
Materialized sameAs Link Maintenance

with Views

Elisa Souza Menendez

Dissertação (Mestrado em Informática). Pontifícia Universidade Católica

do Rio de Janeiro. Rio de Janeiro, 2015.

 Elisa Souza Menendez

Materialized sameAs Link Maintenance with Views

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
July 2015

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

 Elisa Souza Menendez

Materialized sameAs Link Maintenance with Views

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática do Centro Técnico Científico da PUC-Rio, as
partial fulfillment of the requirements for the degree of
Mestre.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Giseli Rabello Lopes
Departamento de Ciência da Computação – UFRJ

Prof. Vânia Maria Ponte Vidal

Departamento de Computação – UFC

Prof. José Antonio Fernandes de Macêdo
Departamento de Computação – UFC

Prof. José Eugênio Leal
Coordenador Setorial do Centro Técnico Científico – PUC-Rio

 Rio de Janeiro, July 20th, 2015

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

All rights reserved

Elisa Souza Menendez

Graduated in Information Systems from Federal University of Sergipe

(UFS), São Cristóvão - Brazil in 2013. She joined the Master in

Informatics at Pontifical Catholic University of Rio de Janeiro (PUC-

Rio) in 2013.

Bibliographic data

Menendez, Elisa Souza

 Materialized sameAs link maintenance with views / Elisa Souza
Menendez ; advisor: Marco Antonio Casanova. – 2015.

 68 f. : il. (color) ; 30 cm

Dissertação (Mestrado em Informática) – Pontifícia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2015.

 Inclui bibliografia

 1. Informática – Teses. 2. Interligações sameAs. 3. Manutenção
de interligações. 4. Dados interligados. 5. Atualizações de visões. I.
Casanova, Marco Antonio. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

Acknowledgments

I would like to say a special thank you to my parents, Gracinha and Angel, for

their support and encouragement during all these years of study. To all my family

from Nikiti city, especially my aunt Arlete, who gave me a home in her house.

To Marco Antonio Casanova, the best advisor I could ever ask for. I hope

someday, a student can admire me as much as I admire him.

To PUC-Rio and CAPES for funding my research.

To all my classmates, professors and staff from the Informatics Department.

Thanks for all your help and for always being so accommodating.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

Abstract

Menendez, Elisa Souza; Casanova, Marco Antonio (Advisor). Materialized

sameAs Link Maintenance with Views. Rio de Janeiro, 2015. 68p. MSc.

Dissertation – Departamento de Informática, Pontifícia Universidade

Católica do Rio de Janeiro.

In the Linked Data field, data publishers frequently materialize sameAs

links between two different datasets using link discovery tools. However, it may

be difficult to specify linking conditions, if the datasets have complex models. A

possible solution lies in stimulating dataset administrators to publish simple

predefined views to work as resource catalogues. A second problem is related to

maintaining materialized sameAs linksets, when the source datasets are updated.

To help solve this second problem, this work presents a framework for

maintaining views and linksets using an incremental strategy. The key idea is to

re-compute only the set of updated resources that are part of the view. This work

also describes an experiment to compare the performance of the incremental

strategy with the full re-computation of views and linksets.

Keywords

sameAs Links; Link Maintenance; Linked Data; View Update

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

Resumo

Menendez, Elisa Souza; Casanova, Marco Antonio. Manutenção de Links

sameAs Materializados utilizando Visões. Rio de Janeiro, 2015. 68p.

Dissertação de Mestrado – Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

Na área de dados interligados, usuários frequentemente utilizam ferramentas

de descoberta de links para materializar links sameAs entre diferentes base de

dados. No entanto, pode ser difícil especificar as regras de ligação nas

ferramentas, se as bases de dados tiverem modelos complexos. Uma possível

solução para esse problema seria estimular os administradores das base de dados a

publicarem visões simples, que funcionem como catálogos de recursos. Uma vez

que os links estão materializados, um segundo problema que surge é como manter

esses links atualizados quando as bases de dados são atualizadas. Para ajudar a

resolver o segundo problema, este trabalho apresenta um framework para a

manutenção de visões e links materializados, utilizando uma estratégia

incremental. A ideia principal da estratégia é recomputar apenas os links dos

recursos que foram atualizadas e que fazem parte da visão. Esse trabalho também

apresenta um experimento para comparar a performance da estratégia incremental

com a recomputação total das visões e dos links materializados.

Palavras-chave

Links sameAs, Manutenção de Links, Dados interligados, Atualização de

Visões

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

Table of Contents

1. Introduction 11

1.1. Motivation 11

1.2. Goal and Contributions 12

1.3. Dissertation Structure 12

2. Background 13

2.1. Linked Data 13

2.1.1. Resource Description Framework (RDF) 14

2.1.2. Web of Data 15

2.2. SPARQL Query Language 17

2.2.1. Property Paths 18

2.2.2. Updates 19

2.3. Related Work 20

2.3.1. Link Discovery Tools 20

2.3.2. Link Maintenance Tools 20

2.3.3. View Maintenance Strategies 21

3. Linkset Views 23

3.1. Notation and Example 23

3.1.1. Basic Linked Data Notation 23

3.1.2. Views and Linkset Views Notation 24

3.1.3. Example 25

3.2. Creating sameAs Linksets 27

4. Incremental Linkset Maintenance 30

4.1. Introduction 30

4.2. Incremental Strategy 31

4.3. The Linkset Maintainer Tool 32

4.3.1. Architecture 32

4.3.2. Process Overview 33

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

4.4. Step 1 – Defining the Views 34

4.4.1. Overview 34

4.4.2. Normalizing Pattern Elements 36

4.4.3. Normalizing Triple Blocks 39

4.5. Step 2 – Initializing Materialized Views and Linksets 45

4.6. Step 3 – Computing Affected Resources and New Property Values 47

4.6.1. Computing R¯ and R+ 47

4.6.2. Computing P 51

4.7. Step 4 – Updating a Materialized Catalogue View 53

4.8. Step 5 – Updating a Materialized Linkset 54

5. Evaluation and Results 57

5.1. Evaluation Setup 57

5.2. Experiments with a Materialized View 58

5.3. Experiments with Linkset Publications 60

5.4. Experiments with the DBpedia Change Sets 63

6. Conclusion 65

7. Bibliography 67

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

List of Figures

Figure 1 - Informal RDF Graph (MANOLA; MILLER, 2014). 14

Figure 2 - The LOD Cloud Diagram on August 2014. 16

Figure 3 - The three most used predicates for interlinking, by category. 17

Figure 4 - Silk Workbench - defining linkage rules. 20

Figure 5 - A simplified fragment of the Lattes Ontology. 26

Figure 6 - A simplified fragment of the Semantic Web Conference

Ontology. 26

Figure 7 - Linkset Maintainer Architecture. 33

Figure 8 - Sequence Diagram of the Linkset Maintainer. 34

Figure 9 - Elements of a View Pattern. 37

Figure 10 - Deletions on “Lattes_Publications” as a Materialized View. 59

Figure 11 - Insertions on “Lattes_Publications” as a Materialized View. 60

Figure 12 - Deletions on “SWCC_Publications” and Linkset Update. 62

Figure 13 - Insertions on “SWCC_Publications” and Linkset Update. 62

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

List of Tables

Table 1 - Property Path Syntax. 18

Table 2 - Property Path Normalization. 39

Table 3 - List of Views. 57

Table 4 - Analysis of DBpedia Change Sets. 64

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

11

1
Introduction

1.1 Motivation

The Linked Data initiative (BERNERS-LEE, 2006) defines best practices for

publishing data on the Web, using RDF triples to connect and structure it. The

idea became popular and the number of triples grew significantly, but there was a

concern about the lack of links between different datasets.

Link discovery tools, such as LIMES (NGOMO; AUER, 2011) and Silk

(VOLZ et al., 2009), came as solutions to help create and materialize linksets, that

is, to explicitly store the set of links. These tools, however, are semi-automatic,

since users have to set linkage rules, that is, they have to specify conditions that

resources must fulfill to be interlinked. Data publishers also have to specify which

type of RDF link should be created. The most common one is the sameAs link,

which has the form (s, owl:sameAs, o) and indicates that s and o denote the same

resource.

Defining the linkage rules can be a complex task, since the user must know

how the datasets are modeled to specify the conditions. Thus, this work presents a

strategy to deal with this problem, in which the key idea is to use SPARQL-based

views defined by the administrator of each dataset. The views should act as

resource catalogues, that is, sets of resources with useful properties. Hence, the

user who wants to create a materialized linkset only selects two of the pre-defined

catalogue views and performs a simpler post-configuration.

Since datasets are continually updated, link maintenance is another problem

of the Linked Data field. For instance, when a remote resource used in a link is

removed, the link is invalidated and should also be removed. To address such

problem, Casanova et al. (2014) proposed an incremental strategy to keep sameAs

linksets updated, similar to the traditional incremental view maintenance

strategies.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

12

1.2 Goal and Contributions

The main contributions of this work are to improve, implement and evaluate the

solution proposed by Casanova et al. (2014).

The main improvement in the solution is the extension of the catalogue view

definition to allow administrators to define their views with more flexibility.

Therewith, we also introduce the process of normalizing SPARQL queries,

simplifying complex SPARQL elements.

We also describe the implementation of the proposed architecture with

Master Controllers, View Controllers and Linkset Controllers in the Linkset

Maintainer Tool.

Finally, we describe experiments to test the performance of the incremental

strategy and to compare this strategy with a linkset re-computation basic strategy.

1.3 Dissertation Structure

This dissertation is structured as follows. Chapter 2 presents the basic concepts

and summarizes related work. Chapter 3 describes the concept of linkset views.

Chapter 4 presents the incremental strategy and the Linkset Maintainer tool.

Chapter 5 covers the evaluation and results of the tool. Finally, Chapter 6 presents

the conclusions and proposes future work.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

13

2
Background

This chapter provides an overview of the main concepts related to this

dissertation. Section 2.1 introduces key definitions about Linked Data, its relation

with the Resource Description Framework (RDF) and how it contributed to the

formation and growth of the Web of Data. Section 2.2 covers the SPARQL Query

Language, especially the latest features introduced in Version 1.1: property paths

and updates. Finally, Section 2.3 describes related work, divided into link

discovery tools, link maintenance tools and view maintenance strategies.

2.1 Linked Data

Tim Bernes-Lee introduced a set of best practices for publishing and interlinking

structured data on the Web, known as Linked Data (BERNERS-LEE, 2006).

There are four main principles that define Linked Data:

 Use URIs as names for things.

 Use HTTP URIs so that people can look up those names.

 When someone looks up a URI, provide useful information using the

standards (RDF, SPARQL).

 Include links to other URIs, so that they can discover more things.

The idea of the first principle is to extend the classic Web and use URIs

(Uniform Resource Identifiers) to identify not only documents, but also any object

or concept of the real world. URIs can identify concrete things, such as people,

places, and cars, or abstract concepts, such as feelings and relations (HEATH;

BIZER, 2011).

Once there is an URI defining something, it needs to be combined with the

HTTP protocol in order to enable the URI to be dereferenced, that is, to provide

access to the description of objects and concepts.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

14

The third principle promotes the use of standard content format to enable

different applications to process Web content. The structured data can be

represented and shared using a simple graph-based model, known as RDF

(Resource Description Framework), described in section 2.1.1.

Finally, the fourth principle is considered the most important for the scope

of this work. This principle promotes the use of RDF triples to describe

relationships between resources. Such triples are often referred to as links. For

instance, to connect a person with a place, one may use the relationship “works”.

Moreover, links should also be created between different datasets in order to

create a global data space, called the Web of Data, described in section 2.1.2.

