
Andrei Alhadeff Monteiro

Mapping Cohesive Fracture and Fragmentation
Simulations to GPUs

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio as
partial fulfillment of the requirements for the degree of Doutor
em Ciências - Informática.

Advisor: Prof. Waldemar Celes Filho

Rio de Janeiro
September 2015

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Andrei Alhadeff Monteiro

Mapping Cohesive Fracture and Fragmentation
Simulations to GPUs

Thesis presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro Téc-
nico Científico da PUC-Rio, as partial fulfillment of the require-
ments for the degree of Doutor.

Prof. Waldemar Celes Filho
Advisor

Departamento de Informática – PUC-Rio

Profa. Noemi de La Rocque Rodriguez
Departamento de Informática – PUC-Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Prof. Glaucio Hermogenes Paulino
University of Illinois

Prof. Diego Fernandes Nehab
IMPA

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, September 14th, 2015

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

All rights reserved.

Andrei Alhadeff Monteiro
Graduated in Computer Engineering at Pontifícia Universid-
ade Católica do Rio de Janeiro. Obtained a Master’s degree in
Computer Science at Pontifícia Universidade Católica do Rio
de Janeiro, acting in the areas of physics animation and en-
gineering simulation together with GPU programming. While
doing his Masters, he worked as a researcher at Tecgraf/PUC-
Rio with reservoir simulation and rendering. He then did his
PhD in Computer Science at Pontifícia Universidade Católica
do Rio de Janeiro obtaining a full CNPQ scholarship, while at
Tecgraf/PUC-Rio.

Bibliographic data
Monteiro, Andrei Alhadeff

Mapping Cohesive Fracture and Fragmentation Simulations to
GPUs / Andrei Alhadeff Monteiro; advisor: Waldemar Celes Filho.
– 2015.

155 f: il.; 30 cm

Tese (Doutorado em Informática) - Pontifícia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2015.

Inclui bibliografia.

1. Informática – Teses. 2. Simulação de fragmentação. 3. GPUs.
4. Método dos Elementos Finitos. 5. Elementos Coesivos. 6. CUDA.
I. Filho, Waldemar Celes. II. Pontifícia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Acknowledgments

To my family, for all the support they have given throughout my life. To
my father, Ivan de Castro Monteiro, my mother, Myriam Alhadeff Monteiro,
and my sister, Camila Alhadeff Monteiro.

To my advisor, Waldemar Celes Filho, without whom the research would
not be possible. Thank you for motivating me throghout these whole years as
my adviser and teacher.

To Professor Glaucio H. Paulino and Dr. Sofie Leon, for giving all the
support for our reasearch and making it possible.

To Rodrigo Espinha, for helping me always during my difficulties.
To Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPQ), to whom this research would not be possible.
To Tecgraf/PUC-Rio laboratory, for giving me opportunity to face such

challenges and learning with them.
To all my friends for their support and friendship.

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Abstract

Monteiro, Andrei Alhadeff; Filho, Waldemar Celes (Advisor).
Mapping Cohesive Fracture and Fragmentation
Simulations to GPUs. Rio de Janeiro, 2015. 155p. PhD
Thesis — Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
A GPU-based computational framework is presented to deal with

dynamic failure events simulated by means of cohesive zone elements. We
employ a novel and simplified topological data structure relative to CPU
implementation and specialized for meshes with triangles or tetrahedra,
designed to run efficiently and minimize memory requirements on the GPU.
We present a parallel, adaptive and distributed explicit dynamics code that
implements an extrinsic cohesive zone formulation where the elements are
inserted “on-the-fly”, when needed and where needed. The main challenge
for implementing a GPU-based computational framework using an extrinsic
cohesive zone formulation resides on being able to dynamically adapt the
mesh, in a consistent way, by inserting cohesive elements on fractured
facets and inserting or removing bulk elements and nodes in the adaptive
mesh modification case. We present a strategy to refine and coarsen the
mesh to handle dynamic mesh modification simulations on the GPU. We
use a reduced scale version of the experimental specimen in the adaptive
fracture simulations to demonstrate the impact of variation in floating point
operations on the final fracture pattern. A novel strategy to duplicate ghost
nodes when distributing the simulation in different compute nodes containing
one GPU each is also presented. Results from parallel simulations show
an increase in performance when adopting strategies such as distributing
different jobs amongst threads for the same element and launching many
threads per element. To avoid concurrency on accessing shared entities, we
employ graph coloring for non-adaptive meshes and node traversal for the
adaptive case. Experiments show that GPU efficiency increases with the
number of nodes and bulk elements.

