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Two-dimensional Cohesive Fracture and Fragmentation Sim-
ulation

Mapping the simulation to GPUs is not a trivial task. As mentioned
before, there are lots of memory and concurrency issues we have to take into
account. Fortunetely, with a simple and compact data structure, we are able
to minimize memory access and hide latency. Other algorithmic optimizations
that can greatly help in gaining performance will be addressed in this chapter.
Here, we describe the data structure used to store topological entities in the
GPU and traversal algorithms we are able to perform using them. From there,
we explain in details all the steps of the GPU simulation and the optimizations
that can be done to gain performance. In this chapter, we focus on 2D cohesive
fracture and fragmentation simulation.

3.1
Data Structure

In order to implement efficient operations on mesh entities used in the
simulation, a simple topological data structure is employed to represent the
mesh. Because the GPU memory is limited, the data structure must not be
complex so as to provide space for other simulation attributes that indeed
require much global memory space. The proposed data structure presented
in this Section is used for T3 or T6 meshes. We will discuss the support for
tetrahedra elements (Tet4) in Chapter 5. Although the support for tetrahedra
meshes is straightforward, inserting cohesive elements in 3D requires a graph
structure to traverse a node’s incident elements, which is much more expensive
for the GPU. In this section, our data structure will focus on 2D elements only.

We maintain two tables that describe the mesh. A table of nodes stores
the node world-space position (x and y coordinates). A second table is used
to represent the elements and adjacency relationships. The elements can be
of two types: bulk elements or cohesive elements. Because the number of bulk
elements remains unchanged during the entire simulation, we store the cohesive
elements immediately after the bulk elements. For each bulk element, we store
its nodal incidence; three node indices are used in a T3 mesh and six are used in
a T6 mesh. For T6 meshes, the corner node indices are followed by the mid-side
indices. The right hand rule (counter clockwise) is used to define the order of
nodal incidence. Another three values represent adjacent element indices that
are opposite to the facet that are opposite to each of the corner nodes (three
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values for T3 and T6 mesh). For cohesive elements, we store six node indices
for a T6 mesh and four node indices for a T3 mesh. In a T6 mesh, the first
three node indices represent the three nodes of the corresponding facet of its
adjacent bulk element with the smaller id, following the right hand rule. The
next three indices belong to the adjacent facet of the second adjacent bulk
element (with the greater id). For a T3 mesh, two indices are stored for the
each cohesive element. Another two values are used to represent indices of both
bulk elements that are adjacent to each cohesive element’s facets (in both T3
and T6 mesh). Following the pattern, the first bulk element is opposite to the
the first facet (and to the first three node indices) of the cohesive element. If a
cohesive element is attached to a bulk element’s facet, we update the opposite
element of that facet to the cohesive element id on the element table. Nodes or
elements are represented by their indices in the corresponding table. The last
index in the table is not used for cohesive elements. Both node and element
tables are stored in the global memory and are updated along the adaptive
numerical simulation. Figure 3.1 shows an example of tables used in the data
structure.

Id     x      y      z 

0    0.0   0.0   0.0 

1    1.0   0.0   0.0

2    1.0   1.0   0.0

3   -1.0   1.0   0.0

4    0.0   2.0   0.0 

Node Table

Id    v0 v1 v2 v3 v4 v5 o0 o1 o2

0      0      1      2      8       7       9     -1      1    -1

1      0      2      3      9      11     10     3     -1     0

2      5      6      4     12     13     14    -1     -1     3

Element Table

5   -1.0   1.0   0.0 

6    1.0   1.0   0.0

3      2      11    3      5      12      6       1     2     -1

0 1

23

4

2

1
0

3

5 6

7

8

9
10

11

12

1314

...

...
...

...
...

...

Figure 3.1 – A special-purpose simplified data structure with mesh parameters of a T6
mesh.
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With our data structure, we are able to perform the following compu-
tational patterns (see Figure 3.2): a node can be updated based on its own
information; a bulk element can be udpated based on its own information; a
bulk element can be updated based on information of its nodes; and a node
can be updated based on information of its incident bulk elements. For the last
pattern, it is necessary to store a bulk element identifier for each node so as to
start traversing its incident elements. In our implementation, we do not store it
because we use this computational pattern by sweeping the bulk elements first.
This only works for global computation (that is, applied on all nodes of the
bulk elements, see Section 3.1.2). For each node of a bulk element, we traverse
its incident elements. Not storing a bulk element id for each node also allows
us to save GPU memory.

(a) (b) (c) (d)

Figure 3.2 – Simulation’s computational patterns. (a) a node can be updated based on
its own information; (b) a bulk element can be udpated based on its own information;
(c) a bulk element can be updated based on information of its nodes; and (c) a node
can be updated based on information of its incident bulk elements.

A finite element analysis maintains a set of simulation attributes attached
to nodes and elements. We maintain such attributes in global, constant, or
texture memory depending on their memory size and dynamics during the
simulation. In global memory, we store the attributes that change throughout
the entire simulation. The nodes have associated displacements, velocities,
accelerations, and forces (internal and cohesive), which are updated at every
timestep. Stresses and strains evaluated at the nodes are updated only every few
time steps. When facets are checked for possible fractures, the fractured facets
in the element attributes store which facets have been fractured. Nodal mass
and number of adjacent bulk elements are updated whenever the topology of
the mesh changes. Finally, cohesive attributes such as tractions and separations
are updated every step for each cohesive element. We store other node and
element attributes that remain unchanged during the entire simulation, but
require too much memory space, in textures. We cannot store these attributes
in constant memory due to its limited memory space. Each element’s stiffness
and lumped mass matrix and each node’s boundary conditions are stored in
texture memory. Other attributes that are common to all nodes and elements,
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such as elastic and fracture material properties, are stored in constant memory.
These attributes are stored in one table common to all elements and nodes
and occupy little memory space. Because all threads in a warp access the same
memory space in constant memory, there will be no bank conflicts. Figure 3.3
shows element and node attributes that were stored in the GPU global, texture,
and constant memories.

