

Vivian Rodrigues Marchesi

Técnicas de modelagem aplicadas à previsão de pressão de poros em ambientes geologicamente complexos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pósgraduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

> Orientador: Prof. Sergio Augusto B Fontoura Co-Orientador: Prof. Erling Fjaer

Rio de Janeiro Julho 2015

Vivian Rodrigues Marchesi

Técnicas de modelagem aplicadas à previsão de pressão de poros em ambientes geologicamente complexos

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Sergio Augusto Barreto da Fontoura Orientador Departamento de Engenharia Civil – PUC-Rio

> Prof. Celso Romanel Departamento de Engenharia Civil – PUC-Rio

> Prof. Eurípedes do Amaral Vargas Júnior Departamento de Engenharia Civil – PUC-Rio

> > Prof. Paulo Couto Universidade Federa do Rio de Janeiro

> > > Dr. Luiz Alberto Santos Rocha Petrobras

José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 22 Julho de 2015.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Vivian Rodrigues Marchesi

Graduada em Engenharia Civil pela UFES (Universidade Federal do Espírito Santo) em 2005. Mestre em Engenharia Civil, com ênfase em Geotecnia, pela PUC-Rio (2008) e pósgraduada em Engenharia de Petróleo pela PUC-Rio (2010). Pesquisadora na área geomecânica de perfuração e modelagem geológica geomecânica pelo GTEP/PUC-Rio desde 2008.

Ficha Catalográfica

Marchesi, Vivian Rodrigues

Técnicas de modelagem aplicadas à previsão de pressão de poros em ambientes geologicamente complexos. / Vivian Rodrigues Marchesi; orientador: Sergio Augusto Barreto da Fontoura. – 2015.

229 f.: il. ; 29,7 cm

Tese (Doutorado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2015.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Previsão de Pressão de Poros; Modelagem Geológica Geomecânica 3D; Modelagem de Bacias; Evaporitos. I. Fontoura, Sergio Augusto B. da. II. Fjaer, Erling; III. Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. IV. Título.

CDD 624

PUC-Rio - Certificação Digital Nº 1021828/CA

Dedico esta tese aos meus pais e irmãs, que sempre me incentivaram a lutar pelos meus objetivos, e ao meu noivo, pelo apoio e paciência.

Agradecimentos

Após alguns anos de dedicação, aqui estou eu agradecendo àqueles que fizeram parte dessa importante etapa de minha vida:

Ao professor Sergio Fontoura, meu chefe e orientador, pela orientação, confiança e incentivo.

Ao meu noivo, Leonardo, pelo apoio incondicional à realização desse sonho, mesmo quando isso representava minha ausência.

Aos meus pais, pelo amor, carinho e valioso ensinamento de dedicação e seriedade na busca pelos meus objetivos. Às minhas irmãs, Renato e Juju, presentes em todos os momentos, apesar da distância.

Aos amigos do GTEP, que direta ou indiretamente fizeram parte desse trabalho. Em especial, agradeço a duas amigas: Talita Miranda, que não só me deu forças nos momentos difíceis, como também foi minha "co-orientadora não-oficial"; e Débora Pilotto, que há alguns anos me acompanha e me complementa no desenvolvimento da linha de pesquisa em modelagem geológica-geomecânica. Sua participação e apoio foram fundamentais à conclusão dessa tese.

Ao GTEP, pela flexibilidade de horários e pela estrutura física que me permitiram concluir este doutorado. Ao GTEP e à Petrobras, pela permissão para uso do SEST[©]. A Clemente Gonçalves, pela compreensão e apoio, principalmente quando me faltou um dos elementos essenciais à conclusão dessa pesquisa.

Aos amigos que me ajudaram indiretamente com desejos de perseverança e sucesso desde os passos do mestrado: Jociléia, Amanda, Lorena, Elvidio, Bazan, Guilherme, Carla e Roberto. Às amigas que acompanharam mais de perto algumas etapas dessa jornada: obrigada Ju, Carla e Thácia, plos momentos de descontração, amizade e força.

Ao Departamento de Engenharia Civil da PUC-Rio, em especial à Rita, que estava sempre presente para apoiar e auxiliar com todas as atividades burocráticas ao longo desses anos de doutorado.

À Schlumberger, pelo fornecimento do Petrel[™] e à Beicip, pelo fornecimento do TemisFlow e pela consultoria prestada (em especial aos anjos da guarda Natália e Juliana).

A Deus, criador de todas as coisas e fonte de fé, força e esperança.

