
 

 

4 
Complex schema matching 

We address in this chapter the problem of matching two schemas that 

belong to an expressive OWL dialect. We adopt an instance-based approach and, 

therefore, assume that a set of instances from each schema is available. 

First, we decompose the problem of OWL schema matching into the 

problem of vocabulary matching and the problem of concept mapping. We first 

describe a vocabulary matching technique based on the notion of similarity. Then, 

we evaluate the precision of the technique using data available on the Web. 

Finally, we also introduce sufficient conditions guaranteeing that a vocabulary 

matching induces a correct concept mapping. 

Unlike any of the previous instance-based techniques presented in section 

1.2, the matching process we describe uses similarity functions to induce 

vocabulary matchings in a non-trivial way, coping with an expressive OWL 

dialect. We also illustrate, through a set of examples, that the structure of OWL 

schemas may lead to incorrect concept mappings and indicate how to avoid such 

pitfalls. 

 

4.1. 
OWL Extralite 

We will work with an OWL dialect, that we call OWL Extralite. It supports 

named classes, datatype and object properties, subclasses, and individuals. The 

domain of a datatype or object property is a class, the range of a datatype property 

is an XML schema type, whereas the range of an object property is a class. As 

property restrictions, the dialect admits minCardinality and maxCardinality, with 

the usual meaning. As property characteristic, it allows just the inverseFunctional 

property, which captures simple keys. We note that only OWL Full supports the 

inverseFunctional property for datatype properties. 

An OWL schema (more often called an OWL ontology) is a collection of 

RDF triples that use the OWL vocabulary. A concept of an OWL schema is a 
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class, datatype property or object property defined in the schema. The vocabulary 

of the schema is the set of concepts defined in the schema (a set of URIrefs). The 

scope of a property name is global to the OWL schema, and not local to the class 

indicated as its domain. 

In the rest of the thesis, when we refer to a schema we mean an OWL 

Extralite schema. 

Figure 9 and Figure 10 show OWL schemas for fragments of the Amazon 

and the eBay databases, using a simplified and unofficial notation to save space 

and improve readability. Consistently with XML usage, from this point on, we 

will use the namespace prefixes am:  and eb:  to refer to the vocabularies of the 

Amazon and the eBay OWL schemas, and qualified names of the form V:T  to 

indicate that T is a term of the vocabulary V. 

In Figure 9, for example, am:title  is defined as a datatype property with 

domain am:Product  and range string  (an XML Schema data type), 

am:Book  is declared as a subclass of am:Product , and am:publisher  is 

defined as an object property with domain am:Book  and range am:Publ . Note 

that the scope of am:title  and am:publisher  is the schema, and not the 

classes defined as their domains. 

Furthermore, although not indicated in Figure 9, we assume that all 

properties, except am:author , have maxCardinality equal to 1, and that 

am:isbn  is inverseFunctional. This means that all properties are single-valued, 

Product 
  title         range string 
  listPrice     range decimal 
  currency      range string 
Book is-a Product 
  author        range string 
  edition       range integer 
  isbn          range string 
  ean           range string 
  detailPageURL range anyURI 
  publisher     range Publ 
Publ 
  name          range string 
  address       range string 
Music is-a Product 
Video is-a Product 
PCHardware is-a Product  

Figure 9. An OWL schema for the Amazon Database. 
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except am:author , which is multi-valued, and that am:isbn  is a key of 

am:Book . Likewise, although not shown in Figure 10, all properties, except 

eb:author , have maxCardinality equal to 1, and eb:isbn-10  and 

eb:isbn-13  are inverseFunctional. 

Finally, to express mappings, we adopt the Semantic Web Rule Language 

(SWRL) (Horrocks et al. 2004). However, we also opted for a simplified, datalog-

like syntax to improve readability and save space. 

An example of an SWRL rule in our simplified syntax would be: 

eb:publisher(b,n) ← am:publisher(b,p), am:name(p,n)  

which says that, if b and p are related by am:publisher , and p and n by 

am:name, then b and n are related by eb:publisher . 

 

Seller 
  name             range string 
  redistrationDate    range dateTime 
  offers              range Offer 
Offer 
  quantity            range integer 
  startPrice          range double 
  currency            range string 
  seller              range Seller 
  product             range Product 
Product 
  title               range string 
  condition           range string 
  returnPolicyDetails range string 
  offers              range Offer 
Book is-a Product 
  author              range string 
  edition             range integer 
  publicationYear     range integer 
  isbn-10             range integer 
  isbn-13             range integer 
  publisher           range string 
  binding             range string 
  condition           range string 
Music is-a Product 
DVDMovies is-a Product 
ComputerNetworking is-a Product 

Figure 10. An OWL schema for the eBay Database. 
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4.2. 
Vocabulary matching 

4.2.1. 
Formal definition of vocabulary matching 

Let S and T be two (OWL Extralite) schemas, and VS and VT be their 

vocabularies, respectively. Let CS and CT be the sets of classes, and PS and PT be 

the sets of datatype or object properties in VS and VT, respectively. 

A contextualized vocabulary matching between S and T is a finite set µV of 

quadruples (v1,e1,v2,e2) such that 

 

(i)  if (v1,v2)∈CS×CT, then e1 and e2 are the top class T 

(ii)  if (v1,v2)∈PS×PT, then e1 and e2 are classes in CS and CT that must be 

subclasses of the domains of v1 and v2, respectively 

(iii)  and these are the only possible quadruples in µV 

 

If (v1,e1,v2,e2)∈ µV, we say that µV matches v1 with v2 in the context of e1 and 

e2, that ei is the context of vi and that (vi,ei) is a contextualized concept, for i=1,2. 

A contextualized property (or class) matching is a matching defined only for 

properties (or classes). 

Intuitively, a vocabulary matching expresses equivalences between 

properties and classes in a given context. The context of a property P in a 

vocabulary matching is an RDF class that specifies the rdf:type  of subjects of 

existing triples of the form (?subject P ?object)  for which the matchings 

holds. The context of a class is always the top class T (i.e., this notion is not used 

for class matchings).  

Table 19 is a fragment of a vocabulary matching between the Amazon and 

the eBay schemas. The first line of the table indicates that property am:title , 

associated with instances of class am:Book , is equivalent to property eb:Book , 

when associated with instances of class eb:Book , and the fourth line of the table 

indicates that classes am:Book  and eb:Book  are equivalent. 
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4.2.2. 
Instance-based vocabulary matching 

In this section, we describe an instance-based process to create contextualized 

vocabulary matchings. 

Recall from Section 3.3 that a property A of a catalogue C may be 

represented by the set of values of A that occur in the current extension C of C, or 

by the set of pairs (i,v) such that v is the value of A for an instance i that occurs in 

C. If the domain of A is a set of strings, the set of values is replaced by a set of 

tokens, and the property representations are reinterpreted accordingly. Similarity 

models are then applied to such property representations to generate property 

matchings between two catalogue schemas. 

We also recall that the instance matching technique of Bilke and Naumann 

(Bilke and Naumann 2005) represents each database tuple as a character string 

and uses k-mean clustering algorithms to find duplicate tuples. However, we note 

that the representations of the same object in distinct databases may differ in the 

list of properties and in the property values. As a consequence, we may end up 

with dissimilar tuples that represent the same object. 

For example, suppose that we apply the Bilke and Naumann technique to 

match instances that represent the book “The Tragedy of Romeo and Juliet”. 

Table 20 shows their lists of property-value pairs. If we measure the similarity 

between the sets of tokens extracted from all property values of each instance, we 

obtain a score of 43% of common tokens (Figure 11). By contrast, if we consider 

only the values of the properties that match, the similarity increases to 64% 

(Figure 12). 

However, note that, to extract tokens from the values only of properties that 

Table 19: Fragment of a vocabulary matching between Amazon and eBay schemas. 

