5 Resultados

5.1. Introdução

Este capítulo tem por objetivo principal apresentar os resultados obtidos ao utilizar as modelagens apresentadas nesta dissertação. Foram desenvolvidos programas no ambiente *MatlLab*® [22] para o cálculo do fluxo de potência e para a avaliação das condições de estabilidade de tensão considerando a presença de múltiplas barras *swing*, a atuação da regulação primária e a variação dos parâmetros de linha com a frequência.

Em cada seção será apresentado o ponto de operação obtido através do cálculo do fluxo de potência e, em seguida, serão apresentados os índices de estabilidade de tensão.

O sistema utilizado foi o de 6 barras, cujos dados foram apresentados na Seção 3.6.

As condições iniciais para o cálculo do ponto de operação são repetidas na Tabela 5.1. Considera-se a base do sistema como 100 MVA e uma frequência nominal de operação de 60 Hz.

Barra		Tensão		Geração		Carga	
No.	Tipo	V (p.u.)	θ (°)	P (MW)	Q(Mvar)	P (MW)	Q(Mvar)
1	Vθ	1,024	0	50	10,1	0	0
2	PV	1,021	-2,1	90	20,1	0	0
3	PQ	1,010	-5,6	0	0	0	0
4	PQ	1,000	-13	0	0	120	0
5	PQ	1,000	-23	0	0	40	0
6	PV	1,004	-21	20	2,7	0	0

Tabela 5.1 Estimativa Inicial do Ponto de Operação

5.2. Testes Antes da Atuação da Regulação Primária

Estes testes consistem na análise dos índices de estabilidade de tensão (IET) obtidos após a determinação do ponto de operação no caso-base.

Na Tabela 5.2 é apresentado o resultado do fluxo de potência para determinação do ponto de operação do sistema-teste no caso-base.

Barra		Tensão		Geração		Carga
No.	Tipo	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	Vθ	1,0240	0,0000	50,0	7,5340	0,0
2	PV	1,0210	-2,0478	90,0	22,6	0,0
3	PQ	1,0091	-5,5535	0,0	0,0	0,0
4	PQ	0,9996	-12,7294	0,0	0,0	120,0
5	PQ	0,9996	-23,1082	0,0	0,0	40,0
6	PV	1,0040	-20,8239	20,0	2,6210	0,0

Tabela 5.2 Ponto de Operação Caso-Base

Foram consideradas as três variações na estrutura do sistema linearizado para a avaliação das condições de estabilidade de tensão:

- Modelagem com múltiplas barras swing (MMSW);
- Modelagem com regulação primária (MRP com constante de regulação R=0,05 p.u.);

 Modelagem com regulação primária (com constante de regulação proporcional à potência gerada no caso-base).

Serão apresentados os resultados para cada uma destas modelagens considerando que todas as barras de geração são barras *swing* e que possuem regulação primária e que somente duas barras de geração são barras *swing* e que contam com regulação primária.

5.2.1. Todas as Barras de Geração como Barra *Swing*

Neste teste todas as barras de geração foram consideradas como barra *swing* e com dispositivos de controle para regulação da velocidade. A barra 1 é considerada como a barra de referência angular.

Supõe-se que o sistema não sofre nenhum impacto e não há necessidade da regulação primária, pois a frequência permanece em 60Hz. Os índices são calculados com o sistema linearizado que inclui a modelagem de múltiplas barras *swing* apresentado na Seção 4.5.2 e na Tabela 5.3 são apresentados os índices obtidos. Os fatores de proporcionalidade utilizados foram calculados em (3.70) e (3.71) e são: α₁₂ = 0,556, e α₂₆ = 4,5. Neste caso, as variações infinitesimais de geração ativa obedecem tais proporções.

Tabela 5.3 IET com MIMSW - 3 Barras Swing	Tabela 5.3	IET com	MMSW - 3	Barras	Swing
---	------------	---------	----------	--------	-------

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,2439	76,4223	0,5100	3,9981
2	79,6810	77,8282	0,9222	4,5384
3	100,0000	95,9297	0,0000	18,0730
4	83,9136	109,4077	1,2000	7,4597
5	84,0796	105,6145	0,4000	2,5125
6	74,8287	104,5031	0,2017	0,8014

 Supõe-se agora que nesse ponto atuará a regulação primária, ou seja, que as variações infinitesimais de geração ativa obedecem às energias de regulação especificadas. Os índices são calculados com o sistema linearizado que inclui a modelagem da regulação primária apresentado na Seção 4.5.3. São consideradas duas variantes nos valores dos estatismos (inverso da energia de regulação) mostrados na Tabela 5.4: i) o estatismo é 0,05 na base de cada gerador, e ii) o estatismo é inversamente proporcional à potência ativa gerada no caso-base. Nas Tabelas 5.5 e 5.6 são apresentados os resultados obtidos.

