

Leonardo Chagas Carbone

Simulação numérica de um misturador gáslíquido para estações de bombeio

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientadora: Professora Angela Ourivio Nieckele

Rio de Janeiro Janeiro de 2015

Leonardo Chagas Carbone

Simulação numérica de um misturador gáslíquido para estações de bombeio

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Profa. Angela Ourivio Nieckele Orientadora Pontifícia Universidade Católica do Rio de Janeiro

Prof. Rigoberto Eleazar Melgarejo Morales Universidade Tecnológica Federal do Paraná

Prof. Igor Braga Pontifícia Universidade Católica do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Leonardo Chagas Carbone

Graduou-se em Engenharia Mecânica na UFF no ano de 1997, especializou-se em Engenharia de Petróleo pela Universidade PETROBRAS em 2000 e atualmente trabalha na PETROBRAS na área de Elevação Artificial e Garantia de Escoamento

Ficha Catalográfica

Carbone, Leonardo Chagas

Simulação numérica de um misturador gás-líquido para estações de bombeio / Leonardo Chagas Carbone; orientadora: Angela Ourivio Nieckele. – Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2015.

136 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Misturador. 3. Escoamento bifásico. 4. Escoamento intermitente. 5. Sistema de bombeamento. 6. Simulação CFD. I. Nieckele, Angela Ourivio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 1121454/CA

À minha esposa, que neste período me deu meus maiores presentes... Arthur e Laís!

Agradecimentos

À Profa. Angela Ourivio Nieckele, pela orientação, dedicação e paciência sem as quais este trabalho não poderia ter sido realizado.

Aos meus pais, que foram fundamentais na minha educação e na formação de meu caráter.

Aos colegas do CENPES Roberto da Fonseca Júnior e Luiz Carlos Tosta da Silva, por me apresentarem este tema e me incentivarem a estudá-lo.

À PETROBRAS pelo patrocínio e ao meu gerente Leonardo B. Testi, pela compreensão nos momentos em que precisei me dedicar a este trabalho.

Aos meus colegas de PETROBRAS pelo companheirismo e ajuda.

À minha família, Amanda, Arthur e Laís; por darem sentido à minha vida...

Resumo

Carbone, Leonardo Chagas; Nieckele, Angela Ourivio. **Simulação numérica de um misturador gás-líquido para estações de bombeio.** Rio de Janeiro, 2015. 136p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A produção de petróleo offshore tem requerido cada vez mais a utilização de equipamentos de bombeio no leito marinho para a produção de poços a longas distâncias das unidades de produção. A grande maioria destes equipamentos tem dificuldade de operar com a presença de gás, ainda mais em condições de golfadas, onde a fração de vazio na sucção pode variar significativamente. Isto limita enormemente a janela operacional dos equipamentos. Uma forma de minimizar os efeitos das golfadas e, assim, ampliar a janela de operação destes equipamentos é a instalação de misturadores de fluxo na sucção das bombas, que atuam de forma a garantir uma maior sobrevida ao equipamento. Portanto, o projeto e a previsão do comportamento deste tipo de equipamento são fundamentais para bom funcionamento dos sistemas de bombeamento submarino. O presente trabalho investiga numericamente, com o modelo de dois fluidos, a eficiência de um tipo de misturador em uniformizar as frações de vazio. Diferentes configurações geométricas são analisadas e a influência das vazões de admissão de ambas as fases é discutida. A metodologia é validada através da comparação da queda de pressão através do misturador com dados experimentais disponíveis, onde se observou boa concordância. O modelo numérico mostra ainda que uma reserva de líquido é mantida no interior do equipamento e, o gás é forçado a se dispersar na corrente de líquido para sair do misturador. O comportamento do misturador frente à presença de golfadas também é investigado. Ao final do trabalho é proposta uma nova geometria, que se mostra mais tolerante a intermitências no escoamento.

Palavras-chave

Misturador; escoamento bifásico; escoamento intermitente; sistema de bombeamento; simulação CFD.