Amazon Database eBay Database  

Concept Context Concept Context 

am:title am:Book eb:title eb:Book 

am:title am:Music eb:title eb:Music 

am:name am:Publ  eb:publisher eb:Book  

am:Book T eb:Book T 

am:Music T eb:Music T 
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match, we have to know that am:book  matches eb:book , and have access to 

the set of matching properties of such classes. 

Combining these observations, we propose a four-step schema matching 

process, as follows: 

 

1) Generate a preliminary property matching using similarity functions. 

2) Use the property matching obtained in Step (1) to generate: (a) a class 

matching; and (b) a class instance matching. 

3) Use the class matching and the class instance matching obtained in Step 

(ii) to generate a refined contextualized property matching. 

4) The final vocabulary matching is the result of the union of the property 

and class matchings obtained in Steps (2) and (3). 

Step (1) generates preliminary property matchings based on the intuition 

that “two properties match iff they have many values in common and few values 

not in common”. Step (2) creates class matchings that reflect the intuition that 

“two classes match iff they have many matching properties”. However, to work 

correctly, Step (2) requires that Step (1) generates preliminary property matchings 

only for highly similar properties. 

For example, in the experiments described in Section 4.2.3, with data from 

the eBay and the Amazon databases, if we use a threshold τ=0.12, then 

Table 20. Example the same book instance representation in eBay and Amazon. 

eBay Amazon 

isbn-10 = “039577537X” isbn = “039577537X” 

isbn-13 = 9780395775370 ean = 9780395775370 

title = “The Tragedy of 
Romeo and Juliet” 

title = “Tragedy of Romeo 
and Juliet: And Related 
Readings (Literature 
Connections)” 

author = “William 
Shakespeare” 

author = “William 
Shakespeare” 

publisher = “Houghton 
Mifflin” 

name = “Houghton Mifflin 
Company” 

returnPolicyDetails = “NO 
RETURNS ARE ACCEPTED” 

- 

condition = “Like New” - 

binding = “Hardcover” - 

- listPrice = 18.92 

- currency = “USD” 
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eb:level  with context eb:Seller  matches am:color  with context 

am:PCHardware , and eb:title  with context eb:Music  matches 

am:title  with content am:Video . These property matchings may cause 

classes eb:Seller  and am:PCHardware  to match, as well as eb:Music  and 

am:Video , depending on the threshold and the total amount of common 

properties among the classes (as discussed below, class matching depends on the 

similarity between sets of properties). If we increase the threshold to 0.13, the 

previous property matchings do not hold and we may avoid the above unwanted 

class matchings. 

In what follows, let S and T be two schemas, VS and VT be their 

vocabularies, PS and PT be their sets of properties, and CS and CT be their sets of 

Instance representation 
i) eBay 

{039577537x, 9780395775370, tragedy, romeo, juliet, william, shakespeare, 
houghton, mifflin, returns, accepted, like, new, hardcover} 

 
ii) Amazon 

{039577537x, 9780395775370, tragedy, romeo, juliet, related, readings, 
literature, connections, william, shakespeare, houghton, mifflin, company, 
18.92, usd} 

 
Similarity 

9 common tokens (in bold face) in a total of 21 tokens from both 
instances ⇒ 43% of commonalities 

Figure 11. Similarity of the instances in Table 20 based on the set of tokens 
representation, where tokens were extracted from all properties. 

Instance representation 
i) eBay 

{039577537x, 9780395775370, tragedy, romeo, juliet, william, shakespeare, 
houghton, mifflin} 

 
ii) Amazon 

{039577537x, 9780395775370, tragedy, romeo, juliet, related, readings, 
literature, connections, william, shakespeare, houghton, mifflin, company} 

 
Similarity 

9 common tokens (in bold face) in a total of 14 tokens from both 
instances ⇒ 64% of commonalities 

Figure 12. Similarity of the instances in Table 20 based on the set of tokens 
representation, where tokens were extracted from matching properties. 

DBD
PUC-Rio - Certificação Digital Nº 0621314/CA



Complex schema matching 69 

 

classes, respectively. Let US and UT be fixed sets of instances of S and T, 

respectively, used to compute the vocabulary matchings. 

Let U be the universe of all tokens extracted from literals and all URIrefs. 

Consider a similarity function σ : 2U×2U→[0,1] , a similarity threshold τ∈[0,1]  

and a related similarity threshold τ’∈[0,1]  such that τ’< τ. 

For each property P∈PS, for each class C∈CS such that C is the domain of P 

or a subclass of the domain of P, consider the contextualized property PC=(P,C) 

and construct the set o[US,P
C] of all values v such that there are triples of the form 

(I,P,v) and (I,rdf:type ,C’) in US, where C’=C  or C’ is a subclass of C, and 

likewise for a property in PT. We call o[US,P
C] the observed-value representation 

for PC in US. This construction explores the fact that P is inherited by all 

subclasses of its domain. 

The basis of the matching process are the matchings directly induced by σ  

and τ, defined as follows. 

The contextualized property matching between S and T induced by σ and τ, 

and based on the observed-value representation for properties, is the relation µP 

such that 

(P,C,Q,D)∈µP iff σ(o[US,P
C],o[U T,Q

D]) ≥ τ 

For each class C in CS, let props[S,C] be the set of properties in PS whose 

domain is C or that C inherits from its superclasses, and likewise for classes in CT. 

We call props[S,C] the representation of C in US. 

The contextualized class matching between S and T induced by σ, τ and µP 

is the relation µC  ⊆ CS×CT such that (recall that T is the top class) 

(C,T,D,T)∈µC iff σ(props[S,C],relprops[S,C,T,D])) ≥ τ 

where relprops[S,C,T,D] denotes the set of properties P of class C of S such that 

there is a property Q of class D of T such that (P,C,Q,D)∈µP. Note that it does not 

make sense to directly compute σ(props[S,C],props[T,D]), since props[S,C] and 

props[T,D] are sets of URIrefs from different vocabularies. To avoid this 

problem, we replaced  props[T,D] by relprops[S,C,T,D]. 

From the matchings directly induced by σ  and τ, the process then derives a 
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class instance matching and a refined contextualized property matching, as 

follows. 

Figure 13 shows the class instance matching algorithm. It receives as input S 

and T, and the class matching µC induced by σ, τ and µP. It also implicitly receives 

as input US and UT. It outputs a class instance matching µI between class instances 

in US and UT. In Figure 13, if C is a class in CS, and I is an instance of C in US, 

then t[US,C](I) denotes the set of tokens extracted from all values v such that, for 

some property P∈PS, for some property Q in PT, for some class D∈CT, there is a 

triple (I,P,v) in US, and there is a tuple (P,C,Q,D) in µP, and likewise for 

t[UT,D](J). 

For each (P,C,Q,D)∈µP such that (C,T,D,T)∈µC, construct the set q of 

triples (I,u,v) such that there are triples of the form (I,P,u) and (I,rdf:type ,C) in 

US, there are triples of the form (J,Q,v) and (J,rdf:type ,D) in UT, and 

(I,C,J,D)∈µI (where µI is the class instance matching of Figure 13). Define 

iv[P,C,Q,D]=(s,t) such that s={(I,u)/(∃v)(I,u,v)∈q} and t={(I,v) /(∃u)(I,u,v)∈q}. 

We call s the instance-value representation of PC in US (and likewise for t). This 

second representation for properties is useful since it helps distinguish properties 

with similar sets of values, but which refer to distinct instances, matched by µI. 