Tabela 5.4 Estatismo	s dos Geradores
----------------------	-----------------

Barra	Base de Potência (MW)	Estatismo na Base da Máquina (p.u)	Estatismo na Base do Sistema (p.u) (E1)	Estatismo Proporcional à Potência Gerada no Caso-Base (p.u) (E2)
1	100 (4x25)	0,05	0,05	0,02
2	200 (8x25)	0,05	0,025	0,0111
6	50 (2x25)	0,05	0,1	0,05

Tabela 5.5 IET com MRP (E1) - 3 Barras Swing

Barra	M (%)	β (graus)	S _i (p.u.)	$\mathbf{S}_{\mathbf{m}}\left(\mathbf{p.u.} ight)$
1	87,2745	76,2478	0,5100	4,0077
2	80,1252	76,0337	0,9222	4,6399
3	100,0000	95,4430	0,0000	18,9012
4	84,2999	109,3888	1,2000	7,6432
5	84,2714	105,6314	0,4000	2,5431
6	74,8709	104,5259	0,2017	0,8027

Tabela 5.6 IET com MRP (E2) - 3 Barras Swing

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,2439	76,4223	0,5100	3,9981
2	79,6810	77,8282	0,9222	4,5384
3	100,0000	95,9297	0,0000	18,0730
4	83,9136	109,4077	1,2000	7,4597
5	84,0796	105,6145	0,4000	2,5125
6	74,8287	104,5031	0,2017	0,8014

Ainda que não seja possível comparar os resultados obtidos com a modelagem com múltiplas barras *swing* com os obtidos com a modelagem com regulação primária já que foram calculados com premissas diferentes, observa-se que os resultados nas Tabelas 5.3 e 5.6 são iguais, pois o fator de proporcionalidade utilizado na modelagem de múltiplas barras *swing* e o estatismo utilizado na modelagem da regulação primária no caso E2 obedecem às mesmas proporções.

5.2.2. Duas Barras de Geração como Barras Swing

Para realizar este teste, as barras 1 e 2 foram escolhidas como barras *swing* e como barras com dispositivo de controle. A barra 1 é a barra de referência angular, enquanto a potência ativa gerada e na barra 6 foi fixada e sua tensão foi mantida constante, considerando-a como uma barra PV. O ponto de operação é o mostrado na Tabela 5.2.

 O fator de proporcionalidade utilizado na modelagem com múltiplas barras *swing* é α₁₂ = 0,556, e assim as variações infinitesimais de carga são assumidas pelos geradores de acordo com esse fator. Os resultados correspondentes à modelagem com múltiplas barras *swing* são mostrados na Tabela 5.7.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,9418	78,0908	0,5100	3,9056
2	77,2275	86,1806	0,9222	4,0495
3	100,0000	98,7510	0,0000	16,4853
4	81,6608	111,9303	1,2000	6,5433
5	59,8674	116,1634	0,4000	0,9967
6	74,8287	104,5031	0,2017	0,8014

Tabela 5.7 IET com MMSW - 2 Barras Swing

• Assume-se agora que as variações infinitesimais de carga são assumidas pelos geradores de acordo com as energias de regulação

especificadas, as quais são apresentadas na Tabela 5.4. Os resultados obtidos são apresentados nas Tabelas 5.8 e 5.9.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,8259	77,9310	0,5100	3,8712
2	75,5654	86,0429	0,9222	3,7740
3	100,0000	98,9412	0,0000	17,0639
4	81,9182	112,1988	1,2000	6,6365
5	59,9390	116,2107	0,4000	0,9985
6	74,8709	104,5259	0,2017	0,8027

Tabela 5.8 IET com MRP (E1) - 2 Barras Swing

Tabela 5.9 IET com MRP (E2) - 2 Barras Swing

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,9418	78,0908	0,5100	3,9056
2	77,2275	86,1806	0,9222	4,0495
3	100,0000	98,7510	0,0000	16,4853
4	81,6608	111,9303	1,2000	6,5433
5	59,8674	116,1634	0,4000	0,9967
6	74,8287	104,5031	0,2017	0,8014

Ainda que não seja possível comparar os resultados obtidos com a modelagem com múltiplas barras *swing* com os obtidos com a modelagem com regulação primária já que foram calculados com premissas diferentes, observa-se que os resultados nas Tabelas 5.7 e 5.9 são iguais, pois o fator de proporcionalidade utilizado na modelagem de múltiplas barras *swing* e o estatismo utilizado na modelagem da regulação primária no caso E2 obedecem às mesmas proporções.

Os índices apresentados nas Tabelas 5.3 e 5.7 são ligeiramente diferentes porque na primeira foi considerado que todas as barras de geração eram do tipo *swing*, e na segunda somente uma das barras de geração não era do tipo *swing*.

Os índices apresentados nas Tabelas 5.5 e 5.8 são ligeiramente diferentes porque na primeira foi considerado que todas as barras de geração possuíam

regulação primária, e na segunda somente uma das barras de geração não contava com tal dispositivo de controle. O mesmo ocorre ao compararem-se as Tabelas 5.6 e 5.9.

5.3.

Testes Após Evento com Atuação da Regulação Primária e Parâmetros da Rede Variáveis com a Frequência

Foram realizados testes em diferentes pontos de operação após a atuação da regulação primária:

- Os pontos de operação após a atuação da regulação primária, foram determinados considerando que os parâmetros de linha eram independentes da frequência.
- Os pontos de operação após a atuação da regulação primária, foram determinados considerando que os parâmetros de linha eram variáveis com a frequência.

