

4
Complex schema matching

We address in this chapter the problem of matching two schemas that

belong to an expressive OWL dialect. We adopt an instance-based approach and,

therefore, assume that a set of instances from each schema is available.

First, we decompose the problem of OWL schema matching into the

problem of vocabulary matching and the problem of concept mapping. We first

describe a vocabulary matching technique based on the notion of similarity. Then,

we evaluate the precision of the technique using data available on the Web.

Finally, we also introduce sufficient conditions guaranteeing that a vocabulary

matching induces a correct concept mapping.

Unlike any of the previous instance-based techniques presented in section

1.2, the matching process we describe uses similarity functions to induce

vocabulary matchings in a non-trivial way, coping with an expressive OWL

dialect. We also illustrate, through a set of examples, that the structure of OWL

schemas may lead to incorrect concept mappings and indicate how to avoid such

pitfalls.

4.1.
OWL Extralite

We will work with an OWL dialect, that we call OWL Extralite. It supports

named classes, datatype and object properties, subclasses, and individuals. The

domain of a datatype or object property is a class, the range of a datatype property

is an XML schema type, whereas the range of an object property is a class. As

property restrictions, the dialect admits minCardinality and maxCardinality, with

the usual meaning. As property characteristic, it allows just the inverseFunctional

property, which captures simple keys. We note that only OWL Full supports the

inverseFunctional property for datatype properties.

An OWL schema (more often called an OWL ontology) is a collection of

RDF triples that use the OWL vocabulary. A concept of an OWL schema is a

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 63

class, datatype property or object property defined in the schema. The vocabulary

of the schema is the set of concepts defined in the schema (a set of URIrefs). The

scope of a property name is global to the OWL schema, and not local to the class

indicated as its domain.

In the rest of the thesis, when we refer to a schema we mean an OWL

Extralite schema.

Figure 9 and Figure 10 show OWL schemas for fragments of the Amazon

and the eBay databases, using a simplified and unofficial notation to save space

and improve readability. Consistently with XML usage, from this point on, we

will use the namespace prefixes am: and eb: to refer to the vocabularies of the

Amazon and the eBay OWL schemas, and qualified names of the form V:T to

indicate that T is a term of the vocabulary V.

In Figure 9, for example, am:title is defined as a datatype property with

domain am:Product and range string (an XML Schema data type),

am:Book is declared as a subclass of am:Product , and am:publisher is

defined as an object property with domain am:Book and range am:Publ . Note

that the scope of am:title and am:publisher is the schema, and not the

classes defined as their domains.

Furthermore, although not indicated in Figure 9, we assume that all

properties, except am:author , have maxCardinality equal to 1, and that

am:isbn is inverseFunctional. This means that all properties are single-valued,

Product
 title range string
 listPrice range decimal
 currency range string
Book is-a Product
 author range string
 edition range integer
 isbn range string
 ean range string
 detailPageURL range anyURI
 publisher range Publ
Publ
 name range string
 address range string
Music is-a Product
Video is-a Product
PCHardware is-a Product

Figure 9. An OWL schema for the Amazon Database.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 64

except am:author , which is multi-valued, and that am:isbn is a key of

am:Book . Likewise, although not shown in Figure 10, all properties, except

eb:author , have maxCardinality equal to 1, and eb:isbn-10 and

eb:isbn-13 are inverseFunctional.

Finally, to express mappings, we adopt the Semantic Web Rule Language

(SWRL) (Horrocks et al. 2004). However, we also opted for a simplified, datalog-

like syntax to improve readability and save space.

An example of an SWRL rule in our simplified syntax would be:

eb:publisher(b,n) ← am:publisher(b,p), am:name(p,n)

which says that, if b and p are related by am:publisher , and p and n by

am:name, then b and n are related by eb:publisher .

Seller
 name range string
 redistrationDate range dateTime
 offers range Offer
Offer
 quantity range integer
 startPrice range double
 currency range string
 seller range Seller
 product range Product
Product
 title range string
 condition range string
 returnPolicyDetails range string
 offers range Offer
Book is-a Product
 author range string
 edition range integer
 publicationYear range integer
 isbn-10 range integer
 isbn-13 range integer
 publisher range string
 binding range string
 condition range string
Music is-a Product
DVDMovies is-a Product
ComputerNetworking is-a Product

Figure 10. An OWL schema for the eBay Database.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 65

4.2.
Vocabulary matching

4.2.1.
Formal definition of vocabulary matching

Let S and T be two (OWL Extralite) schemas, and VS and VT be their

vocabularies, respectively. Let CS and CT be the sets of classes, and PS and PT be

the sets of datatype or object properties in VS and VT, respectively.

A contextualized vocabulary matching between S and T is a finite set µV of

quadruples (v1,e1,v2,e2) such that

(i) if (v1,v2)∈CS×CT, then e1 and e2 are the top class T

(ii) if (v1,v2)∈PS×PT, then e1 and e2 are classes in CS and CT that must be

subclasses of the domains of v1 and v2, respectively

(iii) and these are the only possible quadruples in µV

If (v1,e1,v2,e2)∈ µV, we say that µV matches v1 with v2 in the context of e1 and

e2, that ei is the context of vi and that (vi,ei) is a contextualized concept, for i=1,2.

A contextualized property (or class) matching is a matching defined only for

properties (or classes).

Intuitively, a vocabulary matching expresses equivalences between

properties and classes in a given context. The context of a property P in a

vocabulary matching is an RDF class that specifies the rdf:type of subjects of

existing triples of the form (?subject P ?object) for which the matchings

holds. The context of a class is always the top class T (i.e., this notion is not used

for class matchings).

Table 19 is a fragment of a vocabulary matching between the Amazon and

the eBay schemas. The first line of the table indicates that property am:title ,

associated with instances of class am:Book , is equivalent to property eb:Book ,

when associated with instances of class eb:Book , and the fourth line of the table

indicates that classes am:Book and eb:Book are equivalent.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 66

4.2.2.
Instance-based vocabulary matching

In this section, we describe an instance-based process to create contextualized

vocabulary matchings.

Recall from Section 3.3 that a property A of a catalogue C may be

represented by the set of values of A that occur in the current extension C of C, or

by the set of pairs (i,v) such that v is the value of A for an instance i that occurs in

C. If the domain of A is a set of strings, the set of values is replaced by a set of

tokens, and the property representations are reinterpreted accordingly. Similarity

models are then applied to such property representations to generate property

matchings between two catalogue schemas.

We also recall that the instance matching technique of Bilke and Naumann

(Bilke and Naumann 2005) represents each database tuple as a character string

and uses k-mean clustering algorithms to find duplicate tuples. However, we note

that the representations of the same object in distinct databases may differ in the

list of properties and in the property values. As a consequence, we may end up

with dissimilar tuples that represent the same object.

For example, suppose that we apply the Bilke and Naumann technique to

match instances that represent the book “The Tragedy of Romeo and Juliet”.

Table 20 shows their lists of property-value pairs. If we measure the similarity

between the sets of tokens extracted from all property values of each instance, we

obtain a score of 43% of common tokens (Figure 11). By contrast, if we consider

only the values of the properties that match, the similarity increases to 64%

(Figure 12).

However, note that, to extract tokens from the values only of properties that

Table 19: Fragment of a vocabulary matching between Amazon and eBay schemas.

