o espectro de Kaimal para	
z=172,80m	51
Figura 2.17 - Efeito de desprendimento de vórtices	
(Mendis et al., 2007)	51
Figura 2.18 - Graus de conforto, Segundo Chang (Blessmann, 1998)	54
Figura 3.1 - Curva de ressonância (Taylor, 1999)	61
Figura 3.2 - Amortecedor de Impacto (Kareem et al., 1999)	63

Figura 3.3 - Amortecedor fluido (Soong & Dargush, 1997)	66
Figura 3.4 - Taylor Device (Soong & Dargush, 1997)	67
Figura 3.5 - Amortecedor de fluido viscoso esquemático	
(Soong, Dargush, 1997)	68
Figura 3.6 - Torre Mayor: disposição dos amortecedores da fachada	
(Post, 2003)	70
Figura 3.7 - Travamento diagonal com amortecedor (Taylor Devices,	
2014)	71
Figura 4.1 - Vista geral da estrutura do edifício	72
Figura 4.2 - Vista superior da estrutura do edifício	73
Figura 4.3 – Pilares da fachada	74
Figura 4.4 – Pilares do core	74
Figura 4.5 - Planta esquemática das vigas em cada pavimento	75
Figura 4.6 - Travamentos no projeto original - vista superior	75
Figura 4.7 - Travamentos na direção x - Vista Frontal	76
Figura 4.8 - Travamentos na direção y - Vista Frontal	76
Figura 4.9 - Disposição dos amortecedores na fachada - Modelo 1	82
Figura 4.10 - Substituição de travamentos rígidos em X por barras	
com amortecedores - Modelo 2	83
Figura 4.11 - Disposição dos amortecedores na fachada - Modelo 3	84
Figura 4.12 - Disposição dos amortecedores na fachada - Modelo 4	85
Figura 4.13 - Disposição dos amortecedores na fachada - Modelo 5	86
Figura 4.14 - Vigas com ligações por rótula substituídas por ligações	
resistentes a momento - Modelo 5.1	87
Figura 4.15 - Comparação do deslocamento sofrido pela estrutura em	
seu topo submetida aos esforços de vento definidos pelos espectros	
de potência de Davenport e Kaimal	89
Figura 4.16 - Comparação da velocidade apresentada no topo da	
estrutura submetida aos esforços de vento definidos pelos espectros	
de potência de Davenport e Kaimal	89
Figura 4.17 - Comparação da aceleração apresentada no topo da	
estrutura submetida aos esforços de vento definidos pelos espectros	
de potência de Davenport e Kaimal	89
Figura 4.18 - Deslocamento no topo da estrutura do Modelo 1 com	
amortecedores com 30% Ccr	92
Figura 4.19 - Velocidade no topo da estrutura do Modelo 1 com	
amortecedores com 30%Ccr	92
Figura 4.20 - Aceleração no topo da estrutura do Modelo 1 com	
amortecedores com 30% Ccr	92
Figura 4.21 - Deslocamento no topo da estrutura do Modelo 2 com	
amortecedores com 30% C _{cr}	95
Figura 4.22 - Velocidade no topo da estrutura do Modelo 2 com	
amortecedores com 30%Ccr	96

Figura 4.23 - Aceleração no topo da estrutura do Modelo 2 com	
amortecedores com 30%Ccr	96
Figura 4.24 - Deslocamento no topo da estrutura do Modelo 3 com	
amortecedores com 30%Ccr	97
Figura 4.25 - Velocidade no topo da estrutura do Modelo 3 com	
amortecedores com 30%Ccr	98
Figura 4.26 - Aceleração no topo da estrutura do Modelo 3 com	
amortecedores com 30%Ccr	98
Figura 4.24 - Comparação dos deslocamentos das opções 2 e 3 com	
amortecedores com 30%Ccr	98
Figura 4.25 - Comparação das velocidades das opções 2 e 3 com	
amortecedores com 30%Ccr	99
Figura 4.26 - Comparação das acelerações das opções 2 e 3 com	
amortecedores com 30%Ccr	99
Figura 4.30 - Deslocamento no topo da estrutura do Modelo 4 com	
amortecedores com 30%Ccr	101
Figura 4.31 - Velocidade no topo da estrutura do Modelo 4 com	
amortecedores com 30%Ccr	101
Figura 4.32 - Aceleração no topo da estrutura do Modelo 4 com	
amortecedores com 30%C _{cr}	101
Figura 4.33 - Comparação dos deslocamentos das opções 3 e 4 com	
amortecedores com 30%CcrFigura 4.34 - Comparação das	
velocidades das opções 3 e 4 com amortecedores com 30%C _{cr}	102
Figura 4.35 - Comparação das acelerações das opções 3 e 4 com	
amortecedores com 30%C _{cr}	103
Figura 4.36 - Deslocamento no topo da estrutura do Modelo 5 com	
amortecedores com 30%Ccr	104
Figura 4.37 - Velocidade no topo da estrutura do Modelo 5 com	
amortecedores com 30%Ccr	105
Figura 4.38 - Aceleração no topo da estrutura do Modelo 5 com	
amortecedores com 30%Ccr	105
Figura 4.39 - Comparação dos deslocamentos das opções 4 e 5 com	
amortecedores com 30% Ccr	106
Figura 4.40 - Comparação das velocidades das opções 4 e 5 com	
amortecedores com 30% Ccr	106
Figura 4.41 - Comparação das acelerações das opções 4 e 5 com	
amortecedores com 30% Ccr	106
Figura 4.42 - Deslocamento no topo da estrutura do Modelo 5.1 com	400
amortecedores com 40% Ccr	108
Figura 4.43 - Velocidade no topo da estrutura do Modelo 5.1 com	400
amortecedores com 40% Ccr	108
rigura 4.44 - Aceleração no topo da estrutura do Modelo 5.1 com	400
amortecedores com 40% Ccr	109