Keywords
Fragmentation simulation; GPUs; Finite Element Method; Cohesive

elements; CUDA;

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Resumo

Monteiro, Andrei Alhadeff; Filho, Waldemar Celes. Mapeamento
de Simulação de Fratura e Fragmentação Coesiva para
GPUs. Rio de Janeiro, 2015. 155p. Tese de Doutorado — De-
partamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Apresentamos um método computacional na GPU que lida com even-
tos de fragmentação dinâmica, simulados por meio de zona coesiva. Imple-
mentamos uma estrutura de dados topológica simples e especializada para
malhas com triângulos ou tetraedros, projetada para rodar eficientemente e
minimizar ocupação de memória na GPU. Apresentamos um código dinâmico
paralelo, adaptativo e distribuído que implementa a formulação de modelo
zona coesiva extrínsica (CZM), onde elementos são inseridos adaptativa-
mente, onde e quando necessários. O principal objetivo na implementação
deste framework computacional reside na habilidade de adaptar a malha
de forma dinâmica e consistente, inserindo elementos coesivos nas facetas
fraturadas e inserindo e removendo elementos e nós no caso da malha ad-
aptativa. Apresentamos estratégias para refinar e simplificar a malha para
lidar com simulações dinâmicas de malhas adaptativas na GPU. Utilizamos
uma versão de escala reduzida do nosso modelo para demonstrar o impacto
da variação de operações de ponto flutuante no padrão final de fratura.
Uma nova estratégia de duplicar nós conhecidos como ghosts também é
apresentado quando distribuindo a simulação em diversas partições de um
cluster. Deste modo, resultados das simulações paralelas apresentam um
ganho de desempenho ao adotar estratégias como dsitribuir trabalhos entre
threads para o mesmo elemento e lançar vários threads por elemento. Para
evitar concorrência ao acessar entidades compartilhadas, aplicamos a color-
ação de grafo para malhas não-adaptativas e percorrimento nodal no caso
adaptativo. Experimentos demonstram que a eficiência da GPU aumenta
com o número de nós e elementos da malha.

Palavras–chave
Simulação de fragmentação; GPUs; Método dos Elementos Finitos;

Elementos Coesivos; CUDA;

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Contents

1 Introduction 18
1.1 Related work 21
1.2 Many-core devices 24

2 Cohesive Fracture and Fragmentation Simulation 29
2.1 Numerical representation of quasi-brittle dynamic fracture 29
2.2 Simulation steps 30

3 Two-dimensional Cohesive Fracture and Fragmentation Simulation 37
3.1 Data Structure 37
3.2 Parallel Implementation 44
3.3 Experimental results 56

4 Massively Parallel Adaptive Mesh Refinement and Coarsening for 2D
Dynamic Fracture Simulations 66

4.1 Adaptive mesh modification on Graphical Processing Units 67
4.2 Adaptive cohesive fracture and fragmentation simulation 79
4.3 Experimental results 80

5 Three-dimensional Distributed Cohesive Fracture and Fragmentation
Simulations 94

5.1 Distributed mesh and communication layer representation 94
5.2 Construction of the communication layer 98
5.3 Data Structure 98
5.4 Insertion of cohesive elements 102
5.5 Parallel simulation 105
5.6 Message extraction and sending 108
5.7 Experimental results 109

6 Physics-based Fracture and Fragmentation Simulation 124
6.1 Our approach 125
6.2 Fracture mode and constraint dynamics 126
6.3 Rigid body simulation 131
6.4 Collision detection and response 132
6.5 Physics-based simulation 133
6.6 Experimental results 136

7 Conclusion and Future Work 145

8 Bibliography 148

Bibliography 148

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

List of Figures

Figure 1.1 Diagram of a G80 architecture with 16 SMs and 128 SPs, based
on the figures presented in [1]. 26

Figure 1.2 CUDA memory hierarchy, based on the figures presented in [1]. 27

Figure 2.1 Schematic of the cohesive zone model approach. The cohesive
zone ahead of the macro crack tip consists of voids and micro-
cracks, 29