Figure 14 shows the refined contextualized property matching algorithm. It 

has the same input as the algorithm in Figure 13, including the class matching µC 

induced by σ, τ and µP, and outputs a contextualized property matching µP only 

between properties whose domains are classes directly or indirectly matched by 

µC. The algorithm uses the maximum of the similarity values computed using the 

observed-value and the instance-value representations for a pair of properties P 

1 INSTANCE-MATCHING(S,T, µC) 
2 µI  = { }  
3 for each pair of classes (C,D) in S and T such th at 
  µC matches C with D  
4   for each pair of instances (I,J) of C and D in US × UT  
5     if σ(t[ US,C](I),t[ UT,D](J)) ≥ τ then  
6       µΙ = µΙ ∪ {(I,C,J,D)} 
7 return µI  

Figure 13. The class instance matching algorithm. 
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and Q, and the more relaxed similarity threshold. Although not shown in Figure 

14, object properties receive a special treatment, since their representations are 

sets of URIrefs that are compared with help of the class instance matching µI 

(computed by the algorithm in Figure 13). 

The final vocabulary matching µV is the union of the class matching µC 

induced by σ, τ and µP and the contextualized property matching µP computed by 

the algorithm in Figure 14. However, µV may have to be adjusted, by dropping 

matchings, until it becomes structurally correct (see Section 4.3.4). 

 

4.2.3. 
Experimental results 

We conducted an experiment to assess the performance of the vocabulary 

matching process of Section 4.2.3, using data about products obtained from 

Amazon and eBay. 

We tested the process with data downloaded from the Web, rather than with 

the benchmark proposed in (Duchateau et al. 2007), since the benchmark does not 

include instances and is therefore unsuitable to test our process. 

We first defined a set of terms, which were used to query the databases. 

From the query results, we extracted the less frequent terms common to both 

1  CONTEXTUALIZED-PROPERTY-MATCHING(S,T, µC) 
2  µP = { }  
3  for each pair of classes (C,D) in S and T such t hat 
   µC matches C with D 
   or C’ dominates C and µC matches C’ with D 
   or D’ dominates D and µC matches C with D’ 
4    for each pair (P,Q) of properties of C and D 
5      X  = σ(o[ US,P

C],o[ UT,Q
D]) 

6      if (C matches D) then  
7        (s,t)=iv[P,C,Q,D] 
8        Y  = σ(s,t) 
9      else  
10       Y = 0 
11     if max(X,Y)  ≥ τ’ then  
12       µP = µP ∪ {(P,C,Q,D)} 
13 return µP 

Figure 14. The contextualized property matching algorithm. 
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databases. We then used these terms to once more query the databases. This pre-

processing step enhanced the probability of retrieving duplicate objects from the 

databases, which is essential to evaluate any instance-based schema matching 

technique. We extracted a total of 116,201 records: 16,410 from Amazon and 

99,791 from eBay. 

We adopted as similarity functions the contrast model (Leme et al. 2008b), 

for property matchings, and the cosine distance with TF/IDF, for instance 

matchings. The experiments lead us to conclude that the contrast model has a 

better performance when we want to emphasize the difference between two sets of 

values. This follows because the contrast model has room for calibrating several 

parameters. 

The configuration of the similarity models in this experiment was as follows 

(see the Appendix for more details on how to setup and calibrate a similarity 

model): 

 

• Configuration for the temporary property matching:  

multiset 

 similarity based on the contrast model  

threshold = max similarity - 20% 

• Configuration for the instance matching: 

multiset 

cosine with TF-IDF 

threshold = 0,8 

• Configuration for the refinement of the property matching:  

does not use multiset  

similarity based on the contrast model 

threshold = max similarity - 30%  

 

Table 21 shows the vocabulary matching obtained. The headings indicate 

that e1 is the context of v1, and e2 that of v2. Also, “B” abbreviates classes 

eb:Book  and am:Book , and similarly for the other classes. 

Note that both properties, eb:format  and eb:biding , in the context of 

Books matches the property am:format . This is because the databases hold 
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similar information in the first two properties.  

The rightmost column of Table 21 classifies the matchings as follows: tp for 

true positive, fp for false positive and fn for false negative. Since the number of 

true positives is 25, that of false positives is 4 and that of false negatives is 10, the 

performance measures are: 

%86
fptp

tp
precision =

+
=  

%71
fntp

tp
recall =

+
=  

%* 78
recallprecision

recallprecision
2f =

+
⋅=  

The highlighted lines in Table 21 refer to matchings that would have been 

considered false negatives, if the algorithm in Figure 14 ignored the instance-

value representation for properties. In this case, the performance measures would 

drop to: 

%63%,51%,82 === frecallprecision  

Lastly, if we consider only the class matchings in Table 21, the performance 

measures are: 

%80%,80%,80 === frecallprecision  
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Table 21. Automatically obtained vocabulary matching from eBay into Amazon 

eBay Amazon   

v1 e1 v2 e2  

Books  Books  tp 

author B author B tp 

binding B biding B tp 

edition B edition B tp 

format B biding B tp 

isbn-10 B isbn B tp 

isbn-13 B ean B tp 

publisher B name P tp 

title B title B tp 

ComputerNetworking  PCHardware  tp 

operatingSys CN platform PC tp 

operatingSystem CN operSyst PC tp 

processorConfig CN cpuType PC tp 

processorType CN cpuType PC tp 

processorType CN cpuManufact PC tp 

title CN title PC tp 

DVDMovies  Video  tp 

director DVD director V tp 

leadingRole DVD actor V tp 

title DVD title V tp 

upc DVD upc V tp 

Music  Music  tp 

artist M artist M tp 

format M biding M tp 

title M title M tp 

editionDesc B format B fp 

Offer  Books  fp 

currency O currencyCode B fp 

startPrice O listPrice B fp 

brand CN brand PC fn 

hardDriveCap CN hardDiskSize PC fn 

memoryRam CN systemMemory PC fn 

processorSpeed CN cpuSpeed PC fn 

screenSize CN displaySize PC fn 

format DVD biding V fn 

releaseDate DVD releaseDate V fn 

ReleaseDate M releaseDate M fn 

upc M upc M fn 

Product  Product  fn 
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4.3. 
Concept mapping 

4.3.1. 
Informal definition of concept mapping rules 

In this section, we informally introduce the notions of vocabulary matching 

and concept mapping, formally defined in sections 4.2 and 4.3, respectively. 

A concept mapping from a source schema S to a target schema T is a set of 

transformation rules that express concepts of the target schema T in terms of 

concepts of the source S such that it is possible to translate queries over T to 

queries over S. 

In the context of this thesis we consider queries defined in the SPARQL 

Query Language for RDF (Prud'hommeaux and Seaborne 2008). In this language 

a query consists of two parts: the SELECT clause identifies the variables to appear 

in the query results, and the WHERE clause provides the basic graph pattern to 

match against the data graph. 

A basic graph pattern is a set of triple patterns. Triple patterns are like RDF 

triples except that each of the subject, predicate and object may be a variable. A 

basic graph pattern matches a subgraph of the RDF data when RDF terms from 

that subgraph may be substituted for the variables and the result is an RDF graph 

equivalent to the subgraph. 

For example, the query of Figure 15.a returns titles of book instances from 

the Amazon database. The variable ?b  in lines 5 and 6 means that the same 

instances that have property am:title  must be instances of the class am:Book . 

If line 5 were omitted, the query would return titles of instances of the classes 

am:Book , am:Music , am:Video  and am:PCHardware . Figure 15.b returns 

titles and authors of books but, in this case, there is no need to restrict the type of 

instances, since all instances that have the property am:author  must be books 

(Figure 9). Figure 15.c extends the second query by adding to the result set the 

publisher of the books. Line 6 of Figure 15.c is analogous to an equijoin in the 

relational model that joins the class am:Book  with the class am:Publisher  of 

the Amazon schema (Figure 9). 

The SELECT keyword may be replaced by CONSTRUCT in order to return 

an RDF graph instead of a relation. Figure 16 shows a SPARQL code which 
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returns triples of publisher names from Amazon as triples of eBay. 