Amazon Database eBay Database

Concept Context Concept Context

am:title am:Book eb:title eb:Book

am:title am:Music eb:title eb:Music

am:name am:Publ eb:publisher eb:Book

am:Book T eb:Book T

am:Music T eb:Music T

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 67

match, we have to know that am:book matches eb:book , and have access to

the set of matching properties of such classes.

Combining these observations, we propose a four-step schema matching

process, as follows:

1) Generate a preliminary property matching using similarity functions.

2) Use the property matching obtained in Step (1) to generate: (a) a class

matching; and (b) a class instance matching.

3) Use the class matching and the class instance matching obtained in Step

(ii) to generate a refined contextualized property matching.

4) The final vocabulary matching is the result of the union of the property

and class matchings obtained in Steps (2) and (3).

Step (1) generates preliminary property matchings based on the intuition

that “two properties match iff they have many values in common and few values

not in common”. Step (2) creates class matchings that reflect the intuition that

“two classes match iff they have many matching properties”. However, to work

correctly, Step (2) requires that Step (1) generates preliminary property matchings

only for highly similar properties.

For example, in the experiments described in Section 4.2.3, with data from

the eBay and the Amazon databases, if we use a threshold τ=0.12, then

Table 20. Example the same book instance representation in eBay and Amazon.

eBay Amazon

isbn-10 = “039577537X” isbn = “039577537X”

isbn-13 = 9780395775370 ean = 9780395775370

title = “The Tragedy of
Romeo and Juliet”

title = “Tragedy of Romeo
and Juliet: And Related
Readings (Literature
Connections)”

author = “William
Shakespeare”

author = “William
Shakespeare”

publisher = “Houghton
Mifflin”

name = “Houghton Mifflin
Company”

returnPolicyDetails = “NO
RETURNS ARE ACCEPTED”

-

condition = “Like New” -

binding = “Hardcover” -

- listPrice = 18.92

- currency = “USD”

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 68

eb:level with context eb:Seller matches am:color with context

am:PCHardware , and eb:title with context eb:Music matches

am:title with content am:Video . These property matchings may cause

classes eb:Seller and am:PCHardware to match, as well as eb:Music and

am:Video , depending on the threshold and the total amount of common

properties among the classes (as discussed below, class matching depends on the

similarity between sets of properties). If we increase the threshold to 0.13, the

previous property matchings do not hold and we may avoid the above unwanted

class matchings.

In what follows, let S and T be two schemas, VS and VT be their

vocabularies, PS and PT be their sets of properties, and CS and CT be their sets of

Instance representation
i) eBay

{039577537x, 9780395775370, tragedy, romeo, juliet, william, shakespeare,
houghton, mifflin, returns, accepted, like, new, hardcover}

ii) Amazon

{039577537x, 9780395775370, tragedy, romeo, juliet, related, readings,
literature, connections, william, shakespeare, houghton, mifflin, company,
18.92, usd}

Similarity

9 common tokens (in bold face) in a total of 21 tokens from both
instances ⇒ 43% of commonalities

Figure 11. Similarity of the instances in Table 20 based on the set of tokens
representation, where tokens were extracted from all properties.

Instance representation
i) eBay

{039577537x, 9780395775370, tragedy, romeo, juliet, william, shakespeare,
houghton, mifflin}

ii) Amazon

{039577537x, 9780395775370, tragedy, romeo, juliet, related, readings,
literature, connections, william, shakespeare, houghton, mifflin, company}

Similarity

9 common tokens (in bold face) in a total of 14 tokens from both
instances ⇒ 64% of commonalities

Figure 12. Similarity of the instances in Table 20 based on the set of tokens
representation, where tokens were extracted from matching properties.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 69

classes, respectively. Let US and UT be fixed sets of instances of S and T,

respectively, used to compute the vocabulary matchings.

Let U be the universe of all tokens extracted from literals and all URIrefs.

Consider a similarity function σ : 2U×2U→[0,1] , a similarity threshold τ∈[0,1]

and a related similarity threshold τ’∈[0,1] such that τ’< τ.

For each property P∈PS, for each class C∈CS such that C is the domain of P

or a subclass of the domain of P, consider the contextualized property PC=(P,C)

and construct the set o[US,P
C] of all values v such that there are triples of the form

(I,P,v) and (I,rdf:type ,C’) in US, where C’=C or C’ is a subclass of C, and

likewise for a property in PT. We call o[US,P
C] the observed-value representation

for PC in US. This construction explores the fact that P is inherited by all

subclasses of its domain.

The basis of the matching process are the matchings directly induced by σ

and τ, defined as follows.

The contextualized property matching between S and T induced by σ and τ,

and based on the observed-value representation for properties, is the relation µP

such that

(P,C,Q,D)∈µP iff σ(o[US,P
C],o[U T,Q

D]) ≥ τ

For each class C in CS, let props[S,C] be the set of properties in PS whose

domain is C or that C inherits from its superclasses, and likewise for classes in CT.

We call props[S,C] the representation of C in US.

The contextualized class matching between S and T induced by σ, τ and µP

is the relation µC ⊆ CS×CT such that (recall that T is the top class)

(C,T,D,T)∈µC iff σ(props[S,C],relprops[S,C,T,D])) ≥ τ

where relprops[S,C,T,D] denotes the set of properties P of class C of S such that

there is a property Q of class D of T such that (P,C,Q,D)∈µP. Note that it does not

make sense to directly compute σ(props[S,C],props[T,D]), since props[S,C] and

props[T,D] are sets of URIrefs from different vocabularies. To avoid this

problem, we replaced props[T,D] by relprops[S,C,T,D].

From the matchings directly induced by σ and τ, the process then derives a

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 70

class instance matching and a refined contextualized property matching, as

follows.

Figure 13 shows the class instance matching algorithm. It receives as input S

and T, and the class matching µC induced by σ, τ and µP. It also implicitly receives

as input US and UT. It outputs a class instance matching µI between class instances

in US and UT. In Figure 13, if C is a class in CS, and I is an instance of C in US,

then t[US,C](I) denotes the set of tokens extracted from all values v such that, for

some property P∈PS, for some property Q in PT, for some class D∈CT, there is a

triple (I,P,v) in US, and there is a tuple (P,C,Q,D) in µP, and likewise for

t[UT,D](J).

For each (P,C,Q,D)∈µP such that (C,T,D,T)∈µC, construct the set q of

triples (I,u,v) such that there are triples of the form (I,P,u) and (I,rdf:type ,C) in

US, there are triples of the form (J,Q,v) and (J,rdf:type ,D) in UT, and

(I,C,J,D)∈µI (where µI is the class instance matching of Figure 13). Define

iv[P,C,Q,D]=(s,t) such that s={(I,u)/(∃v)(I,u,v)∈q} and t={(I,v) /(∃u)(I,u,v)∈q}.

We call s the instance-value representation of PC in US (and likewise for t). This

second representation for properties is useful since it helps distinguish properties

with similar sets of values, but which refer to distinct instances, matched by µI.