Figure 2.2 The surfaces of the macro crack tip are completely separated
and are traction free. Then separation decreases and traction
increases into the cohesive zone. 30

Figure 2.3 T6 mesh attributes belonging to the simulation. 31
Figure 2.4 Cohesive element insertion algorithm on a T3 mesh. (1) Mesh

with initial facets that need to be fractured. Elements belonging
to each node are traversed and cohesive element is inserted
but no node is duplicated. (2, 3) The other fractured facet is
checked for node duplication, the cohesive element is inserted
and the node is marked as needing duplication. (4) Node is
duplicated by traversing through the elements and updating
the node index of the node belonging to them. 35

Figure 3.1 A special-purpose simplified data structure with mesh paramet-
ers of a T6 mesh. 38

Figure 3.2 Simulation’s computational patterns. (a) a node can be updated
based on its own information; (b) a bulk element can be udpated
based on its own information; (c) a bulk element can be updated
based on information of its nodes; and (c) a node can be updated
based on information of its incident bulk elements. 39

Figure 3.3 Simulation parameters data structure diagram of FEM model.
Global memory is used for attributes that change throghout
the simulation. Texture memory is used for attributes that are
constant during the entire simulation, but occupy too much
memory space. Constant memory is used for attributes that are
constant during the entire simulation, but are common to all
elements and node, therefore requiring few memory space. 40

Figure 3.4 Traversal algorithm from a given node using the proposed data
structure. The illustrated path does not contain cohesive elements. 42

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 3.5 Traversal algorithm from a given node using the proposed
data structure, with cohesive elements along the path. From a
bulk element, the algorithm starts by accessing a node whose
opposite element is incident to the traversed node (central node)
(1). The opposite element to that node is obtained (2) followed
by the next node (3). The third bulk element is accessed (4),
followed by its respective node (5). A cohesive element opposite
to a node (or adjacent to a bulk element’s facet) can also be
reached (6), since it is explicitly represented in the element
table (see Figure 3.1). 42

Figure 3.6 Node update algorithms: (1) incident elements traversal (or
gather), and (2) element sweep (or scatter). 44

Figure 3.7 (1) Bulk elements are re-arranged in color groups (preferable
balanced) and the same kernel per color group is called to avoid
writing conflicts. (2) Example of a colored T6 structured mesh
(3) and using the colored mesh and scatter strategy to update
nodal masses of the group of elements in the current color in
parallel. 46

Figure 3.8 Fracture and fragmentation simulation loop. 48
Figure 3.9 Splitting the kernel that computes stress and strain into simpler

kernels. 49
Figure 3.10 To accumulate the stresses and strains on the nodes, we launch

12 threads per element, where each thread will accumulate part
of the stress and strain matrices by fetching from the element
shape functions and from the stress and strain at the Gauss
points. 50

Figure 3.11 Cohesive elements insertion on a T6 mesh. (1) Mesh with initial
cracks and facets that fractured facets. Coloring is used to
avoid duplicating nodes of elements that share nodes in parallel.
(2) From each facet node belonging to the element in the
current color group, the algorithm traverses through its incident
elements. (3) Nodes that need duplication. (4) T6 mesh with
final node duplications and new cracks and cohesive elements.
The fractured facets from the next color group are checked for
cohesive elements insertion. 51

Figure 3.12 When computing internal forces, a thread per stiffness matrix
line is launched using the color model and used to perform a
dot product with the displacement vector in shared memory. In
this example, the first image shows two elements per block used.
The second image shows the matrices transposed so memory
reads can be coalesced (that is, each consecutive thread reads
consecutive memory addresses). 54

Figure 3.13 Splitting the kernel that computes cohesive forces into simpler
kernels. 55

Figure 3.14 T6 disc mesh used to test insertion of cohesive element
decoupled from analysis code. 57

Figure 3.15 Time for cohesive elements insertion of a T6 mesh. 58

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 3.16 Two-dimensional model of a rectangular specimen with initial
notch of 2 mm. Initial strain is 0.015, with node thickness of 1
mm. Model dimensions are 16mm per 4mm. 59

Figure 3.17 T6 FEM mesh with 36,864 bulk elements at the end of the
fragmentation simulation. 60