After this brief overview of SPARQL, we return to the problem of concept 

mapping. From Figure 9 and Figure 10 and an analysis of the database schemas, 

one may infer that the properties named title  from both schemas are likely to 

1. PREFIX am:<...> 
2. PREFIX rdf:<...> 
3. SELECT ?title 
4. WHERE 
5.   {?b rdf:type am:Book. 
6.    ?b am:title ?title} 

a) Simple SPARQL query over the Amazon database which returns titles of books 

1. PREFIX am:<...> 
2. SELECT ?title ?author 
3. WHERE 
4.   {?b am:author ?author. 
5.    ?b am:title ?title} 

b) Simple SPARQL query over the Amazon database which returns title and author of 
books 

1. PREFIX am:<...> 
2. SELECT ?title ?author ?pub 
3. WHERE 
4.   {?b am:author ?author. 
5.    ?b am:title ?title. 
6.    ?b am:publisher ?p. 
7.    ?p am:name ?pub}  

c) Simple SPARQL query over the Amazon database which returns title, author and 
publisher of books 

Figure 15. Simple SPARQL queries over the Amazon database with schema in Figure 9 

1. PREFIX am:<...> 
2. PREFIX eb:<...> 
3. CONSTRUCT {?b eb:publisher ?pub} 
4. WHERE 
5.   {?b am:publisher ?p. 
6.    ?p am:name ?pub} 

Figure 16. Simple SPARQL query for returning a RDF graph 
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be equivalent because their names are syntactically equal and the experiments, 

which we will describe later in this chapter, showed that the set of values of both 

properties are very similar. A rule in SWRL which expresses this mapping can be 

written as follows: 

eb:title(p,t) ← am:title(p,t)  

This rule means that the concept eb:title  of eBay can be translated to 

the concept am:title  of Amazon, i.e., triple patterns of the form  

(?s eb:title ?o)  can be translated to (?s am:title ?o) . Figure 17 

shows an eBay query on the left and its translation to the Amazon schema on the 

right. 

However, a deeper analysis might not confirm the equivalence for all classes 

which inherits the property title  in both databases. For example, consider 

Table 19 which says that the property am:title  of instances of am:Book  is 

equivalent to the property eb:title  of instances of eb:Book  and, likewise, 

for property title  of Music  in both databases. In addition, the table matches 

am:name with eb:publisher , am:Book  with eb:Book  and am:Music  

with eb:Music . In view of this, the previous rule should be replaced by the 

following two rules. 

eb:title(p,t) ← am:title(p,t), am:Book(p) 

eb:title(p,t) ← am:title(p,t), am:Music(p)  

 Note that Table 19 omit pairs of the title property in the context of movies 

and computers. This means that the equivalence between the property eb:title  

and am:title  does not hold in these contexts.  

More precisely, these new rules state that, although eb:title  refers to 

titles of all types of eBay products (subclasses of eb:Product ), this property 

has a narrower meaning in the Amazon database: eb:title  can only be 

PREFIX eb:<...> 
SELECT ?title 
WHERE {?s eb:title ?title}  

PREFIX am:<...> 
SELECT ?title 
WHERE {?s am:title ?title}  

Figure 17. Equivalent queries over the eBay and the Amazon schemas that return titles. 
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considered equivalent to am:title  for instances of type am:Book  and 

am:Music , although  eb:title  is a valid property for other classes in the 

eBay schema.  

The translation of the concept eb:title  of queries over the eBay schema 

to the Amazon schema is as exemplified in Figure 18. 

Recall that in a SPARQL query, the triple pattern (?s rdf:type C)  

indicates that C is a class and the triple pattern (?s P ?o)  expresses that P is a 

property. Therefore, we provide rules for translating only these two types of 

triples. The approach we propose does not cover triple patterns with variables in 

the property position. 

The third line in Table 19 matches the property am:name in the context of 

am:Publ  with the property eb:publisher  in the context of eb:Book . 

Consistently with the previous discussion, we would generate the following 

mapping rule: 

eb:publisher(b,n) ← am:name(b,n), am:Publ(b)  

The query translation shown in Figure 19.a illustrates the use of this rule.  

However, the above rule is a wrong because: 

• the domain of am:name is am:Publ  and the domain of 

eb:publisher  is eb:Book  

• Table 19 does not match the am:Publ  and the eb:Book  classes 

The correct mapping rule would be as follows: 

PREFIX eb:<...> 
SELECT ?title 
WHERE {?s eb:title ?title}  

PREFIX am:<...> 
PREFIX rdf:<...> 
SELECT ?title 
WHERE  
  {{?s am:title ?title. 
    ?s rdf:type am:Book} 
   union 
   {?s am:title ?title. 
    ?s rdf:type am:Music}}  

Figure 18. Equivalent queries over eBay and Amazon databases that return titles when 

only instances of titles of books and music are equivalent 
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eb:publisher(b,n) ←  
am:publisher(b,p), am:name(p,n), Publ(p)  

Note that this rule can be optimized by omitting Publ(p)  because Publ  is 

the domain of the property name. 

eb:publisher(b,n) ← am:publisher(b,p), am:name(p,n)  

The query translation shown in Figure 19.b illustrates the use of this second 

rule. This translation can be regarded as a raw translation, automatically 

generated by the mapping rules. However, note that the second part of the union 

PREFIX eb:<...> 
SELECT ?title, ?pub 
WHERE  
  {?s eb:title ?title. 
   ?s eb:publisher ?pub}  

PREFIX am:<...> 
PREFIX rdf:<...> 
SELECT ?title, ?pub 
WHERE  
  {{?s am:title ?title. 
    ?s am:name ?pub. 
    ?s rdf:type am:Book} 
   union 
   {?s am:title ?title. 
    ?s am:name ?pub. 
    ?s rdf:type am:Music}}  

a) Wrong translation of eBay query 

PREFIX eb:<...> 
SELECT ?title, ?pub 
WHERE  
  {?s eb:title ?title. 
   ?s eb:publisher ?pub}  

PREFIX am:<...> 
PREFIX rdf:<...> 
SELECT ?title, ?pub 
WHERE  
  {{?s am:title ?title. 
    ?s am:publisher ?p. 
    ?p am:name ?pub. 
    ?p rdf:type am:Publ. 
    ?s rdf:type am:Book} 
   union 
   {?s am:title ?title. 
    ?s am:publisher ?p. 
    ?p am:name ?pub. 
    ?p rdf:type am:Publ. 
    ?s rdf:type am:Music}}  

b) Correct translation of eBay query 

Figure 19. Equivalent queries over eBay and Amazon databases that return titles when 
only instances of titles of books and music are equivalent 
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asks for publishers of instances of the class am:Music . But, according to Figure 

9, am:publisher  is defined only for instances of type am:Book . Hence, this 

part of the union would return an empty set. Therefore, the query can be 

optimized in a subsequent processes to improve performance, a problem we do 

not address in this thesis. 

In general, a triple pattern of the target schema has to be translated to a 

graph pattern of the source schema that connects objects of the same type. In the 

previous example, {?s eb:publisher ?pub}  connects an eb:Book 

instance, denoted by the variable ?s , to an xsd:string  literal, denoted by the 

variable ?pub , and so does the  graph pattern  

{?s am:publisher ?p. ?p am:name ?pub} . 

However, we note that only part of the previous rule can be directly derived 

from the vocabulary matching, for the following reasons:  

1. The rule provides a translation for eb:publisher , a concept of the 

target schema (eBay) . 

2. The vocabulary matching of Table 19 matches am:name, a concept of 

the source schema (Amazon), with eb:publisher , i.e., the matching 

indicates that am:name and eb:publisher  have similar values.  

3. However, Table 19 does not match am:Publ , the context (which, in 

this case, is the domain) of am:name, with eb:Book , the context 

(which, in this case, is also the domain) of eb:publisher .  

4. The body of the rule has to be generated from the schemas and the 

vocabulary matching. It reflects a path from am:Book , the class that 

matches the context eb:Book  of eb:publisher , to the class  

am:Publ , the context of am:name.  

