

## Víctor Daniel Armaulía Sánchez

Método para Estimação das Perdas Elétricas Baseado na Alocação de Parâmetros das Cargas em Sistemas de Distribuição de Média Tensão

## Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Delberis Araujo Lima

Rio de Janeiro Julho de 2015



### Víctor Daniel Armaulía Sánchez

Método para Estimação das Perdas Elétricas Baseado na Alocação de Parâmetros das Cargas em Sistemas de Distribuição de Média Tensão

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

**Prof. Delberis Araujo Lima**Orientador
Departamento de Engenharia Elétrica – PUC-Rio

**Prof. Ricardo Bernardo Prada**Departamento de Engenharia Elétrica – PUC-Rio

Prof. Débora Rosana Ribeiro Penido Araujo
UFJF

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 de julho de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

## Víctor Daniel Armaulía Sánchez

Graduou-se em Engenharia Mecânica Elétrica na UNI - Perú (Universidad Nacional de Ingeniería) em 2008. Trabalhou na área industrial, especializado em análise preditivo de sistemas eletromecânicos. A sua linha de pesquisa está relacionada a aplicações de inteligência computacional na área de Sistemas Eletromecânicos.

Ficha Catalográfica

Armaulía Sánchez, Víctor Daniel

Método para estimação das perdas elétricas baseado na alocação de parâmetros das cargas em sistemas de distribuição de média tensão / Víctor Daniel Armaulía Sánchez; orientador: Delberis Araujo Lima. – 2015.

104 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2015.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Sistemas de Distribuição. 3. Modelamento de cargas. 4. Método de fluxo de potência. 5. Algoritmos Genéticos. I. Lima, Delberis Araujo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

## **Agradecimentos**

Ao meu orientador Delberis, pelos conhecimentos, sugestões, confiança na minha capacidade e ajuda no desenvolvimento deste trabalho e dos artigos.

Aos meus pais Daniel e Carmen, por todo amor, dedicação, paciência, apoio e confiança que estiveram presentes desde sempre.

Ao meu irmão Arturo, pelos conselhos e constante torcida pelo meu sucesso.

À minha companheira Carolina, pelo amor, compreensão e motivação apesar da distância.

Aos meus familiares e amigos, por sempre me desejarem o melhor.

Aos professores Luis Ochoa e Marcelo Oliveira, pelas valiosas contribuições para o trabalho e artigos.

Aos professores e funcionários do departamento de Engenharia Elétrica da PUC-Rio, pela qualidade do ensino e excelente infraestrutura, essenciais para a execução do curso de mestrado.

À CAPES, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

#### Resumo

Armaulía Sánchez, Victor Daniel; Lima, Delberis Araujo. **Método para Estimação das Perdas Elétricas Baseado na Alocação de Parâmetros das Cargas em Sistemas de Distribuição de Média Tensão**. Rio de Janeiro, 2015. 104p. Dissertação de Mestrado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Em sistemas de distribuição de energia elétrica, um dos maiores desafios para as distribuidoras é a estimação das perdas técnicas. De acordo com a bibliografia, as perdas elétricas nas redes de distribuição em diferentes países podem variar aproximadamente de 3% e 25% da energia fornecida à rede, o que pode significar grandes impactos nos custos do sistema. Especificamente no Brasil, a adequada avaliação das perdas elétricas fornece informação importante para que o regulador estabeleça as tarifas de distribuição de energia elétrica. Na literatura há diversos métodos para a estimação das perdas técnicas de energia, mas devido à dificuldade na modelagem dos equipamentos do sistema, assim como a falta de informação da energia consumida pelas cargas, as estimações podem acarretar em grandes erros. Para tratar este problema, esta dissertação propõe um novo método baseado em um modelo de carga polinomial modificado para estimar as perdas elétricas, considerando medições de tensão e potência na subestação e, quando disponíveis, medições de tensão e potência demandadas pelas cargas. A contribuição principal do método proposto é o uso da informação da topologia da rede e a correlação entre a potência consumida pelas cargas e as grandezas medidas na subestação. Para detalhar e analisar o desempenho do método proposto são utilizados três sistemas elétricos. Os resultados das estimações são comparados com os resultados obtidos por outros métodos de referência encontradas na literatura e em aplicações práticas.

