

Hernan Eduardo Eisenhardt Perez

Efeito da Fluência do Sal no Crescimento de Pressão em Anular Confinado de Poços de Pré-Sal

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Arthur Martins Barbosa Braga

Rio de Janeiro Agosto de 2015

Hernan Eduardo Eisenhardt Perez

Efeito da Fluência do Sal no Crescimento de Pressão em Anular Confinado de Poços de Pré-Sal

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Arthur Martins Barbosa Braga Orientador Prof. Departamento de Engenharia Mecânica - PUC-Rio

Prof. João Carlos Ribeiro Plácido Prof. Departamento de Engenharia Mecânica - PUC-Rio

> Dr. Edgard Poiate Junior Petróleo Brasileiro

> > Dr. José Luiz Falcão Petrobras

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 06 de agosto de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Hernan Eduardo Eisenhardt Perez

Graduado em Engenharia Química na UFRGS (2004). Pósgraduado em Engenharia de Petróleo na PUC-Rio (2005). Cursou especialização em Engenharia de Petróleo na Universidade Petrobras - UP (2006). Cursou especialização em Projeto de Poço na UP (2008). Cursou especialização em Teste de Formação na UP (2014). Atuou na Petrobras como fiscal e projetista de poços de 2006 a 2014. No momento atua como consultor técnico na área de perfuração de poços.

Ficha Catalográfica

Perez, Hernan Eduardo Eisenhardt

Efeito de fluência do sal no crescimento de pressão em anular confinado de poços de pré-sal / Hernan Eduardo Eisenhardt Perez ; orientador: Arthur Martins Barbosa Braga. – 2015.

181 f. : il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2015.

Inclui bibliografia.

1. Engenharia mecânica – Teses. 2. APB. 3. Anular confinado. 4. Fluência do sal. 5. Projeto de poço. 6. Modelagem APB. 7. Engenharia de poço. I. Braga, Arthur Martins Barbosa. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

À minha esposa Ana Paula pelo apoio e carinho nos momentos difíceis e à Deus que é o consumador de todos os planos.

Agradecimentos

Agradeço a Deus pelas realizações em minha vida.

Agradeço à minha esposa Ana Paula pela atenção e carinho dispensados ao longo do mestrado e à minha filha Gabriella, que nasceu durante a dissertação, pelo renovo nos dias de cansaço.

Agradeço aos meus amigos e colegas que ajudaram durante o curso de mestrado, especialmente Leonardo Ramalho Machado, Elisa Modesto Alcofra e Edgard Poiate.

Agradeço a meus gerentes Umberto Borges e Humberto Maia e a Petrobras pela confiança depositada ao proporcionar a oportunidade de cursar o mestrado.

Agradeço ao Departamento de Engenharia Mecânica e ao meu orientador Arthur Martins Braga pelo apoio e ajuda acadêmica.

Agradeço aos professores que participaram da comissão examinadora Edgard Poiate Junior, José Luiz Falcão e João Carlos Ribeiro Plácido.

Como é dito na palavra do Senhor: "O coração do homem traça seu caminho, mas o Senhor dirige seus passos" - Pr.16-9.

Resumo

Perez, Hernan Eduardo Esisenhardt; Braga, Arthur Martins. Efeito da Fluência do Sal no Crescimento de Pressão em Anular Confinado de Poços de Pré-Sal. Rio de Janeiro, 2015. 181p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta o crescimento de pressão no anular causado pela fluência do sal e relaciona com o cálculo deste fenômeno quanto ao efeito térmico, que é normalmente conhecido por APB (annular pressure build-up). Este fenômeno não é modelado em softwares comerciais e deve ser considerado em poços de pré-sal. O cálculo de APB considera três mecanismos geradores de pressão no anular: expansão térmica do fluido do anular, expansão do tubing e influxo e efluxo do fluido confinado no anular. Mudanças no volume do anular, causados pela fluência do sal, podem ser tratadas como um quarto mecanismo, equivalente ao influxo de fluido no cálculo do APB. O cálculo deste fenômeno pode ser incorporado a um modelo de cálculo acoplado ("multistring casing design") através da programação do APB causado pelo efeito de expansão térmica dos fluidos confinados e o APB causado pela fluência do sal. Para isso é necessário adotar um modelo constitutivo para descrever o comportamento de fluência desta rocha em função do estado de tensão, perfil de temperatura, tipo de sal, tempo decorrido, energia de ativação e outros fatores. Os efeitos de APB devido à fluência do sal podem ser mais pronunciados quando a sapata do revestimento é assentada em um intervalo de sal com elevado gradiente de sobrecarga e elevado gradiente geotérmico. Não considerar o efeito da fluência do sal no crescimento de pressão do anular (APB) pode causar um dimensionamento inadequado de revestimento ou packoff e levar a perda da integridade do poço.