Abstract

Carbone, Leonardo Chagas; Nieckele, Angela Ourivio (Advisor). **Numerical simulation of a gas-liquid mixer for pumping stations** Rio de Janeiro, 2015. 136p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The offshore oil production is increasingly using pumping equipment at the seabed for production of wells at long distances from production units. Most of these devices have difficulty to operate in the presence of gas, especially in slug flow conditions, where the pump suction's void fraction can vary significantly. This problem limits the equipment's range of operation. One way to minimize the effects of slugging and thus enlarge the operation range of these devices is to use flow mixers at the pump's suction, which helps to ensure the operation even in the presence of large gas bubbles. Therefore, the design and prediction of the behavior of this type of equipment are essential for proper operation of subsea pumping systems. At the present work, the efficiency of a type of flow mixer to provide uniform void fractions at its outlet is numerically investigated, with the two fluid model. Different geometric configurations are analyzed and the influence of intake flow of both phases is discussed. The methodology is validated through comparison of the pressure drop through the flow mixer with available experimental data, where good agreement was observed. The numerical model also shows that a buffer of liquid is maintained inside the equipment and the gas is forced to disperse in the liquid stream to exit the mixer. The mixer's behavior in the presence of slugs is also investigated. Finally, a new geometry is proposed, which seems to be more efficient to avoid flow's intermittencies.

Keywords

Flow mixer; two-phase flow; slug flow; pumping system; CFD simulation.

Sumário

1 Introdução	21	
1.1 Benefícios do Uso de Métodos Bombeados	21	
1.2 Desafios do Bombeamento Multifásico		
1.3 Objetivo		
1.4 O Misturador	27	
1.5 Revisão Bibliográfica	30	
1.6 Organização do Manuscrito	32	
2 Modelagem Matemática	33	
2.1 Forças Interfaciais de Transferência de Quantidade de Movimento Linear	35	
2.2 Distribuição da fase dispersa	41	
2.3 Turbulência	46	
3 Modelagem Numérica	50	
3.1 Método de Volumes Finitos	51	
3.2 Definição da Geometria de Interesse	53	
3.3 Estudo de Malha	56	
4 Avaliação de Modelos Interfaciais	62	
4.1 Resultados Experimentais	62	
4.2 Caso 1, Bolhas Monodispersas, com Somente Força de Arraste	64	
4.3 Caso 2, Bolhas Monodispersas, com Força de Sustentação	72	
4.4 Caso 3, Bolhas Polidispersas, com Pequena Faixa de Diâmetros		
4.5 Caso 4, Bolhas Polidispersas, com Grande Faixa de Diâmetros	86	
5 Golfadas	105	
5.1 Configurações 1 e 3	109	
5.2 Proposta de Nova Geometria	119	
6 Comentários Finais	130	
6.1 Sugestão de trabalhos futuros	132	
Referências Bibliográficas	133	

Lista de tabelas

Tabela 1.1 – Configuração dos furos internos	30
Tabela 1.2 – Erro no <i>hold-up</i> de ar (Riera-Ortiz et al, 2011)	32
Tabela 2.1 – Constantes do modelo $\kappa - \omega$ SST	49
Tabela 3.1 – Parâmetros numéricos utilizados nas simulações	52
Tabela 3.2 – Condições de contorno para os testes de malha	53
Tabela 3.3 – Número de nós e elementos	60
Tabela 3.4 – Configurações finais das malhas	61
Tabela 4.1 – Resultados experimentais	63
Tabela 4.2 – Distribuição dos diâmetros das bolhas no caso 4	98
Tabela 5.1 – Condições de contorno para a simulação de golfadas	109

Lista de figuras

Figura 1.1 - Recordes mundiais de distância entre unidades de produção e poços (<i>OffShore Magazine</i> pôster, 2014)	23
Figura 1.2 - Efeito de um tanque de amortecimento no torque de eixo (Hua et al., 2011)	26
Figura 1.3 - Vista lateral do misturador com dimensões	28
Figura 1.4 - Vista lateral em corte do misturador com dimensões	28
Figura 1.5 - Projeto do misturador	29
Figura 2.1 - Correlação entre números adimensionais e formas das partículas. (Clift, Grace e Weber, 1978)	38
Figura 2.2 - Grupos de velocidade e subdivisão de classes de tamanhos de bolha do espectro de tamanho de bolhas no modelo MUSIG (Frank, 2008)	42
Figura 3.1 – Resíduos RMS de quantidade de movimento e massa	52
Figura 3.2 – Detalhes da malha gerada para a geometria completa	54
Figura 3.3 – Fração de ar no modelo completo, vista em corte do misturador	54
Figura 3.4 - Gráficos de fração de ar ao longo do misturador	55
Figura 3.5 – Configuração da Malha 1	57
Figura 3.6 – Configuração da Malha 2	58
Figura 3.7 – Configuração da Malha 3	58
Figura 3.8 – Configuração da Malha 4	59
Figura 3.9 – Configuração da Malha 5	59
Figura 3.10 – Variação do diferencial de pressão com o número de elementos de cada malha	60
Figura 3.11 – Comparação da fração volumétrica de ar no plano de simetria	61
Figura 4.1 – Comparação entre as configurações analisadas do cilindro interno.	63
Figura 4.2 – Caso 1 - comparação entre os dados experimentais e numéricos. Somente força de arraste	64
Figura 4.3 – Caso 1, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 1,2 m/s	66
Figura 4.4 – Caso 1, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1.4$ m/s	66