Resumo

Marchesi, Vivian Rodrigues; Fontoura, Sergio Augusto Barreto da (Orientador); Fjaer, Erling (Co-Orientador). **Técnicas de modelagem aplicadas à previsão de pressão de poros em ambientes geologicamente complexos.** Rio de Janeiro, 2015. 229p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O tempo não produtivo (NPT) durante a perfuração de poços de petróleo pode ser responsável pela perda de milhões de dólares em atividades offshore. A má previsão da pressão de poros pode ser uma das responsáveis pelo NPT de um poço ou mesmo sua perda definitiva em campos geologicamente complexos, como em bacias evaporíticas. Nesses campos complexos, os métodos de previsão de pressão de poros convencionais nem sempre são capazes de prever bem a distribuição de pressão de poros, mesmo após a perfuração de número considerável de pocos. Este trabalho estuda técnicas alternativas que atendam ao problema de previsão de pressão para esses casos. Para fundamentar os estudos, é apresentada uma revisão sobre os riscos associados à perfuração em bacias evaporíticas e sobre os métodos de previsão de pressão existentes (métodos convencionais, sísmicos, modelagem geológica geomecânica 3D, modelagem pelo método dos elementos finitos e modelagem de bacias). Avaliando os problemas de perfuração nestes campos e as dificuldades de previsão dos métodos convencionais, nota-se que a complexidade imposta pelas consequências da presença do sal pode ser reduzida pelo uso de métodos que considerem a geologia local de forma mais abrangente em seu fluxo de trabalho. Concluiu-se que a modelagem de bacias e a modelagem geológica geomecânica 3D têm forte potencial de aplicação para estes casos. As técnicas, contudo, não tem a previsão de pressão de poros por objetivo principal, mas podem ser aplicadas ou adaptadas para tal fim. Este estudo apresenta adaptações de metodologia e/ou aplicações direcionadas de ambas para fins de previsão de pressão de poros. Para validar as propostas apresentadas, estudos de caso foram desenvolvidos e apresentaram resultados considerados bastante satisfatórios.

Palavras-chave

Previsão de Pressão de Poros; Modelagem Geológica Geomecânica 3D; Modelagem de Bacias; Evaporitos.

Abstract

Marchesi, Vivian Rodrigues; Fontoura, Sergio Augusto Barreto da (Advisor); Fjaer, Erling (Co-Advisor). **Modeling techniques applied for pore pressure prediction in geologically complex environments.** Rio de Janeiro, 2015. 229p. Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The non-productive time (NPT) while drilling oil and gas wells may be responsible for losing millions of dollars, especially in offshore activities. Bad pore pressure predictions may be responsible for large NPT or even the definitive loss of well in geologically complex fields, such as evaporate basins. On these complex fields, the conventional pore pressure prediction methods sometimes are not capable of providing good predictions, even if a considerable number of wells has been already drilled. This thesis studies alternative techniques which may attend for pore pressure prediction in these cases. In order to develop a consistent knowledge about the case, a literature review has been conducted in two ways: to understand what are the risks associated to drilling in evaporate basins; to review what are the available methods for pore pressure prediction (conventional methods, seismic methods, 3D geological and geomechanical modeling, finite element methods and basin modeling). During analyzing geomechanical drilling risks in these sites, and the difficulties found by conventional methods to predict it, it was noted that the complexity imposed by the presence of salt bodies can be reduced by using methods that make a strong use of geological knowledge on their workflow. It has been concluded that basin modeling and 3D geological and geomechanical modeling have a good potential to be applied for this goal. The techniques, nevertheless, do not have pore pressure prediction as their main goal, but can be applied to or adapted for such finality. This work presents some methodology adaptations and/or applications of both of techniques directed to pore pressure prediction goals. In order to validate the presented proposals, case studies has been developed, and their results were considered satisfactory.

Keywords

3D Geological Geomechanical Modeling; Basin Modeling; Pore Pressure Prediction; Evaporites.

Sumário

1 Introdução	23
1.1. Motivação e objetivo	23
1.2. Estrutura da proposta de tese	25
2 Previsao de pressao de poros em ambientes geologicamente complexos	26
2.1. Métodos convencionais e não convencionais de previsão de pressão de	
poros	26
2.1.1. Métodos de previsão de pressão de poros 1D por perfis elétricos	27
2.1.2. Métodos de acompanhamento em tempo real	33
2.1.3. Métodos sísmicos	37
2.1.4. Modelagem de bacias – não convencional	41
2.1.5. Modelagem geológica-geomecânica 3D – não convencional	45
2.2. Desafios geológicos e geomecânicos impostos pela presença de	
evaporitos	48
2.2.1. Características específicas dos evaporitos	49
2.2.2. Interação entre os evaporitos e sedimentos de uma bacia evaporítica	51
2.2.3. Problemas geomecânicos enfrentados na perfuração devido à pressão)
de poros	54
2.3. Previsão de pressão de poros ao redor de corpos salinos	60
2.3.1. Abordagem convencional	60
2.3.2. Estudos 1D e 2D com base em fundamentos geológicos	63
2.3.3. Estudos por sísmica	65
2.3.4. Estudos por modelagem geológica geomecânica 3D	70
2.3.5. Estudos por MEF	74
2.3.6. Estudos por modelagem de bacias	79
2.3.7. Análise comparativa entre as técnicas	87
O Madalanara apolénias aportação inc. OD para a previsão do presoão do	
3 Modelagem geologica geomecanica 3D para a previsão de pressão de	
poros – Conceitos e metodologia proposta	91
3.1. Conceitos gerais em modelagem geológica geomecânica	91
3.2. Modeladores geológicos disponíveis	99
3.3. Metodologia geral proposta	102

