
7
Conclusion and Future Work

In this work, we propose a strategy for GPU-based parallel fracture,
microbranching, and fragmentation simulations based on the extrinsic cohesive
zone model. Such parallel simulations impose two main challenges. First, we
need to be able to handle mesh modifications because cohesive elements, bulk
elements, and nodes are inserted (and removed) adaptively along the simulation.
Second, we need to efficiently perform intensive numerical computation, with
numerous memory accesses, in parallel. Using a simple topological data
structure, shared memory, kernel splitting, texture fetch, and minimizing
global memory accesses, we could effectively map and optimize the CPU
implementation of a fragmentation simulation to a GPU environment, taking
advantage of CUDA benefits. Mesh coloring proved to be an effective means
to avoid race conditions, but the gather strategy also took advantage of the
absence of the coloring technique in the adaptive simulation.

Investigation of adaptive refinement and coarsening schemes on the
structured 4k mesh for dynamic fracture simulation on the massively parallel
GPU architecture reveals insight into intricacies of the numerical simulation.
First, a specialized data structure and new approach to performing finite
element calculations in parallel was detailed. The race condition and expensive
graph coloring algorithms are avoided by performing finite element calculations
on a nodal basis. Nodal quantities are gathered by launching threads per nodes
and accumulating element contributions rather than by launching threads per
elements. Using the assumption that areas near crack tips need to be the most
refined and a strain criteria to determine where elements can be coarsened, we
adaptively change the mesh resolution during the simulation. We detail the
parallel algorithms to systematically change the topology of the mesh.

The variations that normally occur during floating point operations are
not usually apparent in serial or even parallel fracture simulations on structured
meshes. This is because the order in which operations are performed, and thus
the accumulation of variation, is usually the same from one simulation to the
next. However, in the present implementation, new elements and nodes are
inserted in a non-deterministic order, meaning that the quantities added to
the node are not done so in the same order from one simulation to another
due to the chosen adjacent element to the node. While not incorrect, the
result is that fracture patterns look quite different from one simulation to the
next. To demonstrate the validity of the approach given the very different

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Conclusion and Future Work 146

appearance of the fracture pattern, we quantified the crack patterns through
several parameters and showed that those that are physically based agree well
between simulations. Interestingly, the parallel approach adds some randomness
into the finite element simulation on the structured mesh in a similar way as a
would be expected from a random mesh.

Thanks to a data structure and adaptive mesh modification scheme
developed specially for the GPU architecture, we are able to represent much
larger finite element meshes than without adaptivity. With the large scale
simulation of the microbranching problem, we are able to make more direct
comparisons to the original experiment and find excellent agreement with those
results.

Experiments with distributed 3-dimensional simulation indicate that the
main bottleneck is concentrated in the sending and receiving of messages via
network. Although we greatly reduced this bottleneck by duplicating ghost
nodes, the size of the message is still large (proportional to the number of ghost
nodes in each partition) and the GPU parallelization over CPU implementation
decreased analysis code bottleneck and the node synchronization dominated
the simulation time. Another advantage of duplicating ghost nodes is saving
additional kernel processing and memory consumption.

Although nodal synchronization dominated the simulation time, the
performance of the large-scale models were significant compared to the large-
scale simulations on the CPU performed by Espinha et al. [14], considering
the size of the problem, problem type, number of time steps, and time step
size. Our reduced large-scale mesh ran in 15 minutes, while the increased size
large-scale mesh ran in approximately 82 minutes.

Finally, while METIS does its best to balance the number of bulk elements
during mesh partitioning, we noticed an uneven distribution of specific tasks
among partitions. The main reason is due to the main crack location, which
leads to different number of cohesive elements between partitions. Cohesive
insertion and force calulation kernels process a significant different number
of threads depending on the main crack location. It is worth remembering
that cohesive forces kernel is one of the most costly kernels of the simulations,
with numerous arithmetic operations, even with the strategy of splitting it
into different kernels and at the same time avoiding additional global memory
consumption.

Regarding the Physics-based animation framework, our physical technique
to switch between rigid body and fracture modes, i.e., when to treat the mesh
as rigid body or as a breaking object by inserting cohesive elements during
collision, is to detect when we do not insert cohesive elements during a certain

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Conclusion and Future Work 147

number of steps. We leave as future work a way to automatically detect when
to switch back to rigid body mode. A technique inspired by engineering analysis
could be a strain-based criteria much like when coarsening the mesh in the
adaptive simulation. For example, when the strain energy is high, we switch to
fracture mode. When the strain energy is low enough, fracture mode is switched
to rigid body dynamics mode.

A natural extension of this work to the adaptive simulation would include
all three dimensions. However, for a single GPU, the problem size would be
quite limited, which is not well suited for three-dimensional finite element
applications. The node traversal (gather strategy) would have to be used while
coloring would have to be eliminated from the mesh. This would decrease
performance since the gather strategy for 3D meshes is much more costly.
Therefore, current development focus on distributed computing where different
parts of the model would be simulated on different GPUs.

The implementation of fracture simulations with polygonal finite elements
is considered for future work. It would be a great challenge to extend our data
structure, especially regarding the adjacency since each bulk element contains
a varied number of facets.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA


	Mapeamento de Simulação de Fratura e Fragmentação Coesiva para GPUs
	Resumo
	Contents
	Introduction
	Related work
	Many-core devices

	Cohesive Fracture and Fragmentation Simulation
	Numerical representation of quasi-brittle dynamic fracture
	Simulation steps

	Two-dimensional Cohesive Fracture and Fragmentation Simulation
	Data Structure
	Parallel Implementation
	Experimental results

	Massively Parallel Adaptive Mesh Refinement and Coarsening for 2D Dynamic Fracture Simulations
	Adaptive mesh modification on Graphical Processing Units
	Adaptive cohesive fracture and fragmentation simulation
	Experimental results

	Three-dimensional Distributed Cohesive Fracture and Fragmentation Simulations
	Distributed mesh and communication layer representation
	Construction of the communication layer
	Data Structure
	Insertion of cohesive elements
	Parallel simulation
	Message extraction and sending
	Experimental results

	Physics-based Fracture and Fragmentation Simulation
	Our approach
	Fracture mode and constraint dynamics
	Rigid body simulation
	Collision detection and response
	Physics-based simulation
	Experimental results

	Conclusion and Future Work
	Bibliography
	Bibliography