Figure 14 shows the refined contextualized property matching algorithm. It

has the same input as the algorithm in Figure 13, including the class matching µC

induced by σ, τ and µP, and outputs a contextualized property matching µP only

between properties whose domains are classes directly or indirectly matched by

µC. The algorithm uses the maximum of the similarity values computed using the

observed-value and the instance-value representations for a pair of properties P

1 INSTANCE-MATCHING(S,T, µC)
2 µI = { }
3 for each pair of classes (C,D) in S and T such th at
 µC matches C with D
4 for each pair of instances (I,J) of C and D in US × UT
5 if σ(t[US,C](I),t[UT,D](J)) ≥ τ then
6 µΙ = µΙ ∪ {(I,C,J,D)}
7 return µI

Figure 13. The class instance matching algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 71

and Q, and the more relaxed similarity threshold. Although not shown in Figure

14, object properties receive a special treatment, since their representations are

sets of URIrefs that are compared with help of the class instance matching µI

(computed by the algorithm in Figure 13).

The final vocabulary matching µV is the union of the class matching µC

induced by σ, τ and µP and the contextualized property matching µP computed by

the algorithm in Figure 14. However, µV may have to be adjusted, by dropping

matchings, until it becomes structurally correct (see Section 4.3.4).

4.2.3.
Experimental results

We conducted an experiment to assess the performance of the vocabulary

matching process of Section 4.2.3, using data about products obtained from

Amazon and eBay.

We tested the process with data downloaded from the Web, rather than with

the benchmark proposed in (Duchateau et al. 2007), since the benchmark does not

include instances and is therefore unsuitable to test our process.

We first defined a set of terms, which were used to query the databases.

From the query results, we extracted the less frequent terms common to both

1 CONTEXTUALIZED-PROPERTY-MATCHING(S,T, µC)
2 µP = { }
3 for each pair of classes (C,D) in S and T such t hat
 µC matches C with D
 or C’ dominates C and µC matches C’ with D
 or D’ dominates D and µC matches C with D’
4 for each pair (P,Q) of properties of C and D
5 X = σ(o[US,P

C],o[UT,Q
D])

6 if (C matches D) then
7 (s,t)=iv[P,C,Q,D]
8 Y = σ(s,t)
9 else
10 Y = 0
11 if max(X,Y) ≥ τ’ then
12 µP = µP ∪ {(P,C,Q,D)}
13 return µP

Figure 14. The contextualized property matching algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 72

databases. We then used these terms to once more query the databases. This pre-

processing step enhanced the probability of retrieving duplicate objects from the

databases, which is essential to evaluate any instance-based schema matching

technique. We extracted a total of 116,201 records: 16,410 from Amazon and

99,791 from eBay.

We adopted as similarity functions the contrast model (Leme et al. 2008b),

for property matchings, and the cosine distance with TF/IDF, for instance

matchings. The experiments lead us to conclude that the contrast model has a

better performance when we want to emphasize the difference between two sets of

values. This follows because the contrast model has room for calibrating several

parameters.

The configuration of the similarity models in this experiment was as follows

(see the Appendix for more details on how to setup and calibrate a similarity

model):

• Configuration for the temporary property matching:

multiset

 similarity based on the contrast model

threshold = max similarity - 20%

• Configuration for the instance matching:

multiset

cosine with TF-IDF

threshold = 0,8

• Configuration for the refinement of the property matching:

does not use multiset

similarity based on the contrast model

threshold = max similarity - 30%

Table 21 shows the vocabulary matching obtained. The headings indicate

that e1 is the context of v1, and e2 that of v2. Also, “B” abbreviates classes

eb:Book and am:Book , and similarly for the other classes.

Note that both properties, eb:format and eb:biding , in the context of

Books matches the property am:format . This is because the databases hold

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 73

similar information in the first two properties.

The rightmost column of Table 21 classifies the matchings as follows: tp for

true positive, fp for false positive and fn for false negative. Since the number of

true positives is 25, that of false positives is 4 and that of false negatives is 10, the

performance measures are:

%86
fptp

tp
precision =

+
=

%71
fntp

tp
recall =

+
=

%* 78
recallprecision

recallprecision
2f =

+
⋅=

The highlighted lines in Table 21 refer to matchings that would have been

considered false negatives, if the algorithm in Figure 14 ignored the instance-

value representation for properties. In this case, the performance measures would

drop to:

%63%,51%,82 === frecallprecision

Lastly, if we consider only the class matchings in Table 21, the performance

measures are:

%80%,80%,80 === frecallprecision

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 74

Table 21. Automatically obtained vocabulary matching from eBay into Amazon

eBay Amazon

v1 e1 v2 e2

Books Books tp

author B author B tp

binding B biding B tp

edition B edition B tp

format B biding B tp

isbn-10 B isbn B tp

isbn-13 B ean B tp

publisher B name P tp

title B title B tp

ComputerNetworking PCHardware tp

operatingSys CN platform PC tp

operatingSystem CN operSyst PC tp

processorConfig CN cpuType PC tp

processorType CN cpuType PC tp

processorType CN cpuManufact PC tp

title CN title PC tp

DVDMovies Video tp

director DVD director V tp

leadingRole DVD actor V tp

title DVD title V tp

upc DVD upc V tp

Music Music tp

artist M artist M tp

format M biding M tp

title M title M tp

editionDesc B format B fp

Offer Books fp

currency O currencyCode B fp

startPrice O listPrice B fp

brand CN brand PC fn

hardDriveCap CN hardDiskSize PC fn

memoryRam CN systemMemory PC fn

processorSpeed CN cpuSpeed PC fn

screenSize CN displaySize PC fn

format DVD biding V fn

releaseDate DVD releaseDate V fn

ReleaseDate M releaseDate M fn

upc M upc M fn

Product Product fn

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 75

4.3.
Concept mapping

4.3.1.
Informal definition of concept mapping rules

In this section, we informally introduce the notions of vocabulary matching

and concept mapping, formally defined in sections 4.2 and 4.3, respectively.

A concept mapping from a source schema S to a target schema T is a set of

transformation rules that express concepts of the target schema T in terms of

concepts of the source S such that it is possible to translate queries over T to

queries over S.

In the context of this thesis we consider queries defined in the SPARQL

Query Language for RDF (Prud'hommeaux and Seaborne 2008). In this language

a query consists of two parts: the SELECT clause identifies the variables to appear

in the query results, and the WHERE clause provides the basic graph pattern to

match against the data graph.

A basic graph pattern is a set of triple patterns. Triple patterns are like RDF

triples except that each of the subject, predicate and object may be a variable. A

basic graph pattern matches a subgraph of the RDF data when RDF terms from

that subgraph may be substituted for the variables and the result is an RDF graph

equivalent to the subgraph.

For example, the query of Figure 15.a returns titles of book instances from

the Amazon database. The variable ?b in lines 5 and 6 means that the same

instances that have property am:title must be instances of the class am:Book .

If line 5 were omitted, the query would return titles of instances of the classes

am:Book , am:Music , am:Video and am:PCHardware . Figure 15.b returns

titles and authors of books but, in this case, there is no need to restrict the type of

instances, since all instances that have the property am:author must be books

(Figure 9). Figure 15.c extends the second query by adding to the result set the

publisher of the books. Line 6 of Figure 15.c is analogous to an equijoin in the

relational model that joins the class am:Book with the class am:Publisher of

the Amazon schema (Figure 9).

The SELECT keyword may be replaced by CONSTRUCT in order to return

an RDF graph instead of a relation. Figure 16 shows a SPARQL code which

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 76

returns triples of publisher names from Amazon as triples of eBay.