4 Estudo de caso em modelagem geológica geomecânica	123
4.1. Montagem de dados sintéticos	123
4.2. MEM 1D	125
4.3. Modelagem estratigráfica-estrutural	129
4.4. Modelagem de fácies	131
4.5. Modelagem de perfis	136
4.6. Análise integrada e definição do método de previsão de pressão	140
4.7. Previsão de pressão de poros 3D	145
4.8. Validação e discussão dos resultados	147
5 Modelagem de bacias para a previsão de pressão de poros	150
5.1. Conceitos gerais	150
5.2. Softwares disponíveis para modelagem de bacias	153
5.3. Metodologia global de modelagem de bacias	161
5.3.1. Deposição, propriedades dos sedimentos e soterramento	162
5.3.2. Compactação e pressão de poros	170
5.3.3. Modelagem de temperatura	175
5.3.4. Geração de HCs	178
5.3.5. Análise de fluidos e migração	180
5.3.6. Calibração de pressões anormais	183
5.4. Introdução de elementos ao fluxo global	185
5.4.1. Elementos estruturais	185
5.4.2. Processos diagenéticos	188
5.5. Metodologia proposta para estudos de caso	190
5.5.1. Reprodução de casos da literatura	191
5.5.2. Proposta e desenvolvimento de novos casos de estudo	193
6 Estudos de caso aplicados por modelagem de bacias	196
6.1. Reprodução de estudos de caso da literatura	196
6.1.1. O'Brien <i>et al.</i> (1993) – lente de sal	196
6.1.2. Allwardt et al. (2009) – mini-bacia formada por recuo de sal	203
6.2. Estudos de caso propostos	208
6.3. Casos propostos	208
6.3.1. Caso 1 – Introdução de novos elementos aos estudos de O'Brien	
<i>et al.</i> (1993)	208
6.3.2. Caso 2 - Efeito de drenagem em cenários 1D, 2D e 3D	211

7 Conclusões e sugestões para estudos futuros	215
7.1.1. Contribuições da tese	217
7.1.2. Sugestões para trabalhos futuros	218
Referências Bibliográficas	220

Lista de figuras

Figura 2.1 – Efeitos de mecanismos primários e secundários na pressão e	
na velocidade, e ajustes da curva virgem de adensamento e curva de	
descarregamento (editada de Bowers, 1995).	29
Figura 2.2 – Modelagem das curvas de carregamento e descarregamento	
do método de Bowers (1995).	30
Figura 2.3 – Tipos de poros e seus comportamentos (editado de Bowers,	
2002).	30
Figura 2.4 – Detectando descarregamento em zona de reversão de	
velocidades.	31
Figura 2.5 – Metodologia geral de aplicação dos métodos convencionais.	32
Figura 2.6 – Aumento da ROP em folhelhos subcompactados da Nigéria	
(Mouchet e Mitchel, 1989).	34
Figura 2.7 – Previsão de pressão de poros pelos métodos de Eaton e	
Zamora aplicados ao expoente dc (Editado de Stunes, 2012).	36
Figura 2.8 – Previsão de pressão de poros pelo método de Bourgoyne-	
Young com média e desvio padrão (Editado de Stunes, 2012).	37
Figura 2.9 – Estimativa de pressão de poros por velocidades intervalares	
em superposição a curvas de gradientes calibrados (Pennebaker, 1968).	38
Figura 2.10 – Comparação entre análise de velocidade convencional por	
traços sísmicos (esq.) e inversão pós estaqueamento (dir.). Notar a	
diferença entre as resoluções. Editado de Huffman (2002).	39
Figura 2.11 – Fluxo básico dos estudos de pressão por sísmica.	39
Figura 2.12 – Fluxograma de previsão de pressão de poros apresentada	
por López et al. (2004).	40
Figura 2.13 – Previsão de pressão de poros por inversão de velocidades	
sísmicas e validação com perfis pós perfuração (Yuhong et al., 2010).	41
Figura 2.14 – Fluxo geral de modelagem de bacias e obtenção do cenário	
inicial de pressão de poros (Editado de Hantschel e Kaureauf, 2009).	43
Figura 2.15 – a) Modelo de estudo; b) resultados obtidos para estudos 1D	
e 2D. Editado de Yardley e Swarbrick (2000).	43
Figura 2.16 – Excesso de pressão calculado por a) modelagem 2D de	
bacias; b) conceito de efeito centroide.	44