2.1.1. Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a framework for expressing

information about resources (MANOLA; MILLER, 2014). Resources can be

anything (documents, people, objects, concepts, etc.) and are described using

triples. A triple is a statement that has a subject, a predicate and an object.

Informally, an instance of a statement can be “The Mona Lisa was created by

Leonardo Da Vinci”, in which the subject is “The Mona Lisa”, the predicate is

“was created by” and the object is “Leonardo Da Vinci”. The combination of the

statements forms a graph, as shown in Figure 1.

Figure 1 - Informal RDF Graph (MANOLA; MILLER, 2014)

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

15

Formally, in RDF, the subject and the predicate of the triple have to be

represented as an URI, and the object can be an URI or a literal. URI stands for

“Uniform Resource Identifier” and is a global identifier that allows different

people to reuse the URI to identify the same thing. For instance, the dataset

DBpedia uses the URI http://dbpedia.org/resource/Mona_Lisa to denote

the Mona Lisa painting described by the corresponding Wikipedia article.

Additionally, DBpedia uses the URI http://dbpedia.org/ontology/author to

represent the predicate “was created by” and the URI

http://dbpedia.org/resource/Leonardo_da_Vinci to represent the object

“Leonardo Da Vinci”. In turn, a literal is a basic value that is not an URI. For

instance, DBpedia denotes the following triple, in which the object is literal:

(http://dbpedia.org/resource/Mona_Lisa,

 http://dbpedia.org/property/otherTitle,

 "La Joconde")

In practice, RDF is used in combination with vocabularies that provide

semantic information about the resources. Examples of popular vocabularies are:

 RDF Schema: defines the basic idea of classes and properties. For

example, one can state that the URI

http://www.example.org/friendOf can be used as a property and that

the subjects and objects of this predicate must be resources of class

http://www.example.org/Person. Then, one can say that the resources

Bob and Mary are of the type Person, and that Bob is a friend of Mary.

 OWL (Web Ontology Language): extends the expressivity of RDF

Schema with additional primitives, such as equivalent class, equivalent

property, different of, same as, etc.

 FOAF (Friend of a Friend): describes people, their activities and their

relations to other people.

 Dublin Core: defines general attributes such as title, creator, date and

subject.

2.1.2. Web of Data

The Web of Data forms a large global graph connecting RDF datasets from all

sorts of topics, such as locations, people, publications, music, movie, and etc. The

idea of the Web of Data started to gain force in 2007 with the Linked Open Data

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

16

(LOD)1 project. The aim of this project was to identify existing datasets available

under open licenses and to publish them in RDF, according to the Linked Data

Principles (Heath and Bizer, 2011). Subsequently, several individuals and

organizations were stimulated to publish their data in the LOD using the Linked

Data principles. Figure 2 shows the LOD graph for the datasets published until

August 2014.

Figure 2 - The LOD Cloud Diagram on August 2014

The LOD has some interesting statistics2, for example, as of August 2014,

the total number of datasets was 1004; the Social Networking domain was 51.28%

of the total; 56.11% of the crawled datasets link to at least one other dataset, and

the remaining datasets are only targets of RDF links. In total, 23.17% datasets use

proprietary vocabularies, while nearly all (99.87%) datasets use non-proprietary

vocabularies. A vocabulary is non-proprietary if there are at least two datasets

using the vocabulary.

Figure 3 shows the three predicates most used for interlinking, by category.

It is important to highlight that the link owl:sameAs, which denotes that a resource

is the same as other resource, appears in the list of 7 out of the 8 categories, and is

the first of the list in 6 categories. Thus, the owl:sameAs is the most frequent

1 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

17

predicate for interlinking in the LOD.

Figure 3 - The three most used predicates for interlinking, by category

In order to create links between different datasets, one can use popular

identifiers, such as International Standard Book Number (ISBN), DOI (Digital

Object Identifier), person’s ID number, etc. However, in some cases, different

datasets do not share a common identifier and need to be linked based on the

similarity between two resources. Several tools were developed to help the task of

finding links between different datasets and contribute to the expansion of the

Web of Data.

2.2 SPARQL Query Language

The SPARQL query language (HARRIS; SEABORNE, 2013) can be used to

express queries over RDF graphs. A simple example of a SPARQL query is

shown below, in which the result is all the triples that have foaf:Person as its type.

SELECT ?subject

WHERE { ?subject rdf:type foaf:Person }

The SELECT clause identifies the variables that will appear in the result (in

this case, ?subject). The WHERE clause contains the graph pattern that is matched

with a RDF graph. The pattern in this example is a single triple, but SPARQL also

supports aggregation, subqueries, negation, filters, and etc.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

18

Another way to express queries in SPARQL is using the CONSTRUCT query

form, which returns in a single RDF graph specified by a graph template. In the

example below, the new graph would contain all the resources with the property

foaf:givenName replaced by the property foaf:name.

CONSTRUCT { ?subject foaf:name ?name

WHERE { ?subject foaf:givenName ?name }

2.2.1. Property Paths

One of the features of the latest version, SPARQL 1.1, is the support for property

paths, which is a possible path between two nodes in a graph. Table 1 shows the

syntax of the property paths.

Syntax Form Expression Name Matches

iri Predicate Path An URI. A path of length one.

^elt Inverse Path Inverse path (object to subject).

elt1 / elt2 Sequence Path
A sequence path of elt1 followed by

elt2.

elt1 | elt2 Alternative Path
An alternative path of elt1 or elt2 (all

possibilities are tried).

elt* Zero or More Path

A path that connects the subject and

object of the path by zero or more

matches of elt.

elt+ One or More Path

A path that connects the subject and

object of the path by one or more

matches of elt.

elt? Zero or One Path

A path that connects the subject and

object of the path by zero or one

matches of elt.

elt{n}* Fixed Length Path

A path that connects the subject and the

object of the path by exactly n matches

of elt.

!elt Negated Path Every match that is not elt.

(elt) Group Path
A group path elt, where brackets control

precedence.

(*) This syntactical form is not included in the specification of SPARQL 1.1, but it is supported by

several triplestore systems.

Table 1 - Property Path Syntax

As an example of the Sequence Path expression, the query below finds the

name of any people that "Alice Smith" knows.

SELECT ?name

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

19

WHERE { ?subject foaf:firstName "Alice" .

 ?subject foaf:lastName "Smith" .

 ?subject foaf:knows/foaf:name ?name }

Note that this Sequence Path could be replaced by:

?subject foaf:knows ?person .

?person foaf:name ?name

The Inverse Path expression reverses the direction of the predicate,

swapping the roles of subject and object, as in:

SELECT ?subject

WHERE { "Alice" ^foaf:firstName ?subject }

As for the Zero or More Path expression, the following query returns all

types and supertypes of the resources:

SELECT ?subject ?type

WHERE { ?subject rdf:type/rdfs:subClassOf* ?type }

2.2.2. Updates

Another important feature of SPARQL 1.1 is the possibility to update RDF

datasets, and to insert or delete triples. There are three types of operations: update

data, delete where, and modify. The update data inserts or deletes triples given

inline in the request, for example:

INSERT DATA {<http://example/book1> dc:title "A new book" }

The modify operation can be used to remove or add triples based on

bindings for a query pattern specified in a WHERE clause, as in:

WITH <http://example/addresses>

DELETE { ?person foaf:firstName "Bill" }

INSERT { ?person foaf:firstName "William" }

WHERE { ?person foaf:firstName "Bill" .

 ?person foaf:lastName "Smith" }

Finally, the delete where operation is a shortcut for modify (delete), in which

bindings matched by the WHERE clause are used to define the triples that will be

deleted. Despite that, the delete where is more limited than modify, since it is not

possible to use filters or property paths. An example is:

DELETE WHERE { ?person foaf:firstName "Fred" .

 ?person ?property ?value }

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

20

2.3 Related Work

2.3.1. Link Discovery Tools

Several tools were developed to help solve the problem of finding links between

different datasets. The LInk Discovery Framework for MEtric Spaces (LIMES)

proposes algorithms that work efficiently with large knowledge bases (Ngomo

and Auer, 2011). The LIMES developers started with the idea of filtering obvious

non-match instances to reduce the number of comparisons and improve matching

time. The Silk Linking Framework (Volz et al., 2009b) offers a second example.

Figure 4 shows the Silk Workbench, in which the user can define the linkage rules

by setting the properties that will be compared (e.g. foaf:name, rdfs:label), the

transformations (e.g. Lower case function) that will be applied and the similarity

measures (e.g. Levenshtein distance) to compare the values.

Figure 4 - Silk Workbench: defining linkage rules.

In addition to the link discovery engine, Silk has another component for

evaluating the links generated. The framework provides a Web interface for users

to evaluate the correctness and completeness of the generated links. They can set

the linkage rules and submit triples that have an expected result. Afterwards, the

tool shows the exact values of the metrics and aggregations, so that the user can

check if it worked as expected and fine-tune the linkage rules, if necessary.

2.3.2. Link Maintenance Tools

The authors of Silk also proposed a protocol for link maintenance, called the Web

of Data – Link Maintenance Protocol (WOD-LMP), to deal with the changes that

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

21

may occur in datasets (VOLZ et al., 2009; VOLZ; BIZER; GAEDKE, 2009). The

protocol covers three use cases:

 Link Transfer to Target – the source sends notifications to the target

when a link is created or deleted.

 Request of Target Change List – the source requests to the target a list

of changes in a specified time range.

 Subscription of Target Changes – the source sends the link

notifications, and the target saves this information to further notify the

source about changes in the selected resources.

DSNotify is another tool that supports link maintenance (POPITSCH;

HASLHOFER, 2011). The tool can be described as a general-purpose change

detection framework that notifies linked data sources about events (create,

remove, move, and update) in their remote resources. To deal with these changes,

DSNotify uses a specific OWL Lite vocabulary called DSNotify Eventset

Vocabulary, which allows a detailed description (what, how, when, and why) of

the events.

2.3.3. View Maintenance Strategies

This dissertation is also related to strategies for materialized view maintenance. In

relational databases, a strategy for view maintenance is called incremental if only

part of the view is modified to reflect the updates in the database (GUPTA;

MUMICK; SUBRAHMANIAN, 1993; STAUD; JARKE, 1996). This strategy

was adapted to maintain RDF views of the underlying relational data (VIDAL,

CASANOVA; CARDOSO, 2013). Both contexts showed that incremental view

maintenance generally outperforms full view re-computation. However, we

cannot directly adopt the familiar strategies proposed for incremental maintenance

over relational datasets, since complex SPARQL updates pose new challenges,

when compared with SQL updates.

This dissertation is also closely related to strategies designed for

maintaining RDF views over RDF datasets (HUNG; DENG; SUBRAHMANIAN,

2004; VIDAL et al., 2015), since the main part of our strategy is to compute the

resources that affect the catalogue views used in the linksets. However, there is no

work in the literature that deals with complex SPARQL-based views.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

22

Additionally, the proprietary systems that support the incremental maintenance of

views, such as Oracle RDF Store3, can only deal with small inserts.

Furthermore, we cannot consider that a linkset is a regular RDF view

computed from two datasets, since they are materialized using complex linkage

rules, which typically involve similarity measures that cannot be expressed with a

SPARQL query. Hence, even if there were a solution for the maintenance of

SPARQL-based views in the literature, we would still not be able to directly use

it.

 As already mentioned in the introduction, the work reported in this paper

differs from the work of Casanova et al. (2014) in three aspects. First, it presents

in detail the incremental strategy to keep linksets updated, which includes a

normalization process for views defined by SPARQL queries and a discussion on

how to synthesize queries that compute sets of affected resources. Second, it

outlines an implementation of the proposed strategy. Lastly, based on the

implementation, it describes experiments to measure the performance of the

incremental strategy when compared with a full re-materialization strategy, a

question that has been neglected in the literature.