After this brief overview of SPARQL, we return to the problem of concept

mapping. From Figure 9 and Figure 10 and an analysis of the database schemas,

one may infer that the properties named title from both schemas are likely to

1. PREFIX am:<...>
2. PREFIX rdf:<...>
3. SELECT ?title
4. WHERE
5. {?b rdf:type am:Book.
6. ?b am:title ?title}

a) Simple SPARQL query over the Amazon database which returns titles of books

1. PREFIX am:<...>
2. SELECT ?title ?author
3. WHERE
4. {?b am:author ?author.
5. ?b am:title ?title}

b) Simple SPARQL query over the Amazon database which returns title and author of
books

1. PREFIX am:<...>
2. SELECT ?title ?author ?pub
3. WHERE
4. {?b am:author ?author.
5. ?b am:title ?title.
6. ?b am:publisher ?p.
7. ?p am:name ?pub}

c) Simple SPARQL query over the Amazon database which returns title, author and
publisher of books

Figure 15. Simple SPARQL queries over the Amazon database with schema in Figure 9

1. PREFIX am:<...>
2. PREFIX eb:<...>
3. CONSTRUCT {?b eb:publisher ?pub}
4. WHERE
5. {?b am:publisher ?p.
6. ?p am:name ?pub}

Figure 16. Simple SPARQL query for returning a RDF graph

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 77

be equivalent because their names are syntactically equal and the experiments,

which we will describe later in this chapter, showed that the set of values of both

properties are very similar. A rule in SWRL which expresses this mapping can be

written as follows:

eb:title(p,t) ← am:title(p,t)

This rule means that the concept eb:title of eBay can be translated to

the concept am:title of Amazon, i.e., triple patterns of the form

(?s eb:title ?o) can be translated to (?s am:title ?o) . Figure 17

shows an eBay query on the left and its translation to the Amazon schema on the

right.

However, a deeper analysis might not confirm the equivalence for all classes

which inherits the property title in both databases. For example, consider

Table 19 which says that the property am:title of instances of am:Book is

equivalent to the property eb:title of instances of eb:Book and, likewise,

for property title of Music in both databases. In addition, the table matches

am:name with eb:publisher , am:Book with eb:Book and am:Music

with eb:Music . In view of this, the previous rule should be replaced by the

following two rules.

eb:title(p,t) ← am:title(p,t), am:Book(p)

eb:title(p,t) ← am:title(p,t), am:Music(p)

 Note that Table 19 omit pairs of the title property in the context of movies

and computers. This means that the equivalence between the property eb:title

and am:title does not hold in these contexts.

More precisely, these new rules state that, although eb:title refers to

titles of all types of eBay products (subclasses of eb:Product), this property

has a narrower meaning in the Amazon database: eb:title can only be

PREFIX eb:<...>
SELECT ?title
WHERE {?s eb:title ?title}

PREFIX am:<...>
SELECT ?title
WHERE {?s am:title ?title}

Figure 17. Equivalent queries over the eBay and the Amazon schemas that return titles.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 78

considered equivalent to am:title for instances of type am:Book and

am:Music , although eb:title is a valid property for other classes in the

eBay schema.

The translation of the concept eb:title of queries over the eBay schema

to the Amazon schema is as exemplified in Figure 18.

Recall that in a SPARQL query, the triple pattern (?s rdf:type C)

indicates that C is a class and the triple pattern (?s P ?o) expresses that P is a

property. Therefore, we provide rules for translating only these two types of

triples. The approach we propose does not cover triple patterns with variables in

the property position.

The third line in Table 19 matches the property am:name in the context of

am:Publ with the property eb:publisher in the context of eb:Book .

Consistently with the previous discussion, we would generate the following

mapping rule:

eb:publisher(b,n) ← am:name(b,n), am:Publ(b)

The query translation shown in Figure 19.a illustrates the use of this rule.

However, the above rule is a wrong because:

• the domain of am:name is am:Publ and the domain of

eb:publisher is eb:Book

• Table 19 does not match the am:Publ and the eb:Book classes

The correct mapping rule would be as follows:

PREFIX eb:<...>
SELECT ?title
WHERE {?s eb:title ?title}

PREFIX am:<...>
PREFIX rdf:<...>
SELECT ?title
WHERE
 {{?s am:title ?title.
 ?s rdf:type am:Book}
 union
 {?s am:title ?title.
 ?s rdf:type am:Music}}

Figure 18. Equivalent queries over eBay and Amazon databases that return titles when

only instances of titles of books and music are equivalent

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 79

eb:publisher(b,n) ←
am:publisher(b,p), am:name(p,n), Publ(p)

Note that this rule can be optimized by omitting Publ(p) because Publ is

the domain of the property name.

eb:publisher(b,n) ← am:publisher(b,p), am:name(p,n)

The query translation shown in Figure 19.b illustrates the use of this second

rule. This translation can be regarded as a raw translation, automatically

generated by the mapping rules. However, note that the second part of the union

PREFIX eb:<...>
SELECT ?title, ?pub
WHERE
 {?s eb:title ?title.
 ?s eb:publisher ?pub}

PREFIX am:<...>
PREFIX rdf:<...>
SELECT ?title, ?pub
WHERE
 {{?s am:title ?title.
 ?s am:name ?pub.
 ?s rdf:type am:Book}
 union
 {?s am:title ?title.
 ?s am:name ?pub.
 ?s rdf:type am:Music}}

a) Wrong translation of eBay query

PREFIX eb:<...>
SELECT ?title, ?pub
WHERE
 {?s eb:title ?title.
 ?s eb:publisher ?pub}

PREFIX am:<...>
PREFIX rdf:<...>
SELECT ?title, ?pub
WHERE
 {{?s am:title ?title.
 ?s am:publisher ?p.
 ?p am:name ?pub.
 ?p rdf:type am:Publ.
 ?s rdf:type am:Book}
 union
 {?s am:title ?title.
 ?s am:publisher ?p.
 ?p am:name ?pub.
 ?p rdf:type am:Publ.
 ?s rdf:type am:Music}}

b) Correct translation of eBay query

Figure 19. Equivalent queries over eBay and Amazon databases that return titles when
only instances of titles of books and music are equivalent

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 80

asks for publishers of instances of the class am:Music . But, according to Figure

9, am:publisher is defined only for instances of type am:Book . Hence, this

part of the union would return an empty set. Therefore, the query can be

optimized in a subsequent processes to improve performance, a problem we do

not address in this thesis.

In general, a triple pattern of the target schema has to be translated to a

graph pattern of the source schema that connects objects of the same type. In the

previous example, {?s eb:publisher ?pub} connects an eb:Book

instance, denoted by the variable ?s , to an xsd:string literal, denoted by the

variable ?pub , and so does the graph pattern

{?s am:publisher ?p. ?p am:name ?pub} .

However, we note that only part of the previous rule can be directly derived

from the vocabulary matching, for the following reasons:

1. The rule provides a translation for eb:publisher , a concept of the

target schema (eBay) .

2. The vocabulary matching of Table 19 matches am:name, a concept of

the source schema (Amazon), with eb:publisher , i.e., the matching

indicates that am:name and eb:publisher have similar values.

3. However, Table 19 does not match am:Publ , the context (which, in

this case, is the domain) of am:name, with eb:Book , the context

(which, in this case, is also the domain) of eb:publisher .

4. The body of the rule has to be generated from the schemas and the

vocabulary matching. It reflects a path from am:Book , the class that

matches the context eb:Book of eb:publisher , to the class

am:Publ , the context of am:name.

If am:Book and eb:Book did not match or there were no path from

am:Book to am:Publ , we would say that the vocabulary matching were

inconsistent . In this case, we would have to remove rows from the vocabulary

matching until it became consistent.