Node
Attributes

Stress
Strain

Fractured
facets

Element
Attributes

Initial traction

Local separations

Directional vector

Decohesion flags

Cohesive Elements
Attributes

Traction

Stiffness Matrix

Element
Attributes

Elastic modulus

Poisson´s ratio

Density

Thickness

Elastic Material 
Properties

Normal cohesive
strength

Tangential
cohesive strength

Final crack
opening width

Shape
parameters

Fracture Material 
Properties

Global memory Texture memory Constant memory

Node
Attributes

Boundary
Conditions

Lumped mass
matrix

Displacement

Velocity
Acceleration

Internal Force

Cohesive Force

Stress
Strain

Mass

# Adjacent Elem.

Figure 3.3 – Simulation parameters data structure diagram of FEM model. Global memory
is used for attributes that change throghout the simulation. Texture memory is used
for attributes that are constant during the entire simulation, but occupy too much
memory space. Constant memory is used for attributes that are constant during the
entire simulation, but are common to all elements and node, therefore requiring few
memory space.

Paulino et al. [61] present a topology-based framework for supporting
fragmentation simulations in extrinsic cohesive zone models for CPUs. Their
topological data structure, TopS, contains all information necessary to retrieve
element adjacency relationships needed for the simulation and is able to perform,
for example, the previously described computational patterns (see Figure 3.2).
While their data structure is designed for general element types, our specialized
data structure is simpler and has been especially tailored to operate efficiently
on GPUs (i.e., data is stored in 2D arrays vs. structures). To represent the
mesh on the GPU, it is sufficient to store node positions, node indices for
elements, and adjacent elements, which is much less information than is stored
in TopS [61]. Both the element and node tables are designed to make as few
global memory accesses as possible, as well as occupying as little device memory
as possible. Saving device memory is a key issue because memory from a
single GPU is extremely limited. Currently, we lack information of storing a
reference element for each node (if we want to traverse its incident elements by
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sweeping the nodes first, we would have to have access to one of its incident
elements). However, while inserting cohesive elements and duplicating nodes,
this information is redundant in this step because we sweep each element first,
followed by each of its nodes’ incident elements. We also need to perform more
arithmetic operations when traversing them because we lack information of
node order in each element. However, the lack of this additional information
as well as additional arithmetic operations is compensated by making fewer
global memory accesses, which is a fine tradeoff for GPU programming. It has
also the advantage of saving GPU memory to run larger models.

3.1.1
Retrieving adjacency relationship

The node and element tables are enough to perform the previously stated
algorithms and do not require too much memory usage. One key adjacency
relationship for the insertion of cohesive elements is the set of adjacent elements
to a given node. With the described data structure, from an element, for each of
its incident nodes, we can easily traverse the set of adjacent elements. Given the
first node, we search the other node that precedes it in the order of incidence,
and then access the corresponding opposite element and find the order of
incidence of the node that had the previous element as its opposite. From both
the element and node order, we obtain the next node in the incidence of the
element and access its opposite element. From there, we repeat the procedure
until we reach the element adjacent to the first one. Figure 3.4 illustrates
the traversal algorithm from a given node if no cohesive element is reached
within the path. Blue arrows indicate which node to access in order to get the
correct opposite element. Dashed lines indicate the node we must access to
obtain the next element required to continue traversing. Figure 3.5 illustrates
the traversal algorithm from a given node until it reaches a cohesive element.
Cohesive elements can also be obtained by traversing around a node, since
they are also stored in the element table and can be accessed by obtaining the
opposite element for a given node.
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Figure 3.4 – Traversal algorithm from a given node using the proposed data structure.
The illustrated path does not contain cohesive elements.
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(4) (5) (6)

Figure 3.5 – Traversal algorithm from a given node using the proposed data structure,
with cohesive elements along the path. From a bulk element, the algorithm starts by
accessing a node whose opposite element is incident to the traversed node (central node)
(1). The opposite element to that node is obtained (2) followed by the next node (3).
The third bulk element is accessed (4), followed by its respective node (5). A cohesive
element opposite to a node (or adjacent to a bulk element’s facet) can also be reached
(6), since it is explicitly represented in the element table (see Figure 3.1).

3.1.2
Node update

The set of adjacent elements of a given node is necessary to update
element incidence when a node is duplicated due to the insertion of a new
cohesive element. During the simulation step, we can also identify computations

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Two-dimensional Cohesive Fracture and Fragmentation Simulation 43

where such topological relationship can be used. As an example, we can consider
the mass associated to a node, which depends on contributions of all adjacent
elements. However, as we discuss further in our parallel simulation, for almost
all cases, accumulating contributions of adjacent elements to nodes is more
efficiently handled by traversing all the elements in the model. Such cases include
calculating internal and cohesive forces and stress and strain on nodes. For
each element, we accumulate its contribution to all incident nodes. In the end,
the contributions of all corresponding adjacent elements will be accumulated
for each node. In a serial code, this algorithm is straightforward and very
efficient. In a parallel environment, writing conflicts arise, and one needs to
ensure consistency, as we shall discuss. Figure 3.6 illustrates both strategies to
compute nodal information from its adjacent elements.