3 http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-

graph-1902016.html

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

23

3
Linkset Views

This chapter presents the main concepts about Linkset Views and how they can

help the creation process of materialized links. Section 3.1 starts with formal

notations about Linked Data, Views and Linkset Views. A key point of this

section is the definition of simple property path queries, along with a running

example to illustrate the notation and to provide further explanations. Section 3.2

shows how data publishers can benefit from views created by the administrators

of the datasets in the definition process of Linkset Views.

3.1 Notation and Example

3.1.1. Basic Linked Data Notation

Linked Data has some basic concepts that need to be formally described for the

purpose of this work.

An RDF dataset T is a set of RDF triples (Harris and Seaborne, 2013). A

triple (s, p, v) in T defines a property p of a resource s.

Let U be a second dataset. A link from T to U is an RDF triple (s, p, o), such

that s is defined in T, o is defined in U and p is not rdf:type (Alexander et al.,

2011). The set of links from T to U is a linkset from T to U. A sameAs link is a

link of the form (s, owl:sameAs, o), which asserts that s denotes the same resource

as o.

The similarity measure is used to compare two objects and determine how

similar they are. Formally, a function : (D1…Dn) (D1…Dn) is a

similarity measure for tuples in D1…Dn iff, for any x,y D1…Dn,

(x,y) ≥ 0, (x,x) ≥ (x,y) and (x,y) = (y,x) (Euzenat and Shvaiko, 2007).

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

24

3.1.2. Views and Linkset Views Notation

Other concepts that need to be formally described are catalogue views and linkset

views, since they will be used in this work. For that purpose, this section will

introduce an abstract notation based on a minimum set of simple SPARQL 1.1

constructs (Harris and Seaborne, 2013).

A simple construct query can be understood as a catalogue of resources of a

given type with properties defined by SPARQL 1.1. Such catalogues will be used

to generate sameAs linksets. More precisely, a SPARQL query F is a simple

construct query, or a simple query, iff:

‒ The CONSTRUCT clause of F has exactly one template of the form

“ ?x rdf:type C ” and a list of templates of the form “?x Pk ?pk”, where

C is a class and Pk is a property, for k=1,…,n. We say that

VF={C,P1,…,Pn} is the vocabulary of F.

‒ F contains a single FROM clause specifying the dataset used to evaluate

F.

‒ The WHERE clause of F contains the pattern of the values that will be

mapped to the resources and properties of the CONSTRUCT clause. The

WHERE clause is subjected to certain restrictions, as will be explained in

Section 4.4.

A catalogue view definition is a pair v = (VF, F), where F is a simple query,

called the view mapping. The view vocabulary VF is the vocabulary of F and

consists of a single class and an ordered list of properties. When there is no need

to highlight the view vocabulary, we will simply refer to F as the view definition.

The materialization of v is the process of computing the set of triples that F

returns when execute over state T(t) of T, denoted F[T(t)], and explicitly storing

it as part of a dataset.

Finally, a linkset view is a quintuple l = (p, F, G, ,), where:

‒ p is an object property;

‒ F and G are simple queries, whose vocabularies have the same

cardinality n;

‒ is a permutation of (1,...,n), called the alignment of l;

‒ is a 2n-relation, called the match predicate of l.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

25

A linkset view could also be defined as l = (p, v, w, ,), where v=(VF, F)

and w=(VG, G) are catalogue views. If v and w are replaced by their queries, F and

G, respectively, it returns to the previous form.

Let VF={C,P1,…,Pn} be the vocabulary of F and VG={D,Q1,…,Qn} be the

vocabulary of G. Intuitively, the alignment in l indicates that, for each k=1,…,n,

the match predicate will compare values of Pk with values of Qm, where m = (k).

The notion of alignment can be generalized to permit more sophisticated

alignments and mappings, such as mapping the concatenation of last name and

first name into a single name.

Let T be the dataset specified in the FROM clause of F, and U be the dataset

specified in the FROM clause of G. The linkset view definition l induces a set of

triples from T to U, denoted l[T,U], as follows:

‒ (s, p, o) l[T,U] iff there are triples,

(s,rdf:type,C), (s,P1,s1),…,(s,Pn,sn) F[T(t)] and

 (o,rdf:type,D), (o,Q1,o1),…,(o,Qn,on) G[U(t)] such that

 (s1 ,…, sn , om1 ,…, omn) , where mk = (k), for each k=1,…,n.

The materialization of l is the process of computing the set l[T,U] and

explicitly storing it as part of a dataset.

Although these definitions are general, we stress at this point that the rest of

this dissertation will address only linkset views where p is the owl:sameAs

property (http://www.w3.org/2002/07/owl#sameAs).

3.1.3. Example

The notation previously introduced can be better understood with examples. Thus,

this section presents two datasets and their respective ontologies that will support

a linkset view example.

The Lattes dataset (BrCV) represents CVs of Brazilian researchers and was

extracted from the Lattes platform. Suppose that BrCV has a fictitious SPARQL

endpoint “http://lattes.br/sparql” and uses the Lattes ontology - a fragment of this

is presented in Figure 5. The fictitious namespace for the ontology is

http://onto.lattes.br/ and its prefix is “la:”.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

26

Figure 5 - A simplified fragment of the Lattes Ontology

 The Semantic Web Conference Corpus dataset (SWCC) contains triples

about the main conferences and workshops in the area of Semantic Web

research. Its fictitious SPARQL endpoint is

http://semanticweb.org/sparql, and the ontology used is the Semantic

Web Conference (SWC) ontology (Möller et al., 2009). A fragment of

SWC is shown in Figure 6. The fictitious namespace is

http://data.semanticweb.org/ns/swc/ontology# and its prefix is “swc:”.

Figure 6 - A simplified fragment of the Semantic Web Conference Ontology

Now, suppose that a user wants to link researchers in the SWCC dataset with

those represented in the BrCV dataset by their CVs. He/She could compare the

person’s name from both datasets and, to disambiguate, use the homepage of the

organization the person works for.

Thereby, the following queries exemplify two simple property path queries,

as defined in the previous section. The first query, named FSWCC, is evaluated over

the Semantic Web Conference Corpus dataset and is defined as follows:

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

27

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

Note that the CONSTRUCT clause of FSWCC selects, for a person ?x, the values

of properties foaf:firstName and foaf:lastName, and the value of property

foaf:page of the organization related to ?x by the inverse property foaf:member.

The second query, named GBrCV, is evaluated over the Lattes dataset and is

defined as follows:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

Note that the CONSTRUCT clause of GBrCV selects, for a person ?x, the values

of properties foaf:firstName and foaf:lastName and the value of property

foaf:homepage of the organization related to ?x, by the composition of the

properties la:refersToWorkedFor and la:refersToOrg

Finally, an example of a linkset view definition is l = (owl:sameAs, FSWCC,

GBrCV, ,), where:

‒ owl:sameAs is the property used to indicate that two resources denote

the same object;

‒ FSWCC is the query defined above;

‒ GBrCV is the query defined above;

‒ The alignment is the identity permutation;

‒ The match predicate is defined as (s1 ,…, sn , o1 ,…, on) iff

(sk , ok) ≥ , for each k=1,…,n, where similarity measure is the

3-gram distance (Ngomo and Auer, 2011) and the threshold is set to

0.5. That is, since each pair (sk , ok) to be compared is a pair of strings,

the user might decide to use the same string similarity measure and the

same threshold, = 0.5, for all k=1,…,n.

3.2 Creating sameAs Linksets

A sameAs link is a link of the form (s, owl:sameAs, o) and indicates that s and o

denote the same object. Given two different datasets T and U, a user would like to

find sameAs links where s is defined in T and o is defined in U.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

28

There are a few ways to create sameAs links. A brute-force solution would

be to manually find and create sameAs links. A better solution is the sameAs

linkset materialization, in which the links are automatically created based on the

property values of the datasets. Link discovery tools, such as LIMES (Ngomo and

Auer, 2011) and Silk (Volz et al., 2009b), help the materialization task, but the

user needs to configure the tool and set the link specifications. This configuration

can be understood as the specification of a linkset view definition, in which the

user needs to know how the datasets T and U are modeled, so he can create the

simple property path queries F and G.

The configuration step is generally complicated, since the datasets use

different ontologies, with heterogeneous vocabularies and distinct strategies to

structure the concepts. It also requires that the user understands the semantics of

the datasets T and U in sufficient detail to specify the alignment between the

vocabularies of queries F and G, which in turn defines how the match predicate is

applied.

Thus, the benefit of using views lies in that the user who wants to create

sameAs links does not need to fully understand the datasets, but only use the

views defined over them. The administrator of each dataset should be responsible

for publishing one or more view definitions, where:

 Each view definition is simple, which implies that the vocabulary of the

view consists of a single class and a list of properties, which should act

as an identifier for the instances of the class.

 Each view definition includes a mapping to the underlying dataset,

defined by a SPARQL query, transparently to the users.

 Each view is accompanied by metadata that describe the set of instances

represented in the view and indicate how its vocabulary is pre-aligned

with standard vocabularies.

The user can browse the published metadata to find simple view definitions

v=(VF, F) and w=(VG, G) and also explore the pre-alignment between the

vocabularies VF and VG and standard vocabularies. Hence, he/she will only be

responsible for the final alignment between the vocabularies.

In the linkset view example of section 3.1.3, the user wanted to find sameAs

links between researchers in BrCV and SWCC. For that, he/she created the simple

property path queries, FSWCC and GBrCV, and defined the linkset view.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

29

Now, suppose that the administrator of each dataset defines views that capture the

properties that qualify researchers. Thus, the user would not need to create the

queries, but only use the views already defined. For example, a view for SWCC

could be ReSWCC = (VF, FSWCC), where VF = {foaf:Person, foaf:firstName,

foaf:lastName, foaf:workplaceHomepage}, and for BrCV could be ReBrCV =

(VG, GBrCV), where VG = {foaf:Person, foaf:firstName, foaf:lastName,

foaf:workplaceHomepage}. The new linkset view would be in the form

m = (owl:sameAs, ReSWCC, ReBrCV, ,), which is similar to linkset l defined

in section 3.1.3, except that the queries are replaced by views.

The key is that the administrators should define the views a priori, and

independently of each other, motivated only by the fact that they represent

persons with certain specific profiles. Hence, it would be important to pre-align

the vocabulary of each view with the FOAF vocabulary, making it trivial to align

the vocabularies of both views definitions.

To conclude, this section illustrated how view definitions simplify the

process of sameAs linkset materialization.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

30

4
Incremental Linkset Maintenance

This chapter describes our strategy and implementation for the incremental

maintenance of materialized linksets. Section 4.1 discusses the main problems of

applying known strategies for view maintenance in the context of linkset views.

Section 4.2 shows how to overcome the problems of the incremental strategy and

adapt it to our context. Section 4.3 presents the Linkset Maintainer tool, along

with its architecture and process. Sections 4.4, 4.5, 4.6 and 4.7 describe, in detail,

the main steps of the maintenance process.

4.1 Introduction

After the sameAs links are created and materialized, another problem emerges:

how to keep the links updated. More precisely, given two datasets, T and U, and a

materialized sameAs linkset L from T to U, the problem now lies in how to

maintain L when updates on T or U occur. In traditional view maintenance

literature, there are a few alternatives that can help solve this problem.

The first alternative would be to create versions of L as updates on T or U,

considering that T and U are also versioned. But this option should be discarded,

since we cannot assume that T and U are versioned. In fact, this alternative would

lead to a different set of new problems.

