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Apêndice A  
Sistema IEEE 34 Barras 

Neste Apêndice é apresentado o diagrama, características e parâmetros do 

sistema IEEE 34 barras (Figura A.1). 

 

Figura A.1 -  Sistema IEEE 34 barras 

Na Tabela A.1 são apresentadas todas as características das linhas da rede 

em média tensão do sistema de distribuição utilizadas para a realização dos 

estudos de fluxo de potência nas simulações apresentadas neste trabalho. 

Na Tabela A.2 são apresentadas as demandas nominais das cargas 

conectadas nas barras do sistema e os parâmetros ideais que definem o 

comportamento e o tipo de carga que elas são. 
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Tabela A.1 - Dados das linhas do sistema IEEE 34 barras 

Linha 
Barra 

inicial 

Barra 

final 
R [ohm] X [ohm] 

Comprimento 

[km] 

1 1 2 1.2586 0.5549 0.7869 

2 2 3 0.8432 0.3720 0.52765 

3 3 4 15.7483 6.9441 9.83015 

4 4 5 2.8520 1.2586 1.77022 

5 4 6 18.2903 8.0601 11.4375 

6 6 7 14.5082 6.3861 9.06765 

7 7 8 0.4879 0.2151 0.00305 

8 8 9 0.1513 0.0670 0.09455 

9 9 10 0.8370 0.3677 0.52155 

10 9 11 4.9849 2.1948 3.11405 

11 10 12 23.4984 10.3542 14.68575 

12 11 13 0.4098 0.1804 0.2562 

13 11 14 1.4818 0.6510 0.92415 

14 12 15 6.6961 2.9574 4.1907 

15 13 16 9.9822 4.3959 6.2342 

16 16 17 0.2536 0.1116 0.1586 

17 17 18 17.9803 7.9361 11.23315 

18 17 19 11.4082 5.0221 7.11565 

19 18 20 0.4879 0.2151 0.00305 

20 20 21 1.8972 4.0797 0 

21 20 22 2.4056 1.0540 1.4945 

22 21 23 5.1523 2.2692 3.2208 

23 22 24 2.8458 1.2524 1.77815 

24 22 25 0.7936 0.3484 0.4941 

25 24 26 0.9858 0.4346 0.6161 

26 24 27 0.1364 0.0603 0.0854 

27 26 28 1.3082 0.5766 0.8174 

28 27 29 0.6572 0.2902 0.41175 

29 28 30 0.1364 0.0603 0.0854 

30 28 31 0.4197 0.1848 0.2623 

31 29 32 1.7794 0.7812 1.1102 

32 30 33 1.5872 1.0416 1.4823 

33 32 34 0.2585 0.1141 0.16165 
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Tabela A.2 - Dados das cargas do sistema IEEE 34 barras 

   
Parâmetros da potência 

ativa 

Parâmetros da potência 

reativa 

Barra 𝑺𝒏𝒐𝒎𝒊𝒏𝒂𝒍 (𝒌𝑽𝑨) cos(φ) 𝜶𝑷 𝜷𝑷 𝜸𝑷 𝜶𝑸 𝜷𝑸 𝜸𝑸 

2 0.00 0.00 1 0 0 1 0 0 

3 21.50 0.89 0 1 0 0 1 0 

4 0.00 0.00 0 0 1 0 0 1 

5 5.96 0.89 0,3 0,3 0,4 0,3 0,3 0,4 

6 0.00 0.00 1 0 0 1 0 0 

7 0.00 0.00 0 1 0 0 1 0 

8 0.00 0.00 0 0 1 0 0 1 

9 0.00 0.00 0,3 0,3 0,4 0,3 0,3 0,4 

10 0.15 0.88 1 0 0 1 0 0 

11 12.72 0.89 0 1 0 0 1 0 

12 16.78 0.89 0 0 1 0 0 1 

13 26.19 0.45 0,3 0,3 0,4 0,3 0,3 0,4 

14 2.32 0.89 1 0 0 1 0 0 

15 0.00 0.00 0 1 0 0 1 0 

16 0.00 0.00 0 0 1 0 0 1 

17 0.00 0.00 0,3 0,3 0,4 0,3 0,3 0,4 

18 1.40 0.89 1 0 0 1 0 0 

19 0.00 0.00 0 1 0 0 1 0 

20 0.00 0.00 0 0 1 0 0 1 

21 4.92 0.89 0,3 0,3 0,4 0,3 0,3 0,4 

22 0.00 0.00 1 0 0 1 0 0 

23 11.26 0.89 0 1 0 0 1 0 

24 34.59 0.78 0 0 1 0 0 1 

25 25.00 0.00 0,3 0,3 0,4 0,3 0,3 0,4 

26 0.00 0.00 1 0 0 1 0 0 

27 55.25 0.84 0 1 0 0 1 0 

28 3.42 0.89 0 0 1 0 0 1 

29 14.75 0.89 0,3 0,3 0,4 0,3 0,3 0,4 

30 188.20 0.79 1 0 0 1 0 0 

31 10.36 0.89 0 1 0 0 1 0 

32 11.35 0.78 0 0 1 0 0 1 

33 8.49 0.89 0,3 0,3 0,4 0,3 0,3 0,4 

34 0.00 0.00 1 0 0 1 0 0 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1313472/CA



 

Apêndice B  
Algoritmos Genéticos (AG) 

Os algoritmos genéticos utilizam conceitos provenientes do princípio de 

seleção natural para abordar uma série ampla de problemas, em especial de 

otimização ou minimização de funções. Robustos, genéricos e facilmente 

adaptáveis, consistem de uma técnica amplamente estudada e utilizada em 

diversas áreas [13]. 

O funcionamento dos AG é inspirado na maneira como o darwinismo 

explica o processo de evolução das espécies. Holland decompôs o funcionamento 

dos AG nas etapas de inicialização, avaliação, seleção, cruzamento, mutação, 

atualização e finalização como amostrado no fluxograma da Figura B.1. 

 

Figura B.1 -  Fluxograma do funcionamento dos Algoritmos Genéticos 

Iniciar população 

Avalia população 

Seleciona reprodutores 

Cruza selecionados 

Muta resultantes 

Atualiza população 

Deve parar? 

Fim 

Não 

Sim 
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Basicamente, o que um algoritmo genético faz é criar uma população de 

possíveis respostas para o problema a ser tratado (inicialização) para depois 

submetê-la ao processo de evolução, constituído pelas seguintes etapas: 

1. Avaliação: Avalia-se a aptidão das soluções (indivíduos da 

população). É feita uma análise para que se estabeleça quão bem elas 

respondem ao problema proposto. 

