
5
Three-dimensional Distributed Cohesive Fracture and Frag-
mentation Simulations

In this chapter, we focus on the implementation of distributed three-
dimensional cohesive fracture and fragmentation simulation with no adaptivity
(no mesh refinement and coarsening). This imposes great challenge because now
we are dealing with 3D meshes, and thus the simulation is even more complex
due to more memory consumption and more elaborate algorithms to deal with
insertion of cohesive elements. Therefore, we need a simple and efficient data
structure to continue handling a large number of global memory accesses. The
data structure is extended to 3D entities, which includes tetrahedron elements
and linear triangular cohesive elements. Because the nodal neighborhood
increases, the number of colors in the mesh greatly increases, which leads
to launching more kernels than the two-dimensional simulation case.

This chapter is organized as follows: first, we describe theoretically how
we represent the distributed mesh and the communication layer and then give
details on the data structure used to implement it. We then describe how we
insert cohesive elements in a 3D mesh on a single GPU, and then extend it
to a distributed mesh space. We explain the distrbuted simulation itself and
nodal synchronization. Finally, we present details of our numerical results.

5.1
Distributed mesh and communication layer representation

In this work, we deal with massive three-dimensional mesh sizes. An
example of such mesh is the 3D beam discretized into x = 114, y = 39, and z
= 12 and refined in the middle until a level two refinement (over 2.3 million
elements), shown in Figure 5.1, which is run in our experiments. Our goal
is to distribute these meshes, which are too large to fit into a single GPU
or too costly to be runned by one, into several nodes of a computer cluster,
each containing one Graphical Processing Unit. Each node is responsible for
simulating part of the distributed mesh on its GPU. Figure 5.1a shows the
initial mesh.

During our finite elements analysis, entities such as nodes and elements
need to access data stored in adjacent entities. For example, computing the
nodal mass requires contribution from adjacent elements. However, adjacent
elements can belong to other partitions, so we need to communicate with them
to obtain the necessary data. We create a comunnication layer that is composed
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Figure 5.1 – 3D Beam mesh with over 2.3 million bulk elements in (a) its original form;
(b) discretized into 15 mesh parts; and (c) showing the communication layer for each
partition in red.

by copies of all remote adjacent elements to the nodes of the current partition’s
boundary, plus these elements’ nodes. The communication layer is used for two
purposes: (a) perform computations on boundary entities and (b) synchronize
topological entities and data from the analysis. Figures 5.1b and 5.1c show the
mesh partitioned and the communication layer in red used to synchronize the
attributes of the simulation.

We follow Espinha et al’s [74] proposal for classification of topological
entities used in ParTops. The partitioned mesh is divided into interior part
and the communication layer. The interior part contains elements that belong
only to that partition (i.e., this is the owner partition). We call these elements
local elements. The communication layer contains “copy” of elements that
belong to other partitions. We call these elements proxy elements. Local and
proxy elements can be either bulk elements or cohesive elements. Bulk elements
remain topologically unchanged during the entire simulation, while cohesive
elements are constantly being added to the mesh “on-the-fly” between bulk
elements on facets. Nodes can be of local, proxy, or ghost types. According to
[74], a topological entity is classified based on its direct neighborhood. The
direct neighborhood of an element is composed by all nodes (and other entities)
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adjacent to the element, while the direct neighborhood of a node is composed
of all elements (and other entities) indicent to it.

In summary, a communication layer’s entity may be classified as three
types:

– Local entity: When its direct neighborhood, in relation to the original
mesh, is completely represented in the current partition, and the entity
belongs to the current mesh partition (i.e., does not belong to the
communication layer). Local entities include bulk elements, cohesive
elements, and nodes.

– Proxy entity: When its direct neighborhood, in relation to the original
mesh, is completely represented in the current partition, and the entity
belongs to a remote mesh partition (i.e., belongs to the communication
layer of its current partition). Proxy entities include bulk elements,
cohesive elements, and nodes.

– Ghost entity: When its direct neighborhood, in relation to the original
mesh, is not completely represented in the current partition. Ghost entities
include only nodes.

Figure 5.2 illustrates a distributed representation of a 2-dimensional mesh
for simplification motives. In (a), the initial mesh is shown, and (b) shows
the partitioned mesh without the communication layer; (c) and (d) illustrate
the mesh with the constructed layer. Black nodes are local nodes, while red
nodes are proxy nodes that reference to local nodes on owner partitions. Blue
nodes are ghost nodes that also reference local nodes on owner partitions. Gray
elements indicate proxy elements that reference to local elements on owner
partitions. Figure 5.3 illustrates the same logic in three-dimensions.

All proxy entities are processed like the local entities in relation to analysis
attributes, such as mass and stress calculation. Ghost nodes are not processed
the same way. They are synchronized by message passing of such attributes, as
we will discuss later.

Given the following definitions, we can introduce the term “symmetric
operations”. Proxy nodes can be processed by gather or scatter algorthms. When
processed by gathering technique, operations between its local and remote copy
must be the same, i.e., they must have the same reference (adjacent) element
and must be traversed exactly the same way (see discussion on randomness on
GPU on Chapter 4). In our distributed simulation, however, we guarantee the
operations are symmetric because we use coloring and the scatter technique.
When constructing the communication layer, its coloring is exactly the same as
its local copy, making the operations symmetric.
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Proxy GhostLocal

Proxy

(a) (b)

(c) (d)

Figure 5.2 – 2-dimensional mesh partitioning. (a) Initial mesh; (b) Mesh partitioned and
(c) with the communication layer and proxy and ghost entities. (d) illustrates each proxy
and ghost entity refering to their local entity.