Because of the above considerations, we say that the concept mapping,

expressed by the above rules, is derived from the vocabulary matching indicated

in Table 19, or conversely the vocabulary matching of Table 19 induces the above

concept mapping.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 81

Note that the process of concept mapping generation is not symmetric. In

our running example, if we make eBay schema the source and the Amazon

schema the target, the property am:name will not have any translation, since

there will not be a concept in the eBay schema which is equivalent to am:Publ .

The last type of rule aims at translating class concepts. Table 19 indicates

that that am:Book class is equivalent to eb:Book . The corresponding mapping

rule is as follows:

eb:Book(b) ← am:Book(b)

The rule means that each triple pattern of the form

(?s rdf:type eb:Book) should be translated to the pattern

(?s rdf:type am:Book) .

However, consider the following query over the eBay schema:

PREFIX eb:<http://ebay.com>
SELECT ?s
WHERE
 {?s rdf:type eb:Product}

The result set contains instances of eb:Book , eb:Music ,

eb:DVDMovies and eb:ComputerNetworking , which are subsets of

eb:Product . Since Table 19 only indicates that am:Book matches with

eb:Book and am:Music matches with eb:Music , it is expected that an

equivalent query over the Amazon schema returns instances of am:Book and

am:Music . Indeed, the equivalent query over the Amazon schema would be:

PREFIX am:<http://amazon.com>
SELECT ?s
WHERE
 {{?s rdf:type am:Book} union
 {?s rdf:type am:Music}}

This translation can be achieved by adding to the concept mappings the

following two rules:

eb:Product(p) ← am:Book(p)
eb:Product(p) ← am:Music(p)

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 82

4.3.2.
Formal definition of concept mapping rules

Let S be an OWL Extralite schema in what follows.

We say that S is well-formed iff

• for any property p of S, the domain of p is a class of S

• for any object property p of S, the range of p is a class of S

• for any class c of S, if s is defined as a superclass of c in S, then s is also

a class of S

We understand S as a theory T[S]=(A[S],C[S]) in ALCQI (Chomicki and

Saake 1998), a dialect of Description Logics, such that

• the concepts and roles of the alphabet A[S] are the classes and properties

of S

• the axioms of C[S] are the constraints of S, denoted in ALCQI as

follows:

o a property p has domain d and range r: T ⊑ ∀p.r ⊓ ∀ p −.d

o a property p, with range r, is inverse functional: r ⊑ (≤ 1 p −)

o a property p, with domain d, has minCardinality k: d ⊑ (≥ k p)

o a property p, with domain d, has maxCardinality k: d ⊑ (≤ k p)

o a class s is defined as a superclass of c: c ⊑ s

In what follows, we will also use from ALCQI the intersection of two

concepts, denoted c ⊓ d, and the subsumption of two concepts, denoted c ⊑ d.

Let V be the set of variables, which is assumed to be disjoint from the set of

concepts of S. A class literal is an expression of the form c(x), where c is a class

and x is a variable; a property literal is an expression of the form p(x,y), where p

is a property and x and y are variables; a literal is a class literal or a property

literal. A conjunction is a list of literals separated by commas. A disjunction is a

list of conjunctions separated by semi-colons. (This notation should be familiar to

Prolog programmers).

A rule is an expression of one of the forms:

• c(x)←B[x] , where c(x) is a class literal and B[x] is a disjunction where

the variable x occurs in each conjunction

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 83

• p(x,y)←B[x,y], where p(x,y) is a property literal and B[x,y] is a

disjunction where the variables x and y occur in each conjunction

The literal is the head and the disjunction is the body of the rule. We use the

notation B[x] and B[x,y] to stress which variables must occur in the body.

Let I be a set of triples of S. The universe of I is the set U[I] of all URIrefs

and literals that occur in triples of I.

Consistently with the notion of interpretation of Description Logics, given a

class c of S, the interpretation of c in I is the set

cI = { i∈U[I] / (i,:type ,c)∈I }

and, given a property p of S, the interpretation of p in I is the binary relation

pI = { (i,o)∈U[I] ×U[I] / (i,p,o)∈I }

The interpretation of the intersection of two concepts c ⊓ d is the set

(c ⊓ d)I = cI ∩ dI

We say that the subsumption of two concepts c ⊑ d is true in I, denoted

I ⊨ c ⊑ d, iff II dc ⊆ .

Rather than resorting to the formalization in ALCQI, we directly define

when a constraint σ of S is true in I, denoted I ⊨σ :

• if σ declares that a property p has domain d and range r, then

I ⊨σ iff III rdp ×⊆

• if σ declares that a property p, with range r, is inverse functional, then

I ⊨σ iff, for any Irb ⊆ , card({ a∈U[I] / (a,b)∈pI }) ≤ 1

• if σ declares that a property p, with domain d, has minCardinality k, then

I ⊨σ iff, for any Ida ⊆ , card({ b∈U[I] / (a,b)∈pI }) ≥ k

• if σ declares that a property p, with domain d, has maxCardinality k,

then

I ⊨σ iff, for any Ida ⊆ , card({ b∈U[I] / (a,b)∈pI }) ≤ k

• if σ declares that a class s is a superclass of c, then

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 84

I ⊨σ iff II sc ⊆

We now turn to the semantics of rules. A valuation for the set of variables V

in I is a function v that maps the variables in V into elements of U[I] .

We extend the notion of interpretation to rule bodies as follows. We first

define when a rule body B is true in I for v, denoted I,v ⊨B, inductively as

follows:

• if B is of the form c(x) then I,v ⊨B iff v(x)∈cI

• if B is of the form p(x,y) then I,v ⊨B iff (v(x),v(y))∈pI

• if B is of the form C,D then I,v ⊨B iff I,v ⊨C and I,v ⊨D

• if B is of the form C;D then I,v ⊨B iff I,v ⊨C or I,v ⊨D

The interpretation of a rule body of the form B[x] in I is the set

B[x] I = { a∈U[I] / there is a valuation v for V in I

such that I,v ⊨B[x] and v(x)=a }

and the interpretation of a rule body of the form B[x,y] in I is the binary relation

B[x,y] I = { (a,b)∈U[I] ×U[I] / there is a valuation v for V in I

such that I,v ⊨B[x,y] and v(x)=a and v(y)=b }

Finally, we say that a set I of triples of S is consistent iff I satisfies all

constraints of S.

We will use the above definitions in Section 4.3.4 to discuss the consistency

of concept mappings induced by vocabulary matchings, a notion we define in the

next section.

4.3.3.
Concept mappings induced by vocabulary matchings

Given an OWL schema, we say that a class f dominates a class c or the

intersection c= d ⊓ e of two classes d and e iff there is a sequence (c1,c2,...,cn) such

that

• f=c1 and c=cn

• cn-1 subsumes cn

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 85

• for each i∈[1,n-2), either

o ci+1 and ci are classes and ci+1 is declared as a subclass of ci,

or

o ci+1 is a class, ci is an object property and ci+1 is declared as

the range of ci, or

o ci+1 is an object property, ci is a class and ci is declared as the

domain of ci+1

We also say that π=(c1,c2,...,cn) is a dominance path from c to d and

θ=(
m21 kkk ppp ,...,,), the subsequence of π consisting of the object properties that

occur in π, is the property path corresponding to π (note that θ may be the empty

sequence).