E para a análise das condições de estabilidade de tensão, consideram-se as seguintes variações na estrutura do sistema linearizado correspondentes a cada ponto de operação:

1)

- Modelagem múltiplas barras swing (MMSW);
- Modelagem com regulação primária (MRP).
- 2)
- Modelagem múltiplas barras *swing* (MMSW);
- Modelagem com parâmetros da rede variáveis com a frequência (MPRVF).

Os valores dos estatismos utilizados são os apresentados na Tabela 5.4 correspondentes ao caso E1, e a barra 1 foi escolhida como barra de referência angular. Considera-se que todas as barras de geração são do tipo *swing* e que possuem regulação primária.

5.3.1. Diminuição de Carga em 50% do Caso-Base

Foi simulado o evento correspondente à perda de 50% da carga conectada nas barras no caso-base. Assim a carga total passou a ser de 80 MW. Nas Tabelas 5.10 e 5.11 são apresentados os resultados do fluxo de carga que corresponde a cada ponto de operação do sistema-teste após o evento.

Barra	V (p.u.)	θ (graus)	P _g (MW)	Q _g (Mvar)	P _d (MW)
1	1,0240	0,0000	27,1429	3,8005	0,0000
2	1,0210	-1,2760	44,2857	5,0970	0,0000
3	1,0180	-2,9852	0,0000	0,0000	0,0000
4	1,0145	-6,5541	0,0000	0,0000	60,0000
5	1,0049	-12,3449	0,0000	0,0000	20,0000
6	1,0040	-11,3713	8,5714	-0,3540	0,0000

Tabela 5.10 Ponto de Operação 1 MRP com Diminuição de 50% da Carga

Tabela 5.11 Ponto de Operação 2 MPRVF com Diminuição de 50% da Carga

Barra	V (p.u.)	θ (graus)	$P_{g}(MW)$	Qg (Mvar)	$P_{d}(MW)$
1	1,0240	0,0000	27,1429	3,8100	0,0000
2	1,0210	-1,2907	44,2857	5,1577	0,0000
3	1,0179	-3,0196	0,0000	0,0000	0,0000
4	1,0144	-6,6300	0,0000	0,0000	60,0000
5	1,0048	-12,4882	0,0000	0,0000	20,0000
6	1,0040	-11,5034	8,5714	-0,3251	0,0000

O sistema passou a operar com frequência de 60,6857 Hz, a qual pode ser calculada com (2.6) apresentada na Seção 2.2.3.2.1:

$$\Delta f = \frac{\Delta P_{\rm G}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_6}} = \frac{0.8}{\frac{1}{0.05} + \frac{1}{0.1} + \frac{1}{0.025}} = 0,01143 \text{ p.u.Hz} = 0,6857 \text{ Hz}$$

$$f = 60,6857 \text{ Hz}$$
(5.1)

Na Tabela 5.12 são repetidos, para facilitar a comparação, os valores de tensão em módulo e ângulo do ponto de operação após a diminuição de carga, obtidos com ambas as modelagens.

	MRP		MPRVF	
Barra	V (p.u.)	θ (graus)	V (p.u.)	θ (graus)
1	1,0240	0,0000	1,0240	0,0000
2	1,0210	-1,2760	1,0210	-1,2907
3	1,0180	-2,9852	1,0179	-3,0196
4	1,0145	-6,5541	1,0144	-6,6300
5	1,0049	-12,3449	1,0048	-12,4882
6	1,0040	-11,3713	1,0040	-11,5034

Tabela 5.12 Comparação Pontos de Operação MRP e MPRVF Após Diminuição de 50% da Carga

Observa-se que os pontos de operação são muito parecidos, com tensões em módulo e ângulo iguais ou levemente maiores na modelagem com parâmetros da rede invariáveis com a frequência.

Agora, os índices obtidos com cada variação no sistema linearizado são apresentados a seguir.

 Supõe-se que os geradores assumem as variações infinitesimais de carga de acordo com seus fatores de participação. Os resultados são apresentados nas Tabelas 5.13 e 5.14 para cada ponto de operação.

Barra	M (%)	β (graus)	S _i (p.u.)	$\mathbf{S}_{\mathbf{m}}\left(\mathbf{p.u.} ight)$
1	93,1581	82,6103	0,2741	4,0058
2	90,2845	84,4354	0,4458	4,5884
3	100,0000	93,1365	0,0000	18,5633
4	92,2299	99,6138	0,6000	7,7219
5	92,2034	98,5458	0,2000	2,5652
6	89,3029	98,8553	0,0858	0,8020

Tabela 5.13 IET com MMSW Ponto de Operação 1 MRP Após Diminuição de Carga de 50%

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	93,0795	82,5257	0,2741	3,9605
2	90,1711	84,3695	0,4459	4,5361
3	100,0000	93,1724	0,0000	18,3496
4	92,1388	99,7251	0,6000	7,6324
5	92,1127	98,6449	0,2000	2,5357
6	89,1810	98,9590	0,0858	0,7928

Tabela 5.14 IET com MMSW Ponto de Operação 2 MPRVF Após Diminuição de Carga de 50%

Os resultados das margens e β nas Tabelas 5.13 e 5.14 são comparados a seguir.