Figura 4.5 – Caso 1, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	67
Figura 4.6 – Caso 1, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	67
Figura 4.7 – Caso 1, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	67
Figura 4.8 – Caso 1, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	68
Figura 4.9 – Caso 1, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 1,2 m/s	68
Figura 4.10 – Caso 1, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	68
Figura 4.11 – Caso 1, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	69
Figura 4.12 – Caso 1, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	69
Figura 4.13 – Caso 1, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	69
Figura 4.14 – Caso 1, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	70
Figura 4.15 - Influência do tamanho das bolhas	71
Figura 4.16 – Caso 2 - comparação entre os dados experimentais e numéricos. Presença de força de arraste e sustentação	73
Figura 4.17– Caso 2, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	74
Figura 4.18 – Caso 2, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	75
Figura 4.19 – Caso 2, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 2,0 \text{ m/s}$	75

Figura 4.20 – Caso 2, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	75
Figura 4.21 – Caso 2, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	76
Figura 4.22 - Caso 2, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	76
Figura 4.23 - Caso 2, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	76
Figura 4.24 – Caso 2, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	77
Figura 4.25 – Caso 2, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	77
Figura 4.26 – Caso 2, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	77
Figura 4.27– Caso 2, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	78
Figura 4.28 – Caso 2, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	78
Figura 4.29 - Caso 3 – Evolução temporal da fração de ar média no plano de saída do misturador, $U_m = 1,4$ m/s	79
Figura 4.30 – Caso 3 - comparação entre os dados experimentais e numéricos	80
Figura 4.31 – Comparação dos casos 1 a 3 com os dados experimentais	81
Figura 4.32 – Caso 3, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	82
Figura 4.33 – Caso 3, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	82
Figura 4.34 – Caso 3, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	83

Figura 4.35 – Caso 3, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	83
Figura 4.36 – Caso 3, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	83
Figura 4.37 – Caso 3, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	84
Figura 4.38 – Caso 3, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	84
Figura 4.39 – Caso 3, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	84
Figura 4.40 – Caso 3, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	85
Figura 4.41 – Caso 3, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	85
Figura 4.42 – Caso 3, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	85
Figura 4.43 – Caso 3, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0m/s	86
Figura 4.44 - Caso 4 - comparação entre os dados experimentais e numéricos	87
Figura 4.45 – Comparação do caso 4 com os dados experimentais	88
Figura 4.46 – Caso 4, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	89
Figura 4.47 – Caso 4, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1.4$ m/s	89
Figura 4.48 – Caso 4, Configuração 1 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	89
Figura 4.49 – Caso 4, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	90

Figura 4.50 – Caso 4, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	90
Figura 4.51 – Caso 4, Configuração 2 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	90
Figura 4.52 – Caso 4, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	91
Figura 4.53 – Caso 4, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	91
Figura 4.54 – Caso 4, Configuração 3 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	91
Figura 4.55 – Caso 4, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2 \text{ m/s}$	92
Figura 4.56 – Caso 4, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4$ m/s	92
Figura 4.57 – Caso 4, Configuração 4 – Fração volumétrica do ar no plano de simetria (a), entrada (b) e saída (c) do misturador para U_m = 2,0 m/s	92
Figura 4.58 – Caso 4, Configuração 1 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	94
Figura 4.59 – Caso 4, Configuração 1 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1.4$ m/s	94
Figura 4.60 – Caso 4, Configuração 1 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 2,0$ m/s	94
Figura 4.61 – Caso 4, Configuração 2 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	95
Figura 4.62 – Caso 4, Configuração 2 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1.4$ m/s	95
Figura 4.63 – Caso 4, Configuração 2 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 2,0m/s$	95