If am:Book and eb:Book  did not match or there were no path from 

am:Book  to am:Publ , we would say that the vocabulary matching were 

inconsistent . In this case, we would have to remove rows from the vocabulary 

matching until it became consistent. 

Because of the above considerations, we say that the concept mapping, 

expressed by the above rules, is derived from the vocabulary matching indicated 

in Table 19, or conversely the vocabulary matching of Table 19 induces the above 

concept mapping. 
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Note that the process of concept mapping generation is not symmetric. In 

our running example, if we make eBay schema the source and the Amazon 

schema the target, the property am:name will not have any translation, since 

there will not be a concept  in the eBay schema which is equivalent to am:Publ . 

The last type of rule aims at translating class concepts. Table 19 indicates 

that that am:Book  class is equivalent to eb:Book . The corresponding mapping 

rule is as follows: 

eb:Book(b) ← am:Book(b) 

The rule means that each triple pattern of the form  

(?s rdf:type eb:Book)  should be translated to the pattern  

(?s rdf:type am:Book) .  

However, consider the following query over the eBay schema: 

PREFIX eb:<http://ebay.com> 
SELECT ?s 
WHERE  
  {?s rdf:type eb:Product} 

The result set contains instances of eb:Book , eb:Music , 

eb:DVDMovies  and eb:ComputerNetworking , which are subsets of 

eb:Product . Since Table 19 only indicates that am:Book  matches with 

eb:Book  and am:Music  matches with eb:Music , it is expected that an 

equivalent query over the Amazon schema returns instances of am:Book  and 

am:Music . Indeed, the equivalent query over the Amazon schema would be: 

PREFIX am:<http://amazon.com> 
SELECT ?s 
WHERE  
  {{?s rdf:type am:Book} union 
   {?s rdf:type am:Music}} 

This translation can be achieved by adding to the concept mappings the 

following two rules: 

eb:Product(p) ← am:Book(p) 
eb:Product(p) ← am:Music(p) 
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4.3.2. 
Formal definition of concept mapping rules 

Let S be an OWL Extralite schema in what follows.  

We say that S is well-formed iff  

• for any property p of S, the domain of p is a class of S 

• for any object property p of S, the range of p is a class of S 

• for any class c of S, if s is defined as a superclass of c in S, then s is also 

a class of S 

We understand S as a theory T[S]=(A[S],C[S]) in ALCQI (Chomicki and 

Saake 1998), a dialect of Description Logics, such that  

• the concepts and roles of the alphabet A[S] are the classes and properties 

of S  

• the axioms of C[S] are the constraints of S, denoted in ALCQI as 

follows: 

o a property p has domain d and range r:   T ⊑ ∀p.r ⊓ ∀ p −.d 

o a property p, with range r, is inverse functional:   r ⊑ (≤ 1 p −) 

o a property p, with domain d, has minCardinality k:   d ⊑ (≥ k p) 

o a property p, with domain d, has maxCardinality k:   d ⊑ (≤ k p) 

o a class s is defined as a superclass of c:   c ⊑ s 

In what follows, we will also use from ALCQI the intersection of two 

concepts, denoted c ⊓ d, and the subsumption of two concepts, denoted c ⊑ d. 

Let V be the set of variables, which is assumed to be disjoint from the set of 

concepts of S. A class literal is an expression of the form c(x), where c is a class 

and x is a variable; a property literal is an expression of the form p(x,y), where p 

is a property and x and y are variables; a literal is a class literal or a property 

literal. A conjunction is a list of literals separated by commas. A disjunction is a 

list of conjunctions separated by semi-colons. (This notation should be familiar to 

Prolog programmers). 

A rule is an expression of one of the forms:  

• c(x)←B[x] , where c(x) is a class literal and B[x]  is a disjunction where 

the variable x occurs in each conjunction 
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• p(x,y)←B[x,y], where p(x,y) is a property literal and B[x,y] is a 

disjunction where the variables x and y occur in each conjunction 

The literal is the head and the disjunction is the body of the rule. We use the 

notation B[x]  and B[x,y] to stress which variables must occur in the body. 

Let I be a set of triples of S. The universe of I is the set U[I]  of all URIrefs 

and literals that occur in triples of I.  

Consistently with the notion of interpretation of Description Logics, given a 

class c of S, the interpretation of c in I is the set 

cI = {  i∈U[I]  / (i,:type ,c)∈I } 

and, given a property p of S, the interpretation of p in I is the binary relation 

pI = {  (i,o)∈U[I] ×U[I]  / (i,p,o)∈I } 

The interpretation of the intersection of two concepts c ⊓ d is the set  

(c ⊓ d)I   = cI ∩ dI 

We say that the subsumption of two concepts c ⊑ d is true in I, denoted  

I ⊨ c ⊑ d, iff II dc ⊆ .  

Rather than resorting to the formalization in ALCQI, we directly define 

when a constraint σ of S is true in I, denoted I ⊨σ : 

• if σ declares that a property p has domain d and range r, then  

I ⊨σ  iff  III rdp ×⊆  

• if σ declares that a property p, with range r, is inverse functional, then  

I ⊨σ  iff, for any Irb ⊆ ,  card({ a∈U[I] / (a,b)∈pI }) ≤ 1   

• if σ declares that a property p, with domain d, has minCardinality k, then  

I ⊨σ  iff, for any Ida ⊆ ,  card({ b∈U[I] / (a,b)∈pI }) ≥ k   

• if σ declares that a property p, with domain d, has maxCardinality k, 

then  

I ⊨σ  iff, for any Ida ⊆ ,  card({ b∈U[I] / (a,b)∈pI }) ≤ k   

• if σ declares that a class s is a superclass of c, then  
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I ⊨σ  iff  II sc ⊆  

 

We now turn to the semantics of rules. A valuation for the set of variables V 

in I is a function v that maps the variables in V into elements of U[I] .  

We extend the notion of interpretation to rule bodies as follows. We first 

define when a rule body B is true in I for v, denoted I,v ⊨B,  inductively as 

follows: 

• if B is of the form c(x) then  I,v ⊨B iff v(x)∈cI 

• if B is of the form p(x,y) then  I,v ⊨B iff (v(x),v(y))∈pI 

• if B is of the form C,D then  I,v ⊨B iff I,v ⊨C and I,v ⊨D 

• if B is of the form C;D then  I,v ⊨B iff I,v ⊨C or I,v ⊨D 

The interpretation of a rule body of the form B[x]  in I is the set 

B[x] I = {  a∈U[I]  / there is a valuation v for V in I  

such that I,v ⊨B[x]  and v(x)=a } 

and the interpretation of a rule body of the form B[x,y] in I is the binary relation 

B[x,y] I = {  (a,b)∈U[I] ×U[I]  / there is a valuation v for V in I  

such that I,v ⊨B[x,y] and v(x)=a and v(y)=b } 

Finally, we say that a set I of triples of S is consistent iff I satisfies all 

constraints of S. 

We will use the above definitions in Section 4.3.4 to discuss the consistency 

of concept mappings induced by vocabulary matchings, a notion we define in the 

next section. 

 

4.3.3. 
Concept mappings induced by vocabulary matchings 

Given an OWL schema, we say that a class f dominates a class c or the 

intersection c= d ⊓ e of two classes d and e iff there is a sequence (c1,c2,...,cn) such 

that  

• f=c1 and c=cn  

• cn-1 subsumes cn 
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• for each i∈[1,n-2), either 

o ci+1 and ci are classes and ci+1 is declared as a subclass of ci, 

or  

o ci+1 is a class, ci is an object property and ci+1 is declared as 

the range of ci, or  

o ci+1 is an object property, ci is a class and ci is declared as the 

domain of ci+1 

We also say that π=(c1,c2,...,cn) is a dominance path from c to d and 

θ=(
m21 kkk ppp ,...,, ), the subsequence of π consisting of the object properties that 

occur in π, is the property path corresponding to π (note that θ may be the empty 

sequence). 