Figure 5.3 – 3-dimensional mesh partitioning. (a) Intial mesh. (b) Mesh partitioned and
(c) with the communication layer. (d) Illustration of proxy (in red) and ghost (in white)
nodes and proxy elements in red.
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(a) (b)

(c) (d)

Figure 5.4 – Construction of the communication layer of a T6 mesh. (a) shows the initial
mesh. (b) illustrates the partitioned mesh without the communication layer, but with
the already classified local and proxy nodes. Adjacent elements from other partitions
belonging to border nodes are swept and added to the communication layer (c) and (d)
ghost nodes are classified according to facets.

5.2
Construction of the communication layer

After the original mesh is partitioned and proxy and local nodes are
classified, proxy elements are added to the communication layer. This is done
by going through all of the border nodes of the current partition and adding
adjacent elements that belong to other partitions. We then add all nodes
belonging to the new elements. These nodes are initially categorized as ghost
nodes. After updating element adjacency, we verify for each node if their direct
neighborhood is completely represented (i.e., if contains all adjacent elements
from the original mesh). If so, we set them as proxy node; else, we keep them
as ghost. Figure 5.4 shows a two-dimensional example.

5.3
Data Structure

In the previous section, we explained how the distributed mesh and com-
munication layer are represented and built. Now, we describe implementation
details of the data structure used to insert cohesive elements and synchronize
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topological and analysis attributes. We extend the proposed data structure
in Section 3.1 to 3D and include information that will help distributed mesh
representation.

Before explaining the extension of the 3-dimensional data structure, it
is worth noting some important attributes we need to store that will help us
keep track of mesh topology synchronization. Each node and element belong to
one owner partition and have an unique entity identifier inside that partition.
Therefore, we must store for all remote proxy and ghost (remote) and local
(owner) entities the identifier of the owner partition it is contained in and the
owner entity identifier inside that partition. While the partition id will be used
to send communication messages to remote partitions, the owner id is used to
access the owner entity inside the owner partition. As explained in Section 5.1,
topology entities can be classified as local, proxy, or ghost. We also need to
store this information in the topology table in the data structure to easily
identify the communication layer and at the same time without costing too
much device memory.

One of the major steps of the synchronization strategy that will be greatly
used in our simulation is accessing a reference (adjacent) element of a given
node when sending a message. To fetch its new owner id, a ghost node may
have been duplicated in the other partition and therefore there is no clue which
is the owner node. To access the owner node, we use one of the remote node’s
adjacent element since bulk elements remain unchanged in the mesh. A tuple
(owner entity handle, local id) message is sent to the owner partition (where
local id is the incidence of the node in that element), and the owner element is
accessed inside the owner partition. From that element, we use the local id to
access the owner or proxy node. Details of synchronization are discussed later
in the chapter. The adjacent element plays a key role in messaging and without
it we would not be able to synchronize the communication layer. Therefore, we
must store, for each node in the node table, one reference (adjacent) element
to it.

Given that we are now in three-dimensional situation, we represent
bulk elements as tetrahedron elements (Tet4) and cohesive elements as linear
triangular elements (T3). Figure 5.5 shows the 3D element types: node, bulk
element, and cohesive element. Because we are now in 3D space, memory
consumption will be a lot bigger and the node traversal path won’t be restricted
to a two-way algorithm. Instead, we now face a challenge to go through a series
of elements in a graph-like structure, which requires a stack to traverse the
elements. Therefore, a simple and low-memory consumption data structure is
key to implement such algorithms. We will later come back to this point when
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Node Bulk Element Cohesive Element TET4

Figure 5.5 – Element types used in the 3D analysis code. Bulk elements are volumetric
tetrahedron elements and cohesive elements are linear triangular elements.

we discuss the insertion of cohesive elements. Another important point is that
the number of colors in the mesh greatly increases as the valence of the nodes
increases, so more kernels must be launched. Furthermore, the 3D analysis
code is much more complex than the 2D one, requiring more global memory
accesses, more register use, and more numerical operations. All this makes the
3D simulation much more challenging to implement in the GPU.

We propose an extension of the data structure similar to the 2D presented
in Section 3.1, plus additional attributes that will help with the distributed
simulation. Figure 5.6 illustrates our proposed data structure. We have the node
and element table with node positions and element node references and opposite
elements like in two-dimensions. In the node table, we add a z component.
Because we are now using tetrahedron elements for bulk elements and linear
triangular elements for cohesive elements, we use four nodes referenced in the
node table for bulk element nodes and six nodes for cohesive elements. Four
element indices are used to access each bulk element node’s opposite elements
and two indices are used for cohesive elements (one for each facet). Much like
the adaptive simulation in 2 dimensions, we store, for each node, one adjacent
element. However, in the adaptive case, while using the element for means of
node traversal, we now use it for messaging purposes, as explained above. The
node table is completed with the identifier of the owner partition of that node
and the identifier of the local node id inside the owner partition. We indicate
if a node is local, proxy, or ghost by reserving two bits in the partition id.
The element table is completed similarly to the node table. The identifier of
the owner partition and the element inside the owner partition are set in the
table. A proxy bit is reserved in the owner partition identifier to indicate if the
element is proxy.