Ponto de Operação	MRP		MPI	RVF
Barra	M (%)	β (graus)	M (%)	β (graus)
1	93,1581	82,6103	93,0795	82,5257
2	90,2845	84,4354	90,1711	84,3695
3	100,0000	93,1365	100,0000	93,1724
4	92,2299	99,6138	92,1388	99,7251
5	92,2034	98,5458	92,1127	98,6449
6	89,3029	98,8553	89,1810	98,9590

Tabela 5.15 Comparação IET com MMSW Após Diminuição de Carga de 50%

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede invariáveis com a frequência.

> Nas Tabelas 5.16 e 5.17 são apresentados os resultados considerando que as variações infinitesimais de carga são assumidas pelos geradores respondendo com base nas suas energias de regulação.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	93,1749	82,5189	0,2741	4,0157
2	90,5026	83,5430	0,4458	4,6937
3	100,0000	92,8868	0,0000	19,4140
4	92,4219	99,5873	0,6000	7,9176
5	92,2997	98,5545	0,2000	2,5973
6	89,3223	98,8702	0,0858	0,8034

Tabela 5.16 IET com MRP Após Diminuição de Carga de 50%

Tabela 5.17 IET com MPRVF Após Diminuição de Carga de 50%

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	93,0943	82,5236	0,2741	3,9690
2	90,3984	83,7575	0,4459	4,6435
3	100,0000	93,0153	0,0000	19,2163
4	92,3396	99,7692	0,6000	7,8325
5	92,2165	98,6602	0,2000	2,5695
6	89,2078	99,0172	0,0858	0,7948

Na Tabela 5.18 são comparados os índices obtidos em ambos os pontos de operação.

Tabela 5.18 Comparação IET com MRP/MPRVF Ponto de Operação 2 Após Diminuição de Carga de 50%

Ponto de Operação	MRP		MP	RVF
Barra	M (%)	β (graus)	M (%)	β (graus)
1	93,1749	82,5189	93,0943	82,5236
2	90,5026	83,5430	90,3984	83,7575
3	100,0000	92,8868	100,0000	93,0153
4	92,4219	99,5873	92,3396	99,7692
5	92,2997	98,5545	92,2165	98,6602
6	89,3223	98,8702	89,2078	99,0172

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede invariáveis com a frequência. Quando se diminui a carga ocorre um aumento de frequência e, desse modo, a reatância indutiva da linha que é variável com a frequência, aumenta. Consequentemente, há uma queda de tensão maior, fazendo com que se apresentem valores de tensão menores em módulo, o que necessariamente leva a margens menores ao se utilizar a modelagem com parâmetros da rede variáveis com a frequência.

5.3.2. Aumento de Carga em 75% do Caso-Base

Foi simulado o evento correspondente ao aumento de 75% da carga total conectada nas barras com respeito à carga no caso-base. Assim, a carga total passou a ser 210 MW, onde a barra 4 teve um incremento de 90 MW e a barra 5 de 30 MW. Nas Tabelas 5.é apresentado o resultado do fluxo de carga que corresponde ao ponto de operação do sistema-teste após o evento.

Tabela 5.13 Ponto de Operação com Aumento de 75% da Carga

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	84,2857	28,9534	0,0000
2	1,0210	-3,2965	158,5714	66,6338	0,0000
3	0,9814	-9,6569	0,0000	0,0000	0,0000
4	0,9522	-23,1837	0,0000	0,0000	210,0000
5	0,9834	-41,5925	0,0000	0,0000	70,0000
6	1,004	-37,2776	37,1429	11,7418	0,0000

Tabela 5.20 Ponto de Operação 2 MPRVF Após Aumento de 75% da Carga

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	84,2857	28,3654	0,0000
2	1,0210	-3,2335	158,5714	65,1017	0,0000
3	0,9830	-9,4742	0,0000	0,0000	0,0000
4	0,9550	-22,7037	0,0000	0,0000	210,0000
5	0,9843	-40,7141	0,0000	0,0000	70,0000
6	1,0040	-36,4773	37,1429	11,4180	0,0000

O sistema passou a operar com frequência de 58,9714 Hz:

$$\Delta f = \frac{\Delta P_{\rm G}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_6}} = \frac{1.2}{\frac{1}{0.05} + \frac{1}{0.1} + \frac{1}{0.025}} = 0,01714 \text{ p.u.Hz} = 0.98286 \text{ Hz}$$

$$f = 58,9714 \text{ Hz}$$
(5.2)

Agora são comparados os pontos de operação das Tabelas 5.19 e 5.20.

	MRP		MVPRF	
Barra	V (p.u.)	θ (graus)	V (p.u.)	θ (graus)
1	1,0240	0,0000	1,0240	0,0000
2	1,0210	-3,2965	1,0210	-3,2335
3	0,9814	-9,6569	0,9830	-9,4742
4	0,9522	-23,1837	0,9550	-22,7037
5	0,9834	-41,5925	0,9843	-40,7141
6	1,004	-37,2776	1,0040	-36,4773

Tabela 5.21 Comparação Pontos de Operação MRP e MVPRF Após Aumento de 75% da Carga

Observa-se que os pontos de operação são muito parecidos, com tensões em módulo e ângulo iguais ou levemente maiores na modelagem com parâmetros da rede variáveis com a frequência.