#### Palavras-chave

Estimação de perdas; modelo polinomial; alocação de carga; sistemas de distribuição.

#### **Abstract**

Armaulía Sánchez, Victor Daniel; Lima, Delberis Araujo (Advisor). Method to Estimate the Electric Losses Based on the Load Parameter allocation in Medium Voltage Distribution Systems. Rio de Janeiro, 2015. 104p. MSc. Dissertatation – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In electrical distribution systems, one of the greatest challenges for utilities is the estimation of technical losses. According to the literature, energy losses throughout the world's electric distribution networks may vary from country to country approximately between 3% and 25% of the electricity provided, which may cause great impacts on the electrical system costs. Specifically in Brazil, the appropriate evaluation of the energy losses provides valuable information for the regulator to establish the energy distribution tariffs. In literature, there are different ways for estimating energy losses, but due to the difficulty for modeling precisely the equipment of the system, as well as the lack of information regarding the energy consumed of each load, the energy losses estimation may lead to huge errors. To deal with this problem, it is proposed a new method based on a modified load model, taking into account the measurements of voltages and power at the substation and, when available, the measurements of voltages and power demanded by loads with meters installed. The main contribution of the proposed method is the use of the network information and the correlation between the power consumed by the loads and the voltage and power supplied by the substation. In order to detail and analyze the performance of the proposed method, three electric systems are used. The results of the estimations given by the proposed method are compared to those obtained with other methods found in literature and in practical applications.

# **Keywords**

Energy loss estimation; load allocation; distribution systems.

# Sumário

| 1 Introdução                                               | 21 |
|------------------------------------------------------------|----|
| 1.1 Motivação e Objetivos                                  | 24 |
| 1.2 Revisão Bibliográfica de Estimação de perdas elétricas |    |
| em sistemas de Distribuição                                | 24 |
| 1.3 Estrutura da Dissertação                               | 26 |
| 2 Fundamento Teórico                                       | 28 |
| 2.1 Modelos de carga                                       | 28 |
| 2.1.1 Modelo Polinomial ZIP                                | 29 |
| 2.1.2 Modelo Exponencial                                   | 30 |
| 2.2 Perdas elétricas                                       | 31 |
| 3 Métodos de referência                                    | 33 |
| 3.1 Método da ANEEL                                        | 33 |
| 3.2 Método Novo Top-Down                                   | 37 |
| 4 Método Proposto                                          | 40 |
| 4.1 Modelo polinomial de carga modificado                  | 40 |
| 4.2 Método Proposto                                        | 44 |
| 5 Testes e Resultados                                      | 64 |
| 5.1 Sistema de teste do IEEE de 34 barras                  | 65 |
| 5.1.1 Sistema sem medidores                                | 66 |
| 5.1.2 Sistema com medidores                                | 70 |
| 5.2 Sistema real de teste                                  | 75 |
| 6 Conclusão e trabalhos futuros                            | 83 |
| 7 Referências bibliográficas                               | 85 |

| Apêndice A | Sistema IEEE 34 Barras    | 87 |
|------------|---------------------------|----|
| Apêndice B | Algoritmos Genéticos (AG) | 90 |
| Apêndice C | Artigo 1                  | 94 |
| Apêndice D | Artigo 2                  | 99 |