2. Seleção: Indivíduos são selecionados para a reprodução. A 

probabilidade de uma dada solução de ser selecionada é proporcional 

à sua aptidão. 

3. Cruzamento: Novos indivíduos são gerados baseados na 

recombinação das características das soluções escolhidas. 

4. Mutação: Características dos indivíduos resultantes do processo de 

reprodução são alteradas, acrescentando assim variedade à 

população. 

5. Atualização: Os indivíduos criados nesta geração são inseridos na 

população. 

6. Finalização: Verifica se as condições de encerramento da evolução 

foram atingidas, retornando para a etapa de avaliação em caso 

negativo e encerrando a execução em caso positivo. 

 

Por causa de maneira particular como os AG operam, neles se destacam as 

seguintes características:  

 

 Busca codificada: Segundo o autor Pérez Serrada [14], “os AG não 

trabalham sobre o domínio do problema, mas sim sobre 

representações de seus elementos”. Tal fator impõe ao seu uso uma 

restrição: para resolver um problema é necessário que o conjunto de 

soluções viáveis para este possa ser de alguma forma codificado em 

uma população de indivíduos. 

 Generalidade: Os AG simulam a natureza em um de seus mais fortes 

atributos: a adaptabilidade. Visto que a representação e a avaliação 

das possíveis soluções são as únicas partes (de um considerável 

conjunto de operações utilizadas em seu funcionamento) que 

obrigatoriamente requisitam conhecimento dependente do domínio 
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do problema abordado, basta a alteração destas para portá-los para 

outros casos. A preocupação de um programador de AG não é então 

de que forma chegar a uma solução, mas sim com o que ela deveria 

se parecer. 

 Paralelismo explícito: O alto grau de paralelismo intrínseco aos AG 

pode ser facilmente verificado se considerarmos o fato de que cada 

indivíduo da população existe como um ente isolado e é avaliado de 

forma independente. Se na natureza todo processo de seleção ocorre 

de forma concorrente, nos AG essa característica se repete.  

 Busca estocástica: Ao contrário de outros métodos de busca de 

valores ótimos, os algoritmos genéticos não apresentam um 

comportamento determinístico [1115]. Não seria correto, no entanto, 

afirmar que tal busca se dá de forma completamente aleatória — as 

probabilidades de aplicação dos operadores genéticos fazem com 

que estes operem de forma previsível estatisticamente, apesar de não 

permitirem que se determine com exatidão absoluta o 

comportamento do sistema. 

 Busca cega: De acordo com [16], um algoritmo genético tradicional 

opera ignorando o significado das estruturas que manipula e qual a 

melhor maneira de trabalhar sobre estas. Tal característica lhe 

confere o atributo de não se valer de conhecimento específico ao 

domínio do problema, o que lhe traz generalidade por um lado, mas 

uma tendência a uma menor eficiência por outro. 

 Eficiência mediana: Por constituir um método de busca cega, um 

algoritmo genético tradicional tende a apresentar um desempenho 

menos adequado que alguns tipos de busca heurística orientadas ao 

problema. Para resolver tal desvantagem, a tática mais utilizada é a 

hibridização [16], onde heurísticas provenientes de outras técnicas 

são incorporadas. 

 Paralelismo implícito: A partir do teorema dos esquemas de Holland, 

tem-se que ao fazer uma busca por populações, a evolução de um 

algoritmo genético tende a favorecer indivíduos que compartilhem 

determinadas características, sendo assim capaz de avaliar 
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implicitamente determinadas combinações ou esquemas como mais 

ou menos desejáveis, efetuando o que chamamos uma busca por 

hiperplanos, de natureza paralela [17]. 

 Facilidade no uso de restrições: Ao contrário de muitos outros 

métodos de busca, os AG facilitam a codificação de problemas com 

diversos tipos de restrição, mesmo que elas apresentem graus 

diferentes de importância [18]. Neste caso, se dois indivíduos violam 

restrições, é considerado mais apto aquele que viola as mais flexíveis 

(soft constraints) em detrimento do que viola as mais graves (hard 

constraints). 
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Apêndice C  
Artigo 1 

No anexo desta dissertação é apresentado o artigo referente ao trabalho 

desenvolvido. O artigo foi apresentado na 23ra Conferência e Exposição 

Internacional em Sistemas de Distribuição (CIRED 2015 – Lyon, França). 
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ABSTRACT 

 
In this paper, a new load model is proposed for electric 

power distribution systems under varying voltage 

conditions in order to estimate the energy losses and, 

consequently, optimize the energy losses in the system. 

The proposed methodology is based on the adjustment of 

the polynomial ZIP load parameters related to active and 

reactive power as a function of the static voltage 

variations measured at the substation. The ZIP 

parameters are determined using the Genetic Algorithm 

in order to minimize the error between the measured and 

estimated active and reactive power at the substation. The 

estimation of the energy losses during a period of analysis 

is determined by the computation of the power flow using 

the ZIP model of each load in the system and the 

substation voltages measured. The procedure requires 

information of the feeder topology, distribution lines, 

rated power of the transformers, and a database 

containing voltage and power measurements at the 

substation during the period of analysis. If additional 

information from meters installed along the feeder is 

available, the proposed approach can use this 

information to improve the estimation. Finally, with the 

model allocated for each load, a tap change at the 

substation can be used to minimize the energy losses. To 

illustrate the approach, a real Brazilian feeder was used. 

Results are compared with a database generated in order 

to test the effectiveness of the methodology with ideal 

losses on the system. 

 

 

 

 

 

NOMENCLATURE 

 

Measurements 

P1
SE (t) Active power at the substation at the time 𝑡. 

Q
1

SE (t) Reactive power at the substation at the time 𝑡. 

V1
SE (t) Voltage at the substation at the time 𝑡. 

Pi
msr (t) Active power at the node i at the time 𝑡. 

𝑄𝑖
msr (t) Reactive power at the node i at the time 𝑡. 

V𝑖
msr (t) Voltage at the node i at the time 𝑡. 

V1

ref
 Reference voltage at the substation (nominal 

voltage of the system). 
Parameters 

xi Fraction of the active power at the substation 

allocated to the load 𝑖. 
y

i
 Fraction of the reactive power at the 

substation allocated to the load 𝑖. 
αp,β

p
,γ

p
 Vector of load ZIP parameters for the active 

power. Each element of the vector is related 

to each load of the system. 