Let S and T be two (OWL Extralite) schemas in what follows. Recall that a 

contextualized vocabulary matching between S and T is a finite set µV of 

quadruples (v1,e1,v2,e2). 

A contextualized vocabulary matching µV from S into T is structurally 

correct iff, for all (v1,e1,v2,e2) ∈ µV such that v1 and v2 are properties: 

 

(i)  there is a class f of S such that µV matches f with the domain of v2 and f 

dominates d1 ⊓ e1, where d1 is the domain of v1  

(ii)  if v1 is a datatype property, then the range of v1 is a subtype of the range 

of v2 

(iii)  if v1 is an object property, then µV matches the range of v1 with the 

range of v2 

 

Let µV be a structurally correct contextualized vocabulary matching. A 

concept mapping Μ  from S into T induced by µV is a set of rules derived from the 

quadruples of µV as follows.  

For each quadruple (v1,e1,v2,e2)∈µV, the concept mapping Μ contains the 

following rules: 

 

Case 1: v1 and v2 be classes. Then, Μ contains rules of the form  

v2(x) ← v1(x)  
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s(x) ← v1(x)  for each superclass s of v2 

 

Case 2: v1 and v2 are properties. Let d1 and d2 be the domains, and r1 and r2 

be the ranges of v1 and v2 (recall that r1 and r2 are XML Schema data types, 

if v1 and v2 are datatype properties, and that µV matches the range of v1 with 

the range of v2, if v1 and v2 are object properties).  

 

Case 2.1: µV matches d1 with d2. Then, Μ contains a rule of the form  

v2(x,y) ← v1(x,y), e1(x) 

 

Case 2.2: µV does not match d1 with d2. Let f be a class of S such that µV 

matches f with d2 and f dominates d1 ⊓ e1. Let 
m21 kkk ppp ,...,,  be the 

property path corresponding to a dominance path from f to d1 ⊓ e1. Then, Μ 

contains a rule of the form  

v2(x,y) ← ),(),...,,(),,( zxpxxpxxp 1mk21k1k m21 − , v1(z,y), e1(z) 

if the property path is nonempty; otherwise the rule reduces to that of case 

2.1. (Note that, since µV is structurally correct, a dominance path from f to d1 

indeed exists. Also note that, since the dominance path may not be unique, 

the concept mapping induced by µV is not unique). 

 

Note that the contextualized vocabulary matching µV may have more than 

one quadruple for the same concept v2 of the target schema, which implies that the 

above process may generate more than one rule for v2. In addition, v2 may be a 

superclass of more than one class, which again implies that the above process, by 

Case 1, may generate more than one rule for v2. Therefore, as a last step in the 

construction of the concept mapping Μ, we collect together all rules for v2 as a 

single rule with a disjunctive body. More precisely, if v2 is a class and the above 

process generates rules  

v2(x)←Bi[x], for i ∈[1,n] 

then we replace all such rules by a single rule ρ of the form   

v2(x)←B1[x] ; ... ; Bn[x] 

and likewise, if v2 is a property.  
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We say that a rule ρ in M defines a concept v2 of T iff the head of ρ is of the 

form v2(x), if v2 is a class, or of the form v2(x,y), if v2 is a property (by the 

transformation described above, M has at most one rule for each concept of T).  

However, there might be a concept v2 of T such that M has no rule that 

defines v2. We therefore define T/M as the subset of T restricted to the concepts 

that M defines. Then, the constraints of T/M are the constraints of T defined over 

such vocabulary. In particular, we can prove that the superclasses, domains and 

ranges are properly defined in T/M. 

Proposition 1: Let µV be a structurally correct contextualized vocabulary 

matching and Μ  be a concept mapping from S into T induced by µV. Then: 

(i)  for any class c of T/M, if s is a superclass of c in T, then s is also a class of 

T/M. 

(ii)  for any property p of T/M, the domain of p is also a concept of T/M. 

(iii)  for any object property p of T/M, the range of p is also a concept of T/M. 

Proof 

(i) Let c be a class of T/M and s be a superclass of c in T. Since c is a class of T/M, 

by Case 1 of the construction of M, there is a rule in M of the form c(x)← p1(x). 

Since s is a superclass of c, again by Case 1, there is a rule in M of the form s(x)← 

p1(x). Hence, s is defined in M, that is, s is a class of T/M. 

(ii) Let p be a property of T/M. Let d be domain of p. Since p is a property of T/M, 

by Case 2, there is a rule in M of the form p(x,y)← B[x,y] and a class f of S such 

that µV matches f with the domain d of p. Then, by Case 1, there is a rule in M of 

the form d(x)←f(x). Hence, d is defined in M, that is, d is a class of T/M. 

(iii) Let p be an object property of T/M. Let r be the range of p. Since p is an 

object property of T/M, by Case 2, there is a rule in M of the form p(x,y)← B[x,y] 

and a class g of S such that µV matches g with the range r of p. Then, by Case 1, 

there is a rule in M of the form r(x)← g(x). Hence, r is defined in M, that is, r is a 

class of T/M. 

 

Corollary 1: T/M is a well-defined OWL Extralite schema. 

 

Finally, we define the function Μ induced by Μ as the mapping from sets 

of triples of S into sets of triples of T/M such that, for each set of triples I of S, J 
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= )I(Μ  iff, for each rule ρ in Μ 

• if ρ is of the form c(x)←B[x] , then J contains a triple (i,:type ,c) iff  

i∈B[x] I  

• if ρ is of the form p(x,y)←B[x,y], then J contains a triple (i,p,j) iff  

(i,j)∈B[x,y] I  

We stress that Μ  is used to map queries submitted to the target schema T 

into queries of the source schema S, whereas Μ  is a theoretical device to prove 

the correctness of the concept mapping, as discussed in the next section. 

 

4.3.4. 
Consistent concept mappings 

We denote the minCardinality and the maxCardinality of a property p by mC[p] 

and MC[p] , respectively. By convention, we take mC[p]=0 (and MC[p]= ∞), if 

minCardinality (or maxCardinality) is not declared for p.  

A property q is no less constrained than a property p iff  

• mC[p] ≤ mC[q] and 

• MC[p]  ≥ MC[q]  and  

• if p is declared as inverse functional then so is q 

Note that the above definition applies even if p and q are from different 

schemas. 

In what follows, let S and T be two (OWL Extralite) schemas, µV be a 

structurally correct contextualized vocabulary matching from S into T, Μ  be a 

concept mapping from S into T induced by µV and Μ be the function induced by 

Μ. 

Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Recall that p is a property of 

T and all classes and properties that occur in B[x,y] belong to S. We introduce, by 

definition, a property of S, denoted prop[B] , whose semantics is prop[B] I ≡ 

B[x,y] I, for each set I of triples of S. We say that ρ is correct iff prop[B]  is no less 

constrained than p.  

We say that Μ is correct iff any rule in Μ of the form p(x,y)←B[x,y] is 

correct. We note that this definition takes advantage of the fact that, for each 

concept c of T, the concept mapping Μ has at most one rule (possibly with a 
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disjunctive body) that defines c.  

We then say that M is consistent iff, if I is a consistent set of triples of S, 

then any constraint of T/M is true in J= )I(Μ . 

 

Lemma 1: Let µV be a structurally correct contextualized vocabulary matching 

and Μ  be a concept mapping from S into T induced by µV. Assume that Μ  is 

correct. Then, Μ  is consistent. 

Proof 

Let µV be a structurally correct contextualized vocabulary matching and Μ  be a 

concept mapping from S into T induced by µV. Assume that Μ  is correct. Let I be 

a set of triples of S, and J = Μ (I). Assume that I is consistent. We have to prove 

that any constraint of T/M is true in  J.  