The first strategy, known as Gather, traverses the node’s incident elements,
accumulating their information on the node. The second strategy, known as
Scatter, accumulate each element’s contribution to all incident nodes. We
tested both algorithms on the GPU by accumulating each element’s mass on
their incident nodes. In our experiments, the Scatter algorithm turned to be
more efficient as we increased the number of elements. While this algorithm
implements a simple kernel function with few global memory accesses and no
divergence, the Gather algorithm implements a more complex kernel requiring
greater number of registers and adding divergence (not all nodes have the same
number of incident elements). Although divergence can be minimized by sorting
elements according to their incidence, this algorithm still tends to perform much
more computation than the other. The Scatter approach is well suitable for
problems that require many computations per elements, but when duplicating
nodes and inserting cohesive elements on fractured facets, the Gather strategy
is essential as the basis of the algorithm, as discussed in Section 2.2.3. To
avoid writing conflicts in the Scatter algorithm, we adopted the commonly
used mesh coloring representation, as we shall discuss later. While testing both
algorithms by accumulating element mass on nodes, it was observed that a
higher number of colors or unbalanced number of elements in each color lowers
the efficiency of the Scatter algorithm. As we increase the number of elements,
Gather’s efficiency tends to deacrease in relation to Scatter. For these reasons,
we adopted the Scatter algorithm for all cases except when inserting cohesive
elements and duplicating nodes, in which we used the Gather algorithm.
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(1) (2)

Figure 3.6 – Node update algorithms: (1) incident elements traversal (or gather), and
(2) element sweep (or scatter).

3.2
Parallel Implementation

The main challenge for implementing a many-core parallel fragmentation
simulation, based on the extrinsic cohesive zone model, is to ensure topological
consistency on mesh adaptation (insertion of new cohesive elements). However,
even the mechanics code, at first straightforwardly parallelized, based on
explicit integration, also imposes challenges. Memory access and usage can be a
bottleneck when using the slow accessible global memory space. Concurrency is
also an issue to have in mind, since writing conflicts can eventually occur when
updating the same memory space for different threads running concurrently.
In order to maximize the performance and benefit from GPU parallelism, it is
important to keep in mind programming techniques discussed in Section 1.2.2,
or else the attempted GPU speedup will be negligible. Although the parallel
algorithms discussed below refer to a T3 or T6 mesh, they can be extended to
3D meshes using a modified version of the previous discussed data structure.

In this section, the notation <<<X>>> denotes a kernel call, a function
executed by the device (GPU) that is called by the host (CPU). The parameter
X is the number of threads to be launched. As an example, if each node of the
mesh is executed in parallel, then X is the number of nodes of the mesh.

3.2.1
Coloring model

In this discussion, we consider the implementation of T6 meshes. The first
parallel procedure to be discussed is updating the node attributes. In our case,
we are focused on updating each nodal mass with the lumped mass matrix
from each adjacent bulk element. The lumped mass matrix is computed in a
pre-processing phase together with the stiffness matrix. We could launch one
thread per element and accumulate the element mass on its respective nodes
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retrieved from the incidence table. However, threads would write on the same
memory space since different elements share the same node.

To avoid the race condition, we adopt the commonly used mesh coloring
representation. The idea is that no element of the same color shares a node.
Applying this technique when accumulating the nodal masses from the bulk
elements means that we will launch a kernel for each color with a thread per
element in that color group. With this strategy, different threads will not update
the same node since there won’t be elements with shared nodes being processed
in parallel. Since bulk elements are neither removed nor inserted during the
entire simulation (only cohesive elements and nodes are inserted), mesh coloring
can be pre-processed. In graph theory, a node degree (also called valency) is the
number of incident edges to that node. In our model, each element represents a
graph node and adjacent elements are connected by a graph edge. The minimum
number of color groups is equal to the maximum node degree on the entire
mesh. However, determining the minimal color number of a graph is known
as an NP-complete problem, although there are many heuristics for finding a
reasonable solution. In our case, we will be interested in finding a reasonable
and balanced solution, or else we will be wasting additional kernel computations
with few threads per color containing few elements, while having other color
with many more elements. We order the graph nodes (elements) in decreasing
order of degree to obtain the closest optimal solution. Table 3.1 shows the
procedure we use to perform a conceptual execution unit on the elements in
parallel: we launch the same kernel multiple times, one for each group color.
Figure 3.7 illustrates the colored mesh and its use in kernel calls and updating
the nodal masses using the scatter strategy. We use the Welsh Powell algorithm
[62], a greedy algorithm1 to color unstructured meshes. In our experiments,
we use structured “union-jack” meshes. For these meshes, we apply a coloring
algorithm that takes advantage of their pattern so as to obtain the optimal
color number.

for c = 1→ numColors do
numThreads← numElements(c)
KernelCall <<< numThreads >>> (c)

end for

Table 3.1 – Kernel subroutine call algorithm using mesh coloring

1Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

http://ghpaulino.com/educational_GreedyGraphCol.html
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(3)

thread n thread n+1

thread n+2 thread n+3

(1)

color 0 color 1 color 2 color 3 color 4 color 5

0 6 12 18 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bulk Elements

Mesh coloring

...

...

KernelCall<<<n>>> ...KernelCall<<<n>>> KernelCall<<<n>>> KernelCall<<<n>>> KernelCall<<<n>>> 

(2)

Figure 3.7 – (1) Bulk elements are re-arranged in color groups (preferable balanced)
and the same kernel per color group is called to avoid writing conflicts. (2) Example of
a colored T6 structured mesh (3) and using the colored mesh and scatter strategy to
update nodal masses of the group of elements in the current color in parallel.