Figura 2.17 – Fluxograma geral de estudos de pressão de poros por	
modelagem geológica geomecânica 3D.	46
Figura 2.18 – Cubo de gradiente de pressão de poros em lb/gal (a) e	
validação cruzada com dados de campo (b). Editado de Valderrama Cruz	
(2009).	47
Figura 2.19 – Gradiente de pressão de poros (lb/gal). Silveira (2009).	48
Figura 2.20 – Bacias com evaporitos no mundo	
(http://homepage.ufp.pt/biblioteca/GlossarySaltTectonics/Pages/, em	
24.05.14).	49
Figura 2.21 – Ambientes favoráveis à deposição de evaporitos.	50
Figura 2.22 – Esquema de zonas de perturbação dos sedimentos	
hospedeiros no entorno de um diápiro (editado de Alsop et al., 2000).	52
Figura 2.23 – Gradiente de pressão devido à progradação sedimentar	
como mecanismo causador do movimento de sal (Mohriak e Szatmari,	
2009, modificado de Jenyon, 1986).	52
Figura 2.24 – Falhas interpretadas acima de domo, GoM (Dusseault et al.,	
2004).	54
Figura 2.25 – Visão esquemática de riscos geomecânicos, por pressão de	
poros, da perfuração próxima ou através do sal. Adaptada de Willson e	
Fredrich (2005).	55
Figura 2.26 – Diápiros do Mar do Norte. Editado de Seymour et al. (1993).	56
Figura 2.27 – Janela operacional do poço WR 285-1, GoM, com aumento	
do gradiente de pressão abaixo do sal (editado de Rohleder et al., 2003).	58
Figura 2.28 – Corpo salino alongado atravessado por dois poços no GoM	
(a); janela operacional apresentando o cenário de pressões elevadas	
abaixo do corpo salino nos poços b) e c). Karpa (2001) apud Saleh et al.	
(2013).	59
Figura 2.29 – Seção geológica e planta com poços em relação ao corpo	
salino (arenitos em amarelo e folhelhos em verde). Editado de Freire et al.	
(2010).	60
Figura 2.30 – Ajuste de tendência e evidências de subcompactação (esq.)	
e Pp prevista x MW, ECD e medições diretas (dir.). Editado de Freire et al.	
(2010).	61
Figura 2.31 – Províncias tectono-estratigráficas no GoM. Saleh et al.	
(2013).	62

Figura 2.32 – Seção geológica com identificação de áreas de	
sobrepressões anormais - AHFP (editado de Zilberman et al., 2001).	64
Figura 2.33 – Comparação entre velocidade intervalar e dados de Dtc e de	
chekshots em poços (Hooyman et al., 2003).	65
Figura 2.34 – Cubos de velocidade e de pressão de poros prevista com	
destaque para a profundidade de 2 km (Editado de Hooyman et al., 2003).	66
Figura 2.35 – Seção sísmica do campo Gunnison. Reservatórios	
produtores: Amp1, Amp3, Amp4.4, Amp4.6, Amp4.7 e Amp4.8 (Liaw et al.,	
2007).	67
Figura 2.36 – Seção sísmica com escala de cores representando o	
gradiente de pressão de poros previsto - azul ~8,6 e laranja ~ 14 lb/gal.	
(Liaw et al. (2007).	67
Figura 2.37 – Fluxograma de previsão de pressão de poros (Banik et al.,	
2014).	68
Figura 2.38 – IA (a) e Gpp previsto por sísmica (b) no poço. Banik et al.	
(2014).	69
Figura 2.39 – Modelo estratigráfico e poços (a) e cubo de velocidades de	
alta resolução gerado por trend kriging (b). Editado de Bachrach et al.	
(2007).	70
Figura 2.40 – Pressão de poros prevista em psi (a) e curva de gradiente de	
pressão em lb/gal em poço de calibração (b). Editado de Bachrach et al.	
(2007).	71
Figura 2.41 – Modelo 3D de velocidades sísmicas (pé/s) proveniente de	
tomografia (Den Boer et al., 2011).	72
Figura 2.42 – Gradiente de pressão de poros previsto (lb/gal) para a área	
de estudo e tomadas de pressão em poços perfurados (Den Boer et al.,	
2011).	73
Figura 2.43 – Modelo de elementos finitos e seus parâmetros de entrada	
(Editado de Nikolinakou et al., 2011).	75
Figura 2.44 – Variação da tensão total média (linha roxa tracejada) e da	
pressão de poros (linha vermelha contínua) obtidas nos sedimentos não	
drenados em função do relaxamento do sal (Editado de Nikolinakou et al.,	
2011).	75
Figura 2.45 – Modelo de malha adotado para a modelagem (Nikolinakou,	
2012).	76