Figure 3.18 Refined T6 FEM mesh with 147,456 bulk elements at the end
of the fragmentation simulation. 60

Figure 3.19 Strain energy evolution with crack propagation. 61
Figure 3.20 Extruded view of fragmented 2D plate with 74,257 nodes and

36,864 bulk elements. 61
Figure 3.21 Average time of each kernel of the simulation for a T6 mesh

with 36,864 bulk elements. 62
Figure 3.22 Total time each kernel takes in the entire simulation for a T6

mesh with 36,864 bulk elements. 63
Figure 3.23 2D model of a ring specimen. Initial pressure is 400 MPa, with

node thickness of 1 mm. The inner radius is 0.08 m and the
outer radius is 0.15 m. 63

Figure 3.24 The figure shows a T6 FEM mesh with 362,020 bulk elements
and the strain energy’s evolution with the crack propagation
for times 5 µs (1), 20 µs (2), 25 µs (3), 50 µs (4), 60 µs (5),
and 68 µs (6). 65

Figure 4.1 Schematic of GPU data structure for adaptive 4k mesh (a)
progression of mesh refinement and element labeling, (b) node
numbering on refined mesh, (c) Edge labels indicating order of
refinement on refined mesh, (d) node table showing node ids,
coordinates, and adjacent element, (e) element table showing
element id, nodal connectivity, adjacent elements, reference
level, level of refinement, and Edge labels. 69

Figure 4.2 (a) Refinement of elements 1, 2 and 3 from level 0 (white) to
level 2 (dark grey) 72

Figure 4.3 Cohesive elements insertion on non-colored mesh: (a) Cohesive
elements are inserted on fractured facets (in black) by launching
one thread per bulk element that contains at least one fractured
facet. (b) Launching one thread per node and by accessing one
of the node’s adjacent element, traversal begins in one direction
until first cohesive element is reached (1b). Traversal direction
changes (2b) and when second coehesive element is reached,
the nodes of the bulk elements after the cohesive elements are
duplicated (5b). Steps are repeated until adjacent element is
reached again (6b). 74

Figure 4.4 Identifying facets of elements that need refinement given local
region cells. (a) Crack tips emerge from the simulation analysis
and (b) each define a refinement region radius. (c) The domain
is discretized into cells, (d) in which each contain its own
counter to account for overlapping regions. 75

Figure 4.5 Marked opposite elements (a) elements with at least one node
inside the refinement region are marked, (b) elements adjacent
a marked element’s hypotenuse are also marked. 77

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 4.6 4k refinement scheme (a) Mesh is initially refined around the
notch tip. (b) Cohesive elements are inserted along facets
of fully refined elements, new crack tips are identified and
new refinement regions associated with each crack tip are
created. Elements to be refined for all crack tips are collected
simultaneously, as opposed to one crack tip at a time. (c)
Elements within the refinement region are marked (black ’x’)
and elements adjacent to the hypotenuse of a marked element
are marked (grey ’x’). (d) Marked elements are refined to the full
level and transition region refined to ensure element compatibility. 78

Figure 4.7 Kalthoff-Winkler problem geometry and loading conditions 81
Figure 4.8 Strain contour and crack propagation plots of the Kalthoff-

Winkler experiment at different time instants: a 25 µs; b 32
µs; c 55 µs; d 90 µs 82

Figure 4.9 Inclined Plane problem geometry and loading conditions 83
Figure 4.10 Strain contour and crack propagation plots of the Inclined Plane

experiment at different time instants: a 70 µs; b 195 µs; c 500
µs; 84

Figure 4.11 Micro-branching problem geometry and loading conditions 85
Figure 4.12 Final crack pattern for the reduced scale micro-branching

problem for (a) uniform mesh (b) AMR enabled mesh (c)
AMR+C enabled mesh. Cohesive elements opened greater than
10% of the normal or tangential critical opening distance are
shown in blue, other cohesive elements are shown in red. 86

Figure 4.13 Details of crack branching including kink in the main crack,
crack branches, and secondary branches 87

Figure 4.14 Histogram of branch lengths over 20 simulations for the (a)
AMR enabled meshes with an open crack tolerance of 75% of
critical normal opening, (b) AMR+C enabled meshes with an
open crack tolerance of 75% of critical normal opening, (c)
AMR enabled meshes with an open crack tolerance of 10% of
critical normal opening and (d) AMR+C enabled meshes with
an open crack tolerance of 10% of critical normal opening 90