αq,β
q
,γ

q
 Vector of load ZIP parameters for the reactive 

power. Each element of the vector is related 

to each load of the system. 

ui Parameter of correlation between the voltage 

substation and voltage at bus 𝑖. 
Variables 

Pi(t) Active power allocated to the load 𝑖  in each 

time interval t. 

Q
i
(t) Reactive power allocated to the load 𝑖 in each 

time interval t. 

L𝑃(t) Active power loss of the system in each time 

interval t. 

𝐿𝑄(t) Reactive power loss of the system in each 

time interval t. 
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Sets 

ΩL Set of loads at the system. 

ΩNM Set of nodes without meters. 

ΩM Set of nodes with meters. 

 
I. INTRODUCTION 
Modern power system is an integrated complex system 
and due to its scale and complexity, the power system 
operation and control heavily rely on numerical 
simulations based on power system models including load 
models [1]. It is a consensus that load model plays an 
important role in power system analysis. The model 
validity directly affects simulations results accuracy [2]. 
Naturally, the model validity of various components in 
the power system directly affects the security and the 
economy of power system operations. Many efforts have 
been dedicated to explore model structures and 
parameters identification techniques because of the 
difficult task to model the power system loads. 
Load model structures can be classified into two major 
categories: the physical models and the non-physical 
models. The physical models have clear physical 
inference to the model. The widely applied load model 
combining the constant impedance, the constant current 
and the constant power, denoted often as ZIP model is a 
typical physical one. The non-physical load models 
include the exponential load model, the difference 
equations, and the neuro-net model, etc. Mathematically, 
the physical and non-physical models are equivalent in 
the matter of input and output data; however, due to the 
clear physical inferences of the ZIP model, it has gained 
more popularity [3]. 
In electrical distribution systems, one of the greatest 
challenges for utilities is the estimation of the technical 
energy losses on the feeders. Specifically in Brazil, the 
correct evaluation of the energy losses provides valuable 
information for the regulator to establish the energy 
distribution tariffs. 
There are different ways for estimating energy losses, but 
due to the difficulty of modelling precisely the equipment 
of the system, as well as the energy consumed by each 
load, the energy losses estimation can lead to huge errors. 
In addition, the difficulty to split technical energy losses 
and non-technical energy losses, which is usually caused 
by metering errors, unmetered company or customer use 
and billing cycle errors [4], aggravates the problem. 
In this paper a new methodology based on a statistical 
model and a Top-Down approach for energy loss 
estimation is presented. To be more specific, the 
methodology attempts to estimate technical energy losses 
along a period by allocating parameters of the load model 
applied, taking into account the measurements of voltages 
and power at the substation and, when available, the 
measurements of voltages and power demanded by loads 
with meters installed at the transformers. The main 
contribution of the proposed method is the application of 
a statistical model for energy losses estimation using 
network information and the correlation between the 
power consumed and the voltage, which is usually 
neglected for other methods. After that, the model can be 
used to minimize energy losses changing the tap of the 
transformer at the substation. 
To describe the proposed method in detail and its features, 
this paper is organized as follows: Section II describes the 
proposed load model; Section III describes the proposed 

methodology for energy loss estimation; Section IV 
presents a case of study using a real feeder from Brazil, 
and Section V presents the conclusions of this work. 
 
II. PROPOSED LOAD MODEL 
The polynomial or ZIP load model represents the 

variation (with voltage) of a load as a composition of 

constant impedance, constant current and constant power 

type of load [6] as shown in (1) and (2) for the active and 

reactive power demanded by each load i: 

 

Pi (t)=𝑃𝑖
ref (t) {αp

i
(

𝑉i(t)

Vi
ref

)

2

+β
p

i

(
𝑉i(t)

V𝑖
ref

) +γ
p

i

}  , ∀ i ∈ ΩL   (1) 

Q
i
 (t)=𝑄𝑖

ref (t) {αQi
(

𝑉i(t)

Vi
ref

)

2

+βQi
(

𝑉i(t)

V𝑖
ref

) +γQi
}  , ∀ i ∈ ΩL   (2) 

 

Considering that the power supplied by the substation is 

distributed to every load on the feeder, the power 

reference of the ZIP model for each load may be 

expressed as a percentage of the power at the substation. 

In addition, considering that the voltages at the nodes may 

not be available, they are substituted by an approach 

given by a percentage of the voltage at the substation. 

With the previous considerations applied to (1) and (2), 

the proposed models are shown as follows: 

 

Pi (t)=xiP1
SE (t) {αp

i
(ui∙

V1
SE(t)

V1
ref

)

2

+β
p

i

(ui∙
V1

SE(t)

V1
ref

) +γ
p

i

} 

∀ i ∈ ΩL 

(3) 

 

𝑄i (t)=𝑦i𝑄1
SE (t) {αQi

(ui∙
V1

SE(t)

V1
ref

)

2

+βQi
(ui∙

V1
SE(t)

V1
ref

) +γQi
} 

∀ i ∈ ΩL 

(4) 

 

The expressions (3) and (4) will be used in the 

methodology for the estimation of losses. 

 

III. PROPOSED METHODOLOGY  

The application of the proposed methodology requires 

information about the feeder: topology, line impedance, 

nominal power of the transformers, a database containing 

voltages and power measured at the substation and, if it is 

available, scenarios of voltage and power measured at 

nodes along the feeder.  

The database must be organized according to time 

intervals “w” during a day or scenario “s”, so each value 

of voltage and power measured would be identified by a 

unique coordinate pair “(s,w)”. In order to improve the 

model, the data can be organized by clusters, according to 

its level of load (light, medium and peak). The clusters are 

desired for the statistical models because it uses the 

similarities of the load pattern scenarios. 

The proposed methodology uses an optimization model to 

adjust the parameters of the load model, minimizing, in an 

iterative process, the square difference between power 

measured at the substation and the power allocated for 
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each load plus the power losses for each time interval of 

the period. The convergence is achieved when no 

significant change is observed between the power losses 

calculated in the current and in the previous interaction 

for each time interval. As a result, the energy losses are a 

by-product of the proposed method for the corresponding 

period. Fig. 1 shows the flowchart of the proposed 

methodology: 

 

 

Figure 1. Flowchart of the methodology proposed for the estimation of 

power losses. 