Figura 2.46 – Variação da pressão de poros e da tensão total média pelo	
relaxamento poroelástico (esquerda) e poroelastoplástico (direita) do sal	
em sedimentos não drenados.	77
Figura 2.47 – Perfil de pressão e tensões no flanco (acima) e no eixo	
central (abaixo) do corpo salino após relaxamento drenado (esq.) e não	
drenado (dir.).	78
Figura 2.48 – Comportamento transiente de dispersão do excesso gerado	
de pressões. Nikolinakou et al. (2012).	79
Figura 2.49 – Seção esquemática do GoM com locação de poços A a H em	
intervalos de 25 km (Editado de Malloy et al., 1996).	80
Figura 2.50 –a) Vista em planta das seções selecionadas e profundidade	
do topo do sal; b) seções NS e LO modeladas. Allwardt et al. (2009).	81
Figura 2.51 – Restauração da evolução estrutural do sal e das mini bacias	
da seção c) da Figura 2.50. Editado de Allwardt et al. (2009).	82
Figura 2.52 – Pressão estimada para as seções NS e EW (LO). Notar	
melhor ajuste da seção NS às medidas de pressão. Editada de Allwardt	
et al. (2009).	83
Figura 2.53 – Efeito das cicatrizes de sal na pressão: a) sem restrição de	
fluxo; b) preenchimento de falha; c) sal remanescente. Allwardt et al. (2009).	84
Figura 2.54 – Seção litoestratigráfica da porção Sul da Bacia do Espírito	
Santo (Ribeiro, 2011).	85
Figura 2.55 – Registros de pressão (Mpa) por testes de formação. Reta	
azul: pressão hidrostática. Curva preta: previsão de Ribeiro (2011).	86
Figura 2.56 – Seção com previsão de pressão de poros no presente (0 Ma)	
ao longo das unidades litoestratigráficas modeladas por Ribeiro (2011).	87
Figura 3.1 – Esquema geral dos processos de modelagem geológica	
geomecânica, conforme Turner (2006).	92
Figura 3.2 – Ilustração do conteúdo de um MEM (Plumb et al., 2000).	93
Figura 3.3 – Fluxograma de trabalho para modelo geomecânico 3D (Araújo	
et al., 2010).	95
Figura 3.4 – Análise de BDP e representação em curva de tempo x	
profundidade (Editado de Araújo et al., 2010).	96
Figura 3.5 - Eventos de perfuração e das operações de manobra plotados	
em gráfico profundidade versus tempo (Mcintyre et al., 2009).	97
Figura 3.6 - Etapas envolvidas no fluxo de trabalho para o diagnóstico das	
causas de problemas de perfuração (Rosero, 2012).	98

Figura 3.7 - Correlação entre os repasses e arrastes na descida e retirada	
da coluna de perfuração com a litologia e horizontes estratigráficos	
(Rosero, 2012).	99
Figura 3.8 – Metodologia proposta para a previsão de pressão de poros	
em ambientes geológicos complexos.	103
Figura 3.9 – Formato de cascalhos de perfuração como indicadores de	
sobrepressões (editado de Rocha e Azevedo, 2009).	107
Figura 3.10 – Exemplo de definição de topos litoestratigráficos com base	
nos perfis GR e Dtc (editado de Pereira de Lima, 2005).	108
Figura 3.11. Pressões de MDT e RFT de 2 poços demostrando a presença	
de gases com diferentes pressões (Ireland et al. 1990).	109
Figura 3.12 - Modelo de rede neural artificial Multilayer Perceptron. O	
vetor X representa as entradas da rede, o vetor W os pesos sinápticos,	
o vetor B, os bias e F(x) a resposta da rede (Relatório Interno GTEP/	
PUC-Rio).	111
Figura 3.13 – Exemplo de curva de proporção vertical.	112
Figura 3.14 – Modelo de fácies distribuídas em reservatório por Acosta	
(2010).	114
Figura 3.15 – Previsão espacial de propriedades condicionadas às fácies	
(Acosta, 2010).	116
Figura 3.16 – Ilustração do processo de SGS utilizando apenas dados	
provenientes de poços. Editado de Doyen (2007).	117
Figura 3.17 – Análise integrada para elaboração da metodologia de	
previsão.	118
Figura 3.18 – Definição de estratégia de previsão em rochas argilosas.	120
Figura 4.1 – Fluxograma da montagem de dados sintéticos.	124
Figura 4.2 – Planta dos poços utilizados no modelo.	125
Figura 4.3 – Curva de avanço da perfuração tempo x profundidade (esq.)	
e diâmetro da parede do poço (dir.): análise do BDP de um poço.	126
Figura 4.4 – Análise de pressão de poros e estabilidade 1D realizada	
para o mesmo poço no SEST©.	127
Figura 4.5 - Mapeamento de topos das unidades estratigráficas.	129
Figura 4.6 – Estratigrafia com distorções.	130
Figura 4.7 – Classificação de litofácies.	131
Figura 4.8 – Curva de proporção vertical de fácies para a zona 1.	132
Figura 4.9 – Histogramas de espessura de fácies para uma das zonas.	132