Seguidamente são calculados os índices de estabilidade de tensão considerando as variações respectivas no sistema linearizado.

 Supõe-se que os geradores assumem as variações infinitesimais de carga de acordo com seus fatores de participação. Os resultados são apresentados nas Tabelas 5.22 e 5.23.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	77,4999	66,3979	0,8912	3,9609
2	59,8992	62,4341	1,7200	4,2893
3	100,0000	100,0554	0,0000	16,4951
4	68,4405	126,8663	2,1000	6,6541
5	70,1786	118,5684	0,7000	2,3473
6	51,4961	117,2821	0,3895	0,8031

Tabela 5.22 IET com MMSW Ponto de Operação 1 MRP Após Aumento de Carga de 75%

Tabela 5.23 IET com MMSW Ponto de Operação 2 MPRVF Após Aumento de Carga de 75%

Barra	M (%)	β (graus)	S _i (p.u.)	$\mathbf{S}_{\mathbf{m}}\left(\mathbf{p.u.}\right)$
1	77,9481	66,8623	0,8893	4,0328
2	60,9011	63,3814	1,7142	4,3841
3	100,0000	99,8950	0,0000	16,8778
4	69,1961	126,0435	2,1000	6,8173
5	70,8157	117,9094	0,7000	2,3986
6	52,4647	116,5078	0,3886	0,8175

Os resultados das margens e β nas Tabelas 5.22 e 5.23 são comparados a seguir.

Ponto de Operação	MRP		MVPRF	
Barra	M (%)	β (graus)	M (%)	β (graus)
1	77,4999	66,3979	77,9481	66,8623
2	59,8992	62,4341	60,9011	63,3814
3	100,0000	100,0554	100,0000	99,8950
4	68,4405	126,8663	69,1961	126,0435
5	70,1786	118,5684	70,8157	117,9094
6	51,4961	117,2821	52,4647	116,5078

Tabela 5.24 Comparação IET com MMSW Após Aumento de Carga de 75%

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede variáveis com a frequência.

 Na Tabelas 5.25 e 5.26 são apresentados os resultados considerando que as variações infinitesimais de carga são assumidas pelos geradores respondendo com base nas suas energias de regulação.

Barra	M (%)	β (graus)	S _i (p.u.)	$\mathbf{S}_{\mathbf{m}}\left(\mathbf{p.u.} ight)$
1	77,5498	66,0664	0,8912	3,9697
2	60,6833	58,6631	1,7200	4,3748
3	100,0000	98,9659	0,0000	17,2511
4	69,1217	126,8396	2,1000	6,8009
5	70,5096	118,5946	0,7000	2,3737
6	51,5566	117,3160	0,3895	0,8041

Tabela 5.25 IET com MRP Após Aumento de Carga de 75%

Tabela 5.26 IET com MPRVF Após Aumento de Carga de 75%

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	77,9621	63,9616	0,8893	4,0354
2	61,7935	48,9255	1,7142	4,4865
3	100,0000	94,2319	0,0000	17,7256
4	69,9975	123,7251	2,1000	6,9994
5	71,2739	117,6445	0,7000	2,4368
6	52,7139	114,1771	0,3886	0,8218

Na Tabela 5.27 são comparados os índices obtidos em ambos os pontos de operação.

Ponto de Operação	MRP		MV	PRF
Barra	M (%)	β (graus)	M (%)	β (graus)
1	77,5498	66,0664	77,9621	63,9616
2	60,6833	58,6631	61,7935	48,9255
3	100,0000	98,9659	100,0000	94,2319
4	69,1217	126,8396	69,9975	123,7251
5	70,5096	118,5946	71,2739	117,6445
6	51,5566	117,3160	52,7139	114,1771

Tabela 5.27 Comparação IET com MRP/MPRVF Após Aumento de Carga de 75%

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede variáveis com a frequência.

Quando se aumenta a carga ocorre uma diminuição de frequência e, desse modo, a reatância indutiva da linha que é variável com a frequência, diminui. Consequentemente, há uma queda de tensão menor, fazendo com que se apresentem valores de tensão maiores em módulo, o que necessariamente leva a margens maiores ao se utilizar a modelagem com parâmetros da rede variáveis com a frequência.

5.3.3. Diminuição de Carga para Manter a Frequência no Limite de Operação (60,05 Hz)

Quer se manter agora a frequência do sistema em 60,05 Hz. Calcula-se então a variação de carga que deve ocorrer para atingir essa frequência:

$$\Delta P_{\rm G} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_6}\right) \cdot \Delta f = 70 \cdot \left(\frac{60.05}{60} - 1\right) = 0,058333 \text{ p.u.MW}$$

$$\Delta P_{\rm G} = 5,8333 \text{ MW}$$
(5.3)

Assim, assume-se que houve uma diminuição de 5,8333 MW na carga da barra 4 em relação à carga do caso-base apresentado na Tabela 5.2. Nas Tabelas 5.28 e 5.29 são apresentados os resultados do fluxo de carga que corresponde a cada ponto de operação do sistema-teste após o evento.