Each stage of the process is explained as follows: 

 

A. Initialization of parameters 
Consider an iteration counter “k” set to zero. The active 

and reactive power losses at iteration “k” must be set to 

zero for each time interval of the period of analysis, and 

the parameter "u" for the loads without meters must be set 

to one. 

 

B. Initialization of parameters 
Before the adjustment process, some constraints for the 

load parameters, with or without meters, are described: 

 

1) Constraints for “x” and “y”: For each load, these 

parameters must be bound considering the relationship 

between the nominal power of the loads and the power at 

the substation at nominal conditions. 

 

2) Constraints for the ZIP parameters: For each load, 

the sum of the parameters "α", "β" and "γ" equals to one 

for the active and reactive component. 

 

Before the adjustment of the parameters in the proposed 

model, an estimation of “u” for loads with meter installed 

take place. This adjustment is done by using the Least 

Square method, in which “u” is calculated based on the 

relation between the voltage measured at load “i” and the 

voltage at the substation as shown in the expression (5). 

𝑚𝑖𝑛
𝑢

{
1

𝑛𝑠 ∙ 𝑛𝐶𝐿
∙ ∑ ∑ [

𝑉𝑖
𝑚𝑠𝑟(𝑠, 𝑤) − 𝑢𝑖 ∙ 𝑉1(𝑠, 𝑤)

𝑉𝑖
𝑚𝑠𝑟(𝑠, 𝑤)

]

2𝑛𝐶𝐿

𝑤=1

𝑛𝑠

𝑠=1

}   (5) 

 

Where “ns” is the number of scenarios considered in the 

analysis, and “nCL” is the number of time intervals from 

the period or cluster in analysis. 

In addition, the parameters of the loads with meters must 

be adjusted by using the Least Square method to 

minimize the error between the power measured of the 

loads with meters and the their allocated power given by 

the modified load model as shown in the expression (6). 

 

min
x,αP,βP,γP,
y,αQ,βQ,γQ

{
1

ns∙nCL
∑ ∑ ([

Pj
msr(s,w)-Pj(s,w)

Pj
msr(s,w)

]
2

+ [
Qj

msr(s,w)-Qj(s,w)

Qj
msr(s,w)

]
2

)
nCL
w=1

ns
s=1 }  

(6) 

 

C. Adjustment of the loads parameters without 

meters 
The Least Squares method is applied to minimize the 

error between the power measured at the substation and 

the sum of power of the loads with and without meters 

installed, and the power losses in the current iteration “k” 

for each time interval as shown in the expression (7) and 

(8) for the active and reactive components. 

𝑚𝑖𝑛
𝑥,𝛼𝑃,𝛽𝑃,𝛾𝑃

{
1

𝑛𝑠∙𝑛𝐶𝐿
∑ ∑ [

𝑃1
𝑆𝐸(𝑠,𝑤)−𝑃1

𝑐𝑎𝑙(𝑠,𝑤)

𝑃1
𝑆𝐸(𝑠,𝑤)

]
2

𝑛𝐶𝐿
𝑤=1

𝑛𝑠
𝑠=1 }   

𝑚𝑖𝑛
𝑦,𝛼𝑄,𝛽𝑄,𝛾𝑄

{
1

𝑛𝑠∙𝑛𝐶𝐿
∑ ∑ [

𝑄1
𝑆𝐸(𝑠,𝑤)−𝑄1

𝑐𝑎𝑙(𝑠,𝑤)

𝑄1
𝑆𝐸(𝑠,𝑤)

]
2

𝑛𝐶𝐿
𝑤=1

𝑛𝑠
𝑠=1 }   

𝑃1
𝑐𝑎𝑙(𝑠, 𝑤) = ∑ 𝑃𝑖 (𝑠, 𝑤)

𝑖∈𝛺𝑁𝑀

+ ∑ 𝑃𝑗 (𝑠, 𝑤)

𝑗∈𝛺𝑀

+ 𝐿
𝑃(𝑘)(𝑠, 𝑤)

𝑄1
𝑐𝑎𝑙(𝑠, 𝑤) = ∑ 𝑄𝑖 (𝑠, 𝑤)

𝑖∈𝛺𝑁𝑀

+ ∑ 𝑄𝑗 (𝑠, 𝑤)

𝑗∈𝛺𝑀

+ 𝐿
𝑄(𝑘)(𝑠, 𝑤)

D. Computation of power losses 
The iteration counter increases (k=k+1) and the power 

losses are calculated using the power allocated to the 

loads in step C and the voltage at the substation. 

 

E. Verification of the convergence condition  

If no significant difference is observed between the power 

losses calculated in the current iteration compared to the 

power losses calculated in the previous iteration, the 

convergence was reached. Otherwise, the process 

continues.  

 

F. Updating the parameters “u” 
The parameter “u” of each load without meter must be 

updated to the average of the set of relation values 

between the computed voltages of the load and the 

voltages at the substation for the corresponding time 

intervals as shown in the expression (9). 
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Convergence 
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Initialization of iteration counter, losses, 

and parameters of loads without meters. 

Updating 
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Computation of power losses through a power flow solution. 
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𝑢𝑖 =
1

𝑛𝑠∙𝑛𝐶𝐿
∙ ∑ ∑

𝑉𝑖
𝑐𝑎𝑙(𝑠,𝑤)

𝑉1(𝑠,𝑤)

𝑛𝐶𝐿
𝑤=1

𝑛𝑠
𝑠=1  

Where 𝑉𝑖
𝑐𝑎𝑙  is the voltage computed at node “i”. 

Finally, the iterative process continues to step C using the 

updated parameters and power losses computed in step D. 

 

IV. CASE STUDY  

To evaluate the performance of the proposed 

methodology, a real feeder from a utility company of 

State of Sao Paulo, Brazil, was used. The nominal voltage 

of this system is 13.8kV and the nominal power is 

4500kVA. The information of the feeder can be found in 

[5]. Fig. 2 shows the 23 nodes feeder with a substation at 

the first node and loads at the remaining nodes. 

 

 
Figure 2. 23 nodes feeder of the case study. 

For this case study, a database was generated by the 

power flow computation for 50 days (scenarios) with a 

15-minute time interval and considering different types of 

load models for each load on the feeder. The load factor 

profile during a day was assumed according to a database 

with typical load factors values given in [6]. To highlight 

the features of the proposed method, three different 

profiles of voltage at the substation have been used. The 

first profile, type A, is similar to the load profile, with a 

maximum variation of ±2.5% around the nominal voltage. 

The second profile, type B, is a constant value equals to 

the nominal voltage. Finally, the third profile, type C, is a 

normally distributed profile per day with ±2.5% around 

the nominal voltage. The types of profiles are shown in 

Fig. 3 for the first scenario. 

 

 
Figure 3. Types of voltage profiles for the case study. 

With all information available, this section is divided in 

two parts: 

 

 

A. Estimation of losses  

The ideal or real power losses can be calculated in the 

period of analysis. Fig. 4 shows the 5, 50 and 95% 

quantiles of the daily apparent power and voltages at the 

substation along the 50 days. 

In order to improve the approach by working with data 

more similar, the database was clustered into three groups 

based on the apparent power at the substation according 

to the period of the day. Note that for each cluster, every 

load on the feeder has one load model for active and 

reactive power. Using the clusters, six tests were 

performed to estimate the energy losses. The first three 

tests consider that the input data only has values of 

voltage and power at the substation. The second three 

tests consider meters at nodes 2 and 18. 

 

 

Figure 4. Quantiles for the apparent power and voltage at the substation. 

The results obtained with the proposed methodology are 

compared with the actual values for each type of profile. 

The Table I shows the results considering no meters on 

the nodes with loads and the Table II shows the Absolute 

Percentage Errors of the estimations for the different tests 

performed previously. 

TABLE I. ESTIMATION OF ENERGY LOSSES FOR THE SYSTEM 

WITHOUT METERS 

Energy losses during 50 days (MWh) 

Type A (Test 1) Type B (Test 2) Type C (Test 3) 

Actual Estimated Actual Estimated Actual Estimated 

95.96 93.64 96.25 93.44 96.25 90.28 

TABLE II. ABSOLUTE PERCENTAGE ERROR 

Absolute percentage errors (%) 

Type A Type B Type C 

2.41 2.91 6.20 

 

The Table III shows the results considering meters on the 

nodes with loads 2 and 18, and the Table IV shows the 

Absolute Percentage Errors of the estimations for the 

different tests performed previously. 

TABLE III. ESTIMATION OF ENERGY LOSSES FOR THE SYSTEM 

WITH METERS 

Energy losses during 50 days (MWh) 

Type A (Test 4) Type B (Test 5) Type C (Test 6) 

Actual Estimated Actual Estimated Actual Estimated 

95.96 96.35 96.25 96.81 96.25 98.19 
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TABLE IV. ABSOLUTE PERCENTAGE ERROR 

Absolute percentage errors (%) 

Type A Type B Type C 

0.40 0.58 2.01 

 

B. Energy loss minimization  

Beside of the estimation of losses in the period of 

analysis, with the load models is possible to predict the 

best way to vary the voltage at the substation for a 

predicted scenario or day (load forecast) in order to 

minimize the energy losses during that scenario. For this 

case study, using the database of the 50 days is applied 

the Neural Networks tool [7] to generate a load forecast at 

the substation for the next day (scenario 51). Fig. 5 shows 

the active and reactive power predicted for the scenario 

51. 

 

 

Figure 5. Active and reactive power at the substation for the predicted 

scenario. 

The voltages at the substation must be selected 

considering the voltage at every node must be within a 

specified range, in this case the range is ±2.5% around the 

nominal voltage of the system.  Using some values of 

voltage at the substation and the predicted active and 

reactive power at the substation, the loads are allocated 

using the load models obtained in the Test 1 (no meters at 

the system and voltage profile type A). Through a power 

flow method, the power losses are computed and the set 

of voltages are selected in order to minimize the losses 

during the predicted scenario. Fig. 6 shows the profile of 

the voltages the substation must have along the predicted 

scenario in order to minimize the losses in the system. 

 

 

Figure 6. Voltage at the substation for minimum losses in the system for 
the predicted scenario. 

As seen in the Fig. 6, for this particular case study, the 

voltage at the substation during the predicted scenario 

must be slightly higher than the nominal voltage of the 

system to minimize the power losses. 

In order to highlight the benefits of this energy losses 

optimization, Table V shows the comparison between the 

energy losses obtained with the optimization performed 

and the energy losses for nominal conditions (constant 

voltage of 13.8kV at the substation) along the scenario 51. 

TABLE V. ENERGY LOSSES COMPARISON 

Optimized Not optimized 

1708.6kWh 1904.4kWh 

 

V. CONCLUSIONS  

This paper presented a model to estimate energy losses by 

a load allocation method.  The results confirmed the 

efficiency of the model. As a result, the model can be 

used to optimize the operation of the system by changing 

the tap of the transformer at the substation. For this case, 

the results indicated that is possible to reduce the energy 

losses for 10.2% comparing the optimization of the 

voltage and no optimization of the voltage. 
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Abstract— This work proposes a statistical top-down 

methodology for energy loss estimation in medium voltage 

(MV) distribution systems. A statistical model is used to adjust 

the load parameters (i.e., ZIP coefficients) of the aggregated 

load allocated to each secondary transformer along the MV 

feeder. This adjustment process also results in the estimation 

of the corresponding energy losses. The information required 

by the proposed methodology is limited to the feeder topology, 

conductors, rated capacity of the transformers, and the 

voltage and power measurements at the primary substation 

during the period of analysis. If available, additional 

information from meters installed along the feeder can be used 

to improve the estimation. To illustrate the approach, a real 

Brazilian 13.8kV feeder is used. The results, compared with 

other methodologies available in the literature, demonstrate 

the benefits of the proposed methodology. 

Index Terms—Energy losses, load allocation, distribution 

system, ZIP coefficients. 

NOMENCLATURE 

Measurements 

P1
SE (t) Active power at the substation at the time 𝑡. 

Q
1

SE (t) Reactive power at the substation at the time 𝑡. 

V1
SE (t) Voltage at the substation at the time 𝑡. 

Pj
msr (t) Active power consumed by the load j with 

meter. 

Q
j

msr (t) Reactive power consumed by the load j with 

meter. 

Vj
msr (t) Voltage at the bus j with meter. 

P1
SE (nom)

 Active power at the substation for nominal 

conditions on the system. 

Q
1

SE (nom) Reactive power at the substation for nominal 

conditions on the system. 

V1

ref
 Reference voltage at the substation (nominal 

voltage of the system). 
Pi

nom Rated active power of the load i. 