A second approach would be to rematerialize L, that is, to recompute L

when updates are applied to T or U. This would be a costly alternative, since L is

computed by a (potentially complex) matching process between property values

using queries.

To invalidate links in L that are affected by updates on T or U would be

another alternative. The problem now lies in that L does not contain the triples

capturing the property values that generated the sameAs links to detect when an

update on T or U invalidates a sameAs link in L.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

31

The last alternative would be to incrementally maintain L, that is, to update

L based on the updates on T or U. The same problem as for link invalidation

would occur, since L does not have enough information to recompute a sameAs

link, after an update on T or U occurs.

Motivated by this discussion, section 4.2 presents a strategy that overcomes

the lack of information problem and implements the incremental maintenance

approach. A simpler version of the strategy would also apply to link invalidation.

4.2 Incremental Strategy

In order to incrementally maintain a materialized linkset L, it is necessary to

capture how updates on the datasets affect the links and compute the changes that

will be applied to L.

Let V be a collection of catalogue views over T. Let u be an update on T and

T(t0) and T(t1) be the states of T before and after u (the discussion is symmetric

for updates on U). Let u¯ be the set of triples affected by the deletions of u and u+

be the set of triples affected by the insertions of u.

In the first process required by our incremental strategy, we need to capture

the changes that affect each view in V. Let F be a catalogue view and F V.

1) Compute a set R¯ of resources of view F that are affected by triples in

u¯ (see section 4.6.1).

2) Compute a set R+ of resources of view F that are affected by triples in

u+ (details in section 4.6.1).

3) Retrieve the set P of (new) property values (see section 4.6.2).

4) Associate R¯ and P with the update timestamp tu.

Recall that F[T(t)] denotes the set of triples that F returns when executed

over state T(t) of T. The second process of our incremental strategy is required

when F is a materialized view, that is, F[T(t)] is explicit stored as part of a

dataset. Let F(t0) be the materialized set of triples F[T(t0)]. We say that t0 is the

timestamp of the last maintenance of F(t0).

Let F[R¯(tu)] be a collection of deleted resources of F associated with a

given update timestamp tu. Let F[P(tu)] be a collection of new property values of

F associated with a given update timestamp tu. Let t1 be the current timestamp. Let

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

32

R¯[t0,t1] be the set of accumulated deleted resources, where

r R¯[t0,t1] iff r F[R¯(tu)] and t0 < r(tu) < t1 . Let P[t0,t1] be the set of

accumulated property values, where p P[ti,tj] iff p F[P(tu)] and ti < p(tu) < tj .

We incrementally update F(t0) by following two main steps:

1) Delete from F(t0) all triples whose subject occurs in R¯[t0,t1].

2) Insert P[t0,t1] into F(t0) and obtain F(t1).

Suppose that L is a materialized linkset specified by the linkset view

definition l=(p,F,G,,), where G is a catalogue view over U and G[U(t)] denote

the set of triples that G returns when execute over state U(t) of U. In the third

process of the incremental strategy, we incrementally update L by following two

main steps:

1) Delete from L all links whose subject or object occurs in R¯[t0,t1].

2) Try to match P[t0,t1] with the property values of a resource in U(t1); if

a match is found, add a link to L.

4.3 The Linkset Maintainer Tool

The Linkset Maintainer tool was developed to test the strategy outlined in section

4.2. The implementation used the Java 7 programming language, the Eclipse Luna

IDE, JBoss Application Server 7 and Jena ARQ API (as the SPARQL Processor).

4.3.1. Architecture

Figure 7 summarizes the architecture of the tool considering the scenarios

where the linkset is defined over a virtual view or when it is defined over a

materialized view. The Master Controller for a view F over a dataset T has the

following functionality:

 Normalize the view F defined by the administrator (section 4.4).

 Accept registrations from View Controllers and Linkset Controllers that

will consume data through F (section 4.5).

 Monitor each update on T that affects F and compute the sets R¯, R+

and P (section 4.6).

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

33

 Send the sets R¯ and P to the View Controllers and Linkset Controllers

registered with itself; the Master Controller sends the sets in batch,

starting from a given timestamp.

The View Controller for a materialized view F(t0), defined over view F,

has the following functionality:

 Register itself with the Master Controller for F and initialize F(t0).

 Request the sets of R¯ and P to the Master Controller for F and update

F(t0) accordingly; the View Controller receives the sets in batch,

starting from a given timestamp.

The Linkset Controller for a linkset L, defined over views F and G, has the

following functionality:

 Register itself with the Master Controllers for F and G and initialize L.

 Request the sets of R¯ and P to the Master Controller for F and G and

update L accordingly; the Linkset Controller receives the sets in batch,

starting from a given timestamp.

Figure 7 - Linkset Maintainer Architecture

4.3.2. Process Overview

Before starting the maintenance process of materialized linksets, two important

tasks need to be executed at design time. The first task will be executed right after

the administrator defines the views, in which the Master Controller normalizes the

defined view. This task will be better explained in section 4.4. The second task is

the process of initializing the linkset and, if necessary, a materialized view, which

will be described in section 4.5.

After the initialization, the maintenance process takes place at execution

time. Figure 8 shows a sequence diagram for the maintenance process. Steps 1 to 6

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

34

are explained in detail in section 4.6. Section 4.7 explains steps 7 and 8 and

section 4.8 explains steps 9 and 10.

Figure 8 - Sequence Diagram of the Linkset Maintainer

4.4 Step 1 – Defining the Views

4.4.1. Overview

The process begins with the administrators defining views for their datasets. As

stated in section 3.2, the view definition must be simple. However, the WHERE

clause that maps the underlying data is very flexible and can be as much complex

as the administrator wants.

For instance, the administrator can use complex property paths, as will be

described in section 4.4.3. In addition to the complex property paths, the

administrator is also allowed to use more complex elements than triples, as will be

described in section 4.4.2.

Monotonicity

The only restriction in the view definition is about the use of negations,

such as negated paths, filter not exists and minus, because we need the view to be

monotonic. Monotonicity permits us to consider only deletions when constructing

the set R¯ and, likewise, only insertions when constructing R+.

For example, suppose that the administrator of a dataset T defines the

following view F:

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

35

 CONSTRUCT { ?x :p1 ?y }

 FROM <T>

 WHERE { ?x :p1 ?y .

 FILTER NOT EXISTS { ?x :p2 ?y } }

and suppose that T has only the following triples:

 :s1 :p1 :o1

 :s2 :p1 :o2

Note that a materialization of F would also contain only the above triples.

Now, suppose that we execute the following update:

 INSERT DATA { :s1 :p2 :o1 }

Note that, if we rematerialize view F after the update, the triple “:s2 :p1 :o2”

would not be part of the view anymore. Then, an insertion in the dataset actually

caused a deletion from the materialized view. Likewise, this same insertion could

cause a deletion from a materialized linkset that uses F. Therefore, we adopted the

monotonicity restriction to simplify the solution.

Running Example

Continuing the running example, suppose that the administrator of the

fictitious BrCV dataset wants to define a view that corresponds to a catalogue of

all researchers. He/She has to provide to the Master Controller a JSON

(JavaScript Object Notation) file containing the following properties:

 Name: a unique identifier for the view in the JSON file

 Definition: the view itself, that is, the CONSTRUCT query.

 An example of the JSON file describing a view for researchers from BrCV

is shown below.

{"views":[

 {"name": "Lattes_Researchers",

 "definition":

 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 PREFIX la: <http://onto.lattes.br/>

 CONSTRUCT { ?x rdf:type foaf:Person .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x foaf:workplaceHomepage ?op }

 FROM <http://lattes.br/sparql>

 WHERE { ?x rdf:type la:Curriculum .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x la:refersToWorkedFor/la:refersToOrg/foaf:homepage ?op} "

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

36

 }]

}

Once the view definition is informed, the Master View Controller has to

identify the predicate triple patterns, that is, triple patterns with predicate paths or

predicate variables. In order to help this task, the Master View Controller has to

normalize the view, that is, simplify triples by replacing property paths for

standard triples, where possible.

For instance, the Sequence Path of the view “Lattes_Researchers” would be

replaced by the following triples:

?x la:refersToWorkedFor ?p1 .

?p1 la:refersToOrg ?p2.

?p2 foaf:homepage ?op

Then, the list of predicate triple patterns of view “Lattes_Researchers”

would be:

[?x rdf:type la:Curriculum,

 ?x foaf:firstName ?fn,

 ?x foaf:lastName ?ln,

 ?x la:refersToWorkedFor ?p1,

 ?p1 la:refersToOrg ?p2,

 ?p2 foaf:homepage ?op]

4.4.2. Normalizing Pattern Elements

The WHERE clause of the view is also called the pattern of the view. The pattern is

composed by a group of elements. The most common element is the triple block,

that is, a continuous list of triple patterns. There is also the filter element, the

union element, the sub query element, and so on.

For instance, Figure 9 describes the elements of a view of actors and actresses

that have less than 70 years old.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

37

Figure 9 - Elements of a View Pattern

As the pattern can be very complex, with several elements inside other

elements, the algorithm has to recursively run through these elements and replace

each element by its normalized version. When the element is a triple block, the

Master Controller has to run through all its triple patterns and normalize them. A

single triple block can be transformed in two blocks, as in the case of Alternative

Paths described in section 4.4.3. That is why, given one triple block, Algorithm 2

returns a list of normalized triple blocks, and consequently, Algorithm 1 returns a

list of normalized elements. The algorithm for sweeping pattern elements is

shown below.

Algorithm 1: Sweeper for Pattern Elements

Input: Element

Output: List of Normalized Elements

 List of Predicate Triple Patterns

Method:

 Lnorm = new list of elements

 LPTP = empty list of triple patterns

 add the input to Lnorm

 if the input is a Triple Block

 Lblock = call Algorithm 2 (section 4.4.3) with the input

 Add the second output of Algorithm 2 to LPTP

 return Lblock

 else if the input is a Group

 for each element e in Group g do

 Lsub = recall this method with e

 Lnew = new empty list of elements

 for each element f in Lnorm

 for each item j in Lsub

 gnew = replace e for j in f

 add gnew to Lnew

 Lnorm = Lnew

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

38

 return Lnorm

 else if the input is a Union

 for each element e in Union u do

 Lsub = recall this method with e

 Lnew = new empty list of elements

 for each element f in Lnorm

 for each item j in Lsub

 unew = replace e for j in f

 add unew to Lnew

 Lnorm = Lnew

 return Lnorm

 else if ...

 ...

 return Lnorm

Once a normalized list is obtained, all elements are combined in a single

query by a UNION clause. Then, the Master Controller updates the JSON file by

adding the combined query as the value of “normalized” and the list of predicate

triple patterns as the value of “PTP”.

In the running example of view “Lattes_Researchers”, the JSON file would

look like the following:

{"views":[

 {"name": "Lattes_Researchers",

 "definition": "…",

 "normalized":

 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 PREFIX la: <http://onto.lattes.br/>

 CONSTRUCT { ?x rdf:type foaf:Person .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x foaf:workplaceHomepage ?op }

 FROM <http://lattes.br/sparql>

 WHERE { ?x rdf:type la:Curriculum .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x la:refersToWorkedFor ?p1 .

 ?p1 la:refersToOrg ?p2 .

 ?p2 foaf:homepage ?op }",

 "PTP": "?x rdf:type la:Curriculum,

 ?x foaf:firstName ?fn,

 ?x foaf:lastName ?ln,

 ?x la:refersToWorkedFor ?p1,

 ?p1 la:refersToOrg ?p2,

 ?p2 foaf:homepage ?op "

}

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

39

4.4.3. Normalizing Triple Blocks

In this section we describe an algorithm for sweeping triple blocks that iteratively

runs through the triple patterns of a block and normalize each triple, replacing

complex property paths by simpler ones. The iteration stops when all property

paths are reduced to Predicate Paths, that is, paths of length one. Table 2 shows

how the normalization is performed when a block has a given property path.

