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Abstract

Monteiro, Andrei Alhadeff; Filho, Waldemar Celes (Advisor).
Mapping Cohesive Fracture and Fragmentation
Simulations to GPUs. Rio de Janeiro, 2015. 155p. PhD
Thesis — Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.
A GPU-based computational framework is presented to deal with

dynamic failure events simulated by means of cohesive zone elements. We
employ a novel and simplified topological data structure relative to CPU
implementation and specialized for meshes with triangles or tetrahedra,
designed to run efficiently and minimize memory requirements on the GPU.
We present a parallel, adaptive and distributed explicit dynamics code that
implements an extrinsic cohesive zone formulation where the elements are
inserted “on-the-fly”, when needed and where needed. The main challenge
for implementing a GPU-based computational framework using an extrinsic
cohesive zone formulation resides on being able to dynamically adapt the
mesh, in a consistent way, by inserting cohesive elements on fractured
facets and inserting or removing bulk elements and nodes in the adaptive
mesh modification case. We present a strategy to refine and coarsen the
mesh to handle dynamic mesh modification simulations on the GPU. We
use a reduced scale version of the experimental specimen in the adaptive
fracture simulations to demonstrate the impact of variation in floating point
operations on the final fracture pattern. A novel strategy to duplicate ghost
nodes when distributing the simulation in different compute nodes containing
one GPU each is also presented. Results from parallel simulations show
an increase in performance when adopting strategies such as distributing
different jobs amongst threads for the same element and launching many
threads per element. To avoid concurrency on accessing shared entities, we
employ graph coloring for non-adaptive meshes and node traversal for the
adaptive case. Experiments show that GPU efficiency increases with the
number of nodes and bulk elements.

Keywords
Fragmentation simulation; GPUs; Finite Element Method; Cohesive

elements; CUDA;
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Resumo

Monteiro, Andrei Alhadeff; Filho, Waldemar Celes. Mapeamento
de Simulação de Fratura e Fragmentação Coesiva para
GPUs. Rio de Janeiro, 2015. 155p. Tese de Doutorado — De-
partamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Apresentamos um método computacional na GPU que lida com even-
tos de fragmentação dinâmica, simulados por meio de zona coesiva. Imple-
mentamos uma estrutura de dados topológica simples e especializada para
malhas com triângulos ou tetraedros, projetada para rodar eficientemente e
minimizar ocupação de memória na GPU. Apresentamos um código dinâmico
paralelo, adaptativo e distribuído que implementa a formulação de modelo
zona coesiva extrínsica (CZM), onde elementos são inseridos adaptativa-
mente, onde e quando necessários. O principal objetivo na implementação
deste framework computacional reside na habilidade de adaptar a malha
de forma dinâmica e consistente, inserindo elementos coesivos nas facetas
fraturadas e inserindo e removendo elementos e nós no caso da malha ad-
aptativa. Apresentamos estratégias para refinar e simplificar a malha para
lidar com simulações dinâmicas de malhas adaptativas na GPU. Utilizamos
uma versão de escala reduzida do nosso modelo para demonstrar o impacto
da variação de operações de ponto flutuante no padrão final de fratura.
Uma nova estratégia de duplicar nós conhecidos como ghosts também é
apresentado quando distribuindo a simulação em diversas partições de um
cluster. Deste modo, resultados das simulações paralelas apresentam um
ganho de desempenho ao adotar estratégias como dsitribuir trabalhos entre
threads para o mesmo elemento e lançar vários threads por elemento. Para
evitar concorrência ao acessar entidades compartilhadas, aplicamos a color-
ação de grafo para malhas não-adaptativas e percorrimento nodal no caso
adaptativo. Experimentos demonstram que a eficiência da GPU aumenta
com o número de nós e elementos da malha.

Palavras–chave
Simulação de fragmentação; GPUs; Método dos Elementos Finitos;

Elementos Coesivos; CUDA;
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Insanity: doing the same thing over and over
again and expecting different results.

Albert Einstein
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