3.2.2
Pre-processing and update

A pseudo-code of the parallel simulation is shown on Table 3.2. In the
pre-processing phase, also executed on the GPU, we need to compute the
stiffness matrix and the lumped mass matrices associated to each element, and
then update the nodal masses. Building the stiffness matrix requires one thread
per element but with no color subdivision scheme since we write directly in
per-element memory space. The same kernel computes each element’s lumped
mass matrix. The last kernel in the pre-processing phase updates the nodal
masses with the lumped mass matrix by using the previously discussed parallel
algorithm, invoking a kernel per color group. We use constant memory for
storing material attributes that are constant during the entire simulation. Cache
hits when fetching these attributes during stress and other force computations
will help increase performance since threads in the same warp access the same
value at the same time.
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1: ComputeMassMatrix <<< numElem >>>

2: ComputeStiffnessMatrix <<< numElem >>>

3: for c = 1→ numColors do
4: numGroupElem← numElem(c)
5: UpdateNodalMass <<< numGroupElem >>>

6: end for
7: current step ← 0
8: while currentstep <= maximumstep do
9: UpdateDisplacements <<< numNodes >>>

10: if current step == check step then
11: ComputeStressesAtGaussP oints <<< numElem >>>

12: for c = 1→ numColors do
13: numGroupElem← numElem(c)
14: ComputeNodeStresses <<< 12 ∗ numGroupElem >>>

15: end for
16: CheckF racturedF acets <<< numNodes >>>

17: F ilterF racturedF acetElements <<< numElem >>>

18: numF racElem← CompactF racturedF acetElements

19: if Current Fractured Facets > 0 then
20: for c = 1→ numColors do
21: numGroupElem← numF racElem(c)
22: InsertCohesiveElements <<< numGroupElem >>>

23: end for
24: for c = 1→ numColors do
25: numGroupElem← numElem(c)
26: UpdateNodalMass <<< numGroupElem >>>

27: end for
28: end if
29: end if
30: for c = 1→ numColors do
31: numGroupElem← numElem(c)
32: ComputeInternalF orces <<< 12 ∗ numGroupElem >>>

33: end for
34: ComputeCohesiveSeparations <<< numCohElem >>>

35: ComputeCohesiveT ractions <<< 3 ∗ numCohElem >>>

36: numElemCoh← CompactBulkElementsW ithCohesiveElements

37: for c = 1→ numColors do
38: numGroupElem← numElemCoh(c)
39: ComputeCohesiveF orces <<< numGroupElem >>>

40: end for
41: UpdateV elocitiesandAccelerations <<< numNodes >>>

42: UpdateBoundaryConditions <<< numNodes >>>

43: current step + = 1
44: end while

Table 3.2 – Parallel Fracture Algorithm

Figure 3.8 depicts the steps in a simulation loop. The first kernel in the
simulation loop updates the nodes’ displacements, launching one thread per
node. Each thread fetches the velocity and acceleration of its corresponding node
from global memory and updates the result back in global memory following
the Equation 2.2. This is a simple kernel that uses few global memory accesses
and every thread in a warp follows the same path since there are no conditionals
or loops.
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Figure 3.8 – Fracture and fragmentation simulation loop.

3.2.3
Stresses

Before checking fractured facets, the next procedure is responsible for
computing the stresses and strains on the nodes by first calculating them at
the Gauss points for each element, multiplying its respective matrix with the
element shape function as showed in Equation 2.4 in Section 2.2.4, and writing
them back on the elements’ nodes. Each node stress is then checked for cohesive
strength over a threshold value so it can later indicate if a facet is fractured or
not. To implement this whole procedure in a single thread, we would need to
launch one thread per element using the color model to avoid concurrency. This
single kernel would have too many loops and global memory accesses that cause
a low performance. Also, the number of registers would exceed the established
limit, forcing the compiler to put local variables on local memory residing on
global memory. Another issue worth highlighting is that this complex kernel
would be executed several times because of the color model. We have then opted
for an alternative strategy to reduce effort and increase performance, dividing
this complex kernel into three simpler ones. In the first kernel, we compute
the elements’ stresses and strains at the Gauss points by launching one thread
per element and with no color model. The second kernel calculates the stresses
and strains matrix for each node, launching one thread per element but this
time using the color model since each element accumulate results on its nodes.
Notice that this kernel’s effort is reduced since it only performs read-write
on global memory. The third kernel checks if each node’s principal stresses
exceed the cohesive strength limit by launching one thread per node. The kernel
dividing technique is useful as it distributes efforts among simpler kernels by
reducing global memory accesses and reducing loops, and it will be adopted
on other kernels too. Looking at Equation 2.4, we can observe that the second
kernel performs several global memory accesses because it accumulates element
stresses and strains on its nodes by fetching from the element stress and strain
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matrix (3x4 matrix) at the Gauss points, computed on the previous kernel. An
alternative strategy is to launch one thread per element node (6 threads per
element), and each thread is responsible for multiplying the stress and strain
matrices at Gauss points with the respective nodal shape functions and writing
the result in its respective node. We opt to launch 12 threads per element
where each thread would fetch two columns from the four-column Gauss point
element matrix line and write the result on part of the 2x2 nodal stress and
strain matrix. This strategy reduces global memory access per thread, reducing
the kernel effort. Figure 3.9 illustrates the stress kernel division and Figure
3.10 illustrates the second kernel procedure.

Compute Stress Kernel
1 thread per element for n colors

Compute Stress at Gauss 
Points Kernel

1 thread per element

Update Node Stress Kernel
2 threads per element node

for n colors

Check Node Stress Limit
Kernel

1 thread per node

Figure 3.9 – Splitting the kernel that computes stress and strain into simpler kernels.
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Figure 3.10 – To accumulate the stresses and strains on the nodes, we launch 12 threads
per element, where each thread will accumulate part of the stress and strain matrices by
fetching from the element shape functions and from the stress and strain at the Gauss
points.

