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Background

2.1.
RDF/OWL

According to Klyne et al. (2004),rasourceis anything that has an identity,
be it a retrievable digital entity (such as an electronic decgnan image, or a
service), a physical entity (such as a book) or a collection of o#iseurces. A
Uniform Resource ldentifigfURI) is a character string that identifies an abstract
or physical resource on the Web.URI referencgURIref) denotes the common
usage of a URI, with an optionishgment identifiemttached to it and preceded by
the character#”.

An RDF statementor simply astatementis a triple(S,P,0),where

* Sis a URIref, called theubjectof the statement

« P is a URIref, called theroperty (also called thepredicatg¢ of the

statement, that denotes a binary relationship
« Ois either a URIref or a literal, called thbjectof the statement; D is
a literal, therO is also called thealueof the property

RDF offers enormous flexibility but, apart from thef : t ype property,
which has a predefined semantics, it provides no means for defpytigagion-
specific classes and properties. Instead, such classes apértigs, and
hierarchies thereof, are described using extensions to RDF prdywdie RDF
Vocabulary Description Language 1.0: RDF Schem®&DF-S (Brickley et al.
2004).

In RDF Schema, a&lassis any resource having ardf : t ype property
whose value is the qualified namdf s: C ass of the RDF Schema vocabulary.

A classC is defined as a&ubclassof a classD by using the predefined
rdf s: subd assOf property to relate the two <classes. The
rdf s: subCl assOF property is transitive in RDF Schema.

A property is any instance of the classdfs: Property. The
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rdf s: domai n property is used to indicate that a particular property applias to
designated class, and thelf s: r ange property is used to indicate that the
values of a particular property are instances of a designiaiesiar, alternatively,
are instances (i.e., literals) of an XML Schema datatype.

The specialization relationship between two properties is descubling
the predefined df s: subPropertyOf. An RDF property may have zero or
more subproperties; all RDF Schemalf s: range and rdf s: domai n
properties that apply to an RDF property also apply to each of its subproperties.

An instanceof a classC is a resourceé having anr df : t ype property
whose value i€, which is indicated by the RDF statemént, r df : t ype, C).

A resource may be an instance of more than one class. To thefiran instanck
of a class has a propef®ywith valueV, we simply define an RDF stateméhtP,
V).

OWL can be viewed as an extension of RDF. Each OWL descriptalads
an RDF description. OWL provides extra vocabulary for relationshigjreity
and other complex schema definitions. OWL has three sublanguages -Li@yVL
OWL DL and OWL Full — which are increasingly expressive. OWite, for
example, only permits cardinality values of 0 or 1, while in OWll there is no
restriction for cardinalities.

In OWL (Bechhofer etal. 2004), alass is any resource having an
r df : t ype property whose value is the qualified naove : Cl ass of the OWL
vocabulary, which is itself a subclass of thif s: Cl ass.

OWL distinguishes between two main categories of properties:ctobje
properties, which link individuals to individuals, and datatype propemtbg;h
link individuals to data values. The first category defines tHatioaships
between classes. Both are subpropertieddfs: Property.

A special propertypw : sanmeAs, states that two resources represent the
same individual, e.g., the RDF tripjeiri 1, ow : saneAs, uri 2) means that
uri 1 anduri 2 represent the same individual (or instance) in the database. The
property ow : equi val ent C ass and ow : equi val ent Property are
analogous t@ow : sanmeAs property, but relates two classes and two properties,
respectively.

We introduce arOWL database schenas a seR of triples in the OWL


DBD
PUC-Rio - Certificação Digital Nº 0621314/CA


PUC-RIo - Certificagdo Digital N° 0621314/CA

Background 27

vocabulary.

An RDF triple isof an extension of B it defines an instance of a classRf
or the value of a property definedRn

An observed extensiofor R is a subsebtr of RDF triples ofR. Theset of
observed valuesf a propertyP of Rin oris defined as

or[P]={V/(S,P,V)70r}
Likewise, theset of observed instanceta clas<C of Rin oris defined as

or[C] ={S/(Srdf:type,C)Jor}

2.2.
Similarity models

Similarity is a concept frequently used in many different appbos.
Various similarity functions have been proposed in the literatureh ssc
information content (Resnik 1995), information theory (Brauner etal. 2008,
Hindle 1990, Lin 1998), vector model (Frakes and Baeza-Yates 1992), distance
measurements (Lee 1993) and the contrast model (Tversky and Gati 1978).

In this thesis, we use and compare results of four similaritgtions. The
first one is based on the vector model. In text processing applicéfficales and
Baeza-Yates 1992), the documents and the queries are representetbbs, Whe
relevance of documents to queries is expressed as a meadhe smilarity

between the vectors, taken as the cosine of the angle between the vectors:

The dimensions of the vectors represent index terms of a documant or
word of a query, and the corresponding coordinates are the welghtBF) of

the term, e.g., a document of a cor@uwith n index terms can be represented as

the vectorA = (W, W, ,...,W, ), wherew, is defined as follows:
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fti N
W, = log
maxg, f N,
where
. f, = frequency of a term in the document

. N = number of terms i€

. Ni = number of documents @fthat include tern

The second similarity function is based on InfororatTheory and was
proposed in (Lin 1998). The similarity between talgectsA andB is a function
of the amount of information in the propositions tbkir commonalitiesand
descriptions The authors use the conclusion of (Cover and Esoh991), which
says that the information contained in a statenembheasured by the negative
logarithm of the probability of the statement. Bmailarity is defined as follows:

log(P(commonalieq A, B)))

sim(A B) = log(P(descriptia( A, B)))

wherecommonalities(x,yanddescription(x,y)are functions that return subsets of
features of the objectsandy, andP(x) is the probability of the set of featunes
For example, ifA is an orange anB is an apple, theommonalitiesbetweenA
andB can be stated as the propositinnt(A) and fruit(B). The predicatéruit is a
possible common feature of both objects from a gfiedd set of features. A
andB belong to a sé&$ of objects then

P(commonalities(A,B)) = P(fruit(A)).P(fruit(B))

I.e., the probabilityof commonalities is the probability of the occuwerof the
predicatéfruit for the two objectsThe description of andB is the probability of
the union of all features of the two objects.