# Lista de Figuras

| Figura 4.1 - Sistema radial de distribuição com cargas              |    |
|---------------------------------------------------------------------|----|
| modeladas por ZIP                                                   | 40 |
| Figura 4.2 - Fluxograma da heurística do método proposto            | 52 |
| Figura 4.3 - Sistema radial de distribuição de 5 barras             | 53 |
| Figura 4.4 - Dados da potência fornecida pela subestação de         |    |
| um cenário médio para o sistema de 5 barras                         | 54 |
| Figura 4.5 - Classificação da base de dados para o sistema          |    |
| didático                                                            | 56 |
| Figura 4.6 - Representação da convergência no processo              |    |
| iterativo                                                           | 59 |
| Figura 5.1 - Perfis de tensão considerados para os testes           | 65 |
| Figura 5.2 - Sistema radial de distribuição IEEE de 34 barras       |    |
| com cargas modeladas pelo modelo ZIP                                | 66 |
| Figura 5.3 - Resultados obtidos do parâmetro <b>x</b> da            |    |
| componente ativa das cargas                                         | 66 |
| Figura 5.4 - Resultados obtidos do parâmetro $\alpha$ da            |    |
| componente ativa das cargas                                         | 67 |
| Figura 5.5 - Resultados obtidos do parâmetro $oldsymbol{eta}$ da    |    |
| componente ativa das cargas                                         | 67 |
| Figura 5.6 - Resultados obtidos do parâmetro $\gamma$ da componente |    |
| ativa das cargas                                                    | 67 |
| Figura 5.7 - Resultados obtidos do parâmetro $m{y}$ da              |    |
| componente reativa das cargas                                       | 68 |
| Figura 5.8 - Resultados obtidos do parâmetro $lpha$ da              |    |
| componente reativa das cargas                                       | 68 |
| Figura 5.9 - Resultados obtidos do parâmetro $oldsymbol{eta}$ da    |    |
| componente reativa das cargas                                       | 69 |
| Figura 5.10 - Resultados obtidos do parâmetro $\gamma$ da           |    |
| componente reativa das cargas                                       | 69 |

| Figura 5.11 - Resultados obtidos do parâmetro <b>x</b> da               |    |
|-------------------------------------------------------------------------|----|
| componente ativa das cargas                                             | 71 |
| Figura 5.12 - Resultados obtidos do parâmetro $\alpha$ da               |    |
| componente ativa das cargas                                             | 71 |
| Figura 5.13 - Resultados obtidos do parâmetro $oldsymbol{eta}$ da       |    |
| componente ativa das cargas                                             | 71 |
| Figura 5.14 - Resultados obtidos do parâmetro $\gamma$ da               |    |
| componente ativa das cargas                                             | 72 |
| Figura 5.15 - Resultados obtidos do parâmetro y da                      |    |
| componente reativa das cargas                                           | 72 |
| Figura 5.16 - Resultados obtidos do parâmetro $\alpha$ da               |    |
| componente reativa das cargas                                           | 73 |
| Figura 5.17 - Resultados obtidos do parâmetro $oldsymbol{eta}$ da       |    |
| componente reativa das cargas                                           | 73 |
| Figura 5.18 - Resultados obtidos do parâmetro $\gamma$ da               |    |
| componente reativa das cargas                                           | 73 |
| Figura 5.19 - Quantiles da potência aparente medida no                  |    |
| sistema BER                                                             | 76 |
| Figura 5.20 - Parâmetro <b>x</b> da componente ativa das cargas no      |    |
| Patamar Leve                                                            | 76 |
| Figura 5.21 - Parâmetro $\alpha$ da componente ativa das cargas no      |    |
| Patamar Leve                                                            | 76 |
| Figura 5.22 - Parâmetro $\pmb{\beta}$ da componente ativa das cargas no |    |
| Patamar Leve                                                            | 77 |
| Figura 5.23 - Parâmetro $\gamma$ da componente ativa das cargas no      |    |
| Patamar Leve                                                            | 77 |
| Figura 5.24 - Parâmetro x da componente ativa das cargas no             |    |
| Patamar Médio                                                           | 77 |
| Figura 5.25 - Parâmetro $\alpha$ da componente ativa das cargas no      |    |
| Patamar Médio                                                           | 78 |
| Figura 5.26 - Parâmetro $\beta$ da componente ativa das cargas no       |    |
| Patamar Médio                                                           | 78 |
| Figura 5.27 - Parâmetro $\gamma$ da componente ativa das cargas no      |    |
| Patamar Médio                                                           | 78 |