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	48,3333	9,5248	0,0000
2	1,0210	-1,9907	86,6667	18,8603	0,0000
3	1,0098	-5,3640	0,0000	0,0000	0,0000
4	1,0006	-12,2702	0,0000	0,0000	114,1667
5	0,9996	-23,0753	0,0000	0,0000	40,0000
6	1,0040	-20,8862	19,1667	2,5953	0,0000

Tabela 5.28 Ponto de Operação 1 MRP com Frequência de 60,05 Hz

Tabela 5.29 Ponto de Operação 2 MRPVF com Frequência de 60,05 Hz

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	48,3333	9,5307	0,0000
2	1,0210	-1,9924	86,6667	18,8774	0,0000
3	1,0098	-5,3686	0,0000	0,0000	0,0000
4	1,0006	-12,2810	0,0000	0,0000	114,1667
5	0,9995	-23,0956	0,0000	0,0000	40,0000
6	1,004	-20,9047	19,1667	2,6002	0,0000

Na Tabela 5.30 são repetidos, para facilitar a comparação, os valores de tensão em módulo e ângulo do ponto de operação após a diminuição de carga, obtidos com ambas as modelagens.

Tabela 5.30 Comparaçã	ão Pontos de O	peração MRP	e MVPRF com	Frequência de 60,05 H	Ηz
-----------------------	----------------	-------------	-------------	-----------------------	----

	MRP		MVPRF	
Barra	V (p.u.)	θ (graus)	V (p.u.)	θ (graus)
1	1,0240	0,0000	1,0240	0,0000
2	1,0210	-1,9907	1,0210	-1,9924
3	1,0098	-5,3640	1,0098	-5,3686
4	1,0006	-12,2702	1,0006	-12,2810
5	0,9996	-23,0753	0,9995	-23,0956
6	1,0040	-20,8862	1,004	-20,9047

Observa-se que os pontos de operação são muito parecidos, com tensões em módulo e ângulo iguais ou levemente maiores na modelagem com parâmetros da rede invariáveis com a frequência. Os índices obtidos com cada variação no sistema linearizado são apresentados a seguir.

 Supõe-se que os geradores assumem as variações infinitesimais de carga de acordo com seus fatores de participação. Nas Tabelas 5.31 e 5.32 são apresentados os resultados obtidos.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,6804	76,8365	0,4926	3,9987
2	80,4760	78,1247	0,8870	4,5429
3	100,0000	95,6292	0,0000	18,1053
4	84,7146	108,5675	1,1417	7,4690
5	84,0690	106,0802	0,4000	2,5108
6	75,7846	105,5453	0,1934	0,7987

Tabela 5.31 IET com MMSW Ponto de Operação 1 MRP com o Sistema Operando em 60,05 Hz

Tabela 5.32 IET com MMSW Ponto de Operação 2 MPRVF com o Sistema Operando em 60,05 Hz

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,6698	76,8254	0,4926	3,9954
2	80,4584	78,1134	0,8870	4,5390
3	100,0000	95,6339	0,0000	18,0892
4	84,7006	108,5837	1,1417	7,4621
5	84,0549	106,0944	0,4000	2,5086
6	75,7633	105,5596	0,1934	0,7981

As margens e β obtidos são comparados a seguir.

Ponto de Operação	MRP		MV	PRF
Barra	M (%)	β (graus)	M (%)	β (graus)
1	87,6804	76,8365	87,6698	76,8254
2	80,4760	78,1247	80,4584	78,1134
3	100,0000	95,6292	100,0000	95,6339
4	84,7146	108,5675	84,7006	108,5837
5	84,0690	106,0802	84,0549	106,0944
6	75,7846	105,5453	75,7633	105,5596

Tabela 5.33 Comparação IET com MMSW com o Sistema Operando em 60,05 Hz

 Nas Tabelas 5.34 e 5.35 são apresentados os índices considerando que todos os geradores têm regulação primária e que as variações infinitesimais de carga são assumidas pelos geradores de acordo com suas energias de regulação.

Tabela 5.34 IET com MRP com o Sistema Operando em 60,05 Hz

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,7100	76,6638	0,4926	4,0084
2	80,9040	76,3554	0,8870	4,6447
3	100,0000	95,1380	0,0000	18,9362
4	85,0838	108,5275	1,1417	7,6539
5	84,2613	106,0971	0,4000	2,5415
6	75,8254	105,5698	0,1934	0,8001

Tabela 5.35 IET com MPRVF com o Sistema Operando em 60,05 Hz

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	87,6926	76,6922	0,4926	4,0028
2	80,9098	76,3363	0,8870	4,6463
3	100,0000	95,1191	0,0000	18,9646
4	85,0931	108,5409	1,1417	7,6587
5	84,2711	106,1140	0,4000	2,5431
6	75,8328	105,5895	0,1934	0,8004

Na Tabela 5.36 são comparados os índices obtidos em ambos os pontos de operação.