Figure 4.15 Final fracture patterns for full scale micro-branching problem
with an externally applied strain of (a) 0.003, (b) 0.004, and
(c) 0.005. 92

Figure 4.16 Detailed view of fracture pattern for the full scale micro-
branching problem with an externally applied strain of 0.003 93

Figure 5.1 3D Beam mesh with over 2.3 million bulk elements in (a)
its original form; (b) discretized into 15 mesh parts; and (c)
showing the communication layer for each partition in red. 95

Figure 5.2 2-dimensional mesh partitioning. (a) Initial mesh; (b) Mesh
partitioned and (c) with the communication layer and proxy
and ghost entities. (d) illustrates each proxy and ghost entity
refering to their local entity. 97

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 5.3 3-dimensional mesh partitioning. (a) Intial mesh. (b) Mesh par-
titioned and (c) with the communication layer. (d) Illustration
of proxy (in red) and ghost (in white) nodes and proxy elements
in red. 97

Figure 5.4 Construction of the communication layer of a T6 mesh. (a)
shows the initial mesh. (b) illustrates the partitioned mesh
without the communication layer, but with the already clas-
sified local and proxy nodes. Adjacent elements from other
partitions belonging to border nodes are swept and added to
the communication layer (c) and (d) ghost nodes are classified
according to facets. 98

Figure 5.5 Element types used in the 3D analysis code. Bulk elements
are volumetric tetrahedron elements and cohesive elements are
linear triangular elements. 100

Figure 5.6 Data strucuture for distributed 3-dimensional finite element
analysis. The node table contains the positions, one adjacent
element id belonging to its incidence, and the owner partition
and entity id it belongs to. If the owner patition is the one it is
in, the owner id is the same as the node table. The partition
id contains 2 bits that indicate if the node is local, proxy, or
ghost. The remaining bits refer to the owner partition identifier.
The element table contains six nodes, in which four are used
for tetrahedron bulk elements and six are used for triangular
cohesive elements. Four opposite identifiers indicate elements
opposite to the bulk elements’ four nodes and the cohesive
element’s two facets. The owner partition id reserves one bit
to indicate if the element is local or proxy and the remaining
bits to indicate the partition of the owner. The owner identifier
of the entity follows next. 101

Figure 5.7 Messaging Procedure to obtain topology or analysis data. (1)
The node accesses the adjacent element and sends a message
to its owner with the tuple (owner element handle, local id). (2)
The owner of the element receives the message and accesses
the node with it. (3) The receiver responds the message with
the topology or analysis attribute requested by the sender. 102

Figure 5.8 Insertion of cohesive elements in 3D. Node is traversed using a
Breadth-first search in shared memory. If there is at minimum
one path to the adjacent element, the node is not duplicated. 103

Figure 5.9 Phase 1 of inserting cohesive elements in partitioned meshes.
Local and proxy cohesive elements are inserted. 104

Figure 5.10 Phase 1 of insertion of cohesive elements in partitioned meshes.
Local, proxy, and ghost nodes are duplicated as a result of the
cohesive elements insertion. Adjacent elements are updated
accordingly. 105

Figure 5.11 Phase 2 of insertion of cohesive elements. References of proxy
nodes and cohesive elements to their owners are updated by
sending message via their adjacent elements. 106

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 5.12 This figure shows the compacting and sending of messages to
neighbor partitions. First, ghost nodes of the local partition
are swept and count how many messages it must send to each
partition via atomic intrinsincs. Next, we scan the number of
messages per partitions to create an offset array to fill the
messages. We sweep the nodes again and using the offset array
and the “number of messages per partition” array, we fill the
tuple messages per partition and copy them to the CPU. 108

Figure 5.13 This figure illustrates the message trasfer between two computer
nodes with GPUs. It is a costly stage of the simulation due to
the fact of the memory trasfer between CPU and GPU before
sending messages to other computer nodes and after receiving
messages. 109

Figure 5.14 Colored 3D ring specimen (a) and after the insertion of cohesive
elements (b). 110