With the extended 3D data structure, we are able to traverse the node’s
incident elements just like the two dimensional case. The traversal is like a graph
structure in which it is suspended when the adjacent element is reached again or
all elements are visited. This uses a lot of shared memory, as we will see later in
the chapter. We are also able to send messages to remote partition and receive
incoming topology responses and data attributes such as stress, velocities, and
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Id    v0 v1 v2 v3 v4 v5 o0 o1 o2    o3 P id    O Id 

0      0      1      2      8       x       x -1      1      2     3      0         0 

1      0      2      3      9       x       x 3     -1      1     0      0         1

2      5      6      4     12      x       x -1     -1      3     0    0x81   30

3      2      11    3      5      12      6       1     2     x     x 0x81   11

Element Table

...
...

...
...

Ghost    Proxy Partition IdId     x      y      z       Δ P Id     O Id

0    0.0   1.0   3.0      2     0x82     35     

1    1.0   0.0   2.0      6     0x41     76

2    1.0   3.0   2.0      5     0x43      56

3   -1.0   1.0  -2.0     3     0x81     23

4    0.0   2.0   1.0     7        0         4 

5   -1.0   1.0   2.0     8        0         5 

6    1.0  -1.0   3.0    10       0         6

Node Table

...

...

1       0                 2

0       1                 1

0       1                 3

1       0                 1

0       0                 0

0       0                 0

0       0                 0

... ...

Proxy Partition Id

0                      0

0                      0

1                      1

0                      0

1                      1

... ...

Figure 5.6 – Data strucuture for distributed 3-dimensional finite element analysis. The
node table contains the positions, one adjacent element id belonging to its incidence, and
the owner partition and entity id it belongs to. If the owner patition is the one it is in,
the owner id is the same as the node table. The partition id contains 2 bits that indicate
if the node is local, proxy, or ghost. The remaining bits refer to the owner partition
identifier. The element table contains six nodes, in which four are used for tetrahedron
bulk elements and six are used for triangular cohesive elements. Four opposite identifiers
indicate elements opposite to the bulk elements’ four nodes and the cohesive element’s
two facets. The owner partition id reserves one bit to indicate if the element is local or
proxy and the remaining bits to indicate the partition of the owner. The owner identifier
of the entity follows next.

accelerations. To do this, an acess is made to the adjacent element stored for a
given node. The owner partition of node is fetched from the node table and
the message is sent to it containing the tuple (owner elementadj handle, local
id), where owner elementadj handle is fetched from the element table and the
local id is the incidence of the node in that element. Notice that the local id is
the same for all respective local and their remote entities (bulk and cohesive
elements). The message is sent to the owner partition of the element and used
to access the node of that element using local id. The adjacent element in turn
sends a reply message with the response data containing the id of the node in
that partition to the sender using the same procedure. Notice that this node
can also be of a proxy category. Figure 5.7 illustrates the process.
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(Owner element handle, local id)

(Owner id)

Figure 5.7 – Messaging Procedure to obtain topology or analysis data. (1) The node
accesses the adjacent element and sends a message to its owner with the tuple (owner
element handle, local id). (2) The owner of the element receives the message and accesses
the node with it. (3) The receiver responds the message with the topology or analysis
attribute requested by the sender.

5.4
Insertion of cohesive elements

Like the two-dimensional simulation, after fractured facets are extracted
from the mesh, we filter the elements that contain them and launch a kernel
per color to insert cohesive elements. Again, we choose the dominant element
that will take over the fractured facet and will duplicate the node. Our criteria
is the bulk element with the least id. With our extended data structure, we
are able to insert cohesive elements in volumetric tetrahedron elements by
traversing the nodes just like the triangular meshes. The 2-dimensional case,
however, was restricted to a two-way element traversal. While this simplifies
the GPU code, we cannot perform this in the three-dimensional case. Instead,
there are several paths starting from an element of a given node that leads to
the adjacent element, if not blocked by a cohesive element. Therefore, we need
a stack to keep track of the visited elements. We use the breadth-first search
algorithm in the GPU. The stack is kept in shared memory, thus the amount of
memory is determined by the maximum node valence. In 2D, we duplicated the
node only if the adjacent element to the fractured facet is not reached in the
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(a) (b) (c) (d)

Figure 5.8 – Insertion of cohesive elements in 3D. Node is traversed using a Breadth-first
search in shared memory. If there is at minimum one path to the adjacent element, the
node is not duplicated.

current traversal. However, we now have multiple paths to reach the adjacent
element. Therefore, if there is at least one path leading to the adjacent element,
the node is not duplicated. If the adjacent element is not reached (i.e., the
path is blocked by a cohesive element or mesh boundary), we duplicate the
node. Figure 5.8 illustrates inserting cohesive elements in volumetric tetraheda
elements through breadth-first search node traversal.

When creating a new node, an adjacent element must be assigned to it.
It is of extreme relevance which type of bulk element (i.e. local or proxy) we
assign the node. Therefore, for local and proxy nodes, we assign the same bulk
element for each partition by choosing the one with the least owner partition id
and least owner element id. This will avoid creating inconsistencies in the mesh,
such as proxy nodes having multiple local copies in other partitions. The ghost
nodes case is different because they may not have all the elements of their
proxy/local copies, so any adjacent element may be chosen.