Figura 4.10 – Resultados da análise de variogramas da zona 5 nas três	
direções (acima à esq.), parâmetros do variograma experimental (acima	
à dir.) e ajuste de modelo teórico na direção de maior alcance (abaixo).	133
Figura 4.11 – Cenário mais frequente entre 20 simulações de fácies (SIS).	134
Figura 4.12 – Validação do modelo de fácies. Da esquerda para a direita:	
fácies real; cenário mais frequente e previsão SIS 03.	135
Figura 4.13 – Cenário de fácies escolhido para o condicionamento das	
propriedades (SIS 03).	135
Figura 4.14 – Ajuste de variograma vertical de Dtc da fácies folhelho na	
zona 1.	136
Figura 4.15 – Cenário médio 20 simulações de Dtc por SGS.	137
Figura 4.16 - Cenário médio 20 simulações de Rhob por SGS. Magenta	
= 1.8 g/cm ³ e vermelho = 3.0 g/cm^3 .	137
Figura 4.17 - Cenário médio de GR por SGS (Escala de 0 a 200 API).	138
Figura 4.18 – Validação de Dtc (esq.), Rhob (centro) e GR (dir.) para um	
dos poços excluídos para teste cego (ST-51). Mínimos e máximos em	
vermelho.	139
Figura 4.19 – Perdas (pontos em azul) e ganho de fluido (pontos em	
preto) plotados sobre seção de litofácies entre poços. Superfícies	
delimitam as fases de perfuração (trechos de poço aberto).	140
Figura 4.20 – Perdas (pontos em azul) e ganho de fluido (pontos em	
preto) plotados sobre seção de MW interpolado entre poços.	141
Figura 4.21 – Análise de compartimentos de pressão em curva de	
pressão versus profundidade vertical.	142
Figura 4.22 – Análise de ocorrência de mecanismos de sobrepressão	
elevada (verde – folhelhos e roxo – margas).	143
Figura 4.23 – Análise MEM integrada, poço a poço, no modelo.	144
Figura 4.24 – Cubo auxiliar de gradiente de sobrecarga (lb/gal).	145
Figura 4.25 – Superfície com possível distribuição em planta de pressão	
de Gpp (lb/gal) para a zona 6 a partir de dados de medições diretas.	146
Figura 4.26 – Modelo 3D de pressões previsto (Gpp, em lb/gal).	147
Figura 4.27 – Validação da previsão de pressão de poros (curva azul do	
segundo track da direita para a esquerda) em profundidade vertical.	148
Figura 5.1 - Principais processos geológicos em modelagem de bacias	
(editado de Hantschel e Kaureauf, 2009).	150