Figure 5.15 3D mixed-mode problem geometry and loading conditions. 111
Figure 5.16 Strain contour and crack propagation plots of the 3D mixed-

mode experiment at different time instants: a 0 µs; b 100 µs;
c 130 µs; d 180 µs; e 200 µs; f 270 µs 113

Figure 5.17 Crack propagation plots of the refined version 3D mixed-mode
experiment with 716,736 bulk elements, at time instant t =
270 µs. 114

Figure 5.18 Average time of each kernel of the simulation for a Tet4 mixed-
mode 3D beam mesh with 113,984 bulk elements. 114

Figure 5.19 (a) 3D Ring model with 5 partitions after the cohesive elements
insertion. (b) and (c) Cohesive insertion-time graph for each
partition and discretization. 115

Figure 5.20 Distributed 3D mixed-mode problem geometry and loading
conditions. 117

Figure 5.21 Number of compute nodes versus time Graph for the reduced
and mid-scale 3D mixed-mode beam specimens. The time
for Beams 38x13x4 and 76x26x8 are in seconds and minutes,
respectively. 118

Figure 5.22 Mesh partitioning at the end of the simulation at t = 270
µs for the reduced-scale 3D mixed-mode beam. Notice the
uneven distribution of cohesive elements (shown in red) between
partitions. 119

Figure 5.23 GPU profiling for each node of the reduced-scale 32x13x4 beam,
running in 5 compute nodes, not including message passing
from OpenMPI. 120

Figure 5.24 Graph showing the distribution of simulation time in each node
between node synchronization and GPU computations for the
reduced-scale 3D mixed-mode beam specimen. 120

Figure 5.25 Graph showing the distribution of kernels along time in CUDA
streams. Empty spaces that appear repeatedly in the timeline
occur immediately after the nodes copy the message to the
CPU and immediately before sending them to the receiver. 121

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 5.26 First large-scale 3D mixed-mode beam specimen at simulation
end at t = 219 µs with 2,351,424 bulk elements. 122

Figure 5.27 Second large-scale 3D mixed-mode beam specimen at simulation
end at t = 220 µs with 5,495,168 bulk elements. Cohesive
elements are unevenly distributed, which leads to extra cohesive
computations in certain partitions, fewer in some, and idle in
others. The main crack propagates like in the results of the
single GPU, at 30◦. 123

Figure 6.1 The figure illustrates our framework to deal with physics-based
animation of brittle and quasi-brittle objects. The objects starts
falling in rigid body mode. When it collides, it switches to
fracture mode and cohesive elements are inserted. When no
cohesive elements are added in a while, it switches back to rigid
body mode. 126

Figure 6.2 The figure illustrates the nodes belonging to the tetrahedra
elements and connected by rigid bars. We use relaxation method
with constraint functions proposed by Müller et al. to avoid
time step instability. (a) shows each node moving away too
much from its resting position as an effect of instability. (b)
shows the correction we have to make in one node (m is the
number of neighbor bars of the node). 127

Figure 6.3 Bunny model with 69,668 nodes and 208,353 bulk elements.
Initial material parameters are as follows: initial velocity = 0
m/s, elastic modulus = 0.6 Pa, Poisson coefficient = 0.23,
specific mass = 2400 kg/m3. Fracture energy materials are as
follows: fracture energy GI = 22 N/m, cohesive strength smax =
0.1 mPa, and shape parameter α = 2. Time step is 10e-4 s, with
stress calculated at every time step. Position-based parameters
are: kstiffness = 0.9, kdamping = 1 and number of iterations =
3. (a) The bunny begins falling under gravity action in rigid
body mode. No fracture propagates in the model, although
the simulation is done using the Cohesive Zones Model (CZM)
(i.e. using explicit integration) and Müller´s Positions-based
Dynamics (to avoid instability with increased time step); (b)
The bunny collides with the ground. When the first node(s)
collide(s), we switch to fracture mode. Stress calculation lead to
cohesive elements verification, which leads to node duplication
and fracture propagation; (c, d) The bunny continues in fracture
mode because cohesive elements are still being added to the
mesh; (e, f, g, h) Cohesive elements were not added at a certain
number of steps, so the simulation is switched to rigid body
mode. No fracture will propagate in the mode. Instead, each
separate component of the bunny will be treated as a rigid body.128