3.2.4
Insertion of cohesive elements

Once fractured facets are identified, new cohesive elements must be
inserted in the mesh. When inserting cohesive elements, launching one thread
for each element can result in idle kernels because there are few elements that
contain fractured facets. In order to solve this matter, an additional kernel is
used before inserting cohesive elements. This additional kernel filters only the
elements that contain fractured facets by launching one thread per element
and checking its 3 facets for possible fractures as discussed in Section 2.2.4.
However, a fractured facet always belongs to two elements that are adjacent to
each other, and we cannot filter both elements for the same facet otherwise the
nodes will be duplicated twice. Therefore, we chose the element that has the
smaller (or greater) identifier number. In our implementation, we also maintain
a list of bulk elements that are adjacent to existing cohesive elements. This list
is useful when later computing cohesive forces, otherwise idle kernels will be
included in this simulation step as well.
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(1) (2)

(3) (4)

Figure 3.11 – Cohesive elements insertion on a T6 mesh. (1) Mesh with initial cracks
and facets that fractured facets. Coloring is used to avoid duplicating nodes of elements
that share nodes in parallel. (2) From each facet node belonging to the element in the
current color group, the algorithm traverses through its incident elements. (3) Nodes
that need duplication. (4) T6 mesh with final node duplications and new cracks and
cohesive elements. The fractured facets from the next color group are checked for cohesive
elements insertion.

From the list of elements containing fractured facets, we now check for
node duplication and insert the cohesive elements. We use mesh coloring on the
filtered elements’ list and launch one thread per element. Figure 3.11 illustrates
the parallel cohesive element insertion process. During one element computation,
we go through its fractured facets and check its nodes for duplication. The same
traversal algorithm presented in Section 2.2.4 is used to check if the node has
to be duplicated. If so, we need to update the global nodal counter and retrieve
the new node index. However, because the node counter resides in one global
memory address, many threads updating the same counter cause a writing
conflict. To solve this matter, we use CUDA’s atomic operations to perform a
read-modify-write operation (in this case, a global variable increment), without
the interference of other threads. The function atomicAdd() computes the
sum on the word located in the global address and returns the previous stored
word. Therefore, it returns the new node index needed to update the elements’
incidence table. Node attributes are then copied to the newly appended node.
The traversal algorithm is used to go through the node’s adjacent elements
until it reaches the cohesive element while updating their nodes with the new
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index value. We also need to update the opposite indices in the element table.
Table 3.3 presents the parallel cohesive element insertion algorithm.

1: e← bulkelement

2: for each corner node n belonging to a fractured facet f of e do
3: for each incident element of n starting with e do
4: e← next element
5: end for
6: if element adjacent to e is reached again then
7: continue
8: end if
9: newNodeIndex← atomicAdd(globalNodeCounter, 1)
10: nodeList[newNodeIndex] = n

11: for each incident element of n starting with e do
12: Replace n index with newNodeIndex
13: e← next element
14: if cohesive element or crack is reached then
15: break
16: end if
17: end for
18: Insert cohesive element in facet f
19: end for

Table 3.3 – Parallel Node Duplication Algorithm

After duplicating nodes and inserting the cohesive elements, nodal mass
is changed as the sets of adjacent elements are also changed. We update the
nodal mass using the previously discussed parallel algorithm. Cohesive and
internal forces are then initialized as they later are calculated.

3.2.5
Internal Forces

Computing the internal forces is another expensive kernel and occupies
a large portion of the simulation as it is executed every time step. Our first
approach was launching one thread per bulk element and use the color model
since the elements’ nodes are updated. The stiffness matrix is multiplied by the
displacement vector, resulting in the nodal internal forces. In a 2-dimensional
case, the stiffness matrix has dimension 12×12 and the displacement vector
12×1. With a naive multiplication code, we make 1,728 global memory accesses.
A strategy to reduce the number of global memory fetches is to load the

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Two-dimensional Cohesive Fracture and Fragmentation Simulation 53

displacement vector into shared memory once and use it for multiplying each
line of the stiffness matrix. This greatly reduces the number of global accesses
from 1,728 to 156. The performance, however, still does not reach optimal
expectations. By making each thread responsible for computing the product
of one line of the stiffness matrix with the displacement vector, the number
of global memory accesses is reduced to 13 (one for loading a value from the
displacement vector into shared memory and 12 for fetching values from one line
of the stiffness matrix), as well as the kernel’s effort. Launching one thread per
matrix line means we are launching 12 times the number of threads per element.
Since coloring is used, the total number of blocks hardly exceeds the limit.
Going further, since the stiffness matrix is constant during the entire simulation,
it can be stored in a texture memory to take advantage of the texture cache
and the spatial locality accessed by the warp. In order to guarantee the right
memory access in each thread, we define the thread block dimension (1D) as the
number of matrices per block times the number of threads per matrix (in our
case, 12 threads for each matrix). To guarantee the thread block is multiple of
the warp size, we use 16 matrices per block (192 threads per block) on a GeForce
GTX 480 GPU. Each thread of the block loads one value from the displacement
vector into shared memory and are synchronized. Notice that each group of 12
threads will load its respective element displacement vector. One issue remains,
however. At the same time thread 0 is reading address 0 (row 0, column 0), for
instance, thread 1 of the same warp will be reading address 12 (row 1, column
0), thread 2 will be reading address 24 (row 2, column 0), and so forth. This
means that memory is not being coalesced at all. In order to properly perform
coalesced readings and achieve a higher bandwidth, consecutive threads must
read consecutive memory addresses. Therefore, we transpose the matrices and
each thread of a warp will be able to read consecutive addresses. Figure 3.12
illustrates this strategy.
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Figure 3.12 – When computing internal forces, a thread per stiffness matrix line is
launched using the color model and used to perform a dot product with the displacement
vector in shared memory. In this example, the first image shows two elements per block
used. The second image shows the matrices transposed so memory reads can be coalesced
(that is, each consecutive thread reads consecutive memory addresses).