| Figura 5.28 - Parametro <b>x</b> da componente ativa das cargas no         |    |
|----------------------------------------------------------------------------|----|
| Patamar Pesado                                                             | 79 |
| Figura 5.29 - Parâmetro $lpha$ da componente ativa das cargas no           |    |
| Patamar Pesado                                                             | 79 |
| Figura 5.30 - Parâmetro $oldsymbol{eta}$ da componente ativa das cargas no |    |
| Patamar Pesado                                                             | 79 |
| Figura 5.31 - Parâmetro $\gamma$ da componente ativa das cargas no         |    |
| Patamar Pesado                                                             | 80 |
| Figura 5.32 - Histograma de resultados do parâmetro $lpha$ da              |    |
| componente ativa das cargas                                                | 80 |
| Figura 5.33 - Histograma de resultados do parâmetro $oldsymbol{eta}$ da    |    |
| componente ativa das cargas                                                | 81 |
| Figura 5.34 - Histograma de resultados do parâmetro $\gamma$ da            |    |
| componente ativa das cargas                                                | 81 |
| Figura A.1 - Sistema IEEE 34 barras                                        | 87 |
| Figura B.1 - Fluxograma do funcionamento dos Algoritmos                    |    |
| Genéticos                                                                  | 90 |

# Lista de Tabelas

| Tabela 4.1 - Dados de linha do sistema de 5 barras            | 53 |
|---------------------------------------------------------------|----|
| Tabela 4.2 - Valores nominais das cargas do sistema de 5      |    |
| barras                                                        | 54 |
| Tabela 4.3 - Conjunto de intervalos pertencentes aos clusters | 56 |
| Tabela 4.4 - Erros na estimação de potências no sistema       |    |
| didático de 5 barras sem medidores                            | 62 |
| Tabela 4.5 - Erros na estimação de potências no sistema       |    |
| didático de 5 barras com medidor na barra 4                   | 63 |
| Tabela 4.6 - Energia perdida no sistema                       | 63 |
| Tabela 5.1 - Perdas de energia no sistema do IEEE de 34       |    |
| barras                                                        | 70 |
| Tabela 5.2 - Erros nas estimações de perdas no sistema IEEE   |    |
| de 34 barras                                                  | 70 |
| Tabela 5.3 - Perdas de energia no sistema IEEE de 34 barras   | 74 |
| Tabela 5.4 - Erros nas estimações de perdas no sistema da     |    |
| IEEE de 34 barras                                             | 74 |
| Tabela 5.5 - Perdas de energia estimadas no sistema           | 82 |
| Tabela A.1 - Dados das linhas do sistema IEEE 34 barras       | 88 |
| Tabela A 2 - Dados das cargas do sistema IEEE 34 barras       | 89 |