Let S and T be two (OWL Extralite) schemas in what follows. Recall that a

contextualized vocabulary matching between S and T is a finite set µV of

quadruples (v1,e1,v2,e2).

A contextualized vocabulary matching µV from S into T is structurally

correct iff, for all (v1,e1,v2,e2) ∈ µV such that v1 and v2 are properties:

(i) there is a class f of S such that µV matches f with the domain of v2 and f

dominates d1 ⊓ e1, where d1 is the domain of v1

(ii) if v1 is a datatype property, then the range of v1 is a subtype of the range

of v2

(iii) if v1 is an object property, then µV matches the range of v1 with the

range of v2

Let µV be a structurally correct contextualized vocabulary matching. A

concept mapping Μ from S into T induced by µV is a set of rules derived from the

quadruples of µV as follows.

For each quadruple (v1,e1,v2,e2)∈µV, the concept mapping Μ contains the

following rules:

Case 1: v1 and v2 be classes. Then, Μ contains rules of the form

v2(x) ← v1(x)

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 86

s(x) ← v1(x) for each superclass s of v2

Case 2: v1 and v2 are properties. Let d1 and d2 be the domains, and r1 and r2

be the ranges of v1 and v2 (recall that r1 and r2 are XML Schema data types,

if v1 and v2 are datatype properties, and that µV matches the range of v1 with

the range of v2, if v1 and v2 are object properties).

Case 2.1: µV matches d1 with d2. Then, Μ contains a rule of the form

v2(x,y) ← v1(x,y), e1(x)

Case 2.2: µV does not match d1 with d2. Let f be a class of S such that µV

matches f with d2 and f dominates d1 ⊓ e1. Let
m21 kkk ppp ,...,, be the

property path corresponding to a dominance path from f to d1 ⊓ e1. Then, Μ

contains a rule of the form

v2(x,y) ←),(),...,,(),,(zxpxxpxxp 1mk21k1k m21 − , v1(z,y), e1(z)

if the property path is nonempty; otherwise the rule reduces to that of case

2.1. (Note that, since µV is structurally correct, a dominance path from f to d1

indeed exists. Also note that, since the dominance path may not be unique,

the concept mapping induced by µV is not unique).

Note that the contextualized vocabulary matching µV may have more than

one quadruple for the same concept v2 of the target schema, which implies that the

above process may generate more than one rule for v2. In addition, v2 may be a

superclass of more than one class, which again implies that the above process, by

Case 1, may generate more than one rule for v2. Therefore, as a last step in the

construction of the concept mapping Μ, we collect together all rules for v2 as a

single rule with a disjunctive body. More precisely, if v2 is a class and the above

process generates rules

v2(x)←Bi[x], for i ∈[1,n]

then we replace all such rules by a single rule ρ of the form

v2(x)←B1[x] ; ... ; Bn[x]

and likewise, if v2 is a property.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 87

We say that a rule ρ in M defines a concept v2 of T iff the head of ρ is of the

form v2(x), if v2 is a class, or of the form v2(x,y), if v2 is a property (by the

transformation described above, M has at most one rule for each concept of T).

However, there might be a concept v2 of T such that M has no rule that

defines v2. We therefore define T/M as the subset of T restricted to the concepts

that M defines. Then, the constraints of T/M are the constraints of T defined over

such vocabulary. In particular, we can prove that the superclasses, domains and

ranges are properly defined in T/M.

Proposition 1: Let µV be a structurally correct contextualized vocabulary

matching and Μ be a concept mapping from S into T induced by µV. Then:

(i) for any class c of T/M, if s is a superclass of c in T, then s is also a class of

T/M.

(ii) for any property p of T/M, the domain of p is also a concept of T/M.

(iii) for any object property p of T/M, the range of p is also a concept of T/M.

Proof

(i) Let c be a class of T/M and s be a superclass of c in T. Since c is a class of T/M,

by Case 1 of the construction of M, there is a rule in M of the form c(x)← p1(x).

Since s is a superclass of c, again by Case 1, there is a rule in M of the form s(x)←

p1(x). Hence, s is defined in M, that is, s is a class of T/M.

(ii) Let p be a property of T/M. Let d be domain of p. Since p is a property of T/M,

by Case 2, there is a rule in M of the form p(x,y)← B[x,y] and a class f of S such

that µV matches f with the domain d of p. Then, by Case 1, there is a rule in M of

the form d(x)←f(x). Hence, d is defined in M, that is, d is a class of T/M.

(iii) Let p be an object property of T/M. Let r be the range of p. Since p is an

object property of T/M, by Case 2, there is a rule in M of the form p(x,y)← B[x,y]

and a class g of S such that µV matches g with the range r of p. Then, by Case 1,

there is a rule in M of the form r(x)← g(x). Hence, r is defined in M, that is, r is a

class of T/M.

Corollary 1: T/M is a well-defined OWL Extralite schema.

Finally, we define the function Μ induced by Μ as the mapping from sets

of triples of S into sets of triples of T/M such that, for each set of triples I of S, J

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 88

=)I(Μ iff, for each rule ρ in Μ

• if ρ is of the form c(x)←B[x] , then J contains a triple (i,:type ,c) iff

i∈B[x] I

• if ρ is of the form p(x,y)←B[x,y], then J contains a triple (i,p,j) iff

(i,j)∈B[x,y] I

We stress that Μ is used to map queries submitted to the target schema T

into queries of the source schema S, whereas Μ is a theoretical device to prove

the correctness of the concept mapping, as discussed in the next section.

4.3.4.
Consistent concept mappings

We denote the minCardinality and the maxCardinality of a property p by mC[p]

and MC[p] , respectively. By convention, we take mC[p]=0 (and MC[p]= ∞), if

minCardinality (or maxCardinality) is not declared for p.

A property q is no less constrained than a property p iff

• mC[p] ≤ mC[q] and

• MC[p] ≥ MC[q] and

• if p is declared as inverse functional then so is q

Note that the above definition applies even if p and q are from different

schemas.

In what follows, let S and T be two (OWL Extralite) schemas, µV be a

structurally correct contextualized vocabulary matching from S into T, Μ be a

concept mapping from S into T induced by µV and Μ be the function induced by

Μ.

Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Recall that p is a property of

T and all classes and properties that occur in B[x,y] belong to S. We introduce, by

definition, a property of S, denoted prop[B] , whose semantics is prop[B] I ≡

B[x,y] I, for each set I of triples of S. We say that ρ is correct iff prop[B] is no less

constrained than p.

We say that Μ is correct iff any rule in Μ of the form p(x,y)←B[x,y] is

correct. We note that this definition takes advantage of the fact that, for each

concept c of T, the concept mapping Μ has at most one rule (possibly with a

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 89

disjunctive body) that defines c.

We then say that M is consistent iff, if I is a consistent set of triples of S,

then any constraint of T/M is true in J=)I(Μ .

Lemma 1: Let µV be a structurally correct contextualized vocabulary matching

and Μ be a concept mapping from S into T induced by µV. Assume that Μ is

correct. Then, Μ is consistent.

Proof

Let µV be a structurally correct contextualized vocabulary matching and Μ be a

concept mapping from S into T induced by µV. Assume that Μ is correct. Let I be

a set of triples of S, and J = Μ (I). Assume that I is consistent. We have to prove

that any constraint of T/M is true in J.