Property Path Original Block Normalized Blocks

Inverse Path ?x ^elt ?y (1) ?y elt ?x

Sequence Path
?x elt1/elt2 ?y (1) ?x elt1 ?o1 .

 ?o1 elt2 ?y

Alternative Path
?x elt1|elt2 ?y (1) ?x elt1 ?y

(2) ?x elt2 ?y

Fixed Length Path

(n > 0)

?x elt{n} ?y (1) ?x elt1/…/eltn ?y

One or More Path

?x elt+ ?y (1) ?x elt* ?o1 .

 ?o1 elt ?o2 .

 ?o2 elt* ?o1 .

Zero or More Path
?x elt* ?y (1) ?x elt+ ?y

(2) ?x elt{0} ?y

Zero or One Path
elt? (1) ?x elt ?y

(2) ?x elt{0} ?y

Table 2 - Property Path Normalization

Note that a property path generates one or more simpler property paths in a

single block, in the case of Inverse Paths, Sequence Paths, Fixed Length Path and

One or More Path expressions. Also note that a property path generates two

simpler property paths in different blocks, in the case of Alternative Path, Zero or

More Path and Zero or One Path. Finally, recall that different blocks will be

combined into a single query with a UNION clause.

The algorithm for sweeping triple blocks is shown below. Note that, as the

Jena API normalizes Sequence Paths, Inverse Paths and Fixed Length Paths, the

algorithm does not handle these property paths. The output of the algorithm is a

normalized triple block and the list of predicate triple patterns.

Algorithm 2: Sweeper for Triple Blocks

Input: Triple Block

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

40

Output: Normalized Triple Block

 List of Predicate Triple Patterns

Method 1:

 b = apply Jena’s function in the Triple Block input

 L = add b to a list of Triple Blocks

 LPTP = empty list of triple patterns

 LAUX = new empty list of Triple Blocks

 LVISIT = new empty list of triples that were already

visited

 e = true

 while e do

 for each block b in L do

 b = apply Jena’s function in b

 add b to LAUX

 for each triple t in b that is not in LVISIT do

 p = the property path of t

 if p is a Predicate Path

 add t to LPTP

 else if p is an Alternative Path

 LAUX = call Algorithm 3

 else if p is One or More Path

 LAUX = call Algorithm 4

 else if p is an Zero or More Path

 LAUX = call Algorithm 5

 else if p is an Zero or One Path

 LAUX = call Algorithm 6

 if L is not equal to LAUX

 L = LAUX

 clear LAUX

 else

 e = false

 return L and LPTP

As an example of the iterations of the algorithm, consider the following

triple block:

 ?x ^foaf:member/foaf:page ?pg

In the first iteration, the Sequence Path is normalized as follows:

?x ^foaf:member ?p1 . ?p1 foaf:page ?pg

In the second iteration, the Inverse Path is normalized as follows:

?p1 foaf:member ?x . ?p1 foaf:page ?pg

Then, the list of predicate triple patterns (LPTP in Algorithm 2) for this case

simply is:

[?p1 foaf:member ?x , ?p1 foaf:page ?pg]

The remainder of this section presents details of the normalization of

Alternative Paths, One or More Paths, Zero or More Paths and Zero or One

Paths expressions.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

41

Alternative Paths

If the left and right paths of an Alternative Path are Predicate Paths, we consider

that this is a simple Alternative Path. A simple Alternative Path can be directly

identified as a predicate triple pattern without the need to be normalized.

For instance, consider the following simple Alternative Path:

 ?x foaf:name|foaf:givenName ?nm

The list of predicate triple patterns in this case is:

[?x foaf:name ?nm, ?x foaf:givenName ?nm]

However, a complex Alternative Path expression has to be transformed into

two simpler property paths in different groups combined by a UNION clause.

For instance, consider the following complex Alternative Path:

 ?x (foaf:knows/foaf:name)|(foaf:knows/foaf:givenName) ?nm

In the first iteration, this Alternatve Path is transformed into the following

blocks:

(1) ?x foaf:knows/foaf:name ?nm

(2) ?x foaf:knows/foaf:givenName ?nm

In the second iteration, the Sequence Paths are normalized as the following:

(1) ?x foaf:knows ?p1 . ?p1 foaf:name ?nm

(2) ?x foaf:knows ?p2 . ?p2 foaf:givenName ?nm

And, the list of predicate triple patterns (LPTP) is:

[?x foaf:knows ?p1 , ?p1 foaf:name ?nm,

 ?x foaf:knows ?p2 , ?p2 foaf:givenName ?nm]

The algorithm to process Alternative Paths is shown below.

Algorithm 3: Alternative Path Normalizer

Input: Triple t with an Alternative Path

 Triple Block b

 List of Triple Blocks LAUX

 LPTP - List of Predicate Triple Patterns

Output: List of Normalized Triple Blocks

Method 1:

 p = the property path of t

 tLEFT = replace p by its left path in t

 tRIGHT = replace p by its right path in t

 if the predicates of tLEFT and tRIGHT are Predicate Paths

 add tLEFT and tRIGHT to LPTP

 else

 bLEFT = replace t by tLEFT in b

 bRIGHT = replace t by tRIGHT in b

 remove b from LAUX

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

42

 add bLEFT and bRIGHT in LAUX

 return LAUX

One or More Path

A One or More Path expression has to be transformed into a combination of Zero

or More Path expressions with a One Path expression.

For instance, consider the following One or More Path expression that

returns the female ancestors of Alice:

 ?x (:fatherOf|:motherOf)+ ?y .

 ?y foaf:name "Alice"

The One or More Path expression is transformed into the following triple

block:

 ?x (:fatherOf|:motherOf)* ?p1 .

 ?p1 (:fatherOf|:motherOf) ?p2 .

 ?p2 (:fatherOf|:motherOf)* ?y .

 ?y foaf:name "Alice"

Since we need to have at least one path of the form (:fatherOf|:motherOf)

between ?x and ?y we can expose an One Path expression and place it between

two Zero or More Path expressions. The One Path expression

(:fatherOf|:motherOf) can then be treated as a normal Alternative Path, which will

be normalized in the next iteration. Furthermore, the Zero or More Path

expressions have to be marked as “visited”, to avoid a loop in the algorithm.

The algorithm to process One or More Path expressions is shown below.

Algorithm 4: One or More Path Normalizer

Input: Triple t with an One or More Path

 Triple Block b

 List of Triple Blocks LAUX

 List of triples that were already visited LVISIT

Output: List of Normalized Triple Blocks

Method 1:

 p = the predicate of t

 tSUB = replace p by its sub path in t

 s = the subject of t

 o = the object of t

 tONE = replace o by "?p1" and "+" by "*" in t

 tTWO = replace s by "?p1" and o by "?p2" in tSUB

 tTHREE = replace s by "?p2" and "+" by "*" in t

 add tONE and tTHREE to LVISIT

 bSUB = remove t and add tONE , tTWO and tTHREE to b

 remove b from LAUX

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

43

 add bSUB to LAUX

 return LAUX

Zero or More Path

As for a Zero or More Path expression, it has to be transformed into a One or

More Path expression and a Zero Path expression.

For instance, consider the following Zero or More Path expression that also

returns Alice herself, besides her ancestors:

 ?x (:fatherOf|:motherOf)* ?y .

 ?y foaf:name "Alice"

The Zero or More Path expression will be transformed into the following

triple blocks:

(1) ?x (:fatherOf|:motherOf)+ ?y .

 ?y foaf:name "Alice"

(2) ?x (:fatherOf|:motherOf){0} ?y .

 ?y foaf:name "Alice"

Note that the Zero or More Path expression will be the union of a One or

More Path expression and a Zero Path expression. In order to save one iteration,

we can normalize the One or More Path expression directly. Furthermore, the

Zero Path expression also has to be marked as “visited” since it does not require

further normalization.

The algorithm to process Zero or More Path expressions is shown below.

Algorithm 5: Zero or More Path Normalizer

Input: Triple t with an Zero or More Path

 Triple Block b

 List of Triple Blocks LAUX

 List of triples that were already visited LVISIT

Output: List of Normalized Triple Blocks

Method 1:

 p = the predicate of t

 tSUB = replace p by its sub path in t

 s = the subject of t

 o = the object of t

 //One or More Path

 tONE = replace o by "?p1" in t

 tTWO = replace s by "?p1" and o by "?p2" in tSUB

 tTHREE = replace s by "?p2" in t

 add tONE and tTHREE to LVISIT

 bONE = remove t and add tONE , tTWO and tTHREE to b

 //Zero Path

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

44

 tZERO = replace "*" by "{0}" in t

 add tZERO to LVISIT

 bZERO = replace t by tZERO in b

 remove b from LAUX

 add bONE and bZERO to LAUX

 return LAUX

Zero or One Path

A complex Zero or One Path has to be transformed into a Zero Path expression

and a One Path expression.

For instance, consider the following Zero or One Path expression that

returns Alice herself and her father and mother.

 ?x (fatherOf|:motherOf)? ?y .

 ?y foaf:name "Alice"

The Zero or One Path expression will be transformed into the following

triple blocks:

(1) ?x (:fatherOf|:motherOf) ?y .

 ?y foaf:name "Alice"

(2) ?x (:fatherOf|:motherOf){0} ?y .

 ?y foaf:name "Alice"

The One Path expression (:fatherOf | :motherOf) can also be treated as a

normal Alternative Path and the Zero Path also has to be marked as “visited”.

The algorithm to process Zero or One Path expressions is shown below.

Algorithm 6: Zero or One Path Normalizer

Input: Triple t with an Zero or One Path

 Triple Block b

 List of Triple Blocks LAUX

Output: List of Normalized Triple Blocks

Method 1:

 LAUX = list of Triple Blocks input

 p = the predicate of t

 tSUB = replace p by its sub path in t

 tONE = remove "?" from p in t

 tZERO = replace "?" by "{0}" in t

 add tZERO to LVISIT

 bONE = replace t by tONE in b

 bZERO = replace t by tZERO in b

 remove b from LAUX

 add bONE and bZERO to LAUX

 return LAUX

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

45

4.5 Step 2 – Initializing Materialized Views and Linksets

Recall the example of section 3.1.3, in which a user would like to create a

materialized sameAs linkset between researchers from BrCV and SWCC. Suppose

that the user wants to have the researchers of BrCV as a materialized view and the

researchers of SWCC as a virtual view.

First, in order to materialize the view of researchers from BrCV, he/she has

to inform to the View Controller the SPARQL endpoint where the view is defined

(e.g. “http://lattes.br/sparql”), the name of the view (e.g. “Lattes_Researchers”),

and the graph where the view will be materialized (e.g.

“http://views/lattes_researchers”). Then, the View Controller will register itself

with the Master Controller of view BrCV and initialize the materialized view.

Next, the user has to inform the Linkset Controller the SPARQL endpoint

where the source view is defined (e.g. “http://lattes.br/sparql”), the name of the

source view (e.g. “Lattes_Researchers”), the SPARQL endpoint where the target

view is defined (e.g. “http://semanticweb.org/sparql”), the name of the target view

(e.g. “SWCC_Researchers”), and the graph of the materialized linkset (e.g.

“http://linkset/lattes_swcc”). The Linkset Controller sends a request with these

parameters to the Master Controllers of the source and the target, which in turn

registers the linkset.