Let σ be a constraint of T/M. There are five cases to consider 

Case 1: Constraint σ declares that a property p2 of T/M has domain d2 and range 

r2. 

We have to prove that J
2

J
2

J
2 rdp ×⊆ . Let (i,j)∈ J

2p . By the construction of M, 

since p2 be a property of T/M, there is a property p1 of S, with domain d1 and 

range r1, such that there is (p1,e1,p2,e2)∈µV. Let π be the rule p2(x,y)←B[x,y] in M 

that defines p2. Since (i,j)∈ J
2p , by construction of J, we have that (i,j)∈B[x,y] I. 

Recall that B[x,y] is a disjunction of the form “B1[x,y] ;,...;Bn[x,y] ”. Assume that 

(i,j)∈Bk[x,y] I.  

There are two cases to consider for Bk[x,y] , corresponding to Cases 2.1 and 2.2 of 

the construction of M. 

Case 1.1: Case 2.1 of the construction of M applies. 

Then, µV matches d1 with d2. In this case, Bk[x,y]  is a conjunction of the form  

“p1(x,y), e1(x)” . Since (i,j)∈Bk[x,y] I, we have that (i,j)∈ I
1p , i∈ I

1d  and j∈ I
1r , since 

d1 and r1 are the domain and range of p1. Since µV matches d1 with d2, by Case 1 

of the construction of M, there is a rule δ in M of the form d2(x) ← d1(x). Hence, 

by construction of J and since i∈ I
1d , we have that i∈ J

2d .  

Case 1.1.1: p2 is a datatype property of T/M.  

Since µV is structurally correct, r1 is a subtype of r2. Hence, j∈ I
1r implies that 
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j∈ J
2r . 

Case 1.1.2: p2 is an object property of T/M. 

Since µV is structurally correct, µV matches r1 with r2. Hence, by Case 1 of the 

construction of M, there is a rule ρ in M of the form r2(x) ← r1(x). Hence, by 

construction of J and since j∈ I
1r , we have that j∈ J

2r .  

Case 1.2: Case 2.2 of the construction of M applies. 

Then, µV does not match d1 with d2 and there is a class f of S such that µV matches 

f with d2 and f dominates d1 ⊓ e1. In this case, Bk[x,y]  is a conjunction of the form  

),(),...,,(),,( zxpxxpxxp
1mm21 kk21k1k −

, p1(z,y), e1(z) 

where 
m21 kkk ppp ,...,, is the property path corresponding to a dominance path from 

f to d1 ⊓ e1. Since (i,j)∈Bk[x,y] I, there are i1,...,im-1,a such that  

I
k1 1

p)ii( ∈, , I
k21 2

p)ii( ∈, ,..., I
k1m m

p)ai( ∈− , , I
1p)j(a ∈,   

Since f dominates d1 ⊓ e1 and
m21 kkk ppp ,...,, is the property path corresponding to 

a dominance path Π from f to d1 ⊓ u1, by definition of dominance path, there is a 

non-empty prefix f1,...,ft of Π such that ff1 = , 
1kt df = and ft ⊑ ft-1 ⊑...⊑ f1, 

where 
1kd  is the domain of 

1kp . Hence, I
k1 1

p)ii( ∈,  implies I
k1

di ∈ , which in turn 

implies that Ifi ∈ . But µV matches f with d2. By Case 1 of the construction of M, 

there is a rule δ in M of the form d2(x)← f(x). Hence, by construction of J and 

since Ifi ∈ , we have that J
2di ∈ . 

Case 1.2.1: p2 is a datatype property of T/M.  

Since µV is structurally correct, r1 is a subtype of r2. Hence, j∈ I
1r implies that 

j∈ J
2r . 

Case 1.2.2: p2 is an object property of T/M.  

Since µV is structurally correct, µV matches r1 with r2. Hence, by Case 1 of the 

construction of M, there is a rule ρ in M of the form r2(x) ← r1(x). Hence, by 

construction of J and since I
1p)ja( ∈, implies j∈ I

1r , we have that J
2rj ∈ .  
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Therefore, in both Cases 1.1 and 1.2, we have that J
2p)ji( ∈,  implies that 

J
2di ∈ and J

2rj ∈ . 

 

Case 2: σ declares that p is inverse functional. 

Let π be the rule in M that defines p and assume that π is of the form 

p(x,y)←B[x,y]. Since Μ  is correct, p(x,y)←B[x,y] is also correct, which means 

that prop[B]  is no less constrained than p. Then, B[x,y] must also be inverse 

functional. Since I is consistent, if there are (i,j)∈prop[B] I and (g,j)∈prop[B] I, 

then i=g . Since, by construction of J, (i,j)∈ Jp iff  (i,j)∈prop[B] I, if there are 

(i,j)∈pJ and (g,j)∈pJ, then i=g , which means that σ is true in J.  

Case 3: σ declares that p has minCardinality equal to k (that is, mC[p] = k). 

Let π be the rule in M that defines p and assume that π is of the form 

p(x,y)←B[x,y]. Since Μ  is correct, p(x,y)←B[x,y] is also correct, which means 

that prop[B]  is no less constrained than p. Then, mC[p] = k ≤ mC[prop[B]] . Since 

I is consistent, k ≤ mC[prop[B]]  implies that, if there is (i,j)∈prop[B] I, there are at 

least k pairs (i,j1),...,(i,jk)∈prop[B] I. Since, by construction of J, (i,j)∈ Jp iff  

(i,j)∈prop[B] I, if there is (i,j)∈pJ, there are at least k pairs (i,j1),...,(i,jk)∈pJ, which 

means that σ is true in J. 

 

Case 4: σ declares that maxCardinality equal to k (that is, MC[p]  = k). 

(Follows as in Case 3). 

 

Case 5: σ declares that s is a superclass of c. 

Let π be the rule in M that defines c and assume that π is of the form c(x)←B[x]. 

Let i∈ Jc . Then, by construction of J, i∈B[x] I. We may assume without loss of 

generality that π is of the form c(x)←...;d(x);.... and that i∈dI. Since s is a 

superclass of c, by Case 1 of the construction of M, there is also a rule ρ in M of 

the form s(x)←...;d(x);..... Then, by construction of J, and since i∈dI, we have that 

i∈sJ. 

Therefore, i∈ Jc implies that i∈sJ, which means that σ is true in J.  
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Lemma 1 is not entirely helpful, though, since it is not entirely obvious how 

to test if a rule of the form p(x,y)←B[x,y] is correct, i.e, if prop[B]  is no less 

constrained than p. Proposition 1 below provides sufficient conditions 

guaranteeing correctness of one such rule. 

 

Proposition 2: Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Assume that 

B[x,y] is of the form B1[x,y];...;Bn[x,y]. Let 
imi2i1i ppp ,,, ,...,, be the properties of S 

that occur in Bi[x,y] , for i∈[1,n] . Then,  

(i) mC[prop[B[x,y]]]  ≥ }n1i]p[mCmin{ im
1j ji ,.../, =∏ =  

(ii)  MC[prop[B[x,y]]]  ≤ ∑ ∏= =
n

1i
m

1j ji
i ]p[MC ,   

(iii)  If all properties that occur in B[x,y] are inverse functional and 

prop[B1[x,y]],...,prop[Bn[x,y]]  are pairwise disjoint, then prop[B[x,y]]  is 

inverse functional. 

(iv) If all properties that occur in B[x,y] are inverse functional and B[x,y] has 

just one conjunction (that is, n=1), then prop[B[x,y]]  is inverse 

functional. 