Figure 6.4 Rigid bar constraint and the displacements needed to “pull
back” the nodes to the rest distance position. The projection of
the constraint C(p1, p2) = |p1 − p2| − d, where the corrections
∆pi are weighted by the inverse masses 1/mi. 130

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Figure 6.5 The figure illustrates the simulation flow chart. According to the
chart, we can see clearly when the fracture and rigid body modes
act on the simulation, which uses the same procedure from
the CZM simulation, combined with Müller et al.’s constraint
projection to avoid instability. 133

Figure 6.6 Verification of the engineering model with the relaxation method
proposed by Müller et al [2] with time step 1,000 times greater
than the versiona from chapter 5.7. 137

Figure 6.7 Three animations of a falling hollow sphere under gravity action.
(a) The sphere collides and bounces in rigid form with kstiffness

= 1. (b) The sphere collides and bounces in deformed form
with kstiffness = 0.1. (c) The sphere collides and bounces in
extreme deformed form with kstiffness = 0.01. 138

Figure 6.8 Two animations of a falling hollow sphere under gravity action.
(a) The sphere collides and bounces in rigid form with kstiffness

= 1 with a time step of 1e-4 s. (b) The sphere collides and
bounces in deformed form with kstiffness = 1 and increased
time step of 5e-4 s. 138

Figure 6.9 Animation of a falling plate under gravity action. (a) The plate
collides and (b) bounces in deformed form with kdamping = 0. 139

Figure 6.10 Animation of a falling rigid body plate under gravity action. (a)
The plate collides and (b) bounces in rigid form with kdamping

= 1 and increased time step. 139
Figure 6.11 Two animations of a falling and breaking sphere under gravity

action. (a) The sphere collides and breaks with smax = 5 mPa.
(b) The sphere collides and breaks with smax = 500 mPa. 140

Figure 6.12 Animation of a falling hollow sphere under gravity action and
breaking when colliding with the floor. 141

Figure 6.13 Animation of a hollow bunny mesh hit by a sphere under velocity
v = 10 m/s. 142

Figure 6.14 Animation of a falling glass plate and breaking when colliding
with the floor. 144

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

List of Tables

Table 2.1 Fragmentation algorithm 32

Table 3.1 Kernel subroutine call algorithm using mesh coloring 45
Table 3.2 Parallel Fracture Algorithm 47
Table 3.3 Parallel Node Duplication Algorithm 52
Table 3.4 Results for insertion of cohesive elements decoupled from analysis

code. 57
Table 3.5 Simulation and mesh parameters for a T6 mesh and its refined

version. 60
Table 3.6 Simulation and mesh parameters and results (GPU speedup and

GPU and CPU time) for a T6 mesh and its refined version. 60
Table 3.7 Simulation and mesh parameters for a T6 mesh and its refined

version. 64
Table 3.8 Simulation and mesh parameters and results (GPU speedup and

efficiency and GPU and CPU time) for a T6 mesh and its refined
version. 64

Table 4.1 3D distributed fracture and fragmentation algorithm 80
Table 4.2 Comparison of final quantities between Uniform, AMR and

AMR+C simulations 87
Table 4.3 Variation in crack tip velocity, energy released, and occurrence

of branching for 20 simulations of each the AMR and AMR+C
enabled meshes 88

Table 4.4 Comparison of wall time of the reduced scale micro-branching
problem on different platforms (The speed up factor is shown
with respect to the no adaptivity case on the serial CPU) 90

Table 5.1 3D distributed fracture and fragmentation algorithm 107
Table 5.2 Results for 3D insertion of cohesive elements in Ring specimen,

decoupled from analysis code. 110
Table 5.3 Simulation and mesh parameters for mixed-mode 3D beam mesh

and its refined version. 112
Table 5.4 Simulation and mesh parameters and results (GPU and CPU

time) for mixed-mode 3D beam and its refined version. 112
Table 5.5 Topology and simulation data used to simulate the 3D distributed

mixed-mode beams. Results are shown in time and speedup
compared to a single GPU. 117

Table 6.1 Damping calculation for rigid bodies [2]. 132
Table 6.2 Proposed Physics-based simulation algorithm. 135

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

Insanity: doing the same thing over and over
again and expecting different results.

Albert Einstein

DBD
PUC-Rio - Certificação Digital Nº 1121801/CB