For instance, the JSON file of view “Lattes_Researchers” is updated by

adding the property “registered”:

{"views":[

 {"name": "Lattes_Researchers",

 "definition": "…",

 "normalized": "…",

 "map": […]

 "registered":[{"graph":"http://views/lattes_researchers",

 "timestamp":"0"},

 {"graph":"http://linkset/lattes_swcc",

 "timestamp":"0"}]

 }]

}

Once the linkset is registered with both views, the Linkset Controller can

begin the matching process, in order to initialize the linkset. Since view

“Lattes_Researchers” is already materialized, the Linkset Controller can access it

through graph “http://views/lattes_researchers”. However, as view

“SWCC_Researchers” is virtual, the Linkset Controller has to briefly materialize

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

46

it in a temporary file, just for the initialization process. After the linkset is

initialized, the Linkset Controller notifies the Master Controllers, which in turn

update the timestamps of the registered linksets.

The Linkset Maintainer Tool uses Silk as the link discovery tool, since it

provides an API that enables the matching process to be executed

programmatically. The user can choose to use a different discovery tool, but

he/she has to manage it apart of the Linkset Maintainer.

Using Silk Single Machine API as the link discovery tool, the user also has

to provide a Silk link specification file with linking conditions, defining how the

entities of the views should be interlinked. For instance, the file used to match the

materialized view of researchers from BrCV and the virtual view of researchers

from SWCC is shown below.

<Silk>

 <Prefixes>

 …

 </Prefixes>

 <DataSources>

 <DataSource id="Lattes" type="sparqlEndpoint">

 <Param name="endpointURI" value="http://views/sparql"/>

 <Param name="graph"

 value="http://views/lattes_researchers"/>

 </DataSource>

 <DataSource id="SWCC" type="file">

 <Param name="file" value="../tempTarget.ttl"/>

 <Param name="format" value="TTL"/>

 </DataSource>

 </DataSources>

 <Interlinks>

 <Interlink id="Lattes_SWCC">

 <LinkType>owl:sameAs</LinkType>

 <SourceDataset dataSource="Lattes" var="a">

</SourceDataset>

 <TargetDataset dataSource="SWCC" var="b"> </TargetDataset>

 <LinkageRule>

 <Aggregate type="average">

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

 <Input path="?a/foaf:firstName"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:firstName"/>

 </TransformInput>

 </Compare>

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

47

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

 <Input path="?a/foaf:lastName"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:lastName"/>

 </TransformInput>

 </Compare>

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

 <Input path="?a/foaf:workplaceHomepage"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:workplaceHomepage"/>

 </TransformInput>

 </Compare>

 </Aggregate>

 </LinkageRule>

 <Filter/>

 <Outputs>

 <Output id="Linkset" type="sparul">

 <Param name="parameter" value="query"/>

 <Param name="uri" value="http://linkset/lattes_swcc"/>

 </Output>

 </Outputs>

 </Interlink>

 </Interlinks>

</Silk>

4.6 Step 3 – Computing Affected Resources and New Property
Values

After the linkset is initialized, update requests that arrive in a dataset have to be

redirected to the Master Controller before they are executed. Given an update u

and a view F, the View Controller has to compute sets of resources of F that are

affected by u (R¯ and R+) and their new property values (P).

4.6.1. Computing R¯ and R+

Let WF be the WHERE clause of F and gF be the graph in the FROM clause of F.

Assume that F has already been normalized and let LPTP be the set of predicate

triple patterns that occur in WF. Suppose that we materialize the set of deleted

triples specified in the update u in state T(t0) into a named graph g¯.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

48

Assume that the predicate triple patterns in LPTP are “ak bk ck”, for k=1,…,n.

The following code shows the template that generates the query to compute R¯ for

F and u.

INSERT { GRAPH <R¯>

 { ?x :view F .

 ?x :timestamp tu } }

WHERE {

 GRAPH <g¯> { ?s ?p ?o }

 GRAPH <gF> { WF }

 FILTER((?s=a1 && ?p=b1 && ?o=c1) ||

 (?s=a2 && ?p=b2 && ?o=c2) ||

 …

 (?s=an && ?p=bn && ?o=cn) }

The idea of the query is to check if some deleted triple in g¯ matches with

one of the triple patterns in LPTP. Recall that the variable ?x identifies the resource

of the catalogue view as defined in section 3.1.2 and that the query is executed in

the old state of the dataset, that is, before u is executed. Also note that the results

of the query are inserted into another named graph, denoted R¯, in which each

resource is associated with the view identification and the timestamp of the

update, denoted tu.

The template for computing R+ is similarly defined, except that g¯ is

replaced by g+, a named graph for the set of inserted triples u+, R¯ is replaced by

R+ and the query has to be executed after u is executed. After R¯ and R+ are

computed we can discard the graphs g¯ and g+. Algorithm 6 summarizes the

process of computing the affected resources R¯ and R+.

Algorithm 6: Affected Resources Computation Algorithm

Input: c – a changeset

 T(t0) – the old state of T

Output: R¯, R+ – the graphs with the affected resources

{ Intercept u;

 Populate g+ and g¯;

 Compute R¯;

 Execute u;

 Compute R+;

 Discard g+ and g¯;

 Return R¯ and R+;

}

Considering the running example, let v be the normalized view

“Lattes_Researchers” and u be the following update:

WITH <http://lattes.br/sparql>

DELETE { ?s foaf:firstName "Marco" }

INSERT { ?s foaf:firstName "Marco Antonio" }

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

49

WHERE { ?s foaf:lastName "Casanova" }

The triples that compose the DELETE and the INSERT clause are called

quads. Those are the triples that will actually be removed or added, based on the

query pattern of the update. For instance, the delete quad of u is “?s

foaf:firstName "Marco"”.

In the first step, we have to populate the graphs g¯ and g+. In the running

example, suppose that g¯ has “http://lattes.br/deletions” as its URI and g+ has

“http://lattes.br/insertions” as its URI. Then, the Master Controller executes

executing the following SPARQL query to populate the graphs:

INSERT { GRAPH <http://lattes.br/deletions>

 { ?s foaf:firstName "Marco" } }

INSERT { GRAPH <http://lattes.br/insertions>

 { ?s foaf:firstName "Marco Antonio" } }

WHERE { GRAPH <http://lattes.br/sparql>

 { ?s foaf:lastName "Casanova" } }

Suppose that BrCV “http://lattes.br/sparql” contains the following triples:

 :Casanova rdf:type la:Curriculum .

 :Casanova foaf:firstName "Marco" .

 :Casanova foaf:lastName "Casanova" .

 :Casanova la:refersToWorkedFor :Casanova_PUCRIO .

 :Casanova_PUCRIO la:refersToOrg :PUCRIO .

 :PUCRIO foaf:homepage "www.puc-rio.br/"

Then, graph “http://lattes.br/deletions” contains the following triple:

 :Casanova foaf:firstName "Marco"

And graph “http://lattes.br/insertions” contains the following triple:

:Casanova foaf:firstName "Marco Antonio"

In the second step, the Master Controller has to compute the set R¯, in this

case, the set of resources of view “Lattes_Researches” that are affected by the

deleted triples of u. Note that, as this query has fixed template for each view, it

can be pre-computed at design time. At execution time, we just need to update the

timestamp. Suppose that R¯ has “http://lattes.br/deletedResources” as its URI and

that the timestamp of the update is “2”.

INSERT { GRAPH <http://lattes.br/deletedResources>

 { ?x :view "Lattes_Researchers" .

 ?x :timestamp "2" } }

WHERE {

 GRAPH <http://lattes.br/deletions> { ?s ?p ?o }

 GRAPH <http://lattes.br/sparql>

 { ?x rdf:type la:Curriculum .

 ?x foaf:firstName ?fn .

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

50

 ?x foaf:lastName ?ln .

 ?x la:refersToWorkedFor ?p1 .

 ?p1 la:refersToOrg ?p2 .

 ?p2 foaf:homepage ?op }

 FILTER(

 (?s = ?x && ?p = rdf:type && ?o = la:Curriculum) ||

 (?s = ?x && ?p = foaf:firstName && ?o = ?fn) ||

 (?s = ?x && ?p = foaf:lastName && ?o = ?ln) ||

 (?s = ?x && ?p = la:refersToWorkedFor && ?o = ?p1) ||

 (?s = ?x && ?p1 = la:refersToOrg && ?o = ?p2) ||

 (?s = ?x && ?p2 = foaf:homepage && ?o = ?op) }

Then, graph “http://lattes.br/deletedResources” contains the following

triples:

 :Casanova :view "Lattes_Researchers"

 :Casanova :timestamp "2"

Finally, after R¯ is computed, the Master Controller can actually execute the

update in the dataset. Now, BrCV “http://lattes.br/sparql” contains the following

triples:

 :Casanova rdf:type la:Curriculum .

 :Casanova foaf:firstName "Marco Antonio" .

 :Casanova foaf:lastName "Casanova" .

 :Casanova la:refersToWorkedFor :Casanova_PUCRIO .

 :Casanova_PUCRIO la:refersToOrg :PUCRIO .

 :PUCRIO foaf:homepage "www.puc-rio.br/"

Then, we proceed to compute R+ executing the following query, supposing

that R+ has “http://lattes.br/insertedResources” as its URI.

INSERT { GRAPH <http://lattes.br/insertedResources>

 { ?x :view "Lattes_Researchers" .

 ?x :timestamp "2" } }

WHERE {

 GRAPH <http://lattes.br/insertions> { ?s ?p ?o }

 GRAPH <http://lattes.br/sparql>

 { ?x rdf:type la:Curriculum .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x la:refersToWorkedFor ?p1 .

 ?p1 la:refersToOrg ?p2 .

 ?p2 foaf:homepage ?op }

 FILTER(

 (?s = ?x && ?p = rdf:type && ?o = la:Curriculum) ||

 (?s = ?x && ?p = foaf:firstName && ?o = ?fn) ||

 (?s = ?x && ?p = foaf:lastName && ?o = ?ln) ||

 (?s = ?x && ?p = la:refersToWorkedFor && ?o = ?p1) ||

 (?s = ?x && ?p1 = la:refersToOrg && ?o = ?p2) ||

 (?s = ?x && ?p2 = foaf:homepage && ?o = ?op) }

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

51

Then, graph “http://lattes.br/insertedResources” also contains the following

triples:

 :Casanova :view "Lattes_Researchers"

 :Casanova :timestamp "2"

4.6.2. Computing P

After computing R¯ and R+ we proceed to compute the set of new property values

P. Let WF be the WHERE clause, CF be the CONSTRUCT clause and gF be the graph

in the FROM clause of F. We can compute P simply by executing a query

according to the following template.

INSERT { GRAPH <P> {

 CF .

 ?x :view F .

 ?x :timestamp tu } }

WHERE

{ { { SELECT DISTINCT ?deleted

 WHERE { GRAPH <R¯> { ?deleted ?p ?o } }

 UNION

 { SELECT DISTINCT ?inserted

 WHERE { GRAPH <R+> { ?inserted ?p ?o } }

 }

 GRAPH <gF> { WF }

 FILTER ((?x = ?inserted) || (?x = ?deleted))

}

Note the query to compute P also considers the resources in the deleted set

R¯. This is necessary since R¯ is actually a superset of the set of resources of F

affected by deletions, denoted S¯. That is, there might be a resource r R¯ that is

not actually affected by the deletions (r S¯).

Recall that F[T(t)] denotes the set of triples that F returns when executed

over state T(t) of T. Formally, a resource s S¯ iff

po((s,p,o) F[T(t0)] (s,p,o) F[T(t1)])

And,

S¯ R¯

Then, a resource p P iff

xy(p (R¯ R+) (p,x,y) F[T(t1)])

For example, suppose that the administrator of a dataset T defines the

following view F:

 CONSTRUCT { ?x :p4 ?y }

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

52

 FROM <T>

 WHERE { ?x (:p1|:p2)/:p3 ?y }

And suppose that T has only the following triples:

 :s1 :p1 :o1

 :s1 :p2 :o1

 :o1 :p3 :o2

Note that a materialization of F would have only the following triple.

