
6
Physics-based Fracture and Fragmentation Simulation

Our method for cohesive fracture and fragmentation simulation is
computationally expensive from the numerical point of view. Moreover, the
time step used is extremely small to avoid instability (below nano seconds).
Therefore our simulation would not be acceptable in a physics-based animation
because it would take a long time to simulate the rigid body dynamics.

Recent works addressed the use of fracture animation in Computer
Graphics with finite element meshes. In 2013, Busarye et at. [25] perform
a realistic animation of thin plate fracture by relaxing stress to handle multiple
fracture cuts in a single step and to prevent objects from fracturing into small
pieces. Their mesh surface is discretized as triangular elements rather than
three-dimensional elements (our case). They use an adaptive fracture-aware
remeshing scheme based on constrained Delaunay triangulation to produce
fracture details. Like our two-dimensional adaptive fracture simulation (see
chapter 4), a local refinement is performed where the fracture is about to be
initiated. They refine for unstructured meshes while we use specialized 4K mesh
refinement and coarsening. Like [25], Pfaff et al. [27] also use triangular meshes
to propose an adaptive method propagation in thin sheets, as well as refine
the mesh where cracks are likely to start or advance. Refinement allows an
efficient simulation by reducing the total number of nodes and elements of the
mesh, but coarsening is also done to reduce even more that number of entities.
Both works deal with refinement, which ensures that the stress distribution
around the crack tip is well resolved. Pfaff et al. include bending and stretching
plasticity models to simulate a large range of materials with different fracture
behaviors.

In three-dimensional simulations, Koschier et al. [28] use a novel reversible
tetrahedral mesh refinement scheme for adaptive simulation of brittle fracture
of solid objects. Because most brittle materials slightly deform before the crack
originates, they model the dynamic behavior using a rigid body dynamics
simulator. High internal stresses are consequences of contact with other objects.
During the contact with the objects, regions with high stress are refined.
Fracture occurs if the tensile stress exceeds a certain threshold and mesh parts
are separated by a fracture surface represented by a signed distance function.
If the stress regions relax, they coarsen the region’s discretization. Using a
different method, Chen et al. [29] adaptively refine and coarsen a fracture
surface into a detailed one, based on a discrete gradient descent flow. They

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 125

are based on a physics-inspired approach to enrich low-resolution fracture
animation by realistic fracture details. They use a implicit corotational FEM
method by Müller et al. [76] to simulate the dynamics and use the method
proposed by O’Brien and Hodgins [77] to generate fracture cuts. After the
extraction, the low resolution fracture surface iteritevely evolves in the material
space using a gradient flow by deforming and adaptively remeshing it.

Our proposed method also splits the simulation into rigid body dynamics
and handles fracture simulation. In this chapter, we propose the incorporation
of an existent method to increase the time step of our simulation and handle
rigid body dynamics in animation of three-dimensional quasi-brittle and brittle
objects using our traditional CZM simulation. Much like previous works, we
handle rigid body dynamics and fracture simulation separately. But none these
works to our knowledge use the Cohesive Zone Model.

6.1
Our approach

Our mesh is composed of tetrahedra (Tet4) elements and simulated using
the Cohesive Zone Model. Our approach consists of dividing the simulation
in two parts: rigid body mode and fracture mode. In the rigid body mode,
we handle the rigid body dynamics and do not fracture the object(s), i.e.,
only deal with global and individual nodal motion such as linear and angular
momentum and collision detection. The fracture mode handles the fracture
and fragmentation simulation whenever a collision is detected. We simulate
this mode with a lower time step than the rigid body mode, but increased time
step compared to our simulations from previous chapters (refer to chapters 3,
4, and 5). Our simulation for both modes is based on the CZM simulations
implemented in chapters 3, 4, and 5. In the next sections, we will show how
the time step can be increased for both modes and at the same time avoid
instability. Our animation framework is limited to a non real-time simulation
since we need to adapt the time steps between the two modes.