3.2.6
Cohesive forces and simulation outcome

Unlike the internal force kernel, computing the cohesive forces is expensive
due to its numerous arithmetic operations, especially when calculating the
tractions at the Gauss points. It performs few global memory access (when
used registers do not exceed the limit). Launching one thread per cohesive
element possibly generates writing conflicts when updating nodal cohesive
forces since cohesive elements may share nodes. Therefore, one thread per
bulk element would is considered. However, with many arithmetic operations,
registers, and color models applied to the kernel, the previous kernel splitting
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technique could help increase performance. In the first kernel we calculate the
cohesive separations in the local coordinate system. One thread per cohesive
element is launched, since we write directly on the cohesive attributes memory
space. The second kernel calculates the cohesive traction by also launching
one thread per cohesive element. However, this is the most expensive kernel
in terms of arithmetic operations, especially when we need to calculate the
cohesive tractions for each of the three Gauss points. Therefore, we adopt the
previous strategy of launching more than one thread per element. In this case,
we will be launching three threads per cohesive element, one for each of the
three Gauss points. Each thread is responsible for calculating the tractions for
its cohesive element in its respective Gauss point. Since the total number of
cohesive elements in the simulation is relatively small, the number of threads
will not be high. This strategy helps increase the performance of the the kernel.
Finally, the third kernel consists of writing the cohesive forces on the cohesive
elements’ respective nodes. We then launch one thread per bulk element that
contains any cohesive element (using the list previously mentioned). To avoid
concurrency, the threads are separated by color group. The cohesive kernel
subdivision is shown in Figure 3.13

Compute Cohesive Forces Kernel
1 thread per element for n colors

Compute Cohesive Separation
Kernel

1 thread per cohesive element

Compute Cohesive Traction Kernel
3 threads per cohesive element (one

for each gauss point)

Compute Cohesive Force Kernel
1 thread per element for n colors

Figure 3.13 – Splitting the kernel that computes cohesive forces into simpler kernels.

The last two kernels of the simulation are launched with one thread per
node. Updating velocities and accelerations requires only a few global memory
accesses for fetching cohesive and internal forces as well as current and previous
accelerations and nodal mass. They are used to write on the acceleration and
velocity global memory space. Boundary conditions are then applied using a
second kernel to update accelerations and velocities of boundary nodes.
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3.2.7
Overview

Looking closely to all steps of the simulation, we can point out that there
are two dominant kernels. The first is computing cohesive forces, which requires
many arithmetic operations. The second is computing internal forces because it
requires several global memory accesses. Splitting the kernels into simpler ones,
distributing jobs among threads, and using texture memory greatly increase
the kernels’ performance. Non-linear simulations would need to compute the
stiffness matrix at every time step instead of pre-processing it. Although it
would greatly reduce the program’s performance, the GPU speedup would also
increase. Computing stress and strain is the most complex and expensive kernel.
Although it requires a larger processing time and more numerous arithmetic
operations than computing the internal and cohesive forces, it is not computed
at every time step, thus not dominating the simulation time. Kernels that
update displacements, velocities and accelerations, boundary conditions, and
nodal masses are small kernels as they perform few and simple read-and-write
operations with no warp divergence and coalesced reading. Shared memory is
rarely used, working more as a cache to optimize memory access.

3.3
Experimental results

To test the performance and the correctness of our two-dimensional
parallel code, we have run a set of computational experiments. The experiments
were split in two parts: inserting cohesive elements decoupled from mechanics
analysis and running the fracture and fragmentation simulation. The GPU
simulation results are compared to CPU counterparts running on a Intel Core i7
CPU @ 2.80GHz with 12GB of memory on a 64-bit Windows 7 operating system.
The GPU used device is a NVIDIA GeForce GTX 480 with 15 multiprocessors,
each with 32 cores and a total of 480 CUDA cores, with a clock rate of 1.40
GHz and using compute capability 2.0 because we use double precision in the
simulation. The total amount of GPU memory is 1.536 Gigabytes.

3.3.1
Insertion of cohesive elements

To check the correctness of the algorithm to insert cohesive elements
in parallel, we have run a computational test decoupled from any mechanics
simulation (setting up experiments similar to the ones described by Pandolfi
and Ortiz [63] and by Paulino et al. [61]). Cohesive elements were inserted, in
a random order, at all the facets of the underlying meshes. The random order
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in which the cohesive elements are inserted results in arbitrarily complex crack
patterns during the experiment. In the end, each node of the mesh is used by
only one bulk element. We then have checked if the final obtained number of
topological entities were the expected ones. In the experiments ran by Pandolfi
and Ortiz [63] and Paulino et al. [61], the cohesive elements were inserted in a
serial order. In our experiment, the cohesive elements are inserted in parallel.
To better mimic insertion of cohesive elements in actual simulations, the facets
were grouped in 20 sets, inserting 5% of cohesive elements concurrently within
each group of facets, using the color model. To color the mesh, we used a greedy
algorithm2. The number of colors achieved was 10.