Espinha et al’s [74] strategy to insert cohesive elements and duplicate
nodes in a distributed mesh is based on duplicating local and proxy nodes
and inserting local and proxy cohesive elements, synchronizing proxy entities
based on reference to owner entities, and finally updating ghost nodes based on
owner ids. In the third step, ghost nodes are updated by duplicating them when
needed and updating reference to owner nodes. First, local elements which are
incident to duplicated nodes and have corresponding proxy element in other
partition are selected to send message to their remote partitions about any
potential node duplication that would affect ghost nodes. Remote partitions
receive the message and send a request to the owner partition of the element,
which receives the request and sends the message with the new owner id. To
map this to the GPU, we would face two challenges that would greatly reduce
the performance of our simulation. First, it would require to traverse the nodes
twice: when filtering proxy elements from other partitions and when updating
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Figure 5.9 – Phase 1 of inserting cohesive elements in partitioned meshes. Local and
proxy cohesive elements are inserted.

ghost nodes with their new owner ids. Second, this algorithm generates “holes”
in the node table, thus requiring extra processing either to collapse or to reuse
the nodes.

We propose a different strategy based on duplicating ghost nodes during
phase one of inserting local and proxy cohesive elements. Figure 5.9 shows the
initial 2D mesh (for simplification purposes) with local and proxy cohesive
elements inserted. Using the traversal algorithm to duplicate, we duplicate all
nodes in the mesh when needed, including ghost nodes. Notice that the ghost
node of the remote partition may have been duplicated while its correpondent
owner node may not, which is fine. Figure 5.10 shows the nodes after the
duplication and insertion of cohesive elements. With ghost node duplication,
there is no need to synchronize ghost nodes owner ids, since synchronization is
done via element messaging. This greatly reduces the communication bottleneck
and avoids node traversal algorithms and node reuse that would need to be
treated in the GPU. It also eliminates phase three of Espinha et al’s insertion
of cohesvie elements algorithm when updating ghost nodes.

Phase two of insertion deals with synchronizing proxy entities ids, or
updating entity references to owners in local partitions. Phase two updates
proxy nodes and proxy cohesive elements owner ids to their owners. Figure
5.11 illustrates the procedure to update proxy entity owner attributes. If the
entity is a node, the reference element is used to send the message to its owner
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Figure 5.10 – Phase 1 of insertion of cohesive elements in partitioned meshes. Local,
proxy, and ghost nodes are duplicated as a result of the cohesive elements insertion.
Adjacent elements are updated accordingly.

using the tuple (owner element handle, local id). It is important to remember
this reference (adjacent) element must be proxy since the node is also proxy. If
the entity is a cohesive element, we get one of its proxy adjacent element and
send the message using the tuple (owner element handle, local id). We do this
only for new proxy nodes and cohesive elements. When the message gets to the
owner partition, the owner element receives it and accesses the node using the
local id. The element then responds with its owner id and the remote partition
updates the proxy node with it.

5.5
Parallel simulation

This section deals with the cohesive fracture and fragmentation simulation
of distributed three-dimensional meshes. The 3D simulation procedure is shown
in Table 2.1. In a pre-processing phase, the stiffness matrix is computed for
each elements and the nodal mass is updated for each node. In the simulation
loop, displacements are updated from velocities and accelerations. Next, nodal
stress is computed from element gauss points and, for each facet, if three of
its nodal facet’s stress exceeds a threshold, we indicate the facet as fractured.
Next, cohesive elements are inserted, followed by and update on nodal masses.
Internal and cohesive forces are computed and used to calculate velocities and
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Figure 5.11 – Phase 2 of insertion of cohesive elements. References of proxy nodes and
cohesive elements to their owners are updated by sending message via their adjacent
elements.

accelerations. Boundary conditions are then applied in the model. Notice that
the simulation is a lot costly due to the fact that there is a degree of freedom
more. Stress matrices that were 2 × 2 are now 3 × 3, for example. However,
internal force matrices remain 12× 12. An increase in arithmetic operations in
cohesive and stress kernels leads to an increase in GPU register use and greater
GPU memory consumption leads to an increase in global memory access and
consumption.

Table 5.1 shows the distributed 3D simulation procedure with data
and topology synchronization stages. After computing nodal stresses, ghost
partitions have their stress outdated because they have undefined neighborhood.
Therefore, it is necessary to synchrionize stress among all ghost nodes in respect
to their owner/proxy nodes. After stresses are updated in the communication
layer, cohesive elements are inserted accordingly and nodal masses updated. At
this point, ghost nodes may have their respective remote entities’ adjacency
changed, so we must synchronize nodal masses and adjacencies. Any proxy
entities that are now created must be updated to their respected owner entities
(i.e., nodes and cohesive elements), as explained in Section 5.4. After internal
and cohesive forces are used to calculate velocities and accelerations, boundary
conditions are applied to the model. We then must synchronize velocities
and accelerations in ghost nodes. A boundary condition may fall exactly in a
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communication layer and belong to two partitions, so synchronizing velocities
and accelerations after updating them is very important, especially when they
are used to calculate the displacements in the next timestep.