Consider the example of dropping an arbitrary mesh with only the force
of gravity acting on it, like the sphere in Figure 6.1. At this moment, since no
collision is detected, the rigid body dynamics simulation acts on the model.
Velocities and accelerations are calculated just like the CZM using the explicit
integrator scheme (refer to equations 2.1 and 2.2), but no stress or internal
force is computed and used as contribution to nodal accelerations. When the
first nodes of the mesh collide with the obstacles, for example, a static plane
(see Figure 6.3), we switch to fracture mode. The nodes that collide with
the obstacles are “pulled” back in the direction of the plane´s normal. This

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 126

Time

Rigid body mode Rigid body modeFracture mode

0

50

100

150

200

250

300

Cohesive elements inserted x Time

Figure 6.1 – The figure illustrates our framework to deal with physics-based animation
of brittle and quasi-brittle objects. The objects starts falling in rigid body mode. When
it collides, it switches to fracture mode and cohesive elements are inserted. When no
cohesive elements are added in a while, it switches back to rigid body mode.

displacement causes stress at the nodes that can generate possible fractured
facets and insertion of cohesive elements (i.e. fracture begins propagating). The
stress calculation and insertion of cohesive elements verification is an effect of
the fracture mode that are not present in the rigid body mode. We switch back
to the rigid body mode when no cohesive element is added to the mesh at a
certain number of time steps. Notice that we are still using the CZM even when
in rigid body mode when calculating displacements, velocities, and accelerations
using our typical explicit integration scheme. We leave an automatic switching
between both modes based on the strain energy as future work.

6.2
Fracture mode and constraint dynamics

In the previous chapters (refer to chapters 3, 4, and 5), the time steps
chosen for the fracture and fragmentation simulations were based on the
Courant-Friedrichs-Lewy (CFL) condition. They were in range of nano seconds,
which is not reasonable for a physics-based simulation. Our proposal is to
increase the simulation time step and at the same time avoid instability that
would happpen when violating the CFL condition.

We use Müller et al.’s position based dynamics method [2] to created a rigid
body connecting all nodes of our mesh by a constrained rigid bar. If the nodes try
to separate too much from each other, a phenomenum caused by instability in
the CFL condition, we use the rigid bar constraint to “pull” them back towards

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 127

Δp

Δp
Δp

Δp

(a) (b)

𝑝𝑝𝑖𝑖 += �
𝑖𝑖=0

𝑚𝑚

∆𝑝𝑝𝑖𝑖

Figure 6.2 – The figure illustrates the nodes belonging to the tetrahedra elements and
connected by rigid bars. We use relaxation method with constraint functions proposed by
Müller et al. to avoid time step instability. (a) shows each node moving away too much
from its resting position as an effect of instability. (b) shows the correction we have to
make in one node (m is the number of neighbor bars of the node).

each other in the direction of the bar. This is an iterative/relaxation method,
as illustrated by Figure 6.2, since each node is connected to more than one bar.
The relaxation loop also includes treating collision response: for example, by
“pulling” the node back inside the plane in the direction of its normal with a
depth equal to the node-to-plane distance. This displacement determines an
increase in stress, which may generate fracture propagation in the mesh, as
explained earlier. Figure 6.3 illustrates a physics-based animation of a bunny
under gravity action and colliding with the ground. It is treated as a rigid body,
except during collision when it fractures. The model is composed by 69,668
nodes and 208,353 bulk elements. Initial material parameters are as follows:
initial velocity = 0 m/s, elastic modulus = 0.6 Pa, Poisson coefficient = 0.23,
specific mass = 2400 kg/m3. Fracture energy materials are as follows: fracture
energy GI = 22 N/m, cohesive strength smax = 0.1 mPa, and shape parameter
α = 2. Time step is increased to 10e-4 s in rigid body mode and decreased to 5
µs in fracture mode, with stress calculated at every time step. Notice that even
with a low time step for the fracture mode, it is much higher than the typical
time steps for the CZM simulation.

