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Abstract

Pereira Soares, Murilo; de Aguiar, Alexandre Street; Valladão, Davi
Michel. On the Solution Variability Reduction of Stochastic dual
Dynamic Programming Applied to Energy Planning. Rio de
Janeiro, 2015. 118p. Tese de Doutorado — Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In the hydrothermal energy operation planning of Brazil and other
hydro-dependent countries, Stochastic Dual Dynamic Programming (SDDP)
computes a risk-averse optimal policy that often considers river-inflow
autoregressive models. In practical applications, these models induce an
undesirable variability of primal (thermal generation) and dual (marginal cost
and spot price) solutions, which are highly sensitive to changes in current
inflow conditions. In this work, we propose two differing approaches to stabilize
SDDP solutions to the energy operation planning problem: the first approach
aims at regularizing primal variables by considering an additional penalty on
thermal dispatch revisions over time. The second approach indirectly reduces
thermal generation and marginal cost variability by disregarding past inflow
information in the cost-to-go function and compensating it with an increase
in risk aversion. For comparison purposes, we assess solution quality with a
set of proposed indexes summarizing each important aspect of a hydrothermal
operation planning policy. In conclusion, we show it is possible to obtain high-
quality solutions in comparison to current benchmarks and with significantly
reduced variability.

Keywords
Stochastic programming; Stochastic Dual Dynamic Programming;

Risk aversion; Operational Research in Energy; Hydrothermal Energy
Operation Planning;
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Resumo

Pereira Soares, Murilo; de Aguiar, Alexandre Street; Valladão, Davi Mi-
chel. Redução da Variabilidade da Solução da Programação Di-
nâmica Dual Estocástica Aplicada ao Planejamento da Opera-
ção de Sistemas Hidrotérmicos. Rio de Janeiro, 2015. 118p. Tese de
Doutorado — Departamento de Engenharia Elétrica, Pontifícia Univer-
sidade Católica do Rio de Janeiro.

No planejamento da operação hidrotérmica brasileiro, assim como em
outros países hidro dependentes, a Programação Dinâmica Dual Estocástica
(PDDE) é utilizada para calcular uma política ótima avessa a risco que, muitas
vezes, considera modelos autorregressivos para modelagem das afluências às
hidrelétricas. Em aplicações práticas, estes modelos podem induzir a uma
variabilidade indesejável de variáveis primais (geração térmica) e duais (custo
marginal e preço spot), que são altamente sensíveis a mudanças nas condições
iniciais das vazões. Neste trabalho, são propostas duas abordagens diferentes
para estabilizar as soluções da PDDE no problema de planejamento da
operação energética: a primeira abordagem visa regularizar variáveis primais
considerando uma penalidade adicional sobre as mudanças no despacho térmico
ao longo do tempo. A segunda abordagem reduz indiretamente a variabilidade
da geração térmica e do custo marginal ao ignorar informações de afluências
passadas na função de custo futuro e compensando-a com um aumento na
aversão ao risco. Para fins de comparação, a qualidade solução foi avaliada
com um conjunto de índices propostos que resumem cada aspecto importante
de uma política de planejamento hidrotérmico. Em conclusão, mostramos que
é possível obter soluções com boa qualidade em comparação com benchmarks
atuais e com uma redução significativa variabilidade.

Palavras–chave
Programação estocástica; Programação Dinâmica Dual Estocástica;

Aversão a Risco; Pesquisa Operacional em Energia; Planejamento da
Operação Hidrotérmica;
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The major problem – one of the major
problems, for there are several – one of the
many major problems with governing people
is that of whom you get to do it; or rather of
who manages to get people to let them do it to
them.
To summarize: it is a well-known fact that
those people who must want to rule people
are, ipso facto, those least suited to do it.
To summarize the summary: anyone who is
capable of getting themselves made President
should on no account be allowed to do the job.

Douglas Adams, The Restaurant at the End of the Universe.
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1
Introduction

1.1
Motivation

The Brazilian hydrothermal operation planning is centralized by an Inde-
pendent System Operator (ISO), and it is done with a chain of computational
models [1], [2] that uses the Stochastic Dual Dynamic Programming (SDDP)
methodology [3]. These models simulate the future behaviour of the system
under many hydrological scenarios and calculate a policy that minimizes a
risk-adjusted cost-based objective function. The main results of the operation
planning studies are weekly thermal generation goals, sub-markets marginal
costs1 and solution quality indexes that reflect the expected energy supply as
well as the system conditions for up to five years ahead. These results impact
the whole energy sector in Brazil, from energy trading contracts to Federal
Government policies for energy and economy sectors.

The marginal cost is the smallest cost to produce the next MWh of
energy, considering different possibilities of future resource availability, is also
used as a basis to set short-term energy prices. These prices, also known as
PLD (Portuguese translation of Differences Settlement Price) in Brazil, are
used to settle the differences between contracted and generated energy, i.e.,
the exposure of a market agent, and could possibly be a benchmark for the
energy price in bilateral contracts. Although in real applications there may be
minor differences in the problem marginal cost and the settlement price (PLD),
in this work the only difference between them is that the PLD is limited by
both a cap and floor price.