Ponto de Operação	MRP		MVPRF	
Barra	M (%)	β (graus)	M (%)	β (graus)
1	87,7100	76,6638	87,6926	76,6922
2	80,9040	76,3554	80,9098	76,3363
3	100,0000	95,1380	100,0000	95,1191
4	85,0838	108,5275	85,0931	108,5409
5	84,2613	106,0971	84,2711	106,1140
6	75,8254	105,5698	75,8328	105,5895

Tabela 5.36 Comparação IET com MRP/MPRVF com o Sistema Operando em 60,05 Hz

Os índices são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede invariáveis com a frequência, devido a que a frequência de operação é maior que a frequência de referência.

5.3.4. Aumento de Carga para Manter a Frequência no Limite de Operação (59,95 Hz)

Quer se manter agora a frequência do sistema em 59,95 Hz. É preciso que ocorra a variação de carga calculada em (5.3), só que neste caso deverá haver um aumento de carga de 5,8333 MW em relação à carga do caso-base apresentado na Tabela 5.2, que foi distribuído em um aumento de 4 MW na barra 4, e de 1,8333 MW na barra 5. Os pontos de operação são apresentados na Tabelas 5.37 e 5.38.

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	51,6667	10,6987	0,0000
2	1,0210	-2,1055	93,3333	21,6827	0,0000
3	1,0082	-5,7446	0,0000	0,0000	0,0000
4	0,9979	-13,1975	0,0000	0,0000	124,000
5	0,9989	-24,1269	0,0000	0,0000	41,8333
6	1,0040	-21,7458	20,8333	2,9948	0,0000

Tabela 5.37 Ponto de Operação 1 MRP com o Sistema Operando em 59,95 Hz

Barra	V (p.u.)	θ (graus)	P _g (MW)	Qg (Mvar)	P _d (MW)
1	1,0240	0,0000	51,6667	10,6917	0,0000
2	1,0210	-2,1037	93,3333	21,6628	0,0000
3	1,0082	-5,7397	0,0000	0,0000	0,0000
4	0,9980	-13,1858	0,0000	0,0000	124,0000
5	0,9989	-24,1055	0,0000	0,0000	41,8333
6	1,0040	-21,7264	20,8333	2,9895	0,0000

Tabela 5.38 Ponto de Operação 2 MPRVF com Frequência de 59,95 Hz

Na Tabela 5.39 são repetidos, para facilitar a comparação, os valores de tensão em módulo e ângulo do ponto de operação após o aumento de carga, obtidos com ambas as modelagens.

Tabela 5.39 Comparação Pontos de Operação MRP e MVPRF com Frequência de 59,95 Hz

	MRP		MVPRF	
Barra	V (p.u.)	θ (graus)	V (p.u.)	θ (graus)
1	1,0240	0,0000	1,0240	0,0000
2	1,0210	-2,1055	1,0210	-2,1037
3	1,0082	-5,7446	1,0082	-5,7397
4	0,9979	-13,1975	0,9980	-13,1858
5	0,9989	-24,1269	0,9989	-24,1055
6	1,0040	-21,7458	1,0040	-21,7264

Observa-se que os pontos de operação são muito parecidos, com tensões em módulo e ângulo iguais ou levemente maiores na modelagem com parâmetros da rede variáveis com a frequência.

Agora são calculados os índices de estabilidade de tensão considerando as variações respectivas no sistema linearizado.

 Supõe-se que os geradores assumem as variações infinitesimais de carga de acordo com seus fatores de participação. Nas Tabelas 5.40 e 5.41 são apresentados os resultados correspondente.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,7999	75,9534	0,5276	3,9971
2	78,8601	77,2352	0,9582	4,5326
3	100,0000	96,1080	0,0000	18,0098
4	83,2942	110,1219	1,2400	7,4226
5	83,2946	106,4115	0,4183	2,5042
6	73,7147	105,3510	0,2105	0,8007

Tabela 5.40 IET com MMSW Ponto de Operação 1 MRP com o Sistema Operando em 59,95 Hz

Tabela 5.41 IET com MMSW Ponto de Operação 2 MPRVF com o Sistema Operando em 59,95 Hz

Barra	M (%)	β (graus)	S _i (p.u.)	$\mathbf{S}_{\mathbf{m}}\left(\mathbf{p.u.} ight)$
1	86,8113	75,9653	0,5276	4,0005
2	78,8794	77,2476	0,9581	4,5365
3	100,0000	96,1029	0,0000	18,0261
4	83,3098	110,1042	1,2400	7,4295
5	83,3095	106,3970	0,4183	2,5064
6	73,7378	105,3366	0,2105	0,8014

As margens e β são comparados na Tabela 5.42.

Tabela 5.42 Comparação IET com MMSW com o Sistema Operando em 59,95 Hz

Ponto de Operação	MRP		MVPRF	
Barra	M (%)	β (graus)	M (%)	β (graus)
1	86,7999	75,9534	86,8113	75,9653
2	78,8601	77,2352	78,8794	77,2476
3	100,0000	96,1080	100,0000	96,1029
4	83,2942	110,1219	83,3098	110,1042
5	83,2946	106,4115	83,3095	106,3970
6	73,7147	105,3510	73,7378	105,3366

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede variáveis com a frequência.