 

Proof 

Let ρ be a rule in Μ of the form p(x,y)←B[x,y]. Assume that B[x,y] is of the form 

B1[x,y];...;Bn[x,y] . Let 
imi2i1i ppp ,,, ,...,, be the properties of S that occur in Bi[x,y] , 

for i∈[1,n] . We first prove that  

(1)  mC[prop[Bi[x,y]]]  = ∏ =
im
1j ji ]p[mC ,  

(2)  MC[prop[Bi[x,y]]]  = ∏ =
im
1j ji ]p[MC ,   

There are two cases to consider for Bi[x,y] , corresponding to Cases 2.1 and 2.2 of 

the construction of M. 

Case 1: Case 2.1 of the construction of M applies. 

Then, Bi[x,y]  is a conjunction of the form  

)x(e)yx(p i1i ,,,  

Since )x(ei  restricts the domain of ip , but not the range, we trivially have that 
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(3) mC[prop[Bi[x,y]]  = 
(z)]]ey),(z,p[prop[mC i1i , = y)]](z,p[prop[mC 1i , = ]p[mC 1i ,  

(4)  MC[prop[Bi[x,y]]  = (z)]]ey),(z,p[prop[MC i1i , = ]p[MC ji ,   

Case 2: Case 2.2 of the construction of M applies. 

Then, Bi[x,y]  is a conjunction of the form  

)z(e)yz(p)zx(p)xx(p imi2m1mi11i iii
,,,,,...,, ,,, −−  

Since a conjunction ]yx[C ,  of the form “ y)(z,q)zx(q 21 ,, ” captures the 

composition of two properties 1q  and 2q , by definition of minCardinality, we 

have that 

(5) )]]y(zq)zx([qprop[mC 21 ,,, = )]]zx(q[prop[mC 1 , . )]]y(zq[prop[mC 2 , = 

       ][qmC ].[qmC 21  

 Again, since (z)ei  restricts the domain of 
imip , , but not the range, we have that  

(6)  ]p[mC)]]yz(p[prop[mC)]]z(e)yz(p[prop[mC
iii mimiimi ,,, ,,, ==  

By repeatedly applying (5) and using  (6) at the last step, we have that 

(7)  mC[prop[Bi[x,y]]]  = 
)]]z(e)yz(p)zx(p)xx(p[prop[mC imi2m1mi11i iii

,,,,,...,, ,,, −− = 

]p[mC 1i , . ]p[mC 2i , . ... . ]p[mC 2mi i −, . ]p[mC 1mi i −, . ]p[mC
imi , = 

∏ =
im
1j ji ]p[mC ,  

Using a similar argument and the definition of maxCardinality, we have that  

(8)  MC[prop[Bi[x,y]]]  = 
]]zeyzpzxpxxp[prop[MC imi2mi1mi11i iii

)(),,(),,(),...,,( ,,,, −− =      

]p[MC 1i , . ]p[MC 2i , . ... . ]p[MC 2mi i −, . ]p[MC 1mi i −, . ]p[MC
imi , = 

∏ =
im
1j ji ]p[MC ,  

We now prove (i) and (ii).  

Recall that, since that B[x,y] is a disjunction of the form B1[x,y];...;Bn[x,y] , 

for any interpretation I of S, we have that 
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(9)  Bi[x,y] I ⊆ B[x,y] I, for any i∈[1,n] 

From (9), by definition of minCardinality, we have that 

(10) mC[prop[B[x,y]]]  ≥ y]]][x,B[prop[mC i , for any i∈[1,n]  

Hence, from (10) and (1), we have that: 

(11) mC[prop[B[x,y]]]  ≥ }n1iy]]][x,[prop[BmCmin{ i ,.../ =  =  

                                         }n1i]p[mCmin{ im
1j ji ,.../, =∏ =  

Also, for any interpretation I of S, we have that  

(12)  B[x,y] I = B1[x,y] I ∪ ... ∪ Bn[x,y] I 

From (12), by definition of maxCardinality, we have that  

(13) MC[prop[B[x,y]]]  ≤ ∑ =
n

1i i y]]][x,B[prop[MC  

Hence, from (13) and (2), we have that: 

 (14) MC[prop[B[x,y]]]  ≤ ∑ =
n

1i i y]]][x,B[prop[MC  = ∑ ∏= =
n

1i
m

1j ji
i ]p[mC ,  

Note that (iv) directly follows from (iii). So, we only prove (iii). Assume that 

(15) all properties that occur in B[x,y] are inverse functional 

(16) prop[B1[x,y]],...,prop[Bn[x,y]]  are pairwise disjoint 

using an argument similar to that of Cases 1 and 2 above for (i) and (ii), by (15), 

we have that 

(17) Bi[x,y]  is inverse functional 

From (12) and (17), by (16), we have that B[x,y] is inverse functional.  

 

Note that, in (iii), we cannot establish that prop[B1[x,y]],...,prop[Bn[x,y]]  are 

pairwise disjoint within OWL Extralite, since this dialect of OWL does not 

support class or property disjointness (hence the simplified statement in (iv)). 

We may combine Lemma 1 and Proposition 1 and list sufficient conditions 
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for consistency. 

 

Corollary 2: Let µV be a structurally correct contextualized vocabulary matching 

and Μ  be a concept mapping from S into T induced by µV. Then, Μ  is consistent 

if, for any rule in Μ of the form p(x,y)←B[x,y], we have: 

(i) },.../min{ , n1i]p[mCim
1j ji =∏ = ≥ mC[p] 

(ii)  ∑ ∏= =
n

1i
m

1j ji
i ]p[MC , ≤ MC[p]  

(iii)  If p is inverse functional, then all properties that occur in B[x,y] are 

inverse functional and either prop[B1[x,y]],...,prop[Bn[x,y]]  are pairwise 

disjoint, or B[x,y] has just one conjunction (that is, n=1) 

where B[x,y] is of the form B1[x,y];...;Bn[x,y]  and 
imi2i1i ppp ,,, ,...,, are the 

properties of S that occur in Bi[x,y] , for i∈[1,n] . 

 

4.4. 
Summary and contributions 

In this chapter we focused on the more complex problem of matching two 

schemas that belong to an expressive OWL dialect. The matching technique is 

based on the notion of similarity. We decomposed the problem of OWL schema 

matching into the problem of vocabulary matching and the problem of concept 

mapping. We also introduced sufficient conditions guaranteeing that a vocabulary 

matching induces a correct concept mapping.  

We developed a similarity function based on the contrast model (Tversky 

and Gati 1978), which proved to efficiently capture the notion of similarity, and 

described heuristics that lead to practical OWL matchings. 

We introduced the OWL Extralite dialect because it is as expressive as 

UML and, yet, it avoids the complex constructions of OWL Full, such as 

subproperties and multiple inheritances. 

Unlike any of the instance-based techniques previously defined, the OWL 

schema matching process, we proposed to use similarity functions to induce 

vocabulary matchings in a non-trivial way.  

Contrasting with (Doan et al. 2001, Madhavan et al. 2005), we do not use 

machine learning techniques to acquire knowledge about matchings. Instead, we 
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capture semantic similarity by adopting similarity functions and heuristics that 

depend on the schema concepts. We consider this strategy to be more general 

because it can identify matching candidates which were not in the training corpus. 

Contrasting with (Brauner et al. 2007b, Wang et al. 2004), which measure 

the similarity between concepts only by the commonalities between sets of values, 

we use similarity functions that take into account not only the commonalities, but 

also the differences between concepts. Such models proved to increase the 

precision of the matching process. In addition, we use similarity heuristics that 

operate at the level of data values, that is, they permit comparing data values 

based on their similarity, and not just on their exact equality. 

We overcome the limitation of representing an instance by a string 

constructed out of all its property values, introduced in (Bilke and Naumann 

2005), by representing an instance by a string constructed out of the values only of 

those properties that match, in a first approximation.  

In summary, unlike the techniques listed in Section 1.2, we proposed hybrid 

matching techniques that are uniformly grounded on similarity functions to 

generate matchings between simple catalogue schemas and between more 

complex OWL schemas. 
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