We have employed a T6 disk mesh like the one in Figure 3.14 with different
discretizations, varying the number of bulk elements from 240,000 to 3,840,000.
The results are shown in Table 3.4. Figure 3.15 depicts that the time to insert
all cohesive elements varies linearly with the total number of inserted elements.
As can be noted, the gain in performance delivered by the GPU implementation
is quite significant, even though we are more interested in validating the GPU
results. Here we define efficiency as the speedup over the number of CUDA
cores.

Figure 3.14 – T6 disc mesh used to test insertion of cohesive element decoupled from
analysis code.

Bulk Initial Final Cohesive CPU GPU Speedup Efficiency
elements nodes nodes elements Time (s) Time (s)
240,000 481,200 1,440,000 359,400 9.29 0.0407 228.3 47.6 %
960,000 1,922,400 5,760,000 1,438,800 36.946 0.1016 363.6 75.8 %
2,160,000 4,323,600 12,960,000 3,238,200 84.94 0.1935 439.0 91.5 %
3,840,000 7,684,800 23,040,000 5,757,600 150.04 0.3101 483.8 100.0 %

Table 3.4 – Results for insertion of cohesive elements decoupled from analysis code.

2Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

http://ghpaulino.com/educational_GreedyGraphCol.html
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Figure 3.15 – Time for cohesive elements insertion of a T6 mesh.

When duplicating thousands to millions of nodes concurrently, as in this
experiment, atomic operations can be quite slow. In order to optimize node
duplications in such scenarios, we implemented a new algorithm that greatly
speed up the kernel based on shared memory atomics. However, during actual
fragmentation simulations, few nodes are duplicated concurrently in a timestep,
making the new strategy performance gain negligible.

3.3.2
Fragmentation simulation

The fragmentation simulation was tested using two models: a rectangular
specimen and ring specimen. Serial and parallel simulation times as well as
kernel times, for the parallel simulation, were measured, and simulation outputs
such as number cohesive elements, number of new nodes were analyzed. During
the pre-processing phase, nodal perturbation is performed on the end-nodes
of a T6 element [17]. Mid-side node positions are linearly interpolated at each
facet edge nodes’ positions.

Rectangular specimen

The first model tested was a rectangular specimen with an initial notch
and refined into T6 (quadratic triangle) elements, as illustrated in Figure 3.16.
Fracture propagation is based on mixed-mode fracture and extrinsic cohesive
zone model [6, 56, 58]. Initial analysis parameters are as follows: initial strain
= 0.015, elastic modulus = 3.24 GPa, Poisson coefficient = 0.35, specific mass

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA



Two-dimensional Cohesive Fracture and Fragmentation Simulation 59

= 1190 kg/m3, fracture energy GI = 352 N/m, cohesive strength smax = 324
MPa, and shape parameter α = 2.

ε = 0.015

4 mm

16 mm

2  mm

Thickness = 1 mm

2  mm

Figure 3.16 – Two-dimensional model of a rectangular specimen with initial notch of 2
mm. Initial strain is 0.015, with node thickness of 1 mm. Model dimensions are 16mm
per 4mm.

A first version of the mesh was composed by 74,257 nodes and 36,864 bulk
elements. Due to the regular mesh pattern, we employed a simple procedure
to subdivide the elements into 8 color groups, which is the optimal. Although
we took advantage of the structured mesh to obtain an optimal number of
colors, our simulation is able to handle unstructured meshes with a non-optimal
number of colors (which is the case in the ring example). Total simulated time
is 2 µs, in 10,000 steps of 2 ns. Figure 3.20 shows an extruded 2D model after
the simulation and fracture propagation. The refined version of the same model
with 295,969 nodes and 147,456 bulk elements was also tested using time steps
of 0.5 ns, performing 40,000 simulation steps. Efficiency, defined as the speedup
over the number of CUDA cores, was also measured in comparisson with the
CPU implementation. In both experiments, stress computation and fractured
facets are checked at every 10 simulation steps, and cohesive elements inserted
"on-the-fly", when and where needed. Tables 3.5 and 3.6 present results for
both the mesh and its refined version. The increase in speedup with model
size is expected when running the application on GPU. Figures 3.17 and 3.18
show the final plotted image of the T6 mesh and its refined version at the end
of the simulation. The fracture evolved in a straight path in consequence of
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the intial notch of the model and the transverse strain applied on the model.
Figure 3.19 shows the nodal strain energy wave propagation with the fracture
and simulation evolution. Figure 3.20 shows an extruded visualization of the
two-dimensional plate.

No. of bulk No. of No. of new No. of CHZ No. of
elements nodes nodes elements colors
36,864 74,257 1,901 979 8
147,456 295,969 5,842 2,976 8

Table 3.5 – Simulation and mesh parameters for a T6 mesh and its refined version.

No. of bulk Timestep CPU time GPU time Speedup Efficiency
elements
36,864 2.0e-9 s 410.181 s 11.788 s 34.8 7.6 %
147,456 0.5e-9 s 6,537.839 s 153.809 s 42.5 8.9 %

Table 3.6 – Simulation and mesh parameters and results (GPU speedup and GPU and
CPU time) for a T6 mesh and its refined version.

Figure 3.17 – T6 FEM mesh with 36,864 bulk elements at the end of the fragmentation
simulation.

Figure 3.18 – Refined T6 FEM mesh with 147,456 bulk elements at the end of the
fragmentation simulation.
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Figure 3.19 – Strain energy evolution with crack propagation.