Let σ be a constraint of T/M. There are five cases to consider

Case 1: Constraint σ declares that a property p2 of T/M has domain d2 and range

r2.

We have to prove that J
2

J
2

J
2 rdp ×⊆ . Let (i,j)∈ J

2p . By the construction of M,

since p2 be a property of T/M, there is a property p1 of S, with domain d1 and

range r1, such that there is (p1,e1,p2,e2)∈µV. Let π be the rule p2(x,y)←B[x,y] in M

that defines p2. Since (i,j)∈ J
2p , by construction of J, we have that (i,j)∈B[x,y] I.

Recall that B[x,y] is a disjunction of the form “B1[x,y] ;,...;Bn[x,y] ”. Assume that

(i,j)∈Bk[x,y] I.

There are two cases to consider for Bk[x,y] , corresponding to Cases 2.1 and 2.2 of

the construction of M.

Case 1.1: Case 2.1 of the construction of M applies.

Then, µV matches d1 with d2. In this case, Bk[x,y] is a conjunction of the form

“p1(x,y), e1(x)” . Since (i,j)∈Bk[x,y] I, we have that (i,j)∈ I
1p , i∈ I

1d and j∈ I
1r , since

d1 and r1 are the domain and range of p1. Since µV matches d1 with d2, by Case 1

of the construction of M, there is a rule δ in M of the form d2(x) ← d1(x). Hence,

by construction of J and since i∈ I
1d , we have that i∈ J

2d .

Case 1.1.1: p2 is a datatype property of T/M.

Since µV is structurally correct, r1 is a subtype of r2. Hence, j∈ I
1r implies that

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 90

j∈ J
2r .

Case 1.1.2: p2 is an object property of T/M.

Since µV is structurally correct, µV matches r1 with r2. Hence, by Case 1 of the

construction of M, there is a rule ρ in M of the form r2(x) ← r1(x). Hence, by

construction of J and since j∈ I
1r , we have that j∈ J

2r .

Case 1.2: Case 2.2 of the construction of M applies.

Then, µV does not match d1 with d2 and there is a class f of S such that µV matches

f with d2 and f dominates d1 ⊓ e1. In this case, Bk[x,y] is a conjunction of the form

),(),...,,(),,(zxpxxpxxp
1mm21 kk21k1k −

, p1(z,y), e1(z)

where
m21 kkk ppp ,...,, is the property path corresponding to a dominance path from

f to d1 ⊓ e1. Since (i,j)∈Bk[x,y] I, there are i1,...,im-1,a such that

I
k1 1

p)ii(∈, , I
k21 2

p)ii(∈, ,..., I
k1m m

p)ai(∈− , , I
1p)j(a ∈,

Since f dominates d1 ⊓ e1 and
m21 kkk ppp ,...,, is the property path corresponding to

a dominance path Π from f to d1 ⊓ u1, by definition of dominance path, there is a

non-empty prefix f1,...,ft of Π such that ff1 = ,
1kt df = and ft ⊑ ft-1 ⊑...⊑ f1,

where
1kd is the domain of

1kp . Hence, I
k1 1

p)ii(∈, implies I
k1

di ∈ , which in turn

implies that Ifi ∈ . But µV matches f with d2. By Case 1 of the construction of M,

there is a rule δ in M of the form d2(x)← f(x). Hence, by construction of J and

since Ifi ∈ , we have that J
2di ∈ .

Case 1.2.1: p2 is a datatype property of T/M.

Since µV is structurally correct, r1 is a subtype of r2. Hence, j∈ I
1r implies that

j∈ J
2r .

Case 1.2.2: p2 is an object property of T/M.

Since µV is structurally correct, µV matches r1 with r2. Hence, by Case 1 of the

construction of M, there is a rule ρ in M of the form r2(x) ← r1(x). Hence, by

construction of J and since I
1p)ja(∈, implies j∈ I

1r , we have that J
2rj ∈ .

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 91

Therefore, in both Cases 1.1 and 1.2, we have that J
2p)ji(∈, implies that

J
2di ∈ and J

2rj ∈ .

Case 2: σ declares that p is inverse functional.

Let π be the rule in M that defines p and assume that π is of the form

p(x,y)←B[x,y]. Since Μ is correct, p(x,y)←B[x,y] is also correct, which means

that prop[B] is no less constrained than p. Then, B[x,y] must also be inverse

functional. Since I is consistent, if there are (i,j)∈prop[B] I and (g,j)∈prop[B] I,

then i=g . Since, by construction of J, (i,j)∈ Jp iff (i,j)∈prop[B] I, if there are

(i,j)∈pJ and (g,j)∈pJ, then i=g , which means that σ is true in J.

Case 3: σ declares that p has minCardinality equal to k (that is, mC[p] = k).

Let π be the rule in M that defines p and assume that π is of the form

p(x,y)←B[x,y]. Since Μ is correct, p(x,y)←B[x,y] is also correct, which means

that prop[B] is no less constrained than p. Then, mC[p] = k ≤ mC[prop[B]] . Since

I is consistent, k ≤ mC[prop[B]] implies that, if there is (i,j)∈prop[B] I, there are at

least k pairs (i,j1),...,(i,jk)∈prop[B] I. Since, by construction of J, (i,j)∈ Jp iff

(i,j)∈prop[B] I, if there is (i,j)∈pJ, there are at least k pairs (i,j1),...,(i,jk)∈pJ, which

means that σ is true in J.

Case 4: σ declares that maxCardinality equal to k (that is, MC[p] = k).

(Follows as in Case 3).

Case 5: σ declares that s is a superclass of c.

Let π be the rule in M that defines c and assume that π is of the form c(x)←B[x].

Let i∈ Jc . Then, by construction of J, i∈B[x] I. We may assume without loss of

generality that π is of the form c(x)←...;d(x);.... and that i∈dI. Since s is a

superclass of c, by Case 1 of the construction of M, there is also a rule ρ in M of

the form s(x)←...;d(x);..... Then, by construction of J, and since i∈dI, we have that

i∈sJ.

Therefore, i∈ Jc implies that i∈sJ, which means that σ is true in J. 

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 92

Lemma 1 is not entirely helpful, though, since it is not entirely obvious how

to test if a rule of the form p(x,y)←B[x,y] is correct, i.e, if prop[B] is no less

constrained than p. Proposition 1 below provides sufficient conditions

guaranteeing correctness of one such rule.

Proposition 2: Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Assume that

B[x,y] is of the form B1[x,y];...;Bn[x,y]. Let
imi2i1i ppp ,,, ,...,, be the properties of S

that occur in Bi[x,y] , for i∈[1,n] . Then,

(i) mC[prop[B[x,y]]] ≥ }n1i]p[mCmin{ im
1j ji ,.../, =∏ =

(ii) MC[prop[B[x,y]]] ≤ ∑ ∏= =
n

1i
m

1j ji
i]p[MC ,

(iii) If all properties that occur in B[x,y] are inverse functional and

prop[B1[x,y]],...,prop[Bn[x,y]] are pairwise disjoint, then prop[B[x,y]] is

inverse functional.

(iv) If all properties that occur in B[x,y] are inverse functional and B[x,y] has

just one conjunction (that is, n=1), then prop[B[x,y]] is inverse

functional.