Q
i

nom Rated reactive power of the load i 

Parameters 

xi Fraction of the active power at the substation 

allocated to the load 𝑖. 
y

i
 Fraction of the reactive power at the 

substation allocated to the load 𝑖. 
αP,β

P
,γ

P
 Vector of load parameters for the active 

power. Each element of the vector is related to 

each load of the system. 

αQ,β
Q

,γ
Q

 Vector of load parameters for the reactive 

power. Each element of the vector is related to 

each load of the system. 
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ui Parameter of correlation between the voltage 

substation and voltage at bus 𝑖. 
Variables 

Pi(t) Active power allocated to the load 𝑖 in each 

time interval t. 

Q
i
(t) Reactive power allocated to the load 𝑖 in each 

time interval t. 

𝐿𝑃
𝑘 (t) Active power loss of the system at iteration k 

in each time interval t. 

𝐿𝑄
𝑘 (t) Reactive power loss of the system at iteration 

k in each time interval t. 

Sets 

ΩL Set of loads at the system. 

ΩM Set of loads with meters. 

ΩNM Set of loads without meters. 

ΩT Set of T time intervals of the period of 

analysis. 

 
I. INTRODUCTION 

In electrical distribution systems, one of the greatest 
challenges for utilities is the estimation of the technical 
energy losses on the feeders. In [1] the authors estimate that 
the energy losses throughout the world’s electric distribution 
networks vary from country to country between 3.7% and 
26.7% of the electricity use, which implies that there is a 
large potential for improvement. Specifically in Brazil, the 
correct evaluation of the energy losses provides valuable 
information for the regulator to establish the energy 
distribution tariffs.  

 There are different ways for estimating energy losses, 
but due to the difficulty for modeling precisely the 
equipment of the system, as well as the energy consumed of 
each load, the energy losses estimation can lead to huge 
errors. In addition, the difficulty to split technical energy 
losses and non-technical energy losses, which is usually 
caused by metering errors, unmetered company or customer 
use and billing cycle errors [2], aggravates the problem. 

In the literature, several works can be found that face 
this issue. In [3], the average demand is used for estimating 
the energy losses. Artificial intelligence techniques, like 
fuzzy logic [4] and decision trees based algorithms 0 are 
also applied to solve the problem. In Brazil, the 
methodology established for the energy losses estimation on 
medium voltage for utilities is based on the average power 
loss during a period, computed by a multiple linear 
regression model provided by the National Agency of 
Electric Energy (ANEEL in Portuguese) [5]. None of those 
methods considers the voltage effect to estimate the energy 
losses, which can vary at the substation and along the feeder 
and, therefore, influence the energy losses estimation. 

In this paper, it is proposed a new methodology based on 
a statistical model and a Top-Down approach for energy loss 
estimation. Hereinafter the proposed method is called 
Statistic Top-Down Approach (STDA). To be more specific, 
the methodology attempts to estimate technical energy 
losses along a period by allocating parameters of the load 
model applied, taking into account the measurements of 
voltages and power at the substation and, when available, 
the measurements of voltages and power demanded by loads 

with meters installed at the transformers. The main 
contribution of the proposed method is the application of a 
statistical model for energy losses estimation using network 
information and the correlation between the power 
consumed and the voltage, which is usually neglected by 
other methods.  

To describe the proposed methodology in detail and its 
features, this paper is organized as follows: Section II 
describes the proposed methodology for energy loss 
estimation; Section III presents a case of study using a real 
feeder from Brazil. Additionally, in this section, a 
comparison with other methods takes place; finally, section 
IV presents the conclusions of the work. 

II. PROPOSED METHODOLOGY 

The application of the proposed methodology requires 
information about the feeder: topology, line impedances, 
nominal power of the transformers, a database containing 
voltages and power measured at the substation and, when it 
is available, the voltage and power measured at the 
transformers along the feeder. In order to improve the 
model, the data can be organized by clusters, according to its 
level of load. The clusters are desired for the statistical 
models because it uses the similarities of the load pattern 
during the period of time considered. 

To estimate the energy losses, firstly, the load 
parameters should be adjusted to allocate loads properly. 
Then, in order to apply the proposed methodology, a 
modified ZIP model is established. Considering that the 
power supplied by the substation is distributed to every load 
on the feeder plus the power losses, the power reference of 
the modified ZIP model for each load may be expressed as a 
percentage of the power at the substation. In addition, since 
the voltages at the nodes are not available, in this proposed 
model, they are substituted by a percentage of the voltage at 
the substation. Thus, the modified ZIP model can be written 
for each load i, for active and reactive power, as follows: 

Pi (t)=xiP1
SE (t) {αpi

(ui∙
V1

SE(t)

V1

ref
)

2

+β
pi

(ui∙
V1

SE(t)

V1

ref
) +γ

pi
} (1) 

𝑄i (t)=𝑦i𝑄1
SE (t) {α𝑄i

(ui∙
V1

SE(t)

V1

ref
)

2

+β
𝑄i

(ui∙
V1

SE(t)

V1

ref
) +γ

𝑄i
} (2) 

The proposed methodology uses an optimization model 
to adjust the parameters of the load model, minimizing, in an 
iterative process, the square difference between power 
measured at the substation and the sum of the power 
allocated for each load plus the power losses during the 
period of analysis. The convergence is achieved when no 
significant change is observed in the power losses computed 
in each iteration for each time interval. As a result, the 
energy losses are a by-product of the proposed method for 
the corresponding period. Fig. 1 shows the flowchart of the 
proposed methodology. 
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Figure1. Flowchart of the methodology proposed for the estimation of 

power losses. 

Each stage of the process is explained as follows. 

A. Initialization of parameters 

Consider an iteration counter k set to zero. The active 

and reactive power losses at iteration k must be set to zero 

for each time interval of the period of analysis. The 

parameter ui must be set to one for each load 𝑖 without meter 

installed. 

B. Adjustment of parameters of the loads with meters 

Before the adjustment process, some constraints for the 

load parameters, with or without meters, must be described: 

 

1)  Constraints for x and y: The parameters xi and y
i
  are 

used to allocate the active and reactive power at the 

substation to each load 𝑖. In order to reduce the search 

space, the xi and y
i
 are bounded around the relation between 

the power of the load and the power at the substation, both 

in nominal conditions as shown in (3) and (4). 