Figura 5.2 – Fluxo de modelo de bacias otimizado (Editado de Liu e Katz,	
2013).	153
Figura 5.3 – Fluxo de modelagem no SEMI	
(http://www.sintef.no/home/SINTEF-Petroleum-Research/Software/SEMI/.	
Acesso em maio de 2015).	157
Figura 5.4 – Visão esquemática dos processos modelados pelo PRESSIM	
(editado de Borge, 2000).	158
Figura 5.5 – a) Falhas com e sem sobreposição; b) Geometria base;	
c) Função de transmissibilidade de falhas. Editado de Borge (2000).	158
Figura 5.6 – Visão esquemática de elementos de entrada e respectivos	
produtos obtidos conforme fluxo do simulador PetroMod (editado de	
Ribeiro, 2011).	159
Figura 5.7 – Visão geral dos dados de entrada e modelagem de	
processos de geração de HC no BasinMod (Manual do programa, citado	
por da Silva, 2006).	160
Figura 5.8 - Processos de modelagem numérica de bacias (Editado de	
Peters et al., 2007, apud Torsch, 2012).	161
Figura 5.9 – Carta estratigráfica da Bacia de Santos	
(http://www.cprm.gov.br, acesso em julho de 2015).	163
Figura 5.10 – Curvas de compactação de Schneirder et al. (1996) para	
quatro sedimentos. Parâmetros no Apêndice A de Hantschel e Kaureaulf	
(2009).	165
Figura 5.11 – Curvas de permeabilidade vs porosidade: "bi-linear" (linha	
cheia) e Kozeny-Carman (pontilhada). Editado de Hantschel e Kaureaulf	
(2009).	167
Figura 5.12 – Processo de backstripping (Cunha, 2008).	168
Figura 5.13 – Descompactação de várias camadas (Cunha, 2008).	169
Figura 5.14 - Curvas de pressão a diferentes taxas de sedimentação para	
curvas de permeabilidade lineares (Hantschel e Kaureauf, 2009).	172
Figura 5.15 – Formação de sobrepressões 1D em sequência de areias e	
argilas (Hantschel e Kaureauf, 2009).	173
Figura 5.16 – Sobrepressão 1D sob selo perfeito. (a) profundidade vs	
pressão no presente. (b) ao longo do tempo geológico (Hantschel e	
Kaureauf, 2009).	174
Figura 5.17 – Dissipação de pressão por camadas permeáveis	
(Hantschel e Kaureauf, 2009).	175

Figura 5.18 – Exemplo de rifteamento mostrando decaimentos	
exponencial e linear em diferentes fases do rifte (Editado de da Silva,	
2006).	176
Figura 5.19 - Refletância da vitrinita x maturação (Fonte: Ribeiro, 2011).	179
Figura 5.20 – Ajuste de lei de Athy na formulação de porosidade versus	
tensão efetiva por valores medidos (Hantschel e Kaureauf, 2009).	184
Figura 5.21 – Calibração de pressão por ajuste de permeabilidade em	
camadas de gradiente crescente ou decrescente (Hantschel e Kaureauf,	
2009).	185
Figura 5.22 – Teste de histórico de migração em região com falhas. Os	
traços em verde são caminhos de migração de HCs (Liu e Katz, 2013).	187
Figura 5.23 – Restauração de corpos salinos: a) autóctone; b) alóctone.	
Editado de Liu e Katz (2013).	188
Figura 5.24 – Metodologia aplicada a estudos de caso.	191
Figura 6.1 – Previsão de excesso de pressão de poros em seção de	
bacia argilosa com a presença de sal (Editado de O'Brien et al., 1993).	197
Figura 6.2 - Previsão de excesso de pressão de poros em seção de bacia	
argilosa com a presença de sal e arenito (Editado de O'Brien et al., 1993).	198
Figura 6.3 – Excesso de pressão de poros reproduzido no Temis para a	
seção do caso base de O'Brien et al (1993).	200
Figura 6.4 - Comparação entre os resultados obtidos (curva cheia) e os	
dos autores (pontos em cruz).	201
Figura 6.5 – Excesso de pressão de poros reproduzido no Temis para a	
seção com lente lateral de areia de O'Brien et al (1993).	202
Figura 6.6 – Curvas de compactação (a – linha cheia) e de relação	
porosidade vs permeabilidade (b – linha cheia inferior) de Allwardt et al.	
(2009).	203
Figura 6.7 – Gradiente de pressão atual (0 Ma) reproduzido neste	
trabalho (a) e simulado (b) por Allwardt et al. (2009) para a seção NS.	204
Figura 6.8 – Calibração das curvas obtidas (linha cheia) e dados do poço	
de calibração (pontos em cruz).	205
Figura 6.9 – Simulação dos diferentes cenários de pressão de poros	
frente à movimentação de sal na bacia para diferentes idades	
estratigráficas.	206
Figura 6.10 – Comparação entre resultados simulados para a seção LO	
(curvas cheias) e dados de poço (pontos).	207

Figura 6.11 – Efeito da introdução de aquífero próximo à superfície (a)	
e aquífero conectado por falha (b) ao estudo de caso de O'Brien et al.	
(1993). Idade atual.	209
Figura 6.12 – Comparação entre o excesso de pressão gerado pelos	
casos apresentados por O'Brien et al. (1993) e a introdução de um novo	
aquífero acima do sal, conectado (d) ou não (c) por falhas permeáveis.	210
Figura 6.13 – Modelo de fácies 3D replicando caso 2D com lente de areia.	212
Figura 6.14 – Comparação entre os resultados 1D (azul), 2D (verde) e	
3D (laranja), para os poços A, B, C e D.	213