:s1 :p4 :o2

Now, suppose that we execute the following update:

 DELETE DATA { :s1 :p2 :o1 }

Note that the materialization of F would not change, since there are two

possible paths to :o1 and only one of them is deleted. However, the query to

compute R¯ returns :s1 as a resource affected by deletions. Therefore, the query to

compute P also needs to consider the deleted resources, so we reinsert into the

materialized view or linkset, those resources that was not suppose to be deleted in

the first place.

Returning to the running example, the following query computes P for view

“Lattes_Researchers”. Suppose that P has “http://lattes.br/newProperties” as its

URI.

INSERT { GRAPH <http://lattes.br/newProperties> {

 ?x rdf:type foaf:Person .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x foaf:workplaceHomepage ?op .

 ?x :view "Lattes_Researchers" .

 ?x :timestamp "2" } }

WHERE

{ { { SELECT DISTINCT ?deleted

 WHERE { GRAPH <http://lattes.br/deletedResources>

 { ?deleted ?p ?o } }

 UNION

 { SELECT DISTINCT ?inserted

 WHERE { GRAPH <http://lattes.br/insertedResources>

 { ?inserted ?p ?o } }

 }

 GRAPH <http://lattes.br/sparql>

 { ?x rdf:type la:Curriculum .

 ?x foaf:firstName ?fn .

 ?x foaf:lastName ?ln .

 ?x la:refersToWorkedFor ?p1 .

 ?p1 la:refersToOrg ?p2 .

 ?p2 foaf:homepage ?op }

 FILTER ((?x = ?inserted) || (?x = ?deleted)) }

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

53

Then, “http://lattes.br/newProperties” contains the following triples:

 :Casanova :view "Lattes_Researchers"

 :Casanova :timestamp "2"

 :Casanova rdf:type foaf:Person .

 :Casanova foaf:firstName "Marco Antonio" .

 :Casanova foaf:lastName "Casanova" .

 :Casanova foaf:workplaceHomepage "www.puc-rio.br/" .

4.7 Step 4 – Updating a Materialized Catalogue View

When there is a materialized catalogue view, the corresponding View Controller

must update it according to the set of resources that were affected after the last

timestamp maintenance.

Let F(t0) be a materialized view. First, we need to delete from F(t0) the

sets of accumulated deleted resources R¯[t0,t1], where t0 is the last timestamp

maintenance of F(t0) and t1 is the current timestamp. Second, we need to insert

into F(t0) the accumulated property values P[t0,t1]. The following code shows the

template of the necessary queries to update the view.

DELETE { GRAPH <F(t)> { ?s1 ?p1 ?o1 }}

INSERT { GRAPH <F(t)> { ?s2 ?p2 ?o2 }}

WHERE

{ { GRAPH <R¯> { ?s1 :view F .

 ?s1 :timestamp ?t

 FILTER (?t > t0) }

 GRAPH <F(t)> { ?s1 ?p1 ?o1 }

 }

 UNION

 { GRAPH <P> { ?s2 ?p2 ?o2 .

 ?s2 :view F .

 ?s2 :timestamp ?t

 FILTER (?t > t0)

 FILTER (?p2 != :view &&

 ?p2 != :timestamp) }

 }

}

Continuing the running example, recall from section 4.5 that the user

materialized view “Lattes_Researchers” in graph “http://views/lattes_researchers”

and suppose that its last maintenance timestamp was “1”. Then, the View

Controller updates the materialized view executing the following query.

DELETE { GRAPH <http://views/lattes_researchers>

 { ?s1 ?p1 ?o1 }}

INSERT { GRAPH <http://views/lattes_researchers>

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

54

 { ?s2 ?p2 ?o2 }}

WHERE

{ { GRAPH <http://lattes.br/deletedResources>

 { ?s1 :view "Lattes_Researchers" .

 ?s1 :timestamp ?t

 FILTER (?t > "1") }

 GRAPH <http://views/lattes_researchers>

 { ?s1 ?p1 ?o1 }

 }

 UNION

 { GRAPH <http://lattes.br/newProperties>

 { ?s2 ?p2 ?o2 .

 ?s2 :view "Lattes_Researchers" .

 ?s2 :timestamp ?t

 FILTER (?t > "1")

 FILTER (?p2 != :view &&

 ?p2 != :timestamp) }

 }

}

4.8 Step 5 – Updating a Materialized Linkset

Finally, the Linkset Controller can update the materialized linkset according to the

set of resources that were affected after the last timestamp maintenance. Let L be a

materialized linkset, we first need to delete all links involving a resource in

R¯[t0,t1] according to the following template.

DELETE{ GRAPH <L> { ?s ?p ?o } }

WHERE

{ GRAPH <R¯>

 { ?s :view F .

 ?s :timestamp ?t

 FILTER (?t > t0) }

 GRAPH <L>

 { ?s ?p ?o }

}

Continuing the following example, recall from section 4.5 that the user

materialized a linkset of researchers in graph “http://linkset/lattes_swcc” and

suppose that its last maintenance timestamp was “1”. Then, the Linkset Controller

updates the materialized linkset executing the following query.

DELETE{ GRAPH <http://linkset/lattes_swcc>

 { ?s ?p ?o } }

WHERE

{ GRAPH <http://lattes.br/deletedResources>

 { ?s :view "Lattes_Researchers" .

 ?s :timestamp ?t

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

55

 FILTER (?t > "1") }

 GRAPH <http://linkset/lattes_swcc>

 { ?s ?p ?o }

}

Then, the matching process is re-executed, using the triples in P[t0,t1],

instead of the whole view, and the new links are finally added to the materialized

linkset. This can be done by the Linkset Controller using the following

specification file of Silk.

<Silk>

 <Prefixes>

 …

 </Prefixes>

 <DataSources>

 <DataSource id="Lattes" type="sparqlEndpoint">

 <Param name="endpointURI" value="http://lattes.br/sparql"/>

 <Param name="graph"

 value="http://lattes.br/newProperties"/>

 </DataSource>

 <DataSource id="SWCC" type="file">

 <Param name="file" value="../tempTarget.ttl"/>

 <Param name="format" value="TTL"/>

 </DataSource>

 </DataSources>

 <Interlinks>

 <Interlink id="Lattes_SWCC">

 <LinkType>owl:sameAs</LinkType>

 <SourceDataset dataSource="Lattes" var="a">

 <RestrictTo>

 ?b :view "Lattes_Researchers" .

 ?b :timestamp ?t .

 FILTER (STR(?t) > "1")

 </RestrictTo>

 </SourceDataset>

 <TargetDataset dataSource="SWCC" var="b"> </TargetDataset>

 <LinkageRule>

 <Aggregate type="average">

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

 <Input path="?a/foaf:firstName"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:firstName"/>

 </TransformInput>

 </Compare>

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

56

 <Input path="?a/foaf:lastName"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:lastName"/>

 </TransformInput>

 </Compare>

 <Compare weight="1" metric="levenshteinDistance"

threshold="1">

 <TransformInput function="lowerCase">

 <Input path="?a/foaf:workplaceHomepage"/>

 </TransformInput>

 <TransformInput function="lowerCase">

 <Input path="?b/foaf:workplaceHomepage"/>

 </TransformInput>

 </Compare>

 </Aggregate>

 </LinkageRule>

 <Filter/>

 <Outputs>

 <Output id="Linkset" type="sparul">

 <Param name="parameter" value="query"/>

 <Param name="uri" value="http://linkset/lattes_swcc"/>

 </Output>

 </Outputs>

 </Interlink>

 </Interlinks>

</Silk>

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

57

5
Evaluation and Results

This chapter presents the experiments performed using the Linkset Maintainer

Tool to test its performance when dealing with large amount of data and to

compare the results with the basic strategy of full recomputation. Section 5.2

describes experiments to update a materialized view “Lattes_Publications”.

Section 5.3 describes experiments to update a linkset that uses the views

“SWCC_Publications” and “Lattes_Publications”. Section 5.4 shows an analysis

of the updates observed in a real dataset.

5.1 Evaluation Setup

In order to compare the performance of the incremental strategy with the full re-

computation of sameAs linksets, we selected two datasets:

(1) SWCC4 dump with 320,965 triples.

(2) The Lattes curriculum (BrCV) of the professors from PUC-Rio, with

11,480,382 triples.

All experiments were executed in an Intel Core i5 1.7 GHz with 4 GB

RAM, running OS X Yosemite 10.10.2.

Table 3 shows two views that were elaborated over these datasets with the

correspondent name, number of resources and vocabulary.

View Resources Vocabulary

SWCC_Publications 4,243 foaf:Document, dc:title, dc:date

Lattes_Publications 25,092 foaf:Document, dc:title, dc:date

Table 3 - List of Views

4 http://data.semanticweb.org/dumps/

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

58

5.2 Experiments with a Materialized View

First, consider the following definition for view “Lattes_Publications”:

CONSTRUCT { ?x rdf:type foaf:Document .

 ?x dc:title ?tl .

 ?x dc:date ?dt .}

FROM <http://lattes.br/sparql>

WHERE { ?x rdf:type la:EventWork .

 ?x la:workTitle ?tl .

 ?x la:workYear ?dt }

In the first step of the evaluation, we materialized the above view and

computed the runtimes to update it, using the incremental and the full

rematerialization strategies.

The updates were performed using the following template, varying the limit

and the type of the update (insertion or deletion):

INSERT { GRAPH <http://lattes.br/sparql>

 { ?s rdf:type la:EventWork } }

WHERE { GRAPH <http://lattes.br/sparqlCopy>

 { SELECT DISTINCT ?s

 WHERE { ?s rdf:type la:EventWork .

 ?s la:workTitle ?tl .

 ?s la:workYear ?dt }

 LIMIT 1 } }

Note that these updates affect the view “Lattes_Publications” and that the

limit represents the exact number of the affected resources. The following

algorithm describes the steps of the experiment, given a limit:

Algorithm 8: Test Runner for a Materialized View

Input: Limit

Output: Runtimes

Method:

 //Incremental

 (1) Execute the delete update and compute R¯ and P

 (2) Update the view using the incremental strategy

 (3) Compute the runtime

 (4) Count the number of resources in the materialized view

 (5) Execute the insert update and compute R¯ and P

 (6) Update the view using the incremental strategy

 (7) Compute the runtime

 (8) Count the number of resources in the materialized view

 //Full

 (9) Execute the delete update

 (10) Rematerialize the view

 (11) Compute the runtime

 (12) Count the number of resources in the materialized view

 (13) Execute the insert update

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

59

 (14) Rematerialize the view

 (15) Compute the runtime

 (16) Count the number of resources in the materialized view

 //Test accuracy

 (17) Compare (4) with (12)

 (18) Compare (8) with (16)

Note that the delete update is always executed before the insert update.

Additionally, in order to test the accuracy of the incremental approach, we

compared the states of the view after each update with the states of the view using

the full rematerialization approach. The accuracy results were positive and all

tests passed.

Figure 10 and Figure 11 shows the results of the runtimes to execute the

updates (deletions and insertions), using “Lattes_Publications” as a materialized

view and “SWCC_Publications” as a virtual view. For each update, the runtimes

of the incremental strategy included: the time to compute R¯ and P, execute the

update, and update the view. Likewise, the runtimes of the full recomputation

included the time to execute the update and the time to rematerialize the view.