Palavras-chave

APB; crescimento de pressão no anular; AFE; expansão térmica do fluido anular; fluência do sal; poço de pré-sal; projeto de poço; integridade de poço; engenharia de poço.

Abstract

Perez, Hernan Eduardo Esisenhardt; Braga, Arthur Martins. (Advisor) **Salt Creep Effect on the Annular Pressure Build Up in Subsalt Wells.** Rio de Janeiro, 2015. 181p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

This paper presents the annular pressure build-up caused by salt creep and link to current calculation of this phenomenon due to thermal effect, which is commonly known as APB. This phenomenon is not currently modeled on commercial software and should be considered in subsalt wells. The calculation of APB considers three generator mechanisms: thermal expansion of annular fluid, influx or efflux and tubing buckling. Changes in the annular volume, caused by salt creep, may be treated as a fourth mechanism, equivalent to the influx in current calculation of APB. The calculation of this phenomenon can be incorporated into a multistring casing design model by programming the thermal expansion effect and the APB caused by salt creep. This requires adopting a constitutive model to describe the creep behavior of rock for differential stress, temperature profile, salt type, salt thermal activation and other factors. When the casing shoe is seated in deep salt sections with high overburden gradient and high temperature from the produced hydrocarbons, effects of APB due to salt creep and thermal effects may be more pronounced. Not considering the salt creep effect in the annular pressure build-up (APB) can lead to inadequate casing design and possible loss of well integrity.

Keywords

APB; annular pressure build-up; AFE; annular fluid expansion; salt creep; subsalt well; well design; well integrity; well engineering.

Sumário

1 Introdução	18
2 Crescimento de Pressão em Anulares Confinados	20
2.1. Cálculo do APB	23
2.1.1. Variação de Volume em Anular Rígido e Selado	23
2.1.2. Variação de Volume com Conservação de Massa	24
2.1.3. Matriz de Rigidez e Acoplamento	25
2.2. Modelo PVT do Fluido	26
2.3. Modelo do Evaporito	27
2.3.1. Tensão Desviatória	29
3 Cálculo da Variação de Volume dos Anulares	31
3.1. Aplicação das Condições de Contorno	36
3.1.1. Variação de Volume do Anular com Intervalo Cimentado	36
3.1.2. Variação de Volume do Anular com Intervalo não Cimentado	40
4 Algoritmo poro o Cóloulo do ADP com Efeito do Eluôncia do Sal	12
4 Algonitrio para o Calculo do AFB com Eleito da Fidericia do Sal	43
4.1. Geometria e Ferris de Temperatura	43
4.2.1 Anlicação do Método de Newton-Ranhson para o Eluido na	47
Condição Inicial	49
4.3 Cálculo do Volume e Massa de Fluido na Condição Inicial	50
4.4. Cálculo da Massa Específica para a Condição de Equilíbrio	51
4.4.1. Aplicação do Método de Newton-Raphson para o Fluido na	
Condição de Equilíbrio	52
4.5. Cálculo da Variação de Volume Resultante do Fechamento	
do Sal	54
4.6. Cálculo da Variação de Volume dos Anulares Utilizando	
a Solução de Lamé	59
4.7. Balanço de Massa e Convergência no Valor de APB	62

4.8. Rotina de Iteração para Obtenção do APB	63
4.8.1. Método de Bisseção	64
4.9. Cálculo da Evolução do APB Devido à Fluência do Sal	65
5 Simulação e Resultados	67
5.1. Alimentação de Dados para Simulação	67
5.2. Validação do Modelo	81
5.2.1. Simulação do APB para Seção de Poço Aberto Não	
Cimentado	81
5.2.2. Simulação do APB para Seção de Poço Aberto Cimentado	84
5.2.3. Possíveis Fontes de Diferença nos Resultados Simulados	87
5.3. Simulação do APB	88
5.3.1. Simulação do APB para Fluência do Sal com Poço	
sem Fluxo	88
5.3.2. Simulação do APB para Poço em Fluxo após Fluência	
do Sal	93
6 Conclusões e Sugestões para Trabalhos Futuros	99
7 Referências Bibliograficas	104
	104
Apêndice A - Evaporitos	108
A.1. Comportamento de Fluência do Sal	109
A.2. Modelos Empíricos de Fluência	110
A.3. Modelos Reológicos de Fluência	111
A.3.1. Modelo de Maxwell	113
A.3.2. Modelo de Kelvin	114
A.3.3. Modelo de Burgers	115
A.4. Modelos Físicos de Fluência	117
A.4.1. Discordância por Escalonamento	118
A.4.2. Discordância por Deslizamento	119
A.4.3. Mecanismo Indefinido	119
A.4.4. Modelo de Multimecanismo	120
A.5. Critérios de Falha	121