Müller et al. define general constraints via a constraint funtions [78, 79] to
simulate dynamic objects, such as rigid bodies. Instead of computing forces as
derivative of a constraint function energy, they solve directly for the equilibrium
configuration and project positions [2]. We refer the reader to Müller et al.’s
algorithm for further details [2] as we take advantage of their method to increase
our simulation time step during fracture mode and to replicate rigid bodies
during rigid body mode..

The definition of projecting a set of points according to a constraint

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 128

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3 – Bunny model with 69,668 nodes and 208,353 bulk elements. Initial material
parameters are as follows: initial velocity = 0 m/s, elastic modulus = 0.6 Pa, Poisson
coefficient = 0.23, specific mass = 2400 kg/m3. Fracture energy materials are as follows:
fracture energy GI = 22 N/m, cohesive strength smax = 0.1 mPa, and shape parameter
α = 2. Time step is 10e-4 s, with stress calculated at every time step. Position-based
parameters are: kstiffness = 0.9, kdamping = 1 and number of iterations = 3. (a) The
bunny begins falling under gravity action in rigid body mode. No fracture propagates in
the model, although the simulation is done using the Cohesive Zones Model (CZM) (i.e.
using explicit integration) and Müller´s Positions-based Dynamics (to avoid instability
with increased time step); (b) The bunny collides with the ground. When the first node(s)
collide(s), we switch to fracture mode. Stress calculation lead to cohesive elements
verification, which leads to node duplication and fracture propagation; (c, d) The bunny
continues in fracture mode because cohesive elements are still being added to the mesh;
(e, f, g, h) Cohesive elements were not added at a certain number of steps, so the
simulation is switched to rigid body mode. No fracture will propagate in the mode.
Instead, each separate component of the bunny will be treated as a rigid body.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 129

function is to move them so they satisfy the constraint, by conserving both
linear and angular momentum. Let ∆pi be the displacement of node i by the
projection. Linear momentum is conserved if

∑
i

mi∆pi = 0 (6.1)

Angular momentum is conserved if

∑
i

ri ×mi∆pi = 0 (6.2)

where ri are the distances of pi to the center of mass of the object.
The method proposed by [2] conserves both linear and angular momenta

for internal constraints. Let C be the constraint with stiffness k and cardinality
n on points p1, ...,pn. The stiffness k defines the strength of the constraint and
ranges from zero to one, with one being the most rigid. Given p, we want to
find the correction ∆p such that C(p + ∆p) = 0, which can be approximated
by

C(p + ∆p) ≈ C(p) + OpC(p) ·∆p = 0 (6.3)

By choosing a scalar λ to restrict ∆p to be in the direction of OpC(p),
we have

∆p = λOpC(p) (6.4)

Sybstituting Eq. 6.4 into Eq. 6.3, solving for λ and substituting back into
Eq. 6.4, we get the final formula for ∆p

∆p = − C(p)
|OpC(p)|2

OpC(p) (6.5)

For the correction of an individual point pi we have

∆p = −sOpC(p1, ...,pn) (6.6)

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 130

d

Δp2

Δp1

p1

p2

m2

m1

Figure 6.4 – Rigid bar constraint and the displacements needed to “pull back” the nodes
to the rest distance position. The projection of the constraint C(p1, p2) = |p1 − p2| − d,
where the corrections ∆pi are weighted by the inverse masses 1/mi.

where the scaling factor

s = C(p1, ...,pn)∑
j

∣∣∣Opj
C(p1, ...,pn)

∣∣∣2 (6.7)

is the same for all nodes. For nodes of individual masses, we weight the
corrections ∆pi by the inverse masses wi = 1/mi. Equations 6.8 and 6.8 are
replaced by

∆p = −swiOpC(p1, ...,pn) (6.8)

s = C(p1, ...,pn)∑
j wi

∣∣∣Opj
C(p1, ...,pn)

∣∣∣2 (6.9)