Figura 4.64 – Caso 4, Configuração 3 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	96
Figura 4.65 – Caso 4, Configuração 3 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1.4$ m/s	96
Figura 4.66 – Caso 4, Configuração 3 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 2,0$ m/s	96
Figura 4.67 – Caso 4, Configuração 4 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,2m/s$	97
Figura 4.68 – Caso 4, Configuração 4 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 1,4m/s$	97
Figura 4.69 – Caso 4, Configuração 4 – Diâmetro representativo das bolhas no plano de simetria (a), entrada (b) e saída (c) do misturador para $U_m = 2,0$ m/s	97
Figura 4.70 – Caso 4, Configuração 1 – Distribuição das bolhas dos 10 grupos no plano de simetria e saída do misturador para U_m = 2,0m/s	99
Figura 4.71 - Caso 4, Configuração 2 – Distribuição das bolhas dos 10 grupos no plano de simetria e saída do misturador para U_m = 2,0m/s	100
Figura 4.72 - Caso 4, Configuração 3 – Distribuição das bolhas dos 10 grupos no plano de simetria e saída do misturador para U_m = 2,0m/s	102
Figura 4.73 - Caso 4, Configuração 4 – Distribuição das bolhas dos 10 grupos no plano de simetria e saída do misturador para $U_m = 2,0m/s$	104
Figura 5.1 - Padrões de escoamento para tubulações horizontais (Fonseca Junior, 2009)	105
Figura 5.2 – Mapa de padrão de escoamento (Taitel e Dukler, 1976)	107
Figura 5.3 – Duas unidades de golfada	108
Figura 5.4 – Simulação de golfadas para a configuração 1 e <i>U_m</i> = 1,4m/s	110
Figura 5.5 – Configuração 1, comportamento da fração volumétrica de ar no interior do misturador com a passagem de uma golfada	111
Figura 5.6 – Diferencial de pressão durante a simulação de golfadas para a configuração 1 e U_m = 1,4m/s	112
Figura 5.7 – Configuração 1, distribuição dos grupos de bolhas na saída ao final da passagem de uma bolha de ar (tempo = 6,44s)	113

Figura 5.8 – Simulação de golfadas para a configuração 3 e U_m = 1.4m/s	114
Figura 5.9 – Configuração 3, comportamento da fração volumétrica de ar no interior do misturador com a passagem de uma golfada	115
Figura 5.10 – Diferencial de pressão durante a simulação de golfadas para a configuração 3 e U_m = 1,4m/s	116
Figura 5.11 – Configuração 3, distribuição dos grupos de bolhas na saída ao final da passagem de uma bolha de ar (tempo = 6,08s)	117
Figura 5.12 – Caso extremo, 98% de fração de ar na entrada, para a configuração 1 e U_m = 1,4m/s	118
Figura 5.13 – Caso extremo, 98% de fração de ar na entrada, para a configuração 3 e U_m = 1,4m/s	119
Figura 5.14 – Configuração proposta (a), configuração 1 (b) e configuração 3 (c)	120
Figura 5.15 – Simulação de golfadas para a configuração proposta	121
Figura 5.16 – Diferencial de pressão durante a simulação de golfadas para a configuração proposta	121
Figura 5.17 – Configuração proposta, comportamento da fração volumétrica de ar no interior do misturador com a passagem de uma golfada	123
Figura 5.18 - Configuração proposta, distribuição dos grupos de bolhas na saída no pico de fração de ar na saída (tempo = 6,67s)	124
Figura 5.19 – Caso extremo, configuração proposta, 98% de fração de ar na entrada e $U_m = 1,4m/s$	125
Figura 5.20 – Fração de ar e diâmetro representativo das bolhas de ar, configuração proposta, injeção de somente ar (fração de 98 %), tempo = 0,0s	126
Figura 5.21 – Fração de ar e Diâmetro representativo das bolhas de ar na configuração proposta, injeção de somente ar (fração de 98 %), tempo = 1,00s; 2,00 s e 2,93s	127
Figura 5.22 – Fração de ar e diâmetro representativo das bolhas de ar na configuração proposta, injeção de somente ar (fração de 98 %), tempo = 3,33s	128
Figura 5.23 - Fração de ar e diâmetro representativo das bolhas de ar na configuração proposta, injeção de somente ar (fração de 98 %), tempo = 3,93s e = 5,59s	129