1: Compute Stiffness Matrix
2: Update Nodal Mass
3: current step ← 0
4: while current step <= maximum step do
5: Update Displacements
6: if current step == check step then
7: Compute Stresses
8: Synchronize Nodal Stresses
9: if stresses > stress threshold then

10: Insert Cohesive Elements
11: Update Nodal Masses
12: Synchronize Node Adjacency and Masses
13: Synchronize Proxy Entities
14: end if
15: end if
16: Compute Internal Forces
17: Compute Cohesive Forces
18: Update Velocities and Accelerations
19: Update Boundary Conditions
20: Synchronize Nodal Velocities and Accelerations
21: current step + = 1
22: end while

Table 5.1 – 3D distributed fracture and fragmentation algorithm

The ghost nodes synchronization stage is done by accessing its adjacent
elements rather than sending message directly to its owner node ids, since we
do not have that information (which was ceased to be calculated in the topology
synchronization stage). By fetching one of its adjacent elements stored in the
data structure, a tuple message (owner elementadj handle, local id) is sent to
its owner partitions, like the algorithm described in Section 5.4. At the owner
partition side, the owner node is accessed and the data (i.e., stress, velocities
and accelerations) are fetched and sent back to the remitent. The ghost nodes
are then updated.
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Figure 5.12 – This figure shows the compacting and sending of messages to neighbor
partitions. First, ghost nodes of the local partition are swept and count how many
messages it must send to each partition via atomic intrinsincs. Next, we scan the number
of messages per partitions to create an offset array to fill the messages. We sweep the
nodes again and using the offset array and the “number of messages per partition” array,
we fill the tuple messages per partition and copy them to the CPU.

5.6
Message extraction and sending

To synchronize topological attributes from proxy nodes and especially
analysis attributes from ghost nodes (stress, displacements, masses...), messages
must be sent to neighbor partitions (i.e. to corresponding local or proxy
nodes). To build the message, the following steps are done, as illustrated
in Figure 5.12. For simplification purposes, our discussion deals with ghost
node synchronization.

First, we launch a kernel with a thread per ghost node. Each thread
accesses the reference element from the node and adds one to a counter of the
respective bulk element owner partition. This results in a device array with the
number of messages that will be sent per partition. Next, we do a prefixed scan
on the array, which gives us the offset that each partition will need to start
writing each tuple to the message array. The next kernel launches one thread
per ghost node and fills the array by writing the tuples (owner element handle,
local id) for each partition, using the offset array and incrementing the node
counter for each tuple. The message and the “number of tuples per partition”
array are copied to the CPU and the message is sent to each partition.

One step of our simulation is copying excessively data from the host
to device and from device to host. Whenever a message is sent from a given
compute node, the GPU processes and extracts that message and copies it
to the CPU so that MPI 1 sends it via network. The receiver in turn receives

1Message Passing Interface
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Figure 5.13 – This figure illustrates the message trasfer between two computer nodes
with GPUs. It is a costly stage of the simulation due to the fact of the memory trasfer
between CPU and GPU before sending messages to other computer nodes and after
receiving messages.

the message and copies the data to the GPU for further processing. This is
undoubtedly one costly step of our program due to network bottleneck and
done at every timestep, both for stress messages, node masses and adjacency,
and velocity and acceleration messages. Figure 5.13 illustrates the procedure.

5.7
Experimental results

In this Section, we ran a set of computational experiments regarding the 3-
dimensional finite elements simulations on a single GPU card. The experiments
were split in two parts: inserting cohesive elements decoupled from mechanics
analysis and running the fracture and fragmentation simulation.

Insertion of cohesive elements

Like in Section 3.3.1, we ran a computation experiment to check the
consistency of the insertion of cohesive elements decoupled from the mechanics
analysis code. We used a ring specimen shown in Figure 5.14(a) and post-
cohesive elements insertion shown in Figure 5.14(b). We set up experiments
similar to the ones described by Pandolfi and Ortiz [63] and by Paulino et al.
[61], as described in Section 3.3.1. Cohesive elements were inserted, in a random
order, by grouping the facets in sets and inserting 5% of cohesive elements
serially and concurrently within each facet group.
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(a) (b)

Figure 5.14 – Colored 3D ring specimen (a) and after the insertion of cohesive elements
(b).

The GPU simulation results are compared to CPU counterparts running
on a Intel Core i7 CPU @ 2.80GHz with 12GB of memory on a 64-bit Windows 7
operating system. The GPU used device is a NVIDIA GeForce GTX 480 with
15 multiprocessors, each with 32 cores and a total of 480 CUDA cores, with
a clock rate of 1.40 GHz and using compute capability 2.0 because we use
double precision in the simulation. The total amount of GPU memory is
1.536 Gigabytes.

We employed a Tet4 mesh like the one in Figure 5.14 and used the
same greedy algorithm as in Section 3.3.1 to color the mesh. The number of
colors obtained were 32. Because we currently run in 3D, the number of colors
naturally increases as the node valence increases. The model was discretized up
to 4,500,000 bulk elements and 780,300 nodes, reaching a maximum amount of
8,940,000 cohesive elements inserted in the largest mesh. Table 5.2 shows the
results of cohesive elements insertion for different ring discretizations. We were
able to validate the GPU results and topology consistency.

Bulk Initial Final Cohesive CPU GPU Speedup Efficiency
elements nodes nodes elements Time (s) Time (ms)
36,000 7,260 144,000 69,600 7.428 38.161 194.6 40.5 %
288,000 52,920 1,152,000 566,400 60.972 122.434 498.0 100.0 %
972,000 172,980 3,888,000 1,922,400 209.726 387.143 541.7 100.1 %
2,304,000 403,440 9,216,000 4,569,600 489.204 910.982 537.0 100.1 %
4,500,000 780,300 18,000,000 8,940,000 954.472 1,792.714 532.4 100.1 %

Table 5.2 – Results for 3D insertion of cohesive elements in Ring specimen, decoupled
from analysis code.
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Figure 5.15 – 3D mixed-mode problem geometry and loading conditions.