The constraint is equivalent to pulling the nodes with a “ghost” force. As
an example which we use in our simulations, our constraint is defined as a rigid
bar connecting each neighbor node of the mesh. Figure 6.4 illustrates the rigid
bar constraint and the displacements needed to “pull” back the nodes to the rest
distance. The rigid bar constraint can be described as C(p1, p2) = |p1 − p2| − d.
The derivative with respect to the nodes are Op1C(p1,p2) = p1−p2

|p1−p2|
and

Op2C(p1,p2) = − p1−p2
|p1−p2|

. The scaling factor s is s = |p1−p2|−d
w1+w2

. The final
corrections are:

∆p1 = − w1

w1 + w2
(|p1 − p2| − d) p1 − p2

|p1 − p2|
(6.10)

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 131

∆p2 = + w2

w1 + w2
(|p1 − p2| − d) p1 − p2

|p1 − p2|
(6.11)

The stiffness constant (kstiffness) multiplies ∆p between 0 and 1, which
determines the amount of stiffness of the mesh. We do not want any instability
in the model, but we also do not want to lose the material properties imposed
by elasticity, so having the stiffness constant set to a factor lower than 1 is a
reasonable idea.

6.3
Rigid body simulation

When the object is colliding, we use the traditional CZM simulation
framework. When treating the object as a rigid body (i.e. when not colliding),
we do not calulate stresses nor duplicate nodes, neither use internal forces
contributions in the acceleration in equation 2.1. But still, the object might
deform because it may lack rigid bar connections between certain nodes. For
example, as hollow sphere might deform as its northern hemisphere is not
connected to its southern hemisphere. To avoid this behavior and treat objects
as rigid, we use Müller et al’s global damping technique [2] without influencing
rigid body modes of the object. They compute the global linear velocity and
angular velocity of each component/system and damp only the individual
deviations of the velocities from the global motion. The amount of damping
is controled via an user-defined constant called kdamping that ranges from zero
to one. Thus, with kdamping = 1, only global motion survives and the set of
vertices of each component behaves like a rigid body. We label the connected
components of the mesh in order to calculate each center of mass xcm and then
calulate the velocity change for each node in each component. The equations
for damping are listed in table 6.1.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 132

1: xcm = (∑i ximi)/(
∑

i mi)
2: vcm = (∑i vimi)/(

∑
i mi)

3: L = ∑
i ri × (mivi)

4: I = −∑i r̃ir̃T
i mi

5: ω = I−1L
6: for all vertices i do
7: ∆vi = vcm + ω × ri − vi

8: vi ← vi + kdamping∆vi

9: end for

Table 6.1 – Damping calculation for rigid bodies [2].

Line 1 calculates the center of mass xcm of the object/component, where
ri = xi − xcm. Line 2 calculates the velocity of the center of mass of the
object/component. Line 3 computes the angular momentum L. Line 4 computes
the moment of inertia I, where r̃i is the 3×3 matrix with property r̃iv = ri×v.
Using the inverse I−1 and L, we compute the angular velocity ω at line 5.
Lines 6 through 9 damp the individual deviations ∆vi of the velocities vi from
the global motion vcm + ω × ri. Therefore, with kdamping = 1, the component
behaves as a rigid body.

6.4
Collision detection and response

The collision detection and response is simply another constraint added
to our list of projected positions inside the relaxation loop and is based on
checking object-to-obstacle interpenetration. If the object collided, we must
deal with the collision response. In this case, we are verifying if each node
of the mesh collided to an obstacle. To check the node-to-object collision, we
calculate the distance between the node and the obstacle in the direction of
the interpenetration vector. If the node has penetrated the obstacle, we signal
a collision response and switch to fracture mode. At this point, the collision
response will be calculated inside the relaxation loop of the projected constraints.
We simply “pull” the node back in the direction of the obstacle’s normal at
the interpenetration point with a distance of the depth of the interpenetration.
In the next iteration, we repeat the procedure since the relaxation may have
moved the nodes inside the obstacle again.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 133