# Nomenclatura

# **Caracteres Romanos Maiúsculos**

| AF             | Fator de alocação de carga                                     |
|----------------|----------------------------------------------------------------|
| CP             | Coeficiente de perdas do método da ANNEL                       |
| $CT_l$         | Comprimento do trecho $\it l$ com seção constante classificado |
|                | como tronco                                                    |
| $CT^{MT}$      | Comprimento total dos trechos classificados como tronco        |
| $CR^{MT}$      | Comprimento total dos trechos classificados como ramal         |
| D              | Demanda de potência ativa medida                               |
| $\overline{D}$ | Demanda média no período em análise                            |
| $D_{max}$      | Máximo valor das demandas medidas no período em análise        |
| $E^{MT}$       | Energia fornecida pela subestação                              |
| F              | Função matemática                                              |
| G              | Função matemática                                              |
| $I^{MT}$       | Corrente média no alimentador                                  |
| $L^{ANNEL}$    | Perda de potência calculada pelo método da ANNEL para a        |
|                | demanda média de cada alimentador do MT                        |
| $L_P^{(k)}$    | Perda de potência ativa no sistema, calculada para a iteração  |
|                | k                                                              |
| $L_Q^{(k)}$    | Perda de potência reativa no sistema, calculada para a         |
|                | iteração $k$                                                   |
| $L_P^{cal}$    | Perda de potência ativa estimada ou calculada na rede          |
| $L_Q^{cal}$    | Perda de potência reativa estimada ou calculada na rede        |
| $L_{max}^{MT}$ | Perda de potência ativa no cenário de máxima demanda           |
| $LB_i$         | Fator de limite inferior da parcela correspondente à carga i.  |
| LsF            | Fator de perda utilizado no método NTD                         |
| N              | Número total de trechos com seção constante classificado       |
|                | como condutor tronco                                           |

| P                                                                                                                              | Potência ativa demandada por uma carga                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P^{ref}$                                                                                                                      | Potência ativa demandada na tensão de referência                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $P_i$                                                                                                                          | Potência ativa consumida pela carga conectada à barra i                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $P_i^{cal}$                                                                                                                    | Potência ativa calculada e alocada à carga conectada na                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                | barra i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $P_i^{nom}$                                                                                                                    | Potência ativa nominal da carga conectada na barra i                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $P_i^{ref}$                                                                                                                    | Potência ativa na tensão de referência da carga conectada na                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                | barra i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $P_{SE}^{cal}$                                                                                                                 | Potência ativa calculada na subestação                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $P_{SE}^{med}$                                                                                                                 | Potência ativa medida na subestação                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $P_{SE}^{nom}$                                                                                                                 | Potência ativa nominal da subestação                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q                                                                                                                              | Potência reativa demandada por uma carga                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Q^{ref}$                                                                                                                      | Potência reativa demandada na tensão de referência                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Q_i$                                                                                                                          | Potência reativa consumida pela carga conectada à barra i                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $Q_i^{\it cal}$                                                                                                                | Potência reativa calculada e alocada à carga conectada na                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                | barra i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Q_i^{nom}$                                                                                                                    | barra <i>i</i> Potência reativa nominal da carga conectada na barra <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $Q_i^{nom}$ $Q_i^{ref}$                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                | Potência reativa nominal da carga conectada na barra <i>i</i> Potência reativa na tensão de referência da carga conectada                                                                                                                                                                                                                                                                                                                                                                           |
| $Q_i^{ref}$                                                                                                                    | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$                                                                                                                                                                                                                                                                                                                                                                    |
| $Q_{i}^{ref}$ $Q_{SE}^{cal}$                                                                                                   | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação                                                                                                                                                                                                                                                                                                                           |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \end{aligned}$                                                          | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação Potência reativa medida na subestação                                                                                                                                                                                                                                                                                     |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \end{aligned}$                                           | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação                                                                                                                                                                                                                                            |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \end{aligned}$                                           | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação  Resistência do trecho do condutor $l$ que apresenta seção                                                                                                                                                                                 |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \ R_l \end{aligned}$                                     | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação  Resistência do trecho do condutor $l$ que apresenta seção constante classificado como tronco                                                                                                                                              |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \ R_l \ RT^{MT} \end{aligned}$                           | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação  Resistência do trecho do condutor $l$ que apresenta seção constante classificado como tronco  Resistência do condutor tronco                                                                                                              |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \ R_l \ RT^{MT} \ S_i^{max} \end{aligned}$               | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação  Resistência do trecho do condutor $l$ que apresenta seção constante classificado como tronco  Resistência do condutor tronco  Potência complexa alocada à i-ésima carga no sistema                                                        |
| $egin{aligned} Q_i^{ref} \ Q_{SE}^{cal} \ Q_{SE}^{med} \ Q_{SE}^{nom} \ R_l \ RT_i^{MT} \ S_i^{max} \ S_i^{nom} \end{aligned}$ | Potência reativa nominal da carga conectada na barra $i$ Potência reativa na tensão de referência da carga conectada à barra $i$ Potência reativa calculada na subestação  Potência reativa medida na subestação  Potência reativa nominal da subestação  Resistência do trecho do condutor $l$ que apresenta seção constante classificado como tronco  Resistência do condutor tronco  Potência complexa alocada à i-ésima carga no sistema  Potência complexa nominal da i-ésima carga no sistema |