Figura 4.45 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 25 s 110 Figura 4.46 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 25 s 111 Figura 4.47 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 25 s 111 Figura 4.48 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 50 s 111 Figura 4.49 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 50 s 112 Figura 4.50 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 50 s 112 Figura 4.51 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 100 s 112 Figura 4.52 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 100 s 113 Figura 4.53 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 100 s 113 Figura 4.54 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 150 s 113 Figura 4.55 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 150 s 114 Figura 4.56 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 150 s 114 Figura 4.57 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 200 s 114 Figura 4.58 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 200 s 115 Figura 4.59 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga atuando por 200 s 115 Figura 4.60 - Deslocamento no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga com crescimento gradual 116 Figura 4.61 - Velocidade no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga com crescimento gradual 116 Figura 4.62 - Aceleração no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr com a carga com crescimento gradual 116 Figura 4.63 - Deslocamento no topo da estrutura do Modelo 5.1 com 20% da rigidez original das diagonais e amortecedores com 40% Ccr 117 Figura 4.64 - Velocidade no topo da estrutura do Modelo 5.1 com 20% da rigidez original das diagonais e amortecedores com 40% Ccr 118 Figura 4.65 - Aceleração no topo da estrutura do Modelo 5.1 com 20% da rigidez original das diagonais e amortecedores com 40% Ccr 118

Figura 4.66 - Comparação dos deslocamentos no topo da estrutura	
para carregamentos com diferentes ângulos de fases	119
Figura 4.67 - Comparação das velocidades no topo da estrutura	
para carregamentos com diferentes ângulos de fases	119
Figura 4.68 - Comparação das acelerações no topo da estrutura	
para carregamentos com diferentes ângulos de fases	120
Figura 4.69 - Deslocamento no topo da estrutura do Modelo 5.1	
com amortecedores com C=40% Ccr submetida a cargas de vento	
definidas pelo espectro de Kaimal	121
Figura 4.70 - Velocidade no topo da estrutura do Modelo 5.1 com	
amortecedores com C=40% C _{cr} submetida a cargas de vento	
definidas pelo espectro de Kaimal	121
Figura 4.71 - Aceleração no topo da estrutura do Modelo 5.1 com	
amortecedores com C=40% C _{cr} submetida a cargas de vento	
definidas pelo espectro de Kaimal	121
Figura 4.72 - Comparação entre o deslocamento no topo da estrutura	
do Modelo 5.1 considerando o espectro de Davenport e de Kaimal	122
Figura 4.73 - Comparação entre a velocidade no topo da estrutura do	
Modelo 5.1 considerando o espectro de Davenport e de Kaimal	122
Figura 4.74 - Comparação entre a aceleração no topo da estrutura do	
Modelo 5.1 considerando o espectro de Davenport e de Kaimal	122
Figura 4.75 - Deslocamento no topo da estrutura do Modelo 5 para o	
carregamento de ressonância	123
Figura 4.76 - Velocidade no topo da estrutura do Modelo 5 para o	
carregamento de ressonância	123
Figura 4.77 - Aceleração no topo da estrutura do Modelo 5 para o	
carregamento de ressonância	124
Figura 4.78 - Curva de ressonância dos deslocamentos para o	
Modelo 5	125
Figura 4.79 - Curva de ressonância das acelerações para a Modelo 5	125
Figura 4.80 - Deslocamento no topo da estrutura do Modelo 5 para o	
carregamento de vibração livre	126
Figura 4.81 - Velocidade no topo da estrutura do Modelo 5 para o	
carregamento de vibração livre	126
Figura 4.82 - Aceleração no topo da estrutura do Modelo 5 para o	
carregamento de vibração livre	126
Figura 4.83 - Comparação dos deslocamentos para a análise linear	
e não linear	127
Figura 4.84 - Variação entre a diferença dos resultados para a	
análise linear e não linear	128