Compute Nodal
Stresses

Insert Cohesive
Elements

Update Nodal
Masses

Compute Internal
and Cohesive Forces

Damp VelocitiesUpdate Velocities
and Accelerations

Predict
Displacements

Project
Constraints

Correct Positions
and Velocities

Update Velocities

Compute
Stiffness Matrix

Update Nodal
Masses

Mode is
Rigid Body

Yes

No
i < Number of Relaxation Steps

Start Loop
Mode is
Fracture

End Loop

Yes

No

Figure 6.5 – The figure illustrates the simulation flow chart. According to the chart, we
can see clearly when the fracture and rigid body modes act on the simulation, which uses
the same procedure from the CZM simulation, combined with Müller et al.’s constraint
projection to avoid instability.

6.5
Physics-based simulation

Figure 6.5 illustrates a flow chart of the simulation. We start pre-processing
the stiffness matrices and the nodal masses and enter the simulation loop.
From here on, we switch between fracture and rigid body modes depending
on collision detection and cohesive elements insertion. Our framework uses
the same procedure from the CZM simulation, combined with Müller et al.’s
constraint projection to avoid instability.

The position based dynamics method incorporated to our framework is
extremely relevant because it allows us to increase the time step of our fracture
mode simulation while maintaining numerical stability. If the nodes try to move
away too much from each other, we “pull” them back in the direction of the
incident bars using the relaxation method for m neighbor bars. Because we do
not represent edges explicitely in our data structure, our algorithm is based per
element (tetrahedron) and on coloring. We launch a kernel with a thread per
element using the mesh coloring to avoid race condition. Each thread processes
all of its tetrahedron edges and accumulates kstiffness · ∆p on its rigid bars’
(edges) nodal positions.

Table 6.2 shows the algorithm combining our fracture and fragmentation
technique with Müller’s position based dynamics method. Line 1 initializes
the stiffness matrix and the lump mass matrix and line 2 updates the nodal
masses exactly like the Cohesive Zone Model (CZM). Lines 4 and 5 initialize

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 134

all nodal positions, velocities and weights used by the constraints. The weights
refer to the inverse masses 1/mi. Line 7 begins the simulation loop. At line 8,
if fracture mode is detected (i.e. the object collided to an obstacle), stresses
are calculated at line 10, cohesive elements are checked for insertion and node
duplications are done if needed at line 12. Nodal masses are then update at
line 13. Internal forces are computed at line 16. At line 18, we update velocities
and accelerarations like the CZM using an explicit integrator scheme (refer to
section 2.2). Until this point, we have described all simulations steps exactly
like the CZM, with the exception of updating displacements. Line 19 checks
if we are in rigid body mode (i.e. no fracture is propagating). If so, we use
Müller et al.´s equations in table 6.1 to damp individual deviations of nodal
velocities and treat the object as a rigid body. From line 22 forward, all steps are
executed independent if we are in fracture or rigid body modes. At line 22, we
predict the displacements using the explicit integrator scheme using our CZM
integrator. Lines 23 to 25 refer to the relaxation steps required to reach stability
and “pull back” the nodes to their rest distance. During a number of steps,
we pull them back with kstiffness ·∆p (Equations 6.10, 6.11). We also include
collision corrections by pulling nodes back in the direction of the obstacle’s
normal. Lines 26 to 29 update, for each node, the new velocity and positions
using the projected positions pi + ∆pi and the previous positions xi. Finally,
at line 30, we update the velocities according to friction restitution.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 135

1: Compute Stiffness Matrix
2: Update Nodal Mass
3: current step ← 0
4: for all vertices i do
5: Initialize xi,vi,wi

6: end for
7: while current step <= maximum step do
8: if mode == FRACTURE then
9: if current step == check step then

10: Compute Stresses
11: if stresses > stress threshold then
12: Insert Cohesive Elements
13: Update Nodal Masses
14: end if
15: end if
16: Compute Internal Forces
17: end if
18: Update Velocities and Accelerations
19: if mode == RIGID BODY then
20: Damp Velocities
21: end if
22: Predict Displacements pi

23: while i < number relaxation steps do
24: Project Constraints(C1, ..., Ccollision,p1, ...,pN)
25: end while
26: for all vertices i do
27: vi ← (pi − xi)/∆t
28: xi ← pi

29: end for
30: Update Velocities
31: current step = current step + 1
32: end while

Table 6.2 – Proposed Physics-based simulation algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 136

6.6
Experimental results

In this section, we propose a verification of the physics model to use our
fracture and fragmentation animation of general tetrahedra meshes. Next, we
compare different physical parameters used in the simulation that affect cracks
and stiffness, and discuss further examples. All images from animation examples
were rendered using the Mitsuba physically based renderer1. Mitsuba is an open-
source, research-oriented rendering system which generates physically-based
rendering images from scene description files.

6.6.1
Verification of the physical model

In order to guarantee an animation that uses physics-based techniques and
is consistent with physics and engineering equations, we verify the original 3-
dimensional mixed-mode beam from previous experiments by including Müller
et al’s [2] Position-based Dynamics technique using constrained bars and
increasing the time step. No damping was applied to the model since we only
want to verify the fracture propagation and not treat it as a rigid body.

We have tested the 3D simulation on the coarse version of the mixed-mode
beam. The coarse version contains 113,984 bulk elements and 25,777 nodes.
We employed Tet4 (tetrahedra) elements on the mesh and T3 cohesive surface
elements. The greedy algorithm was used to color the mesh and the number
of colors obtained were 55 on the mesh. The mesh is initially refined in the
middle left where the fracture tends to propagate. Cohesive elements were
checked for insertion at each 10 steps of the simulation. The coarse mesh had a
time step of 3e-5 and 300 steps, while the previous version had a 30 ns time
step and 9,000 steps. Initial material parameters are: initial velocity = 25 m/s,
elastic modulus = 9 MPa, Poisson coefficient = 0.24, specific mass = 2400
kg/m3. Cohesive fracture parameters are as follows: fracture energy GI = 22
N/m, cohesive strength smax = 8 kPa, and shape parameter α = 2. In terms
of physics-based animation parameters, we used four relaxation iterations and
kstiffness = 1 to guarantee full stability of the model.

Figure 6.6 shows the result obtained. The model indeed stabilized with a
time step 1,000 times greater than the previous version. The fracture propagated
from the initial notch through a 30◦ angle. The simulation took 300 steps to
run the full fracture propagation.

1https://www.mitsuba-renderer.org/

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 137

t = 5.6e-4 s t = 1.7e-3 s t = 3.4e-3 s

t = 4.5e-3 s t = 5.6e-3 s t = 6.7e-3 s

t = 7.8e-3 s t = 9e-3 s t = 1e-2 s

Figure 6.6 – Verification of the engineering model with the relaxation method proposed
by Müller et al [2] with time step 1,000 times greater than the versiona from chapter 5.7.

6.6.2
Parameter comparisson

Several parameters can influence the simulation stability and the mesh
deformation, such as the size of the time step, the stiffness (kstiffness) and
damping (kdamping) coefficients, respectively. We noticed that the greater the
time step, the more likely the simulation is in becoming unstable. Moreover, the
size of the time step determines the amount of deformation of an object if no
damping is applied to velocities. Consider a hollow sphere. We know that each
node is connected to its neighbour, but the northern and southern hemispheres
are not connected at all by a rigid bar. During collision, the tendency is having
the sphere deform if the time step is large enough.

Figure 6.7 shows three different simulations for a hollow tetrahedron
sphere falling to the ground with no fracture or cohesive insertion. In simulation
(a), the time step is 10e-4 s and kstiffness is 1, or the most rigid system. Notice
that the sphere does not deform at any moment. When we look at simulations
(b) and (c) with kstiffness = 0.1 and kstiffness = 0.01, respectively, we observe
that the smaller the stiffness, the more the sphere deforms.