The electrical system expansion planning also uses the marginal costs as
economic signals, and requires a stable behaviour and a strong bond between
the model marginal cost and the system physical conditions. However, these
signals can be inadequate due to the volatility of spot market price. As an
example, the occurrence of favourable hydro conditions can decrease spot prices
even if there are structural problems with supply [4]. As a consequence, the spot
price would rise sharply only when the system is close to a power crisis, when
there’s no more time to make investments [4]. An investor, the one responsible

1Lagrange multipliers of the stochastic model
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for making the expansion planning become reality, or even an energy trader,
may desire regulatory stability and a good predictability of future prices.
The system operator, on the other hand, additionally to cost expectation and
risk minimization may desire that the decisions, such as thermal generations,
are stable and do not change due to small changes in the problem’s initial
conditions. In all cases, a high variability in either the solution or in marginal
costs may increase the future uncertainty and has negative consequences, such
as unpredictability of thermal plant fuel requirements that results in higher fuel
contract prices, lower future price predictability, increased risk to the investors,
traders and hydro generators, fragility of the system operator decisions, lack
of a realistic benchmark price and distorted signal to the expansion planning.

Moreover, it is known empirically that the solutions of the SDDP applied
to hydrothermal operation problem are more sensible to changes in past
inflows, which gives an uncertain information about future resource availability,
than to initial condition of other state variables. This fact was already pointed
out in [4] and was called “hydrological noise” in that work. The solution
variability and its impacts are commented with more details in [4] and [5].
This behaviour is often criticized by market agents, as it increases their
business risk and decreases the attractiveness of the energy sector, and a
technique to regularize the solutions is being sought for a long time. The
causes of such behaviour are related to several aspects of the problem, from
modelling and models usage to physical characteristics of the system, and are
going to be discussed in details in Section 3.3. Some mechanisms, such as
bilateral energy contracts, can provide an adequate hedge against spot price
volatility for thermal plants, but in the case of hydro generators (majority
of Brazilian generation capacity) these contracts might not be sufficient to
provide a complete hedge and agents can be forced to transact substantial
amounts of energy in the spot market, which might disrupt their revenue
streams depending on the spot prices [5].

1.2
Objective

The main objective of this work is to propose a modification on the
formulation of the long term power generation planning problem aiming
at reducing decisions and marginal costs variability without compromising
the desired solution properties given by the standard modelling The second
objective is to propose indexes to assess the solution quality, allowing the
comparison of several case studies.

In this work we present two proposals aimed at reducing the solution
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variability:

1. The first one reduces thermal generation variability by modifying the
problem formulation penalizing its variation over time, and makes use of
an increased state space for the problem.

2. The second one reduces both thermal generation and marginal costs vari-
ability by the reduction of the information used to calculate future deci-
sions, and requires two modifications on the standard SDDP methodol-
ogy:

– the use of different time series models for the forward and backward
procedures; and

– the reduction of the state space of the problem.

This proposal makes use of a serially independent approach to model
the stochastic process in the backward step of the algorithm and a more
conservative risk aversion parametrization, and envisions a cost-to-go
function that is less sensitive to variations in the inflows stochastic values.

1.3
Contributions and Work Organization

Although hydrothermal planning problem solution variability and its
drawbacks have been previously identified in the literature, actually we could
not find any reference to a stabilization technique for multistage problems
within the SDDP framework. With respect to the existing literature, the
contribution of this work is to propose two approaches that stabilizes the
problem solutions while preserving its desirable characteristics, such as the
security of the system, among others. A more stable formulation approach and
less dependent on current conjuncture and uncertain near future information
increases future prices predictability and, as a consequence, reduces the agent’s
risks, makes the spot prices more stable and closer to become an energy price
benchmark, and improves the quality of the operation price signal received by
the expansion planning.

A second contribution of the work is the proposal of several indexes to
compare solutions of hydrothermal operation planning problems, which makes
the comparison between different solutions and methodologies more structured
and objective.

As a by-product of the proposed approach, which is possible to be seen
as a third contribution of this work, we show that it is possible to use different
time series models in the SDDP forward and backward steps and still get good

DBD
PUC-Rio - Certificação Digital Nº 1113687/CA



On the Solution Variability Reduction of Stochastic dual Dynamic
Programming Applied to Energy Planning 15

solutions. This opens the possibility for many applications that cannot use the
SDDP algorithm nowadays, as it is possible to sample states for the SDDP in
the forward step of the method using any time series model, even nonlinear
ones, and solve the problem with simpler models in the backward procedure.