Parallel simulation

We have tested the cohesive fracture simulation on a single GPU using
the pre-cracked three-point-bend beam (3D beam) shown in Figure 5.15 and
referred in the experiments of John and Shah [75]. The beam is 228 mm in x per
78 mm in y per 24 mm in z and has an initial notch starting at x = 66 mm and
extends until y = 19.5 mm. Two supports conditions on positions x = 12 mm
and x = 216 mm are fixed below the beam. An initial load of v = 50 m/s is
applied on top of the model at a distance d = αls, where ls is the distance
between the two support conditions.

The GPU simulation result for the coarse mesh is compared to CPU
counterparts running on a Intel Core i7 CPU @ 3.40GHz with 32GB of memory
on a 64-bit Windows 7 operating system. The GPU used device is a NVIDIA
GeForce GTX Titan with 2688 CUDA cores using compute capability 2.0
because we use double precision in the simulation. The total amount of GPU
memory is 6 Gigabytes.

We have tested the 3D simulation on a coarse version of the mixed-mode
beam and on its refined version. The coarse version contains 113,984 bulk
elements and 25,777 nodes. The refined version contains 716,736 bulk elements
and 137,490 nodes. It is imperative to notice that the refined version pushes the
limits of the GPU in terms of memory usage. We employed Tet4 (tetrahedra)
elements on the mesh and T3 cohesive elements. The greedy algorithm was
used to color the mesh and the number of colors obtained were 55 on the coarse
mesh and 65 on the refined mesh. The mesh is initially refined in the middle left
where the fracture will tends to propagate. Cohesive elements were checked for
insertion at each 10 steps of the simulation. The coarse mesh had a time step
of 30 ns and 9,000 steps, while the refined version’s simulation ran with 73,000
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steps and a timestep of 3 ns. Initial material parameters are: initial velocity =
50 m/s, elastic modulus = 29 GPa, Poisson coefficient = 0.24, specific mass =
2400 kg/m3. Fracture energy materials are as follows: fracture energy GI = 22
N/m, cohesive strength smax = 8 MPa, and shape parameter α = 2.

Figure 5.16 shows moments of the simulation of the coarse mesh at certain
timesteps. Before the crack growth begins, energy concentrates on the load
in the middle of the beam at t = 100 µs and along the support conditions at
t = 170 µs. The crack initiates from existing crack tip at about t = 180 µs,
and numerous fragmentations occur around the main crack path. The main
crack clearly propagates at an angle of about 30◦. Figure 5.17 shows the refined
version of the 3D mixed-mode beam with 716,736 bulk elements at step 73,000.
The crack propagated as expected like the coarse mesh did and both results
were consistent with the experiments of John and Shah [75].

Tables 5.3 and 5.4 show analysis attributes and performance results for
both simulations. We were able to run the coarse mesh on the CPU and
compared to the GPU counterpart. The GPU time was 24.59 s, while the CPU
version of the same mesh was 706.74 s. The refined version took longer since
the timestep is ten times smaller and the number of steps is approximately
8 times greater. It took 906.62 s on a GeForce GTX Titan.

Mesh type Bulk elements Nodes New nodes CHZ elements Colors
3D Beam 38x13x4 113,984 25,777 1,079 2,728 55
3D Beam 76x26x8 716,736 137,490 2,010 5,886 65

Table 5.3 – Simulation and mesh parameters for mixed-mode 3D beam mesh and its
refined version.

Mesh type Timestep Steps CPU time GPU time Speedup Efficiency
3D Beam 38x13x4 3.0e-8 s 9,000 706.74 s 24.59 s 28.74 1.1 %
3D Beam 76x26x8 3.0e-9 s 73,000 - 906.62 s - -

Table 5.4 – Simulation and mesh parameters and results (GPU and CPU time) for
mixed-mode 3D beam and its refined version.

Figure 5.18 presents results for average kernel times. Like the results
presented in Section 3.3.2, the stress kernel dominates the average time graph
due to its excessive numeric operations for a GPU kernel, using a great amount
of registers. Even with the strategy of splitting kernels, it still occupies a great
portion of the simulation. However, because it is executed at each 10 steps of
the simulation, the kernel that continues dominating the total simulation time
is the internal force kernel, due to its global memory accesses. Even optimizing
it by using texture memory, shared memory, and thread distribution on matrix
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Figure 5.16 – Strain contour and crack propagation plots of the 3D mixed-mode
experiment at different time instants: a 0 µs; b 100 µs; c 130 µs; d 180 µs; e 200 µs; f
270 µs
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Figure 5.17 – Crack propagation plots of the refined version 3D mixed-mode experiment
with 716,736 bulk elements, at time instant t = 270 µs.

lines, it still dominates the simulation. An average time increase of kernels like
node duplication and cohesive kernels from the 2D simulation is also noticeble
due to the 3D simulation extension.
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Figure 5.18 – Average time of each kernel of the simulation for a Tet4 mixed-mode 3D
beam mesh with 113,984 bulk elements.

5.7.1
3D Distributed fragmentation simulation

In this section, we simulate the 3D analysis code using distributed cloud
computer clusters, each containing a GPU, which process our model and send
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Figure 5.19 – (a) 3D Ring model with 5 partitions after the cohesive elements insertion.
(b) and (c) Cohesive insertion-time graph for each partition and discretization.

messages to communicate with other partitions. We have employed four versions
the 3D mixed-mode beam used in Section 5.7: a reduced-scale specimen and
a mid-scale specimen shown in Figure 5.20; and two full-scale specimens of
different dimensions to test the simulation using a large number of GPU nodes.