However, in Figure 6.8(b), maintaining kstiffness = 1 and increasing the
time step to 5e-4 s, the sphere begins deforming even with maximum stiffness
constant. We conclude that the greater the time step, the less rigid the object
becomes.

Another parameter influencing the body’s rigidity is kdamping, in which a
value of 1 gives a completely rigid body and damps all deformation without
influencing global motion. We use this technique whenever we are not colliding

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 138

Δtstep = 1e-4 s, kstiffness = 1, kdamping = 0

Δtstep = 1e-4 s, kstiffness = 0.1, kdamping = 0

Δtstep = 1e-4 s, kstiffness = 0.01, kdamping = 0

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

(a)

(b)

(c)

Figure 6.7 – Three animations of a falling hollow sphere under gravity action. (a) The
sphere collides and bounces in rigid form with kstiffness = 1. (b) The sphere collides and
bounces in deformed form with kstiffness = 0.1. (c) The sphere collides and bounces in
extreme deformed form with kstiffness = 0.01.

Δtstep = 1e-4 s, kstiffness = 1, kdamping = 0

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

Δtstep = 5e-4 s, kstiffness = 1, kdamping = 0

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

(a)

(b)

Figure 6.8 – Two animations of a falling hollow sphere under gravity action. (a) The
sphere collides and bounces in rigid form with kstiffness = 1 with a time step of 1e-4 s.
(b) The sphere collides and bounces in deformed form with kstiffness = 1 and increased
time step of 5e-4 s.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 139

Δtstep = 1e-3 s, kstiffness = 1, kdamping = 0

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

tstep = 0.7 s tstep = 0.75 s tstep = 0.8 s tstep = 0.85 s tstep = 0.9 s

(a)

(b)

Figure 6.9 – Animation of a falling plate under gravity action. (a) The plate collides and
(b) bounces in deformed form with kdamping = 0.

(a)

(b)

Δtstep = 1e-3 s, kstiffness = 1, kdamping = 1

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

tstep = 0.7 s tstep = 0.75 s tstep = 0.8 s tstep = 0.85 s tstep = 0.9 s

Figure 6.10 – Animation of a falling rigid body plate under gravity action. (a) The plate
collides and (b) bounces in rigid form with kdamping = 1 and increased time step.

the object, inserting cohesive elements and duplicating nodes. Figure 6.9 shows
a falling plate under gravity with kdamping = 0. At t = 0.55 s, the plate collides,
but because no damping is applied, the plate completely deforms. When kdamping

= 1 in Figure 6.10, the plate is treated as a rigid body and global motion
survives.

The amount of cracks propagated in the mesh is influenced by the Normal
Cohesive Strength parameter. Recall from Chapter 2 that “we determine if the
principal stresses at each facet between two bulk elements exceed a limit for
each of the nodes composing the element. Average stresses are computed to
check for cohesive element insertion. We indicate that a facet is fractured if
the stress exceeds a given threshold [8]”. In this case, we check if the principal
stress at the node exceeds 90% of the maxmimum Normal Cohesive Strength
parameter. The higher the Elastic Modulus of the object compared to the
Normal Cohesive Strength, the more cracks will tend to propagate in the mesh
discretization. Figure 6.11 demonstrates an example where we fixed and Elastic
Modulus = 10e1 Pa. In the first row, the object breaks with a Normal Cohesive
Strength smax = 5 mPa, while in the second row, the object breaks even more

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 140

Normal Cohesize Strength = 5e-3 Pa, Δtstep = 5e-4 s, Δtstep CHZ = 5e-6 s, kstiffness = 1, kdamping = 1