Lista de tabelas

Tabela 2.1 – Propriedades físicas de evaporitos em leituras de perfis de	
poço (Editado de Mohriak <i>et al.</i> , 2009).	51
Tabela 2.2 – Erros médios de previsão do gradiente de pressão de poros	
(lb/gal) dos 95 poços estudados (Saleh et al., 2013).	62
Tabela 3.1 – Fontes de dados para a construção do MEM (Plumb et al.,	
2000).	94
Tabela 3.2 – Exemplos de estudos de modelagem 3D e modeladores	
utilizados.	102
Tabela 3.3 – Dados por etapa da modelagem e informações deles	
coletadas.	105
Tabela 3.4 – Exemplo de formato de BDP (Tavares, 2006).	106
Tabela 5.1 – Pacotes disponíveis em modelagem de bacias.	155
Tabela 6.1 – Idades estratigráficas adotadas por Allwardt et al. (2009).	204

Lista de siglas

BDP	Boletim diário de perfuração
CGO	Contato gás óleo
COA	Contato óleo água
СОТ	Conteúdo orgánico total
ECD	Densidade equivalente de circulação
FDP	Função densidade de probabilidade
IK	Krigagem indicativa
LDA	Lâmina d'água
RFT	Teste de formação
MDT	Teste de medição direta de pressão
NPT	Tempo não produtivo
HC	Hidrocarboneto
GoM	Golfo do México
MAPE	Erro médio percentual absoluto
MEF	Método dos elementos finitos
MEM	Modelo geomecânico
MPS	Simulação plurigaussiana
SIS	Simulação Sequencial Indicativa
SGS	Simulação Sequencial Gaussiana
GR	Perfil raios gama
Dtc	Tempo de trânsito da onda compressional
Rhob	Perfil densidade da formação
TGS	Simulação gaussiana truncada
ТΙ	Imagem de treinamento
тос	Carbono Orgânico Total
UCS	Resistência à compressão simples
WOB	Peso sobre a broca
RPM	Rotações/revoluções por minuto

E&P Exploração e produção

Lista de símbolos

Ø	Porosidade
t	Tempo
Т	Temperatura
σ	Tensão efetiva
σ	Desvio padrão
σ^2	Variância
G_{PP}	Gradiente de pressão de poros
G_S	Gradiente de sobrecarga
R_n	Resistividade normal
R _o	Resistividade observada
Δt_n	Tempo de trânsito normal
Δt_o	Tempo de trânsito observado
ROP	Taxa de penetração
RPM	Velocidade de rotação da coluna de perfuração
а	Constante litológica
WOB	Peso sobre a broca
D	Diâmetro da broca
d	Expoente de compactação
d_c	Expoente d corrigido
Рр	Pressão de poros
l	Litologia
Ζ	Profundidade
IA	Impedância acústica
ρ	Densidade
V_P	Velocidade de propagação da onda compressional
C_v	Coeficiente de consolidação
k	Permeabilidade
μ	Viscosidade
η	Viscosidade do fluido
m_v	Compressibilidade dos sedimentos
T_{v}	Fator tempo
H _d	Distância da face drenante mais próxima

Ε	Módulo de elasticidade
Ε	Esperança matemática
С	Covariância
h	Distância entre pares para cálculo de semivariância
μ	Parâmetro de Lagrange
m_x	Média local
v_i	Valor de uma variável na locação i
v _c	Valor de corte para uma variável indicativa
Wi	Peso de interpolação para a locação i
V _{est}	Valor estimado
Т	Transmissibilidade
k	Parâmetro de compactação
ε	Índice de vazios
С	Coeficiente de compactação
C_H	Coeficiente empírico de Hazen
D_{10}	Diâmetro de grão para o qual 10% das partículas são mais finas
C_{K-C}	Coeficiente empírico de Kozeny-Carman
S_0	Superfície específica em área por volume de partículas
γ	Peso específico
g	Aceleração da gravidade
W_d	Profundidade da água para sedimentos descompactados
t _c	Espessura da crosta terrestre
TS	Lâmina d'água atual
Z_m	Espessura de compensação do manto
Δ_{sl}	Variação do nível médio do mar (isostasia)
Ph	Pressão hidrostática
Pexcess	Excesso de pressão
v	Velocidade do fluxo de saída (descarga) de fluido dos poros
ν	Viscosidade
μ	Mobilidade do fluido
∇u	Gradiente de sobrepressão
Κ	Condutividade térmica
∇u	Gradiente de sobrepressão
q	Fluxo de calor condutivo entre dois pontos
Y_S	Coeficiente de dependência termal do sólido
P_c	Pressão capilar

P_p	Pressão	de	poros
-------	---------	----	-------

Phc Pressão nos HCs

E Energia de ativação