LBi∙
Pi

nom

P1
SE (nom)

≤ 𝑥𝑖 ≤ UBi∙
Pi

nom

P1
SE (nom)

, ∀ i ∈ ΩL (3) 

LBi∙
𝑄i

nom

𝑄
1

SE (nom)
≤ 𝑦𝑖 ≤ UBi∙

𝑄i
nom

𝑄
1

SE (nom)
, ∀ i ∈ ΩL 

(4) 

The LBi  and UBi are boundary factors to define the lower 

and upper bound of the search space xi and 𝑦𝑖 . 

2)  Constraints for the ZIP parameters: As usually done 

for traditional ZIP model, for each load i the sum of the 

parameters α𝑖 , β𝑖
 and γ

𝑖
 is equal to one for the active and 

reactive component. 

Before the parameters adjustment in the proposed 
methodology, an estimation of 𝑢𝑗  in for each load 𝑗  with 

meter installed should take place. This adjustment is done by 
using the Least Square method, in which 𝑢𝑗 is calculated by 

the relation between the voltage measured at load 𝑗 and the 
voltage at the substation, as shown in (5): 

min
u

{ ∑ [
Vj

msr(t)-uj∙V1
SE (t)

Vj
msr(t)

]

2

t∈Ω𝑇

} ,∀ j ∈ ΩM (5) 

 In addition, the parameters of the loads with meters are 
adjusted using the Least Square method to minimize the 
error between the power measured of the loads with meters 
and their allocated power computed by the proposed model 
as follows: 

min
x,αP,β

P
,γ

P
,

y,αQ,β
Q

,γ
Q

{ ∑ ([
Pj

msr(t)-Pj(t)

Pj
msr(t)

]

2

+ [
Q

j

msr(t)-Q
j
(t)

Q
j

msr(t)
]

2

)

t∈Ω𝑇

} ,∀ j ∈ ΩM (6) 

C. Adjustment of the loads parameters without meters 

The Least Squares method is applied to minimize the 

error between the power measured at the substation and the 

sum of power in each load and the power losses calculated 

in the previous iteration for all time intervals of the period 

of analysis. Then, for 𝑘 = 𝑘 + 1: 

min
x,αP,βP,γP

{ ∑ [
P1

SE(t)- ∑ Pii∈ΩM
(t)- ∑ Pjj∈ΩNM

(t)-LP
k-1(t)

P1
SE(t)

]

2

t∈ Ω𝑇

} (7) 

min
y,αQ,βQ,γQ

{ ∑ [
Q

1

SE(t)- ∑ Q
ii∈ΩM
(t)- ∑ Q

jj∈ΩNM
(t)-LQ

k-1(t)

Q
1

SE(t)
]

2

t∈ Ω𝑇

} (8) 

 

D. Computation of power losses 

After the steps presented, the power losses are 
recalculated through a power flow method using the power 
allocated to the loads in step C and the measurements of the 
voltage at the substation. 

E. Verification of the convergence condition 

In this step, the absolute comparison between the power 
losses computed in the current iteration and the previous 
interaction is verified according to the following 
expressions: 

|LP
k (t)-LP

k-1(t)|<Tolerance, ∀ t∈ ΩT (9) 

|LQ
k (t)-LQ

k-1(t)|<Tolerance, ∀ t∈ ΩT (10) 

If the both conditions are satisfied, then the convergence 
is reached. Otherwise, the process must continue, 
readjusting the vectors (x, αP, β

P
, γ

P
, y, αQ, β

Q
 and γ

Q
) of 

parameters. 

F. Updating the parameters u 

In each iteration, the vector of parameters 𝒖 for loads 
without meter must be updated. The criterion adopted to 
obtain a representative value was the average of the set of 
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relation values between the computed voltages of the load 
and the voltages at the substation for the corresponding time 
intervals as shown in (11)  

uj=
1

T
∑

Vj
cal(t)

V1
SE(t)

t∈ΩT

,∀ j ∈ ΩNM (11) 

Where T represents the number of time intervals. 

 
III. CASE STUDY 

To evaluate the performance of the proposed 
methodology, a real feeder from a utility company of State 
of São Paulo-Brazil was used. The nominal voltage and 
power of this system are 13.8kV and 4500kVA.  Fig. 2 
shows the 23 nodes feeder with a substation at the first node 
and loads at the remaining nodes. The buses and lines data 
for this system are presented in Table I and Table II 
respectively. More information of the feeder can be found in 
[6]. 

For this case study, a database was generated by 
computing a power flow solution for 50 days with a 15-
minute time interval and considering different types of load 
models for each distribution transformer (node) on the 
feeder. The load factor profile during a day was obtained 
according to [7]. To highlight the features of the proposed 
methodology, the voltage and power load profile at the 
substation are strongly correlated, with a maximum variation 
of 5% around the nominal voltage. Fig. 3 shows the 5, 50 
and 95% quantiles of the daily apparent power and voltages 
at the substation along the 50 days. Additionally, the voltage 
of each load are between 0.975% and 1.025% of its nominal 
value. With all information, the theoretical energy losses can 
be calculated through a power flow solution. This value is 
used in this section to validate the proposed methodology 
and to compare the results with other representative methods 
estimation. 

  

TABLE I. BUSES DATA 

Buses Active load (kW) Reactive load (kVAr) 

2 1229 505 

3 80 39 

4 36 17 

5 671 325 

6 176 85 

7 64 31 

8 266 129 

9 72 35 

10 108 52 

11 124 60 

12 28 14 

13 52 25 

14 308 149 

15 16 8 

16 32 16 

17 56 27 

18 68 33 

19 72 35 

20 28 13 

21 72 35 

22 36 17 

23 36 17 

 

TABLE II. LINES DATA 

Initial 

node 

Final 

node 

Resistance 

(ohm) 

Reactance 

(ohm) 

Length 

(m) 

1 2 0.1104 0.1415 300 

2 3 1.1773 1.5094 3200 

3 4 1.2141 1.5566 3300 

4 5 0.3532 0.4528 960 

5 6 0.1112 0.1018 200 

6 7 0.3893 0.3562 700 

7 8 0.8343 0.7634 1500 

5 9 0.5224 0.6698 1420 

9 10 0.4783 0.6132 1300 

9 11 2.8358 1.4145 2700 

11 12 2.7308 1.3621 2600 

2 13 1.2604 0.6287 1200 

13 14 4.5163 2.2528 4300 

14 15 2.3107 1.1526 2200 

15 16 3.3610 1.6765 3200 

16 17 4.8314 2.4099 4600 

15 18 12.4976 4.1793 7300 

18 19 8.3888 2.8053 4900 

13 20 0.4831 0.2410 460 

20 21 6.0917 3.0386 3480 

21 22 2.7308 1.3621 2600 

21 23 2.9408 1.4669 2800 

 

 
Figure 2. 23 nodes feeder of the case study. 