| $V^{ref}$      | Magnitude da tensão de referência da carga             |
|----------------|--------------------------------------------------------|
| $V^{nom}$      | Tensão nominal de linha do alimentador                 |
| $V_i$          | Magnitude da tensão na barra i                         |
| $V_i^{ref}$    | Magnitude da tensão de referência da carga conectada à |
|                | barra i                                                |
| $V_{SE}^{med}$ | Magnitude da tensão medida na subestação               |
| $V_{SE}^{ref}$ | Magnitude da tensão de referência na subestação        |
| $X^{med}$      | Valor medido de uma grandeza elétrica                  |
| $X^{cal}$      | Valor calculado ou estimado de uma grandeza elétrica   |

# **Caracteres Romanos Minúsculos**

| С           | Contador de clusters no processo iterativo do método         |
|-------------|--------------------------------------------------------------|
|             | proposto                                                     |
| cos         | Função trigonométrica coseno                                 |
| i           | i-ésima barra com carga no sistema                           |
| f           | Frequência da tensão no sistema                              |
| j           | j-ésima barra com carga no sistema                           |
| k           | Contador de iterações no processo iterativo do método        |
|             | proposto                                                     |
| $kVA_i$     | Potência nominal da carga i no sistema                       |
| $kVA_{TOT}$ | Somatório das potências nominais das $n$ cargas no sistema   |
| l           | Linha com seção constante classificado como condutor tronco  |
| n           | Número total de cargas no sistema                            |
| $n_c$       | Número de clusters considerados para o método                |
| $n_P$       | Fator de sensibilidade do modelo de carga exponencial para a |
|             | potência ativa demandada por uma carga                       |
| $n_Q$       | Fator de sensibilidade do modelo de carga exponencial para a |
|             | potência reativa demandada por uma carga                     |
| $n_s$       | Número de cenários do cluster em análise                     |
| $n_w$       | Número de intervalos de tempo pertencentes ao cluster em     |

|                  | análise                                                                                |
|------------------|----------------------------------------------------------------------------------------|
| $r_{12}$         | Resistência da linha que conecta a barra 1 com a barra 2.                              |
| S                | Dia ou cenário durante o período em análise                                            |
| t                | Instante de tempo                                                                      |
| $u_i$            | Fator de aproximação de tensão da carga na barra i                                     |
| $u_i^{(k)}$      | Fator de aproximação de tensão da carga conectada na barra $\it i$ na iteração $\it k$ |
| W                | Intervalo de tempo                                                                     |
| $x_{12}$         | Reatância da linha que conecta a barra 1 com a barra 2.                                |
| $x_i$            | Parcela de potência ativa da subestação alocado à carga na barra $\emph{i}$            |
| ${\mathcal Y}_i$ | Parcela de potência reativa da subestação alocado à carga na barra $\emph{i}$          |
| $Z_{12}$         | Impedância da linha que conecta a barra 1 com a barra 2.                               |