Figure 3.20 – Extruded view of fragmented 2D plate with 74,257 nodes and 36,864 bulk
elements.
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Figures 3.21 and 3.22 present results for the portion and average simulation
execution times for each kernel for the first T6 mesh model. Stress computation
is by far the most expensive, as shown in Figure 3.21. However, Figure 3.21
shows that the kernel responsible computing the internal forces dominates the
simulation time with almost twice the time of the stress kernel due to the
fact that the internal forces are computed at each time step, while stresses
are computed at each ten steps. Another kernel that greatly occupies the
simulation time is computing the cohesive forces due to its many numeric
computations, although kernel splitting helped increase performance. The
node duplication kernel does not occupy a large portion of the simulation
because the number of cohesive elements is relatively small. Filtering elements,
updating velocities, accelerations, displacements, and nodal masses, and
applying boundary conditions are small job kernels with few global memory
accesses and coalesce readings that do not have high execution time.

0.00

0.50

1.00

1.50

2.00

2.50

Average Kernel Times

Time (ms)

Figure 3.21 – Average time of each kernel of the simulation for a T6 mesh with 36,864
bulk elements.
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Update Displacements
3.99%

Compute Stress
21.76%

Filter Stress Elements
0.86%

Duplicate Nodes
0.52%

Update Node Scalars
0.93%

Initialize Nodal Forces
3.30%
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Update Cohesive Forces
14.35%

Update Velocities 
and Accelerations
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Update Boundary 
Conditions
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Simulation Time

Figure 3.22 – Total time each kernel takes in the entire simulation for a T6 mesh with
36,864 bulk elements.

Ring specimen

The second tested model was a 2D ring specimen with no initial notch,
refined into T6 (quadratic triangle) elements, as illustrated in Figure 3.23. We
performed a procedure to color the mesh using the greedy algorithm 3. Fracture
propagation is based on mixed-mode fracture and extrinsic cohesive zone model
[6, 56, 58]. Initial analysis parameters are as follows: initial pressure = 400
MPa, elastic modulus = 210 GPa, Poisson coefficient = 0.3, specific mass =
7850 kg/m3, fracture energy (GI) = 2000 N/m, and shape parameters (a) = 2.

P = 400 MPa

R1 = 0.08 m R2 = 0.15 m

Thickness = 1 mm

Figure 3.23 – 2D model of a ring specimen. Initial pressure is 400 MPa, with node
thickness of 1 mm. The inner radius is 0.08 m and the outer radius is 0.15 m.

3Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

http://ghpaulino.com/educational_GreedyGraphCol.html
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A first version of the mesh was a 20x160 ring composed by 25,920 nodes
and 12,800 bulk elements. The number of colors obtained by a greedy coloring
algorithm was 10. A radial pressure was applied on the model. Total simulated
time is 81 µs, in 27,000 steps of 3 ns each. The model was refined in from 25,920
nodes to 725,614 nodes. Stress computation and fractured facets are checked at
every 10 simulation steps, and cohesive elements inserted as necessary. Tables
3.7 and 3.8 present results for both the mesh and its refined version. Figure
3.24 shows the strain energy evolution throughout the simulation. As expected,
the GPU efficiency increases with the number of bulk elements.

Mesh type Bulk elements Nodes New Nodes CHZ elements Colors
Ring 20x160 12,800 25,920 1,816 955 10
Ring 30x240 28,800 58,080 4,923 2506 10
Ring 40x320 51,200 103,040 9,178 4686 10
Ring 96x768 294,912 591,360 59,055 29,615 10
Ring 115x787 362,020 725,614 68,842 34,245 10

Table 3.7 – Simulation and mesh parameters for a T6 mesh and its refined version.

Meshtype Bulk Elements Timestep CPU time GPU time Speedup Efficiency
Ring 20x160 12,800 3e-9 s 375.963 s 12.668 s 29.7 6.2 %
Ring 30x240 28,800 3e-9 s 900.095 s 22.632 s 39.8 8.3 %
Ring 40x320 51,200 3e-9 s 1601.516 s 36.384 s 44.0 9.2 %
Ring 96x768 294,912 3e-9 s 9,355.186 s 200.804 s 46.6 9.7 %
Ring 115x787 362,020 3e-9 s 11,421.568 s 242.802 s 47.0 9.8 %

Table 3.8 – Simulation and mesh parameters and results (GPU speedup and efficiency
and GPU and CPU time) for a T6 mesh and its refined version.
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(1) (2)

(3) (4)

(5) (6)

0.0 2.0e+5

Figure 3.24 – The figure shows a T6 FEM mesh with 362,020 bulk elements and the
strain energy’s evolution with the crack propagation for times 5 µs (1), 20 µs (2), 25 µs
(3), 50 µs (4), 60 µs (5), and 68 µs (6).

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA


	Mapeamento de Simulação de Fratura e Fragmentação Coesiva para GPUs
	Resumo
	Contents
	Introduction
	Related work
	Many-core devices

	Cohesive Fracture and Fragmentation Simulation
	Numerical representation of quasi-brittle dynamic fracture
	Simulation steps

	Two-dimensional Cohesive Fracture and Fragmentation Simulation
	Data Structure
	Parallel Implementation
	Experimental results

	Massively Parallel Adaptive Mesh Refinement and Coarsening for 2D Dynamic Fracture Simulations
	Adaptive mesh modification on Graphical Processing Units
	Adaptive cohesive fracture and fragmentation simulation
	Experimental results

	Three-dimensional Distributed Cohesive Fracture and Fragmentation Simulations
	Distributed mesh and communication layer representation
	Construction of the communication layer
	Data Structure
	Insertion of cohesive elements
	Parallel simulation
	Message extraction and sending
	Experimental results

	Physics-based Fracture and Fragmentation Simulation
	Our approach
	Fracture mode and constraint dynamics
	Rigid body simulation
	Collision detection and response
	Physics-based simulation
	Experimental results

	Conclusion and Future Work
	Bibliography
	Bibliography