 

Figure 3. Quantiles for the apparent power and voltage at the substation. 

In order to improve the approach of the estimations, the 
model was applied to three different level of loads during 
the day (light, medium and peak load), organized by 
clusters. Note that for each cluster, every load on the feeder 
has one load model for active and reactive power. Using the 
three clusters aforementioned, two tests were performed to 
estimate the energy losses using the Optimization Toolbox 
of MATLAB [8] to adjust the parameters. The first one 
considers that there is just one meter at the substation. 
Therefore, the input data only has values of voltage, active 
and reactive power at the substation. The second one 
considers meters at the substation and at the nodes 2 and 18, 
i.e., the input data contains also measurements of voltages 
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and power consumed by loads connected at the nodes 2 and 
18. These tests are called STDA 1 and STDA 2, 
respectively. In both, the following considerations were 
taken into account: 

For the constraints (2) and (3), a lower and upper bound 
factor are 0.8 and 1.2 for every load in the system. 
For the convergence conditions expressed in (8) and (9), it 
was used a tolerance of 0.45W and 0.45VAr for the active 
and reactive power, which represents 10−5%  of the peak 
load measured at the substation. 

After applied the proposed methodology for the STDA 1 
and STDA 2, the methodology performance is represented 
by the information in Table I. From this table, it can be seen 
that the number of iterations for convergence of each cluster 
is relatively small, however the computation time is longer 
because the number of power flow computation and the 
minimization processes of the methodology. The 
computation time is proportional to the size of the system 
and the amount of input data.  

TABLE III. METHODOLOGY PERFORMANCE 

 Iterations performed for 

each cluster 

 STDA 1 STDA 2 

Light demand 8 11 

Medium demand 10 12 

Peak demand 12 8 

Computation time (seconds) 490.80 386.45 

 

The optimization result of the parameter x for each load 
adjusted for STDA 1 and STDA 2 is presented in Fig. 4 and 
Fig. 5. In these figures, it is appreciable that the 
corresponding values of the loads in the buses 2, 5, 8 and 14 
indicate that the loads connected to those nodes demand 
more power from the system, which agrees with their 
nominal values presented in Table I. For the sake of space, 
the results are presented only for the active power 
component. However, it is important to highlight that a 
similar behavior can be observed for the vector of reactive 
power y. 

The results of the parameter u, adjusted for STDA 1 and 
STDA 2, are shown in Fig. 6 and Fig. 7. As seen in the 
figures, the values are less than 1 because they are limited to 
the voltage at the substation and the lowest values (e.g. 
nodes 12 and 19) indicate the more distance nodes from the 
substation. 

Fig. 8 and Fig. 9 show the results of the active load 
parameters adjusted for the light demand for STDA 1 and 
STDA 2. From these figures it is observed that more weight 
is given to the power constant type of load, represented by 
the gamma parameter. This happens because the search 
space of the power is larger than the search space of the 
voltage, which leads the algorithm to focus in this parameter 
in most nodes. A similar behavior was observed for medium 
and peak load tests. 

After the parameters adjustment, the power losses, which 
are a by-product of the model, can be compared with to the 
real power losses from the database used. Table IV shows 
the mean absolute percentage error (MAPE) obtained of the 
active power losses in each test performed between the 
estimated model and the theoretical value. 

Additionally, the results obtained with the proposed 
methodology are compared to those estimated using the 
New Top-Down (NTD) methodology [3] and the current 
methodology applied in Brazil and established by the 
ANNEL [5]. The NTD methodology estimates the energy 
losses by calculating a product of a loss factor (based on the 
power supplied by the substation), the power losses for 
maximum demand conditions through a power flow solution 
and the number of time intervals along the period of 
analysis. The ANNEL methodology estimates the energy 
losses by calculating the product of a loss coefficient (based 
on the power supplied by the substation), the average power 
loss computed by a multiple linear regression equation 
(established by the ANNEL) and the number of time 
intervals along the period of analysis.  

 

Figure 4. Results of the x parameter for the test STDA 1. 

 

Figure 5. Results of the x parameter for the test STDA 2. 

 

Figure 6. Results of the voltage correlation parameters for the test STDA 

1. 
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Figure 7. Results of the voltage correlation parameters for the test STDA 
2. 

 

Figure 8. Results of the load parameters for the test STDA 1. 

 

Figrue 9. Results of the load parameters for the test STDA 2. 

TABLE IV. MAPE OF THE POWER LOSSES ESTIMATION 

MAPE (%) 
STDA 1 STDA 2 

5.08 1.31 

 

TABLE V. ESTIMATION OF ENERGY LOSSES 

Energy losses during 50 days (kWh) 

Real STDA 1 STDA 2 NTD ANEEL 

95703 87494 98249 105126 142357 

TABLE VI. PERCENTAGE OF ENERGY LOSS 

Percentage of Energy loss on the system (%) 

Real STDA 1 STDA 2 NTD ANEEL 

2.01 1.91 2.15 2.30 3.11 

TABLE VII. ABSOLUTE PERCENTAGE ERROR 

Absolute percentage errors (%) 

STDA 1 STDA 2 NTD ANEEL 

8.60 2.70 9.84 48.70 

 

Table V shows the real energy losses of the system and 
the values estimated by the aforementioned methodologies. 
Table VI shows the percentage of the energy loss to the total 
distributed energy. Table VII shows the Absolute Percentage 
Error of the losses between the different methodologies 
analyzed and the theoretical value. 

As it can be seen in Table VII, the best result was 
reached by applying the STDA method. The results 
indicated that the more information available from meters 
allocated in the network, the more accurate the results will 
be. 

IV. CONCLUSIONS 

In this paper, a new method, called Statistical Top-Down 
Approach (STDA), for energy loss estimation in distribution 
systems was presented. The novelty of the proposed method 
is the application of a model that considers the voltage drop 
of the system to estimate the power in each load, taking into 
account the power flow results to estimate the energy losses. 
The case study demonstrates that the proposed methodology 
estimates energy losses more accurately than other 
methodologies such as the New Top-Down (NTD) approach 
and the one produced by ANNEL (the Brazilian regulator). 
The results indicate that the proposed method is promising, 
particularly considering that the number of meters to be 
installed in medium voltage distribution networks is likely to 
rise in the next few years. 
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