Lista de símbolos

$A_{lphaeta}$	área superficial de uma partícula esférica da fase β , por unidade
	de volume
a_1	constante empírica do modelo de turbulência
BB	taxa de nascimento de bolhas devido à quebra de bolhas
	grandes
D _B	taxa de morte devido à quebra em bolhas menores
B _C	taxa de nascimento devido à coalescência de bolhas pequenas
D _C	taxa de morte devido à coalescência com outras bolhas
C_D	Coeficiente de arraste adimensional
$CD_{k\omega}$	parte positiva do termo de difusão cruzada
C_L	Coeficiente de sustentação
d_{eta}	diâmetro médio das partículas esféricas da fase eta
d_b	diâmetro da bolha
D_p	diâmetro da partícula
Eo	número de Eötvös
F_B	coeficiente de calibração do modelo de quebra de bolhas
F_{CB}	coeficiente de calibração da contribuição da flutuação do modelo
	de coalescência de bolhas
F_{CT}	coeficiente de calibração da contribuição turbulenta do modelo
	de coalescência de bolhas
$ec{F}_L$	força de sustentação de uma partícula
F_1	função de mistura
F_2	função de mistura para a viscosidade turbulenta
8	aceleração da gravidade
h_0	espessura inicial do filme de líquido
h_{f}	espessura crítica onde a ruptura do filme de líquido ocorre
k	energia cinética turbulenta
т	massa
M_{α}	força total imposta à fase α devido à interação com outras fases.

$M^D_{lphaeta}$	força de arraste
$M^L_{lphaeta}$	força de sustentação
$M^{LUB}_{lphaeta}$	força de lubrificação da parede
$M^{VM}_{lphaeta}$	força de massa virtual
$M^{TD}_{lphaeta}$	força de dispersão turbulenta
Мо	número de Morton
p_{α}	pressão da fase α
r_{α}	fração volumétrica da fase α
r_l	fração volumétrica da fase líquido (contínua)
r_g	fração volumétrica da fase gás (dispersa)
<i>r_{dm}</i>	valor máximo de empacotamento
Re	Número de Reynolds
Re_m	Número de Reynolds modificado
Re_p	Número de Reynolds da partícula
Re_s	Número de Reynolds devido à taxa de deformação do
	escoamento
r _{ij}	raio equivalente
$S_{M\alpha}$	representa fontes de quantidade de movimento devido à forças
	externas
S _{MSα}	possíveis fontes de massa da fase $lpha$
S_{ij}	área da seção transversal das partículas em colisão
S	módulo do tensor deformação do escoamento
$\overrightarrow{U_{lpha}}$	vetor velocidade da fase α
$\overrightarrow{U_l}$	vetor velocidade da fase líquida
$\overrightarrow{U_g}$	vetor velocidade da fase gás
$\overrightarrow{U_p}$	vetor velocidade de uma partícula
$\overrightarrow{U_f}$	vetor velocidade do fluido
t _{ij}	tempo requerido para a coalescência de duas bolhas
u_{ti}	velocidade turbulenta
\forall	volume
У	distância à parede

Símbolos gregos

- α uma fase
- β uma fase
- β^* constante empírica do modelo de turbulência
- *εl* taxa de dissipação dos turbilhões da fase contínua
- μ_{g} viscosidade da fase gás (dispersa)
- μ_{f} viscosidade da fase contínua
- μ_{l} viscosidade da fase líquida (contínua)
- ρ_{α} massa específica da fase α
- ρ_l massa específica da fase líquido
- ρ_f massa específica do fluido
- σ tensão superficial
- σ_d constante empírica do modelo de turbulência
- σ_{ω_2} constante empírica do modelo de turbulência
- *v*_c viscosidade cinemática da fase contínua
- $\Gamma_{\alpha\beta}$ fluxo mássico por unidade de volume entre as fases $\alpha \ e \ \beta$.
- ω taxa de dissipação específica
- $\vec{\omega}_f$ vorticidade do fluido
- ξ tamanho adimensional dos turbilhões no subrange inercial da turbulência isotrópica
- θ_{ij}^{s} contribuição do cisalhamento para a frequência de colisões entre bolhas
- θ_{ij}^{T} contribuição da turbulência para a frequência de colisões entre bolhas
- *tij* tempo real durante a colisão de duas bolhas
- v_t viscosidade turbulenta

"O aumento do conhecimento é como uma esfera dilatando-se no espaço: quanto maior a nossa compreensão, maior o nosso contato com o desconhecido." Blaise Pascal