> Nas Tabelas 5.43 e 5.44 são apresentados os índices considerando que todos os geradores têm regulação primária e que as variações

infinitesimais de carga são assumidas pelos geradores de acordo com suas energias de regulação.

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,8315	75,7714	0,5276	4,0067
2	79,3209	75,3556	0,9582	4,6336
3	100,0000	95,5954	0,0000	18,8366
4	83,6956	110,0980	1,2400	7,6053
5	83,4957	106,4291	0,4183	2,5347
6	73,7584	105,3750	0,2105	0,8021

Tabela 5.43 IET com MRP com o Sistema Operando em 59,95 Hz

Tabela 5.44 IET com MPRVF com o Sistema Operando em 59,95 Hz

Barra	M (%)	β (graus)	S _i (p.u.)	S _m (p.u.)
1	86,8351	75,8150	0,5276	4,0077
2	79,3662	75,3125	0,9581	4,6436
3	100,0000	95,5476	0,0000	18,9020
4	83,7376	110,0677	1,2400	7,6249
5	83,5358	106,4168	0,4183	2,5409
6	73,8129	105,3600	0,2105	0,8037

Na Tabela 5.45 são comparados os índices obtidos em ambos os pontos de operação.

Tabela 5.45 Comparação IET com MRP/MPRVF com o Sistema Operando em 59,95 Hz

Ponto de Operação	MRP		MVPRF	
Barra	M (%)	β (graus)	M (%)	β (graus)
1	86,8315	75,7714	86,8351	75,8150
2	79,3209	75,3556	79,3662	75,3125
3	100,0000	95,5954	100,0000	95,5476
4	83,6956	110,0980	83,7376	110,0677
5	83,4957	106,4291	83,5358	106,4168
6	73,7584	105,3750	73,8129	105,3600

Os resultados obtidos são muito próximos, com margens levemente maiores obtidos com o ponto de operação da modelagem com parâmetros da rede variáveis

com a frequência, pois a frequência de operação é menor que a frequência de referência.

5.4. Sumário

Foram apresentados os resultados dos testes feitos considerando as distintas modelagens do sistema linearizado para o cálculo de fluxo de potência e para o cálculo dos índices de estabilidade de tensão.

Em primeira instância, foi determinado o ponto de operação no caso-base e foram comparados os índices de estabilidade de tensão supondo que todas as barras de geração eram barras *swing*, que todas as barras de geração tinham regulação primária com constante de regulação igual a 0,05 p.u. na base de cada gerador, e com regulação primária com constante de regulação proporcional às potências geradas no caso-base. Observou-se que os resultados obtidos na representação de múltiplas barras *swing* e os da representação com regulação primária com energia de regulação proporcional à potência ativa gerada no caso-base foram iguais. Isto ocorre porque como as variações infinitesimais de geração ativa obedecem às proporções que foram especificadas, na modelagem de múltiplas barras *swing* os fatores de participação são proporcionais às potências geradas no caso-base. Estes resultados foram obtidos ao se considerar duas e três barras como barra *swing* e com regulação primária.

Em seguida foram feitos testes simulando a ocorrência de eventos correspondentes à perda e ao aumento de carga. Determinou-se o ponto de operação em cada caso para calcular os índices de estabilidade de tensão. Também foram feitos dois testes nos quais o objetivo era manter a frequência de operação dentro dos limites permitidos, isto é 60±0,05Hz, e, uma vez determinado o ponto de operação para tais condições, foram calculados os índices. Considerou-se que a resposta dos geradores ante tais variações de carga obedeciam aos fatores de participação estabelecidos na modelagem com múltiplas barras *swing*, e também que os geradores assumiam as variações infinitesimais de carga de acordo com suas energias de regulação.

Finalmente, foram feitos testes supondo que os parâmetros de linha eram variáveis com frequência. Novamente, simulou-se a ocorrência dos mesmos dois eventos correspondentes à perda e ao aumento de carga, e determinou-se o ponto de operação em cada caso para calcular os índices de estabilidade de tensão. Mais uma vez, foram feitos dois testes nos quais o objetivo era manter a frequência de operação dentro dos limites permitidos, isto é 60±0,05Hz, e, uma vez determinado o ponto de operação para tais condições, foram calculados os índices. Novamente, considerou-se que a resposta dos geradores ante tais variações de carga obedeciam aos fatores de participação estabelecidos na modelagem com múltiplas barras *swing*, e também que os geradores assumiam as variações infinitesimais de carga de acordo com suas energias de regulação.

Foram comparados os índices obtidos após a atuação da regulação primária considerando os parâmetros da rede como independentes e dependentes da frequência. Observou-se que, nos casos em que a frequência era maior que a frequência nominal, as tensões em módulo do ponto de operação e as margens de potência eram levemente maiores quando os parâmetros eram invariáveis com a frequência; e nos casos em que a frequência era inferior à nominal, obtinham-se tensões em módulo do ponto de operação e margens de potência levemente maiores com parâmetros da rede variáveis com a frequência.