Proof

Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Assume that B[x,y] is of the form

B1[x,y];...;Bn[x,y] . Let
imi2i1i ppp ,,, ,...,, be the properties of S that occur in Bi[x,y] ,

for i∈[1,n] . We first prove that

(1) mC[prop[Bi[x,y]]] = ∏ =
im
1j ji]p[mC ,

(2) MC[prop[Bi[x,y]]] = ∏ =
im
1j ji]p[MC ,

There are two cases to consider for Bi[x,y] , corresponding to Cases 2.1 and 2.2 of

the construction of M.

Case 1: Case 2.1 of the construction of M applies.

Then, Bi[x,y] is a conjunction of the form

)x(e)yx(p i1i ,,,

Since)x(ei restricts the domain of ip , but not the range, we trivially have that

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 93

(3) mC[prop[Bi[x,y]] =
(z)]]ey),(z,p[prop[mC i1i , = y)]](z,p[prop[mC 1i , =]p[mC 1i ,

(4) MC[prop[Bi[x,y]] = (z)]]ey),(z,p[prop[MC i1i , =]p[MC ji ,

Case 2: Case 2.2 of the construction of M applies.

Then, Bi[x,y] is a conjunction of the form

)z(e)yz(p)zx(p)xx(p imi2m1mi11i iii
,,,,,...,, ,,, −−

Since a conjunction]yx[C , of the form “ y)(z,q)zx(q 21 ,, ” captures the

composition of two properties 1q and 2q , by definition of minCardinality, we

have that

(5))]]y(zq)zx([qprop[mC 21 ,,, =)]]zx(q[prop[mC 1 , .)]]y(zq[prop[mC 2 , =

][qmC].[qmC 21

 Again, since (z)ei restricts the domain of
imip , , but not the range, we have that

(6)]p[mC)]]yz(p[prop[mC)]]z(e)yz(p[prop[mC
iii mimiimi ,,, ,,, ==

By repeatedly applying (5) and using (6) at the last step, we have that

(7) mC[prop[Bi[x,y]]] =
)]]z(e)yz(p)zx(p)xx(p[prop[mC imi2m1mi11i iii

,,,,,...,, ,,, −− =

]p[mC 1i , .]p[mC 2i ,]p[mC 2mi i −, .]p[mC 1mi i −, .]p[mC
imi , =

∏ =
im
1j ji]p[mC ,

Using a similar argument and the definition of maxCardinality, we have that

(8) MC[prop[Bi[x,y]]] =
]]zeyzpzxpxxp[prop[MC imi2mi1mi11i iii

)(),,(),,(),...,,(,,,, −− =

]p[MC 1i , .]p[MC 2i ,]p[MC 2mi i −, .]p[MC 1mi i −, .]p[MC
imi , =

∏ =
im
1j ji]p[MC ,

We now prove (i) and (ii).

Recall that, since that B[x,y] is a disjunction of the form B1[x,y];...;Bn[x,y] ,

for any interpretation I of S, we have that

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 94

(9) Bi[x,y] I ⊆ B[x,y] I, for any i∈[1,n]

From (9), by definition of minCardinality, we have that

(10) mC[prop[B[x,y]]] ≥ y]]][x,B[prop[mC i , for any i∈[1,n]

Hence, from (10) and (1), we have that:

(11) mC[prop[B[x,y]]] ≥ }n1iy]]][x,[prop[BmCmin{ i ,.../ = =

 }n1i]p[mCmin{ im
1j ji ,.../, =∏ =

Also, for any interpretation I of S, we have that

(12) B[x,y] I = B1[x,y] I ∪ ... ∪ Bn[x,y] I

From (12), by definition of maxCardinality, we have that

(13) MC[prop[B[x,y]]] ≤ ∑ =
n

1i i y]]][x,B[prop[MC

Hence, from (13) and (2), we have that:

 (14) MC[prop[B[x,y]]] ≤ ∑ =
n

1i i y]]][x,B[prop[MC = ∑ ∏= =
n

1i
m

1j ji
i]p[mC ,

Note that (iv) directly follows from (iii). So, we only prove (iii). Assume that

(15) all properties that occur in B[x,y] are inverse functional

(16) prop[B1[x,y]],...,prop[Bn[x,y]] are pairwise disjoint

using an argument similar to that of Cases 1 and 2 above for (i) and (ii), by (15),

we have that

(17) Bi[x,y] is inverse functional

From (12) and (17), by (16), we have that B[x,y] is inverse functional.

Note that, in (iii), we cannot establish that prop[B1[x,y]],...,prop[Bn[x,y]] are

pairwise disjoint within OWL Extralite, since this dialect of OWL does not

support class or property disjointness (hence the simplified statement in (iv)).

We may combine Lemma 1 and Proposition 1 and list sufficient conditions

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 95

for consistency.

Corollary 2: Let µV be a structurally correct contextualized vocabulary matching

and Μ be a concept mapping from S into T induced by µV. Then, Μ is consistent

if, for any rule in Μ of the form p(x,y)←B[x,y], we have:

(i) },.../min{ , n1i]p[mCim
1j ji =∏ = ≥ mC[p]

(ii) ∑ ∏= =
n

1i
m

1j ji
i]p[MC , ≤ MC[p]

(iii) If p is inverse functional, then all properties that occur in B[x,y] are

inverse functional and either prop[B1[x,y]],...,prop[Bn[x,y]] are pairwise

disjoint, or B[x,y] has just one conjunction (that is, n=1)

where B[x,y] is of the form B1[x,y];...;Bn[x,y] and
imi2i1i ppp ,,, ,...,, are the

properties of S that occur in Bi[x,y] , for i∈[1,n] .

4.4.
Summary and contributions

In this chapter we focused on the more complex problem of matching two

schemas that belong to an expressive OWL dialect. The matching technique is

based on the notion of similarity. We decomposed the problem of OWL schema

matching into the problem of vocabulary matching and the problem of concept

mapping. We also introduced sufficient conditions guaranteeing that a vocabulary

matching induces a correct concept mapping.

We developed a similarity function based on the contrast model (Tversky

and Gati 1978), which proved to efficiently capture the notion of similarity, and

described heuristics that lead to practical OWL matchings.

We introduced the OWL Extralite dialect because it is as expressive as

UML and, yet, it avoids the complex constructions of OWL Full, such as

subproperties and multiple inheritances.

Unlike any of the instance-based techniques previously defined, the OWL

schema matching process, we proposed to use similarity functions to induce

vocabulary matchings in a non-trivial way.

Contrasting with (Doan et al. 2001, Madhavan et al. 2005), we do not use

machine learning techniques to acquire knowledge about matchings. Instead, we

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

Complex schema matching 96

capture semantic similarity by adopting similarity functions and heuristics that

depend on the schema concepts. We consider this strategy to be more general

because it can identify matching candidates which were not in the training corpus.

Contrasting with (Brauner et al. 2007b, Wang et al. 2004), which measure

the similarity between concepts only by the commonalities between sets of values,

we use similarity functions that take into account not only the commonalities, but

also the differences between concepts. Such models proved to increase the

precision of the matching process. In addition, we use similarity heuristics that

operate at the level of data values, that is, they permit comparing data values

based on their similarity, and not just on their exact equality.

We overcome the limitation of representing an instance by a string

constructed out of all its property values, introduced in (Bilke and Naumann

2005), by representing an instance by a string constructed out of the values only of

those properties that match, in a first approximation.

In summary, unlike the techniques listed in Section 1.2, we proposed hybrid

matching techniques that are uniformly grounded on similarity functions to

generate matchings between simple catalogue schemas and between more

complex OWL schemas.

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA

