
2
Cohesive Fracture and Fragmentation Simulation

2.1
Numerical representation of quasi-brittle dynamic fracture

The application of interest in this work is fracture in quasi-brittle materials.
These materials feature some ductility in a region ahead of the crack tip that
cannot be approximated by linear elastic fracture mechanics [53]. We simulate
such problems using the cohesive zone model approach in which the fracture
process zone ahead of the crack tip is approximated by a nonlinear traction-
separation relation. This approach is attractive in its simplicity: the degrading
and softening mechanisms, where micro-cracks and voids initiate and coalesce
ahead of the crack tip, are not explicitly modeled; rather they are approximated
by the cohesive zone [54, 55]. The concept is illustrated by the simple schematics
shown in Figures 2.1 and 2.2. The macro crack tip contains zero tractions and
complete separation, then ahead of this point the traction increases and opening
decreases.

The cohesive zone model approach can be incorporated into a number of
numerical frameworks. In this work we limit our attention to the inter-element
approach, in which the cohesive elements are only present at the bulk finite
element (or volumetric element) boundaries. We employ standard quadratic
triangular elements in 2 dimensions and linear tetrahedrons in 3 dimensions to
represent the continuum behavior. The cohesive elements are quadratic edge
elements encoded with the traction-separation relationship, given by the PPR
(potential-based cohesive zone model). We will not address the model in detail
here, instead the reader is referred to [56] for the derivation of the model and
to [57] for a comparison of the model to others available in the literature. The
extrinsic model is utilized, which allows for arbitrary crack growth (so long as

Cohesive zone

20 µm

Voids and
micro-cracks

Figure 2.1 – Schematic of the cohesive zone model approach. The cohesive zone ahead
of the macro crack tip consists of voids and micro-cracks,

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 30

Tn

�n

Cohesive zone Complete
separation, zero

traction

Figure 2.2 – The surfaces of the macro crack tip are completely separated and are traction
free. Then separation decreases and traction increases into the cohesive zone.

it is along element boundaries) without restriction to predefined or preexisting
fracture planes [58].

We consider temporal effects when modeling crack propagation through
the explicit central difference time integration scheme with a lumped mass
matrix [59]. This eliminates the need to solve the linear system, which makes
the continuum problem without adaptivity readily parallelizable. However, in
this work, the mesh evolves in time via insertion of cohesive elements, mesh
refinement, and mesh coarsening; thus parallelization is not at all trivial. The
details of the CPU simulation is described in the next section.

2.2
Simulation steps

The fracture phenomenum occurs in the finite element model when a
load is applied to the mesh. The load can be a nodal displacement, or an
imposed force or velocity. This leads to an increase in nodal stress, which leads
to fractured facets. Fractured facets are checked for cohesive element insertion,
which leads to fracture propagation in the model. We use the inter-element
technique, where cohesive elements are inserted between bulk finite elements.
They impose cohesive forces and are inserted in the mesh at simulation time.

We propose a simple but effective finite element mesh representation for
fracture, microbranching, and fragmentation simulations. For a 2D simulation,
we provide support for unstructured meshes of either linear (T3) or quadratic
triangular elements (T6). For 3D simulation, we provide support unstructured
tetrahedron (Tet4) meshes. Our data structure was designed for unstructured
meshes. Figure 2.3 shows a typical representation for a T6 finite element mesh.
The finite element types include nodes, facets, bulk elements, and cohesive

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 31

elements, which are explicitly represented as independent elements [60]. Our
data structure implicitly represents facets corresponding to interfaces between
two adjacent bulk elements. The intrinsic cohesive model assumes that all
cohesive elements are embedded in the mesh before the simulation begins [61].
This leads to an unchanged mesh connectivity during the whole simulation
process, but introduces an artificial reduction of stiffness. We adopt an extrinsic
cohesive model, which assumes that separation between bulk elements only
occurs when the interfacial traction reaches a finite strength [8, 61]. Challenges
emerge when using an extrinsic model, since it requires an adaptive insertion
of cohesive elements and topological changes of finite element mesh during the
simulation process.

Bulk Element Nodes Facets Cohesive Elements

Figure 2.3 – T6 mesh attributes belonging to the simulation.

During simulation, internal, external, and cohesive forces at the nodes
generate stresses along element interfaces, which may lead to fracture and
fragmentation evolution. New nodes and cohesive elements are created whenever
a facet fractures. Node attributes such as displacement, position, velocity, and
acceleration are also updated from the internal, external, and cohesive forces.
In order to obtain a precise and stable simulation, one must properly adjust
parameters such as material properties and adopt small time steps, suitable
for the explicit time integration scheme, together with a highly discretized
model. Table 2.1 shows the algorithm for the fragmentation simulation. For
simplification purposes, we will refer to the steps of a two-dimensional simulation,
but the extension to 3D is analogue.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 32

1: Compute Stiffness Matrix
2: Update Nodal Mass
3: current step ← 0
4: while current step <= maximum step do
5: Update Displacements
6: if current step == check step then
7: Compute Stresses
8: if stresses > stress threshold then
9: Insert Cohesive Elements

10: Update Nodal Masses
11: end if
12: end if
13: Compute Internal Forces
14: Compute Cohesive Forces
15: Update Velocities and Accelerations
16: Update Boundary Conditions
17: current step = current step + 1
18: end while

Table 2.1 – Fragmentation algorithm

2.2.1
Pre-processing and updating

Given an initial decomposition of the domain, during the pre-processing
phase, the stiffness matrix is calculated for each bulk element. We consider
the stiffness matrix to remain constant during the whole simulation. Each
lumped mass matrix is initialized before the simulation. The lumped mass
matrix contains mass values relative to each bulk element node. Therefore,
nodal masses are updated from the lumped mass matrix by going through the
incident elements to each node. The lumped mass matrix has to be updated
every time the mesh changes. This occurs when cohesive element insertion
results from a fractured facet between two bulk elements.

Accelerations are computed from the cohesive and internal forces and
nodal masses, which are then used to update the nodal velocities according to
the following equations:

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 33

ai+1 = Rcohi
−Rinti

mi

vi+1 = vi + 1
2(ai + ai+1)∆t (2.1)

ui+1 = ui + vi∆t+ 1
2ai∆t2 (2.2)

2.2.2
Stresses

The stresses computation is the most costly step of the simulation. After
a certain number of steps (1 or 10 in this work), we compute the stress and
strain at each bulk element node from their Gauss point evaluations using an
extrapolation method. This whole procedure almost dominates the simulation
time with excessive arithmetic operations and could be considered the bottleneck
of the simulation loop if executed for all steps. To compute the stresses and
strains at Gauss points of each bulk element (for each of the three Gauss points
considered in this work) in 2D, we first obtain the shape functions and its
derivatives, compute the Jacobian matrix and its inverse, and compute the
strains and displacements relation matrix. Using the material properties of
the element, the constitutive matrix is computed, followed by the stresses and
strains at the Gauss points. In a 2-dimensional T6 mesh case, this is a 3x4
matrix, as shows below.

σGelement
=


σ1,1 σ1,2 σ1,3 σ1,4

σ2,1 σ2,2 σ2,3 σ2,4

σ3,1 σ3,2 σ3,3 σ3,4


3x4

(2.3)

By means of standard extrapolation, the stress and strain matrices are
obtained using the previously computed stress and strain matrices at the Gauss
points and the element shape functions (N). Thus

(
σxx σxy σyx σyy

)
node i

=


N1,1

N1,2

N1,3


T

node i


σ1,1 σ1,2 σ1,3 σ1,4

σ2,1 σ2,2 σ2,3 σ2,4

σ3,1 σ3,2 σ3,3 σ3,4


3x4

(2.4)

The principal stresses and their directions are calculated with respect

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 34

to each nodal location. We determine if the principal stresses at each facet
between two bulk elements exceed a limit for each of the nodes composing the
element. Average stresses are computed to check for cohesive element insertion.
We indicate that a facet is fractured if the stress exceeds a given threshold [8].

2.2.3
Insertion of cohesive elements

Insertion of cohesive elements imposes topological changes in the mesh
[61]. After inserting the new cohesive element, each facet node is checked for
duplication. Figure 2.4 illustrates a CPU algorithm for duplicating nodes on a
triangular mesh. In 2D, the facet mid-side node must be duplicated in a T6
mesh. However, this assertion does not apply to the corner nodes, which must
be checked by going through incident elements to which they belong. For each
fractured facet, we verify if each of its corner nodes needs duplication. From a
node, we traverse all its incident elements starting with one of the two adjacent
elements the facet belongs to. If we reach the other adjacent element to the
facet, then the node is not duplicated. However, if not reached, the node must
be duplicated. The global node counter is incremented and the new node index
is retrieved from it. Once again we must traverse the adjacent elements to
update incidence with the new node index. Finally, the facet mid-side node is
updated with the node index also retrieved from the node incremented global
counter.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 35

n

(1) (2)

(3) (4)

n+1

n+1

Bulk element

Cohesive element

Fractured facet

Current node

New node

n+1

Figure 2.4 – Cohesive element insertion algorithm on a T3 mesh. (1) Mesh with initial
facets that need to be fractured. Elements belonging to each node are traversed and
cohesive element is inserted but no node is duplicated. (2, 3) The other fractured facet
is checked for node duplication, the cohesive element is inserted and the node is marked
as needing duplication. (4) Node is duplicated by traversing through the elements and
updating the node index of the node belonging to them.

If there were new cohesive elements added to the mesh, the topological
changes indicate that some nodal masses also changed since bulk elements loose
adjacency relationship. Therefore, the nodal mass must be updated again like
on the pre-processing phase. We then initialize the nodal internal, external,
and cohesive forces for future computations.

2.2.4
Internal and cohesive forces

The nodal internal force computation is also computationally expensive,
since it must be done every step and requires a large number of arithmetic
operations. The internal force vector results from a product of the stiffness
matrix and the element displacement vector containing displacements for its six
nodes in a T6 mesh, as shown in Equation 2.5. This means we are multiplying
a 12x12 matrix with a 12x1 vector, and it greatly reduces the performance of
our parallel implementation due to its numerous global memory accesses.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

Cohesive Fracture and Fragmentation Simulation 36

Rint12,12 =


k1,1 k1,2 · · · k1,12

k2,1 k2,2 · · · k2,12
...

k12,1 k12,2 · · · k12,12




u1x

u1y

...
u6y

 (2.5)

The cohesive forces are then calculated by traversing through all cohesive
elements and calculating their contributions to each node attached to them.
The element vector of the deformed configuration is obtained, followed by the
cohesive separations in the local coordinate system. Then, the separations and
tractions at each Gauss point are calculated, together with the cohesive shape
functions. Finally, the nodal cohesive force vector is obtained from cohesive
tractions and shape functions. Together with the internal force and stresses,
calculating the cohesive forces is one of the most costly computation steps
within the simulation loop.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CA

	Mapeamento de Simulação de Fratura e Fragmentação Coesiva para GPUs
	Resumo
	Contents
	Introduction
	Related work
	Many-core devices

	Cohesive Fracture and Fragmentation Simulation
	Numerical representation of quasi-brittle dynamic fracture
	Simulation steps

	Two-dimensional Cohesive Fracture and Fragmentation Simulation
	Data Structure
	Parallel Implementation
	Experimental results

	Massively Parallel Adaptive Mesh Refinement and Coarsening for 2D Dynamic Fracture Simulations
	Adaptive mesh modification on Graphical Processing Units
	Adaptive cohesive fracture and fragmentation simulation
	Experimental results

	Three-dimensional Distributed Cohesive Fracture and Fragmentation Simulations
	Distributed mesh and communication layer representation
	Construction of the communication layer
	Data Structure
	Insertion of cohesive elements
	Parallel simulation
	Message extraction and sending
	Experimental results

	Physics-based Fracture and Fragmentation Simulation
	Our approach
	Fracture mode and constraint dynamics
	Rigid body simulation
	Collision detection and response
	Physics-based simulation
	Experimental results

	Conclusion and Future Work
	Bibliography
	Bibliography