Insertion of cohesive elements

To test the cohesive elements insertion, we used one CPU node using with
up to 8 threads to verify the corretude of the algorithm and the synchronization
step (i.e., synchronizing proxy and ghost entities). We used the ring model to test
the linearity of the insertion time. Figure 5.19(a) shows the ring model divided
into five partitions with its communication layers in red and after inserting all
cohesive elements. We varied the ring model in five discretizations from 36,000
bulk elements to 4.5 million bulk elements. We followed the experiments of
Pandolfi and Ortiz [63] and Paulino et al. [61], where cohesive elements were
inserted in random order and grouped into 5% of the mesh’s facets. Figure
5.19(b) shows a graph for each partition, varying the discretization outputing
the time. As we can see by 5.19(c), there is a linear behaviour obtained by the
insertion algorithm.

Distributed simulation

To perform the distributed analysis simulation, we used Amazon Web
Services2 clusters from their cloud. Each compute node is composed of an
Intel Xeon E5-2670 Processor with 15 GB of memory and an NVIDIA GRID
K520 CUDA capable device with CUDA version 6.5, 4 GB of total amount
of global memory, and 8 Multiprocessors with 192 CUDA cores each (total of
1536 CUDA Cores). We use OpenMPI 1.8.4 as Message Passage Interface 3 for
communication between the nodes. To partition the mesh, we used METIS, a

2http://aws.amazon.com/
3http://www.open-mpi.org/
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serial graph partitioning program4.
We first tested the reduced-scale and mid-scale models in one CPU node

and varying the number of partitions. Tests were made in order to assure
the consistency of the result, both topological and analytic. For example, to
ensure topological consistency of the mesh, we verify if all proxy nodes point
to the same proxy adjacent elements; if a local node is unique among all
mesh partitions; if the number of adjacent elements in local and proxy nodes
are exactly the same in all partitions; if ghost nodes point to proxy adjacent
elements; if node owner is equal to local node handle by accessing its adjacent
element and local id.

Regarding the distributed simulation with GPUs, we first tested reduced-
scale like-version of the mixed-mode beam of Section 5.7 and shown in Figure
5.20, varying the number of compute nodes from one through five. Next, the
mid-scale specimen was tested varying the number of compute nodes from
one through five, folowed by the two full-scale specimens, each running in 15
compute nodes. The coarse version contains 113,984 bulk elements and 25,777
nodes. The mid-scale version contained 716,736 bulk elements and 137,490
nodes. The full scale specimens contained 2,351,424 bulk elements and 445,658
nodes, and 5,495,168 bulk elements and 1,035,078 nodes, respectively. The
greedy algorithm was used to color the mesh and the number of colors obtained
was 55 for the reduced-scale specimen; 65 for the mid-scale specimen; and 63
for both full-scale specimens. The mesh is initially refined in the middle left
where the fracture will tend to propagate. Cohesive elements were checked for
insertion at each 10 steps of the simulation for all models. The coarse mesh had
a time step of 30 ns and 9,000 steps; the mid-scale had a time step of 3 ns and
73,000 steps; the first discretization of the full-scale specimen had a time step of
3 ns and 73,000 steps; and the second discretization of the full-scale specimen
had a time step of 1 ns and 220,000 steps. Initial material parameters are,
according to [61]: initial velocity = 50 m/s, elastic modulus = 29 GPa, Poisson
coefficient = 0.24, specific mass = 2400 kg/m3. Fracture energy materials are
as follows: fracture energy GI = 22 N/m, cohesive strength smax = 8 MPa,
and shape parameter α = 2.

4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/
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Figure 5.20 – Distributed 3D mixed-mode problem geometry and loading conditions.

3D Beam 38x13x4
CPUs Nodes B. Elements Colors Timestep Steps Time Efficiency

1 25,777 113,984 55 3.0e-8 s 9,000 41.6 s –
2 25,777 113,984 55 3.0e-8 s 9,000 35.5 s 58.5%
3 25,777 113,984 55 3.0e-8 s 9,000 32.5 s 42.7%
4 25,777 113,984 55 3.0e-8 s 9,000 29.2 s 35.5%
5 25,777 113,984 55 3.0e-8 s 9,000 28.9 s 28.8%

3D Beam 76x26x8
CPUs Nodes B. Elements Colors Timestep Steps Time Efficiency

1 137,490 716,736 65 3.0e-9 s 73,000 33.0 min –
2 137,490 716,736 65 3.0e-9 s 73,000 19.4 min 85%
3 137,490 716,736 65 3.0e-9 s 73,000 14.4 min 76.3%
4 137,490 716,736 65 3.0e-9 s 73,000 11.9 min 69.3%
5 137,490 716,736 65 3.0e-9 s 73,000 9.6 min 68.8%

3D Beam 114x39x12
CPUs Nodes B. Elements Colors Timestep Steps Time Efficiency
15 445,658 2,351,424 63 3.0e-9 s 73,000 15.0 min –

3D Beam 152x52x16
CPUs Nodes B. Elements Colors Timestep Steps Time Efficiency
15 1,035,078 5,495,168 63 1.0e-9 s 220,000 82.5 min –

Table 5.5 – Topology and simulation data used to simulate the 3D distributed mixed-mode
beams. Results are shown in time and speedup compared to a single GPU.

