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7 
Appendix – Setup and calibration of similarity mode ls 

The matching approach we described in this thesis represents the elements 

to be matched with one or more sets of objects. For example, the thesauri terms 

are represented by sets of instance ids which are classified by the term, numeric 

properties are represented by sets of observed values of the property and by sets of 

ordered pairs of the form (instance id, value), character string properties are 

represented by sets of tokens extracted from their observed values and pairs of the 

form (instance id, token), and classes are represented by sets of property names. In 

general, an element e to be matched is denoted by a set of sets, i.e. De = { S1, S2, 

…, Sn}, where we define Si as a denotation set. Two elements e and e’ of the same 

nature, i.e., two thesauri terms or two numerical properties, must have the same 

types of denotation sets. 

Similarity functions provide means of measuring the similarity between 

denotation sets. In general, given similarity functions σ1,...,σn, a function 

sim:Rn→R and denotation sets De = {S1, S2, …, Sn} and De’ = {S1’, S2’, …, Sn’}, 

the similarity between e and e’, expressed as ∆(De,De’)  is defined as the function  

∆(De,De’) = sim(σ1(S1,S1’), σ2(S2,S2’), …,σn(Sn,Sn’)) 

The function sim may be any function like max, mean, weighted mean, etc, 

defined on Rn, and σi may be any similarity function, such as those presented in 

Chapter 2. The matching algorithms of Chapter 4 compute the matchings between 

two elements e and e’ when ∆(De,De’) ≥ threshold. 

At this point, observe that the similarity ∆(De,De’) depends on the denotation 

sets De and De’ used to represent elements e and e’ (recall that we may consider 

each denotation set as a multiset or not), the sim function, the similarity functions 

σi and the threshold value. 

The type of denotation sets adopted, the sim function and the similarity 

functions σi are the similarity model for the matching algorithms, and the 
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threshold value is the calibration of the similarity model. 

The matching approach proposed in Chapter 4 consists of four steps: 1) 

temporary property matching, 2) class matching, 3) instance matching and 4) 

refinement of property matching. Each step may use different similarity models 

and requires a preliminary calibration in order to maximize the performance of the 

results. 

The calibration process requires a training corpus where the matching 

elements are manually identified and labeled. For each step of the matching 

approach, the process consists of varying the similarity model and the calibration, 

and measuring the overall performance (f) of the results. Recall that 

precision=tp/(tp+fp), recall=tp/(tp+fn) and f=2*precision*recall/(precision+ 

recall). The best model/calibration for each step is selected. 

However, to avoid overfitting of the similarity model with respect to the 

training corpus, we suggest using cross validation, which is a process with the 

following major steps 

1. The training corpus is divided in n parts. 

2. Each similarity model is calibrated with data of n-1 parts and tested with the 

remaining n part. 

3. Steps 1 and 2 are repeated for each of the n parts.  

4. The final performance of each similarity model is the average overall 

performance (f) for each of the n parts. 

We describe such an evaluation in (Leme et al. 2008b), where we were 

interested in evaluating the best similarity model for property matchings. In this 

experiment, we used data extracted from the gazetteers Alexandria Digital Library 

and Geonames, and data extracted from eBay and Amazon. The denotation sets 

for properties were the set of tokens T and the set IV of pairs of the form 

(instance, token). We considered both sets as multisets, denoted T and IV , 

respectively, and as sets in the usual sense, denoted T and IV. We adopted max as 

the sim function, and the cosine with TF/IDF, the contrast model function and the 

information theory measure as similarity functions. For the contrast model 

function, we used as parameter values α=1.0, and β and γ∈[1.0,10.0]. The 
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threshold varied from 0.0 to 1.0, in steps of 0.1. 

Table 22 presents the results of the cross validation process. The selected 

lines indicate the best models. The experiments showed that, for property 

matching, the similarity function based on the contrast model performs better than 

the other functions. This result does not represent a final conclusion with respect 

to similarity models. On the contrary, it should be viewed as a guideline for more 

elaborate experiments using different similarity models and data. 

 

Table 22. Automatically obtained vocabulary matching from eBay into Amazon 

Similarity models Calibration Selected model 

σi α β,γ sim() 
denotation 

sets 
threshold β,γ threshold f 

contrast model 1.0 [1.0,10.0] max() T,IV [0,1.0] 3.5 0.1 60% 

contrast model 1.0 [1.0,10.0] max() IVT,  [0,1.0] 2.5 0.1 53% 

contrast model 1.0 [1.0,10.0] max() T [0,1.0] 3.5 0.1 65% 

contrast model 1.0 [1.0,10.0] max() T  [0,1.0] 2.5 0.1 51% 

information theory - - max() T,IV [0,1.0] - 0.15 58% 

information theory - - max() IVT,  [0,1.0] - 0.05 52% 

information theory - - max() T [0,1.0] - 0.1 59% 

information theory - - max() T  [0,1.0] - 0.05 50% 

cosine with TF/IDF - - max() T,IV [0,1.0] - 0.2 56% 

cosine with TF/IDF - - max() IVT,  [0,1.0] - 0.15 57% 

cosine with TF/IDF - - max() T [0,1.0] - 0.2 56% 

cosine with TF/IDF - - max() T  [0,1.0] - 0.15 57% 
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