Figure 10 - Deletions on “Lattes_Publications” as a Materialized View

Note that, for the deletions, the full runtime actually drops when the number

of affected resources increase. Recall that view “Lattes_Publications” had a total

of 25,092 resources; then, the runtime to rematerialize the view is obviously really

fast when we delete 25k of these resources. On the other hand, with the

incremental strategy, the sets R¯ and P have 25k resources each, that is, the View

Controller deletes 25k resources and tries to reinsert 25k resources (without

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

60

success), which explains why the runtime of the incremental deletions increases

with the number of affected resources.

Figure 11 - Insertions on “Lattes_Publications” as a Materialized View

As for the insertions, the full runtime is similar, since we are reinserting the

resources that were deleted, which implies that, when view “Lattes_Publications”

is rematerialized, it always has 25,092 resources. While in the incremental

strategy, if we are inserting 25k resources, the set P has 25k resources and the

View Controller inserts 25k resources in the materialized view. This explains why

the runtime of the incremental strategy is so high when there are a large number

of inserted resources.

We stress that the intersection points between the full and the incremental

strategies were around 7.5k affected resources for insertions, which is 30% of the

total number of resources, and 10k for deletions, which is 40% of the total number

of resources. We highlight that the incremental strategy is faster when less than

20% (5k) of total resources of the view are updated, and almost close to zero

when few resources are updated.

5.3 Experiments with Linkset Publications

Now consider the following definition for view “SWCC_Publications”:

CONSTRUCT { ?x rdf:type foaf:Document .

 ?x dc:title ?tl .

 ?x dc:date ?dt .}

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

61

FROM <http://data.semanticweb.org/sparql>

WHERE { ?x rdf:type swc:ArgumentativeDocument .

 ?x dc:title ?tl .

 ?x dc:date ?dt }

In the second step of the evaluation, we compared the runtime to update a

linkset of publications from Lattes and SWCC, using the incremental and the full

rematerialization strategies.

This time, we performed updates on SWCC that affected view

“SWCC_Publications”. The updates used the following template, also varying the

limit and the type of the update:

INSERT { GRAPH <http://data.semanticweb.org/sparql>

 { ?s rdf:type swc:ArgumentativeDocument } }

WHERE { GRAPH < http://data.semanticweb.org/sparqlCopy>

 { SELECT DISTINCT ?s

 WHERE { ?s rdf:type swc:ArgumentativeDocument .

 ?s dc:title ?tl .

 ?s dc:date ?dt }

 LIMIT 1 } }

Similarly to Algorithm 8, the following algorithm describes the steps of the

linkset experiment, given a limit:

Algorithm 9: Test Runner for Materialized Linkset

Input: Limit

Output: Runtimes

Method:

 //Incremental

 (1) Execute the delete update and compute R¯ and P

 (2) Update the linkset using the incremental strategy

 (3) Compute the runtime

 (4) Count the number of links in the linkset

 (5) Execute the insert update and compute R¯ and P

 (6) Update the linkset using the incremental strategy

 (7) Compute the runtime

 (8) Count the number of links in the linkset

 //Full

 (9) Execute the delete update

 (10) Rematerialize the linkset

 (11) Compute the runtime

 (12) Count the number of links in the linkset

 (13) Execute the insert update

 (14) Rematerialize the linkset

 (15) Compute the runtime

 (16) Count the number of links in the linkset

 //Test accuracy

 (17) Compare (4) with (12)

 (18) Compare (8) with (16)

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

62

Figure 12 shows the runtime results to execute the deletions and Figure 13

the insertions, using “Lattes_Publications” as a materialized view and

“SWCC_Publications” as a virtual view.

Figure 12 - Deletions on “SWCC_Publications” and Linkset Update

Figure 13 - Insertions on “SWCC_Publications” and Linkset Update

Note that the intersection point between the incremental and the full

rematerialization strategies was around 3.3k resources for deletions, and 3.8k for

insertions, which are respectively 80% and 90% of the total number of resources

of the view (4,243). We highlight that the incremental strategy is four times faster

when less than 10% (0.4k) of total resources of the view are updated, and almost

close to zero when few resources are updated.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

63

5.4 Experiments with the DBpedia Change Sets

In order to show that the incremental strategy is actually effective in practice, in

this section, we show that real updates on datasets rarely affect too many

resources of a view.

For this, we elaborated three more views about Actresses, Actors and

Directors over the DBpedia dataset. Consider the following definition for view

“DBpedia_Actress” that resulted in 7,309 resources:

PREFIX yago: <http://dbpedia.org/class/yago/>

CONSTRUCT { ?x rdf:type yago:Actor109765278 .

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd .}

FROM <http://dbpedia.org>

WHERE { ?x rdf:type/rdfs:subClassOf* yago:Actor109765278.

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd .

 ?x dc:description ?ds .

 FILTER contains(lcase(?ds), "actress") }

the following definition for view “DBpedia_Actor” that resulted in 49,308

resources:

PREFIX yago: <http://dbpedia.org/class/yago/>

CONSTRUCT { ?x rdf:type yago:Actor109765278 .

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd .}

FROM <http://dbpedia.org>

WHERE { ?x rdf:type/rdfs:subClassOf* yago:Actor109765278.

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd .

 ?x dc:description ?ds .

 FILTER contains(lcase(?ds), "actor") }

and the following definition for view “DBpedia_Director” that resulted in 9,914

resources:

PREFIX yago: <http://dbpedia.org/class/yago/>

CONSTRUCT { ?x rdf:type yago:FilmDirector11008820 .

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd .}

FROM <http://dbpedia.org>

WHERE { ?x rdf:type/rdfs:subClassOf* yago:FilmDirector110088200.

 ?x foaf:name ?nm .

 ?x dbpedia:birthDate ?bd }

In order to show that the number of affected resources is generally small, we

analyzed sets from one entire day (April 28, 2015) of DBpedia updates. We

calculated the number of updated resources by change set, and we checked how

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

64

many of these resources were part of our views over DBpedia. Table 4

summarizes the results for the whole day.

 Sum Sets Mean Max

Updated Resources 551,236 5,568 99 975

View Resources 13,199 5,568 2 44

Table 4 - Analysis of DBpedia Change Sets

As we consider that each set is a single update, we have a mean of 99

resources per update, in which only 2% affected some view. Furthermore, we

highlight that the max number of resources that affected some view in a single

change set was only 44. If we compare with the graphs in section 5.2, the running

time is almost close to zero.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

65

6 Conclusion

In this work, we presented the Linkset Maintainer, a tool to keep linksets updated,

using an incremental strategy. The incremental solution was originally proposed

in (Casanova et. al, 2014), in which the authors introduced the idea of using views

created by the dataset administrators in order to simplify the process of creating

materialized linksets. We first showed how to improve and implement the

incremental solution that computes only the set of updated resources that are

visible through a view. Then, we showed how to keep the views and the linksets

updated based on this set.

We also performed some experiments using the proposed approach. The

lessons learned were:

 The incremental strategy outperforms full linkset recomputation in most

of the cases.

 The incremental strategy outperforms full view recomputation when we

update a small number of resources.

 The state of the views and linksets using the incremental strategy is

accurate with respect to the state of the full recomputation.

 What most influences the runtime of the incremental strategy is the

number of affected resources.

 Typically, the number of affected resources per update is very small.

In order to demonstrate that the incremental strategy outperforms full view

and linkset recomputation, we conducted an experiment to measure the

performance of both strategies. The results showed that the runtimes of the

incremental strategy is almost close to zero when only a few resources are

affected. However, when the number of affected resources is close to the total

number of resources of the view, the performance of the incremental strategy is

worse than that of the full recomputation. Additionally, we showed that the

incremental strategy is accurate, comparing the number of materialized links when

using both strategies.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

66

Finally, we analyzed updates from one day in DBpedia and concluded that,

in the experiments, only 2% of the updated resources actually affected some view.

We also showed that, in the experiments, the maximal number of view resources

for one update was only 44, which means that the running time for the

incremental strategy would be much faster than full rematerialization.

We may therefore conclude that the incremental maintenance of

materialized sameAs links is efficient in practice since the number of resources

that affects a view is typically small. It is worth noting that the strategy can be

easily extended to other types of links that can be materialized with link discovery

tools. We choose to restrict this dissertation to sameAs links just as a matter of

contextualization with the common scenario.

As future work, we plan to continue the development of the tool to improve

performance and to provide an interface, so that administrators can define their

views and data publisher, and their linksets. Finally, we will make the tool

available so anyone can access.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

67

7
Bibliography

ALEXANDER, K. et al. Describing Linked Triplesets with the VoID

Vocabulary. W3C Interest Group Note 03 March, 2011.

BERNERS-LEE, T. Linked Data. 2006. Available at:

<http://www.w3.org/DesignIssues/LinkedData.html>.

CASANOVA, M. et al. On Materialized sameAs Linksets. Database and Expert

Systems Applications (pp. 377-   384), 2014.

EUZENAT, J.; SHVAIKO, P. Ontology Matching. Springer-Verlag New York,

Inc., NJ, USA, 2007.

GUPTA, A.; MUMICK, I.; SUBRAHMANIAN, V. Maintaining Views

Incrementally. In Proc. SIGMOD, 157– 166, 1993.

HARRIS, S.; SEABORNE, A. SPARQL 1.1 Query Language. W3C

Recommendation, 2013. Available at http://www.w3.org/TR/sparql11-query/.

HEATH, T.; BIZER, C. Linked Data. Morgan and Claypool Publishers, 2011.

HUNG, E.; DENG, Y.; SUBRAHMANIAN, V. Maintaining RDF views. Tech.

Rep CS-TR-4612 (UMIACS-TR-2004-54), University of Maryland, 2004.

ISELE, R.; JENTZSCH, A.; BIZER, C. Efficient Multidimensional Blocking

for Link Discovery without losing Recall. Proc. WebDB, 2011.

MANOLA, F.; MILLER, E. RDF 1.1 Primer. W3C Recommendation, 2014.

Avaible at <http://www.w3.org/TR/rdf11-primer/>.

MÖLLER, K.; BECHHOFER, S.; HEATH, T. Semantic Web Conference

Ontology. 2009. Available at: <http://data.semanticweb.org/ns/swc/ontology>.

NGOMO, A.; AUER, S. LIMES - A Time-Efficient Approach for Large-Scale

Link Discovery on the Web of Data. Proc. IJCAI 2011, pp. 2312–2317, 2011.

NGOMO, A. On Link Discovery using a Hybrid Approach. J. Data Semantics

v.1, pp. 203 – 217, 2012.

POPITSCH, N.; HASLHOFER, B. DSNotify – A Solution for event detection

and link maintenance in dynamic triplesets. Journal of Web Semantics, 9(3),

pp. 266–283, 2011.

STAUDT, M.; JARKE, M. Incremental maintenance of externally

materialized views. Proc. VLDB, pp. 75–86, 1996.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

68

VIDAL, V.; CASANOVA, M.; CARDOSO, D. Incremental Maintenance of

RDF Views of Relational Data. Proc. ODBASE 2013, pp 572-587, 2013.

VIDAL, V. et al. Specification and Incremental Maintenance of Linked Data

Mashup Views. Advanced Information Systems Engineering. Springer

International Publishing, p. 214-229, 2015.

VOLZ, J.; BIZER, C.; GAEDKE, M. Web of Data Link Maintenance Protocol

- Maintaining Links Between Changing Linked Data Sources. 2009. Available at:

<http://www4.wiwiss.fu-berlin.de/bizer/silk/wodlmp>.

VOLZ, J. et al. Discovering and Maintaining Links on the Web of Data. Proc.

ISWC 2009, pp. 650-665, 2009.

DBD
PUC-Rio - Certificação Digital Nº 13201832/CA

DBD
PUC-Rio - Certificação Digital Nº 1321832/CA