A.5.1. Critério de Von Mises	125
A.5.2. Critério de Dilatância	126
A.5.3. Critério de Mohr-Coulomb	126
A.5.4. Critério de Tresca	128
Apêndice B – Implementação do Código APBsal	130
B.1. Geometria	130
B.2. Temperatura	132
B.3. PVT1	134
B.4. PVT2	142
B.5. DVSal	148
B.6. LameFlex	166
B.7. Bmassa	170
B.8. APBsal	172
B.9. APBsal_secundário	178

Lista de Figuras

Figura 2.1: Fluência em estado estacionário x tensão desviatória	
para ensaio com halita a 86°C (Costa, et al., 2010).	29
Figura 3.1: Notação utilizada para descrever as variáveis de um	
intervalo <i>k</i> de uma seção <i>s</i> em um poço com múltiplos anulares.	31
Figura 3.2: Ilustração da mudança de volume do anular no	
intervalo <i>k</i> em função dos deslocamentos dos revestimentos.	32
Figura 3.3: Aplicação das condições de contorno para anular	
cimentado.	37
Figura 4.1: Configuração convencional de um poço marítimo.	43
Figura 4.2: Fluxograma do processo de cálculo do APB do sal.	45
Figura 4.3: Perfis térmicos obtidos no Wellcat para produção de	
5000 bbl/dia.	46
Figura 4.4: Fechamento diametral na cota média de 4200 m para	
o fluido com 12,0 ppg e diâmetro inicial de 14 ¾" em halita.	56
Figura 4.5: Taxa de fechamento diametral na cota média de 4200	
m para o fluido com 12,0 ppg e diâmetro inicial de 14 ¾" em halita.	56
Figura 4.6: Taxa de abertura diametral na cota média de 4200 m	
para o fluido com 15,0 ppg e diâmetro inicial de 14 ¾" em halita.	57
Figura 4.7: Seção radial do poço com intervalo cimentado de	
1800 a 2800 e três anulares confinados.	60
Figura 5.1: Massa específica do fluido composicional em função	
de propriedades PVT (Zamora, et al., 2013).	68
Figura 5.2: Perfis térmicos gerados a partir das eq. (5.1) a (5.10)	
utilizando dados da simulação térmica realizada no Wellcat.	69
Figura 5.3: Evolução da fluência do sal na profundidade de 4200 m.	72
Figura 5.4: Evolução da fluência do sal na profundidade de 4300 m.	73
Figura 5.5: Evolução da fluência do sal na profundidade de 4400 m.	74
Figura 5.6: Evolução da fluência do sal na profundidade de 4500 m.	75
Figura 5.7: Evolução da fluência do sal na profundidade de 4600 m.	76
Figura 5.8: Evolução da fluência do sal na profundidade de 4700 m.	77

Figura 5.9: Evolução da fluência do sal na profundidade de 4800 m.	78
Figura 5.10: Evolução da fluência do sal na profundidade de 4900 m.	79
Figura 5.11: Evolução da fluência do sal na profundidade de 5000 m.	80
Figura 5.12: Esquema para seção de poço aberto não cimentado.	82
Figura 5.13: Esquema para seção de poço aberto cimentada.	85
Figura 5.14: Evolução da taxa de fechamento do sal no período de	
240 dias considerando o efeito de APB na fluência.	89
Figura 5.15: Evolução do diâmetro do poço no período de 480 dias	
em função da fluência do sal no anular B para diferentes	
profundidades.	89
Figura 5.16: Equilíbrio dinâmico do volume do anular B em função	
da fluência do sal no período de 480 dias.	90
Figura 5.17: Evolução da massa específica equivalente, incluído	
o APB devido à fluência do sal, em diferentes intervalos de	
profundidade.	91
Figura 5.18: Evolução do volume de fechamento do sal no	
intervalo de poço aberto do anular B no período de 480 dias.	91
Figura 5.19: Evolução da variação de volume total dos anulares	
devido ao APB gerado pela fluência do sal.	92
Figura 5.20: Crescimento de pressão nos anulares devido à	
fluência do sal (APB do sal).	92
Figura 5.21: Simulação de APB acoplado com início da produção	
do poço após 56 dias de fluência do sal.	94
Figura 5.22: Simulação de APB acoplado com início da produção	
do poço após 196 dias de fluência do sal.	94
Figura 5.23: Simulação de APB acoplado com início da produção	
do poço após 378 dias de fluência do sal.	95
Figura 5.24: Cálculo do crescimento de pressão nos anulares	
associando fechamento do sal para início da produção do poço em	
diversos períodos.	96
Figura 5.25: Cálculo da massa específica equivalente associando	
o efeito de APB acoplado nas profundidades de 4200, 4400, 4600,	
4800 e 5000 m.	98