Índice de Tabelas

Tabela 2.1 Coeficientes para as diversas características do terreno	
(Mendis et al., 2007)	34
Tabela 2.2 - Coeficientes <i>b</i> , <i>p</i> e $F_{r,ll}$ (NBR 6123, 1988)	35
Tabela 2.3 - Constantes para definição do carregamento de vento	47
Tabela 2.4 - Percepção humana às vibrações (Medis et al., 2007)	55
Tabela 3.1 - Formas de reduzir a ação do vento (Kareem et al., 1999)	57
Tabela 3.2 - Amortecimento inerente às estruturas (NBR 6123, 1988)	58
Tabela 3.3 - Aplicações de amortecedores visco elásticos	
(Kareem et al., 1999)	64
Tabela 3.4 - Aplicação de amortecedores por fricção (Kareem et al.,	
1999)	65
Tabela 3.5 - Estruturas com amortecedores metálicos (Kareem et al.,	
1999)	65
Tabela 3.6 - Edifícios com amortecedores para resistir ao vento	
(Taylor Devices, 2014)	71
Tabela 4.1 – Características dos mateirais	73
Tabela 4.2 - Modos de vibração natural da estrutura inicial	77
Tabela 4.3 - Resumo dos modelos estudados	81
Tabela 4.4 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 1	82
Tabela 4.5 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 2	84
Tabela 4.6 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 3	85
Tabela 4.7 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 4	86
Tabela 4.8 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 5	87
Tabela 4.9 - Modos de vibração natural da estrutura com	
amortecedores - Modelo 5.1	87
Tabela 4.10 - Comparação da resposta no topo da estrutura	
submetida aos esforços de vento definidos pelos espectros de	
potência de Davenport e Kaimal	88
Tabela 4.11 - Resposta no topo da estrutura do Modelo 1 com	
amortecedores com 10% Ccr. C=7824 kNs/m.	91
Tabela 4.12 - Resposta no topo da estrutura do Modelo 1 com	
amortecedores com 20% Ccr. C=15648 kNs/m.	91

Tabela 4.13 - Resposta no topo da estrutura do Modelo 1 com	
amortecedores com 30% C _{cr} . C=23472 kNs/m.	91
Tabela 4.14 - Resposta da estrutura do Modelo 1 com barras sem	
amortecedores	93
Tabela 4.15 - Resposta no topo da estrutura do Modelo 2 com	
amortecedores com 10%Ccr	94
Tabela 4.16 - Resposta no topo da estrutura do Modelo 2 com	
amortecedores com 20%Ccr	94
Tabela 4.17 - Resposta no topo da estrutura do Modelo 2 com	
amortecedores com 30%Ccr	95
Tabela 4.18 - Resposta no topo da estrutura do Modelo 3 com	
amortecedores com 10%Ccr	97
Tabela 4.19 - Resposta no topo da estrutura do Modelo 3 com	
amortecedores com 20%Ccr	97
Tabela 4.20 - Resposta no topo da estrutura do Modelo 3 com	
amortecedores com 30%Ccr	97
Tabela 4.21 - Comparação das respostas das opções 2 e 3 com	
amortecedores com 30%Ccr	98
Tabela 4.22 - Resposta no topo da estrutura do Modelo 3 com	
barras sem amortecedores	99
Tabela 4.23 - Resposta no topo da estrutura do Modelo 4 com	
amortecedores com 10%Ccr	100
Tabela 4.24 - Resposta no topo da estrutura do Modelo 4 com	
amortecedores com 20%Ccr	100
Tabela 4.25 - Resposta no topo da estrutura do Modelo 4 com	
amortecedores com 30%C _{cr}	100
Tabela 4.26 - Comparação das respostas das opções 3 e 4 com	
amortecedores com 30% C _{cr}	102
Tabela 4.27 - Resposta no topo da estrutura do Modelo 4 com	
barras sem amortecedores	103
Tabela 4.28 - Resposta no topo da estrutura do Modelo 5 com	
amortecedores com 10%C _{cr}	104
Tabela 4.29 - Resposta no topo da estrutura do Modelo 5 com	
amortecedores com 20%C _{cr}	104
Tabela 4.30 - Resposta no topo da estrutura do Modelo 5 com	
amortecedores com 30%Ccr	104
Tabela 4.31 - Comparação das respostas das opções 4 e 5 com	
amortecedores com 30% C _{cr}	106
Tabela 4.32 - Resposta no topo da estrutura do Modelo 5 com	
amortecedores com 40% C _{cr}	107
Tabela 4.33 - Resposta no topo da estrutura do Modelo 5 com	
barras sem amortecedores	107
Tabela 4.34 - Resposta no topo da estrutura do Modelo 5.1 com	
amortecedores com 40% C _{cr}	108