Table 5.5 shows results for all specimens. Speedup is related to the time on
a single GPU. Graph 5.21 shows time results for the reduced-scale (in seconds)
and mid-scale specimens (in minutes), by varying the number of compute nodes.
According to Graph 5.21, the function is as expected since there is a moment
which time does not lower enough for more compute nodes (in this case, five).
The function is exponential, as expected. However, for five compute nodes,
time is not fast enough if compared to a single GPU. The first mesh is not fine
enough to allow a significant speedup. For the finer mesh, this can be due to
network bottleneck synchronization by sending and receiving messages between
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the communication layer among partitions.

1 2 3 4 5

38x13x4 41.558 35.507 32.475 29.181 28.936

76x26x8 33 19.40623333 14.40696667 11.93515 9.619166667
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Figure 5.21 – Number of compute nodes versus time Graph for the reduced and mid-scale
3D mixed-mode beam specimens. The time for Beams 38x13x4 and 76x26x8 are in
seconds and minutes, respectively.

Figure 5.22 shows the final result for the beam 38x13x4, executed by five
compute nodes. The image below shows the beam divided into five partitions
and the cohesive elements as red. The fracture propagated at 30◦, like in the
single GPU case and theoretical model. Because the main crack propagates
in that direction, notice that compute node 4 does not contain any cohesive
elements and compute node 1 contain few cohesive elements, which cleary
indicates an unbalanced kernel distribution among partitions: in this case, the
Cohesive Forces kernel and the Insertion of Cohesive Elements kernel.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Three-dimensional Distributed Cohesive Fracture and Fragmentation Simulations 119

Node 4

Node 2

Node 3

Node 0

Node 1

Figure 5.22 – Mesh partitioning at the end of the simulation at t = 270 µs for the
reduced-scale 3D mixed-mode beam. Notice the uneven distribution of cohesive elements
(shown in red) between partitions.

Graph 5.23 shows the GPU profiling for each node of the reduced-scale
38× 13× 4 beam, running in 5 compute nodes, not including message passing
from OpenMPI. In the graph, we observe as expected like in Section 5.7: internal
and cohesive forces and stress kernels dominating the simulation average time.
Copying messages back and forth between CPU and GPU occupies an important
part of the simulation time, but is not a bottleneck. Internal force kernel times
are different between compute nodes because when partitioning the mesh,
different number bulk elements and colors can be assigned between different
mesh partitions. We can also observe by the cohesive force kernel that compute
nodes 1 and 4 practically do not insert cohesive elements in their partition.
Therefore, the main branch of the fracture, as expected, is concentrated near
the middle-left part of the mesh, near partitions 0, 2, and 3. This also indicates
that the Insertion of Cohesive Elements kernel and Cohesive Forces kernel
will occupy a greater portion of the simulation time in some nodes, while
other nodes continue their tasks and wait for previous compute node tasks are
completed.
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Figure 5.23 – GPU profiling for each node of the reduced-scale 32x13x4 beam, running
in 5 compute nodes, not including message passing from OpenMPI.

Graph 5.24 shows for each compute node among 5 running processes for
the 3D beam with 76× 26× 8 discretization, simulation time occupied by both
GPU and CPU and synchronization of nodes. We can observe in this graph the
the synchronization stage occupies a great portion of the simulation time. In
this stage, we include sending and receiving messages containing nodal stresses,
masses, velocities, and accelerations.
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Figure 5.24 – Graph showing the distribution of simulation time in each node between
node synchronization and GPU computations for the reduced-scale 3D mixed-mode beam
specimen.
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Graph 5.25 shows the evolution of kernels along time in CUDA stream.
Empty spaces that appear repeatedly in the timeline are the node synchron-
ization and MPI sending and receiving of messages from the host, occuring
immediately after the nodes copies the message to the host. Thus we can
conclude that one of the bottlenecks of the simulation is the excessive size of
the message sent by MPI over network.

CUDA Streams

Nodal synchronization stepsGPU Kernels

Figure 5.25 – Graph showing the distribution of kernels along time in CUDA streams.
Empty spaces that appear repeatedly in the timeline occur immediately after the nodes
copy the message to the CPU and immediately before sending them to the receiver.

Figures 5.26 and 5.27 illustrate the results for the simulations of the full-
scale specimens at t = 219 µs and t = 220 µs for the coarser and finer meshes,
respectively. It is important to notice that the main crack clearly propagates at
an angle of about 30◦ just like the finer versions of the mesh in the single GPU.
The first full-scale specimen with approximately 2.3 million bulk elements took
15 minutes to simulate, while the second specimen, with approximately 5.4
million bulk elements, took 82.5 minutes long. Espinha et al [74] simulated a
3D mode-I problem, or a crack separation mode (Opening mode) in which a
tensile stress acts normal to the plane of crack. The simulation had 3,840,000
finite elements, 12,000 timesteps and 512 CPU nodes, with a total simulation
time of 39.4 minutes. Our simulation deals with mixed-mode problem, which
includes the Opening mode with the Sliding mode (shear stress acts parallel
to the plane of the crack and perpendicular to the crack front). Considering
our simulation time, problem type (mixed-mode), and size, we can say that
the increase in performance of the simulation is significant.
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Figure 5.26 – First large-scale 3D mixed-mode beam specimen at simulation end at t =
219 µs with 2,351,424 bulk elements.
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(a)

(b)

Figure 5.27 – Second large-scale 3D mixed-mode beam specimen at simulation end at
t = 220 µs with 5,495,168 bulk elements. Cohesive elements are unevenly distributed,
which leads to extra cohesive computations in certain partitions, fewer in some, and idle
in others. The main crack propagates like in the results of the single GPU, at 30◦.
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