# Caracteres Gregos Maiúsculos

|                    | _                                                            |
|--------------------|--------------------------------------------------------------|
| $\Delta E^{ANNEL}$ | Perda técnica de energia estimada pelo método da ANNEL em    |
|                    | um período determinado                                       |
| $\Delta E^{NTD}$   | Perda técnica de energia estimada pelo método Novo Top       |
|                    | Down em um período determinado                               |
| $\Delta E^{cal}$   | Energia técnica perdida estimada durante o período em        |
|                    | análise                                                      |
| $\Delta T$         | Período de tempo analisado                                   |
| $\Omega_R$         | Conjunto de barras com carga na rede                         |
| $\Omega_{RM}$      | Conjunto de barras com carga e com medidor na rede           |
| $\Omega_S$         | Conjunto de cenários do período em análise                   |
| $\Omega_{C}$       | Conjunto de intervalos pertencentes ao cluster em análise    |
| $\Omega_{SM}$      | Conjunto de barras com cargas e sem medidores na rede        |
| $\Omega_W$         | Conjunto de intervalos durante um dia ou cenário considerado |
|                    | na análise                                                   |
|                    |                                                              |

## **Caracteres Gregos Minúsculos**

- $\alpha_P$  Parcela da carga ativa modelada como impedância constante
- α<sub>P</sub> Vetor de parâmetros da carga ativa modelada como impedância constante em cada carga
- $\alpha_{P_i}$  Parcela da carga ativa na barra i modelada como impedância constante.
- $\alpha_Q$  Parcela da carga reativa modelada como impedância constante
- $lpha_{\it Q}$  Vetor de parâmetros da carga reativa modelada como impedância constante em cada carga
- $\alpha_{Q_i}$  Parcela da carga reativa na barra i modelada como impedância constante.
- $\beta_P$  Parcela da carga ativa modelada como corrente constante
- $\beta_P$  Vetor de parâmetros da carga ativa modelada como corrente constante em cada carga
- $\beta_{P_i}$  Parcela da carga ativa na barra *i* modelada como corrente constante.
- $\beta_Q$  Parcela da carga reativa modelada como corrente constante
- $oldsymbol{eta}_{oldsymbol{Q}}$  Vetor de parâmetros da carga reativa modelada como corrente constante em cada carga
- $\beta_{Q_i}$  Parcela da carga reativa na barra i modelada como corrente constante
- $\gamma_P$  Vetor de parâmetros da carga ativa modelada como potência constante em cada carga
- $\gamma_P$  Parcela da carga ativa modelada como potência constante
- $\gamma_{P_i}$  Parcela da carga ativa na barra *i* modelada como potência constante.
- $\gamma_Q$  Parcela da carga reativa modelada como potência constante
- $\gamma_Q$  Vetor de parâmetros da carga reativa modelada como potência constante em cada carga

 $\gamma_{Q_i}$  Parcela da carga reativa na barra i modelada como potência constante

 $\varphi$  Ângulo entre a potência ativa e a potência aparente no sistema

τ Frequência horária das medições

## **Superescritos**

k Contador de iterações no processo iterativo do método proposto

nom Relacionado a valores nominais de grandezas no sistema

ref Relacionado a valores de referência de grandezas no sistema

MT Em média tensão

#### **Subescritos**

*i* i-ésima barra com carga no sistema

j j-ésima barra com carga no sistema

*l* Linha de transmissão

P Relacionado à componente ativa da potência de uma carga

Q Relacionado à componente reativa da potência de uma carga

## Abreviaturas, Siglas e Símbolos

A Amperes

AG Algoritmos genéticos

ANEEL Agência Nacional de Energia Elétrica

BT Baixa tensão

*h* Hora

IEEE Instituto de Engenheiros Eletricistas e Eletrônicos

km KilometrokV Kilovolt

kVA Kilovolt-ampere

kW Kilowatt

*kWh* Kilowatts por hora

MAPE Mean absolute percentage error

MT Média tensão

*MWh* Megawatts por hora

NTD Método Novo Top-Down

SE Subestação

ZIP Modelo estático de carga polinomial