Normal Cohesize Strength = 5e-5 Pa, Δtstep = 5e-4 s, Δtstep CHZ = 5e-6 s, kstiffness = 1, kdamping = 1

tstep = 0.45 s tstep = 0.5 s tstep = 0.55 s tstep = 0.6 s tstep = 0.65 s

Figure 6.11 – Two animations of a falling and breaking sphere under gravity action. (a)
The sphere collides and breaks with smax = 5 mPa. (b) The sphere collides and breaks
with smax = 500 mPa.

with an smax = 0.5 µPa.
Additional examples are shown in figures below. Figure 6.12 shows a

brittle hollow sphere under gravity action and breaking when colliding with
the floor. The mesh had a time step of 2 ms when in rigid body mode and 5
µs when in fracture mode. Initial material parameters are: initial velocity = 0
m/s, elastic modulus = 100 Pa, Poisson coefficient = 0.1, specific mass = 2400
kg/m3. Fracture energy materials are as follows: fracture energy GI = 22 N/m,
cohesive strength smax = 5 mPa, and shape parameter α = 2. The sphere
falls and breaks in half due to the level of coarsness of the mesh, time step
size during insertion of cohesive elements (leading to smaller disaplacement of
nodes when hitting the floor) and smaller proportion between elastic modulus
and cohesive strength.

Figure 6.13 shows a brittle hollow bunny, composed of 69,668 nodes and
208,353 bulk elements, under gravity action and breaking when hit by a moving
sphere object. The bunny mesh had a time step of 2 ms when in rigid body
mode and 3 µs when in fracture mode. Initial material parameters are: initial
velocity of the moving object = 10 m/s, elastic modulus = 6e-1 Pa, Poisson
coefficient = 0.24, specific mass = 2400 kg/m3. Fracture energy materials are
as follows: fracture energy GI = 22 N/m, cohesive strength smax = 0.05 mPa,
and shape parameter α = 2. The bunny mesh fragments much due to the
proportion of the elastic modulus with the cohesive strength.

Figure 6.14 shows a brittle glass plate under gravity action and breaking
when hiting the ground. The plate mesh had a time step of 2 ms when in rigid
body mode, and 5 µs when in fracture mode. Initial material parameters are:
initial velocity of the moving object = 0 m/s, elastic modulus = 0.5 MPa,
Poisson coefficient = 0.24, specific mass = 2400 kg/m3. Fracture energy

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 141

Figure 6.12 – Animation of a falling hollow sphere under gravity action and breaking
when colliding with the floor.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 142

Figure 6.13 – Animation of a hollow bunny mesh hit by a sphere under velocity v = 10
m/s.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 143

materials are as follows: fracture energy GI = 22e5 N/m, cohesive strength
smax = 50 Pa, and shape parameter α = 2.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Physics-based Fracture and Fragmentation Simulation 144

Figure 6.14 – Animation of a falling glass plate and breaking when colliding with the
floor.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

	Mapeamento de Simulação de Fratura e Fragmentação Coesiva para GPUs
	Resumo
	Contents
	Introduction
	Related work
	Many-core devices

	Cohesive Fracture and Fragmentation Simulation
	Numerical representation of quasi-brittle dynamic fracture
	Simulation steps

	Two-dimensional Cohesive Fracture and Fragmentation Simulation
	Data Structure
	Parallel Implementation
	Experimental results

	Massively Parallel Adaptive Mesh Refinement and Coarsening for 2D Dynamic Fracture Simulations
	Adaptive mesh modification on Graphical Processing Units
	Adaptive cohesive fracture and fragmentation simulation
	Experimental results

	Three-dimensional Distributed Cohesive Fracture and Fragmentation Simulations
	Distributed mesh and communication layer representation
	Construction of the communication layer
	Data Structure
	Insertion of cohesive elements
	Parallel simulation
	Message extraction and sending
	Experimental results

	Physics-based Fracture and Fragmentation Simulation
	Our approach
	Fracture mode and constraint dynamics
	Rigid body simulation
	Collision detection and response
	Physics-based simulation
	Experimental results

	Conclusion and Future Work
	Bibliography
	Bibliography