Tabela 4.35 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 25s 110 Tabela 4.36 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 25s 110 Tabela 4.37 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 50s 111 Tabela 4.38 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 100s 112 Tabela 4.39 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 150s 113 Tabela 4.40 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga atuando por 200s 114 Tabela 4.41 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com 40% Ccr e carga com crescimento gradual 116 Tabela 4.42 - Resposta no topo da estrutura do Modelo 5.1 com 20% da rigidez original das diagonais e amortecedores com 40% Ccr 117 Tabela 4.43 – Comparação dos deslocamentos no topo da estrutura para carregamentos com diferentes ângulos de fases 119 Tabela 4.44 – Comparação das velocidades no topo da estrutura para carregamentos com diferentes ângulos de fases 119 Tabela 4.45 – Comparação das acelerações no topo da estrutura para carregamentos com diferentes ângulos de fases 119 Tabela 4.46 - Resposta no topo da estrutura do Modelo 5.1 com amortecedores com C=40% C_{cr} submetida a cargas de vento definidas pelo espectro de Kaimal 120 Tabela 4.47 – Comparação entre a resposta no topo da estrutura do Modelo 5.1 com submetido a cargas de vento definidas pelo espectro de Davenport e de Kaimal 121 Tabela 4.48 - Resposta no topo da estrutura do Modelo 5 para o carregamento na ressonância 123 Tabela 4.49 - Redução dos esforços com amortecedores 128

Lista de Símbolos

Maiúsculas Romanas

$A(\omega), B(\omega)$	Componentes da transformada de Fourrier
С	Constante característica dos amortecedores
Ca	Coeficiente de arrasto definido conforme NBR-6123
C _{cr}	Coeficiente de amortecimento crítico da estrutura
F _{r,11}	Fator de rajada
L	Dimensão característica
Μ	Massa modal
S ₁	Fator topográfico
S ₂	Fator que considera a influencia da rugosidade do terreno,
	das dimensões da edificação em estudo e de sua altura
	sobre o terreno
S ₃	Fator baseado em conceitos probabilísticos
St	Número de Strouhal
S ^v	Espectro de potencia do vento
<i>T</i> ₁	Período natural principal da estrutura
v	Velocidade de deslocamento do pistão
V	Velocidade média do vento
Vcr	Velocidade crítica
\overline{V}_{p}	Velocidade de projeto
Vz	Velocidade do vento numa altura Z acima da superfície
V0	Velocidade básica do vento
X1	Frequência adimensional

Minúsculas Romanas

a ₀ , a _n , b _n	Coeficientes da série de Fourrier
В	Parâmetro meteorológico usado na determinação de S_2

b 3 e b 600	Parâmetros meteorológicos para os períodos de 3 e 600 s
	respectivamente
f	Frequência
<i>f</i> ₁	Frequência natural principal da estrutura
К	Constante de Kármán
Ρ	Expoente da lei potencial da variação de S_2
p'	Pressão flutuante
р ₃ е р ₆₀₀	Expoentes da lei potencial para os períodos de 3 e 600 s
	respectivamente
\bar{q}_z	Pressão dinâmica do vento, correspondente à velocidade
	característica V_k , em condições normais de pressão e de
	temperatura
R	Número do harmônico ressonante com o primeiro modo de
	vibração da estrutura
<i>u</i> *	Velocidade de atrito
v(z,t)	Parcela flutuante da carga de vento
V3 e V600	Velocidade na cota z para os períodos de 3 e 600 s
	respectivamente
Z	Cota acima do terreno
<i>Z</i> ₀	Coeficiente de rugosidade do terreno
Z_g	Altura da camada limite da atmosfera

Minúsculas Gregas

	0
α	Expoente característico do amortecedor
α e β	Constantes de integração de Newmark
ζ	Coeficiente de amortecimento natural da estrutura
θ	Ângulo de fase aleatório
λ	Comprimento de onda
μ	Viscosidade do fluido
ξ	Amortecimento proporcional da estrutura
ρ	Densidade do fluido
σ _v	Desvio padrão da velocidade do vento
v	Velocidade axial do fluido

Matrizes

С	Matriz de amortecimento inerente da estrutura
K	Matriz de rigidez
М	Matriz de massa
Г	Matriz de amortecimento passivo adicionado à estrutura

Vetores

ento

Lista de Abreviaturas

ABNT	Associação Brasileira de Normas Técnicas
ALS	Amortecedor de Líquido Sintonizado
AMS	Amortecedor de Massa Sintonizado
ANSI	American National Standards Institute
ASCE	American Society of Civil Engineers
ASTM	American Society for Testing and Materials
NBCC	National Building Code of Canada