The third similarity function is presented in (Bre et al. 2008), where the
authors address the problem of matching the até#baf two relational schemes,
R[AL,...,Aq and S[By,...,By]. Given two relationsor and os that follow the
schemesR and S the authors first propose to compute then co-occurrence
matrix [m;] such thatm; is the cardinality obr[A]] nodBj]. The next step is to

compute thé&stimated Mutual Informatiomatrix EMI defined as,
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EMI_ = mS log M s

th st

where m; = |og[A]] nadBj] |, foriZ[1,m] andjZ[1,n], andM = ij

The authors then postulate that two attributgs and Bs match iff
EMI(A,Bs) > EMI(A,,B), for all j[1,n], with j#s, andEMI(A;,Bs) > EMI(A;,Bs),
for all i Z]1,m],with i#£r.

The last similarity function is based on the costtrenodel (Tversky and
Gati 1978), which states that the similarity betwe&eandy increases with the
amount of features, measured by a given funcfiowhich x andy have in
common, and decreases with the amount of featungshvibelong to jusk or to
justy. The notion of feature is used here with the sameaning as in the second
similarity function presented before, i.e., theg @redicates or characteristics of
the objects. The contrast model has been evalaamgduccessfully used in many
applications (Eidenberger 2006, Eidenberger andtéreder 2002, Tang et al.
2007). One possible reason for the success ofahgast model is that it is very
close to the human perception of similarity.

More precisely, le€ be a set of features and Btdenote the power set of

C. Let f:2° R+ be ascale functionfor C. A contrast modelis a function

r.2°x2°— R+ such that
(1)  (xy)=&Xxny)-af(x=y)=-p(y-x)

for anyx, yd2%, where8, a, 8 [J R+ are theparametersof the contrast model.

Note that this formula defines a class of modedd tiepend on the choice ©f6,
a andp.
Now, let|x| denote the cardinality of a set Using the cardinality as the

scale function, we may successively rewrite (1) as:

@ Ty =0Ixnyl-a|x-y[-Bly-X|
@) T y)=0Ixny|-a(x]|=[xny)=A(yl-Ixnyl)
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@) Toep(xy)=(@+a+p)Ixnyl-al|x|-B]yl, for anyx, yi2°

In order to normalize the result, Equation (4) banbalanced withC|. We

then redefine the functiony, s as

(5) Tg‘a‘ﬁ(x’y):(9+0’+ﬂ)|Xﬂ|C):/||—alxl_ﬂ|y|

To simplify the notation, definél(x) =| x| /|C| and rewrite equation (5) as:
6)  Toup(xy)=(@+a+BN(Xn y) = (@N() +BN(Y))

The image of such function is contained &y, which imposes serious
restrictions on fixing a threshold to select sim@operties. For this reason, it is

convenient to rewrite the formula usih@(ﬁ(x) ), instead ofﬁ(x) :

—1od N(xn y)‘ﬁ*”*ﬂ))

7 005 (XY) =log ———=

7)) Toap(xy) 9[ NGO N(y)?

Since N(xny)=0, N(X)=0, N(y)=0, N(xny)<N(x),
N(xn y)<N(y), N(xn y)<1, thent,, ,(x,y)is always negative.

In order to limit the similarity values to the intal [0.0,1.0] equation (7)

can be rewritten as following.

N(xn y)@?) D

8)  1,,,(xy)=|1-log NXNY)
® T"”(Xy)( Og[ NGY” N(y)”

2.3.
Summary and contributions

The assumptions that the database schemas to bhanare described in
OWL and that the data obtained from the databasewailable as sets of RDF
triples facilitate the construction of matchinghemues, since schema elements
and data instances are similarly defined (as Ripkefs). However, the techniques
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introduced in the thesis can be directly applieddoceptual schemas described in
other database models, such as the relational mdaetonjunction, these
assumptions permit us to concentrate on a strategyveil the semantics of the
database schemas to be matched, without beingadistt by syntactical
peculiarities.

In fact, we see as a good practice to provide O\wdcdptions of the export
schemas of data sources providers. In conjunctitmWSDL descriptions of the
Web Services encapsulating the backend databdsssneasure facilitates the
interoperability of databases.

The techniques we describe in this thesis uniforrapply similarity
functions to generate matchings and are groundedthen interpretation,
traditionally accepted, that “terms have the sartersion when true of the same
things” (Quine 1968). In our context, two conceptatch if they denote similar
sets of objects. The techniques essentially ddferthe nature of the sets to be
compared and on the similarity functions adopteal. &ample and in a very
intuitive way, two classes match if their sets ofpgerties are similar, two terms
from different thesauri match if the sets of insts they classify are similar,
properties match if their sets of observed valuessenilar.
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