Figura A.1: Típico ensaio de fluência de um evaporito	
(Poiate Jr, 2012).	110
Figura A.2: (a) Elemento de mola; (b) Carga aplicada no	
elemento mola e (c) Deformação resultante (Santos, 2008).	112
Figura A.3: (a) Elemento viscoso; (b) Carga aplicada no elemento	
viscoso e (c) Deformação resultante (Santos, 2008).	113
Figura A.4: Elemento de Maxwell, carga aplicada e deformação	
resultante (Santos, 2008).	114
Figura A.5: Elemento de Kelvin, carga aplicada e deformação	
resultante (Santos, 2008).	115
Figura A.6: Modelo de Burgers com elemento de Maxwell e	
elemento de Kelvin em série (Botelho, 2008).	116
Figura A.7: Deformação resultante da aplicação da carga σ_0 no	
elemento de Burgers (Botelho, 2008).	117
Figura A.8: Mapa de mecanismo de deformação adaptado	
(Munson & Wawersik, 1991) .	118
Figura A.9: Estado de tensão total decomposto em estado de	
tensão hidrostático e estado de tensão desviatória.	123
Figura A.10: Círculo de Mohr (Grainger, 2012).	127
Figura A.11: Critério de falha de Mohr-Coulomb com tensão de	
corte (Costa, 1984).	128
Figura A.12: (a) Elemento de corpo de prova e (b) Círculo de	
Mohr para condição de Tresca.	129

Lista de Tabelas

Tabela 4.1: Tabela com constantes dos fluidos utilizados na	
simulação de APB (Zamora, et al., 2013).	47
Tabela 5.1: Geometria e revestimentos utilizados na simulação	
para anular B com intervalo de poço aberto não cimentado no sal.	67
Tabela 5.2: Geometria para seção de poço aberto não cimentado.	82
Tabela 5.3: Resultado da simulação de APB no Wellcat para	
modelo "multistring" com anular não cimentado (Figura 5.12)	
e fluido padrão.	83
Tabela 5.4: Resultado de APB do Wellcat para simulação	
"multistring" com anular não cimentado (figura 5.12) e fluido com	
PVT da tabela 4.1.	83
Tabela 5.5: Comparação de resultados do Wellcat e do código	
APBsal com anular não cimentado (figura 5.12) para	
validação do programa.	84
Tabela 5.6: Quadro resumo com geometria de poço simulada	
para seção de poço aberto com anulares cimentados até a sapata.	85
Tabela 5.7: Resultado de APB do Wellcat para simulação	
"multistring" com anular cimentado (figura 5.13) e fluido com PVT	
da tabela 4.1.	86
Tabela 5.8: Comparação de resultados do Wellcat e do código	
APBsal com poço aberto cimentado (figura 5.13) para validação	
do programa.	86
Tabela 5.9: Evolução do APB térmico acoplado ao APB do sal.	96

Lista de Abreviatura e Símbolos

Abreviaturas

APB	annular pressure build-up
bbl	barril americano
ID	inner Diameter
OD	outter Diameter
ppg	libra por galão americano
psi	unidade de pressão americana
PVT	propriedades termodinâmicas do fluido
TOC	top of cement
VM	von Mises
VIT	vacuum insulated tubing

Letras Gregas

β	compressibilidade isotérmica ou módulo "bulk"
α	compressibilidade isobárica ou coeficiente de expansão térmica
Δ	pequena diferença
3	deformação
η	viscosidade
γ	constante 1 da regressão de potência
Φ	ângulo interno
$[\Lambda]$	matriz de rigidez para pressão
μ	módulo de cisalhamento
ν	constante de Poisson
τ	tensão de cisalhamento
θ	constante 2 da regressão de potência
ρ	massa específica
σ	tensão
[Ψ]	matriz de peso de ponderação para temperatura

Letras Romanas

a	raio interno
b	raio externo
d	diferencial
E	módulo de elasticidade
J	invariante de tensão desviatória
L	extensão do intervalo K
m	massa
Р	pressão
Q	energia de ativação
R	constante universal dos gases
r	raio
S	seção
Т	temperatura
t	tempo
u	deslocamento
V	volume

Subscritos

anular
base do fluido
base aquosa do fluido com PVT específico
aditivo químico do fluido
tensão desviatória ou efetiva
estimado
equivalente
fluido
formação
hidrostático
contador de anular e revestimento
interno
intervalo vertical

L	à esquerda de i
La	lâmina de água
М	médio
MO	hidrocarboneto com PVT específico
n	contador de iterações
0	base orgânica do fluido
out	externo
R	utilizado para indicar à direita de i
re	revestimento mais externo em uma seção
S	sólidos do fluido
s2	base sintética com PVT específico
sal	refererente ao sal
Т	Total
W	base aquosa do fluido
∞	infinito