The remainder of the document is organized as follows: Section 2 de-
scribes the notation used in this work. Section 3 provides an overview of
the Brazilian hydrothermal operation problem framework, discuss the solu-
tion variability within this problem and shows some results that corroborates
the motivation of this work. Section 4 describes briefly the SDDP algorithm
with time dependency and shows that the consideration of a time series model
such as an autoregressive leads to an increase in the solution variability due
to propagation of initial conditions to the future by the time series models. In
Section 5 we propose and discuss the use of two different modelling options
of the problem aiming at reducing the solution variability. Section 6 proposes
several indexes to assess quality and compare different solutions of hydrother-
mal planning problem. In Section 7 we present a case study based on real data
for the Brazilian system and compare proposed approaches with the standard
one, and Section 8 contains some general conclusions and future work.
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2
Notation

In this section we define the notation used throughout the document.
Vectors are denoted by lowercase letters, while matrices use capital letters.
The stage index is shown as a subscript, as in vector xt or in matrix At. We
assume a discrete-time framework in which the system is evolving. The state
variables for a given stage t are known and denoted by xt−1. Moreover, we
assume a linear state-transition function of the form Atxt = bt −Btxt−1. Such
relation defines the state transformation from one stage t to the next t + 1.

The dynamic programming equation of a given stage t receives as inputs
the state vector, xt−1, and the realization of the uncertainties for the current
stage, ξt, and returns a measure for the impact of optimal decisions from such
stage until the end of the problem horizon: Qt(xt−1, ξt). In this setting, the
corresponding dynamic programming equation of stage t can be defined as the
following optimization problem:

Qt(xt−1, ξt) = min
xt

c⊤
t xt +Qt+1(xt)

s.t. Atxt = bt(ξt)−Btxt−1

xt ≥ 0,

(2-1)

where xt is the decision vector of stage t, and ct the objective function cost
vector. The constraints are written using matrices At and Bt, and vector
bt, with Bt being the stage coupling coefficients matrix. We also define
the expected cost-to-go function as Qt+1(xt) = E[Qt+1(xt, ξt+1)], where the
expectation E [·] is always taken with respect to the uncertainty parameter
ξt+1, which is assumed to have known probability distribution. The recourse
function Qt+1 is evaluated over the states variables xt and the uncertainty
realization ξt+1.

Any of the problem parameters, At, Bt, bt, ct, may depend on the uncer-
tainty realization ξt. In this work we assume that only bt = bt(ξt) is uncertain,
that is, depends on the realization of ξt while At, Bt, ct are considered deter-
ministic. In some cases, only part of bt is assumed to be random, and when this
is the case, it is going to be properly emphasized along the text. The consid-
ered approach to solve the problem is to use the SDDP algorithm applied to
the sample average approximation (SAA) problem, as defined in [6]. From the
original probability distribution, we randomly draw a sample of size Nt and
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denote ξ̂t ∈ {ξ1
t , · · · , ξNt

t }, with ξi
t being its i-th sampled value. For notation

simplicity, we denote bi
t = bt(ξi

t). The original problem (2-1) is replaced by the
sample average approximate problem

Q̃t(xt−1, ξi
t) = min

xt
c⊤

t xt + Q̃t+1(xt)

s.t. Atxt = bi
t −Btxt−1

xt ≥ 0,

(2-2)

where Q̃t+1(xt) := 1
Nt+1

∑Nt+1
i=1 Q̃t+1(xt, ξi

t+1), ∀t ∈ {1, . . . , T − 1}, with T being
the total number of stages, and Q̃T = 0 by definition.

The SAA problem (2-2) is solved using the SDDP algorithm. For sim-
plicity, and without loss of generality, we are going to assume that at each
stage and iteration only one sample is taken from the probability distribution
of ξt in the forward step of the algorithm. Thereby, the approximate t-stage
problem after iteration k of the SDDP algorithm may be written, for a given
scenario ξi

t, as:
min

xt
c⊤

t xt + Qk
t+1(xt)

s.t. Atxt = bi
t −Btxt−1

xt ≥ 0.

(2-3)

The current approximated expected recourse function, denoted by Qk
t+1(xt),

is given by the maximum of a collection of cutting planes, and can be defined
recursively as Qk

t+1(xt) = max{Qk−1
t+1 (xt), Q̃t+1(x∗

t,k)+ g̃⊤
t+1,k ·(xt−x∗

t,k)}, where
x∗

t,k is the trial decision used to estimate Q̃t+1(xt) and g̃t+1,k is a subgradient
of Q̃t+1 at trial decision x∗

t,k.
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3
Overview of the Brazilian Hydrothermal Operation Planning

3.1
Physical characteristics

The Brazilian interconnected power system, the largest in Latin America,
had an installed capacity at the end of 2012 of 100,217.00 MW (plus 6,275
MW available from Paraguayan part of Itaipu hydro plant), from which 79.8%
comes from hydro plants, 18.8% comes from thermal plants, and 1.4% from
wind and biomass [7]. The energy production during 2012 was 513,184.5 GWh,
from which hydro plants accounts for 86% and thermal plants for 12.4% [7].

The hydro system is composed of several reservoirs and of run-of-the-river
plants. They are arranged in a complex topology over several basins and to-
gether have a multi-year regularization capacity. Thermal generation includes
nuclear, natural gas, coal and diesel plants. These different power sources are
distributed around the country and are interconnected by 106,443.7 km of
high voltage (equal or above 230kV) transmission lines grid [7]. Figure 3.1,
taken from [7], shows the most important transmission lines and substations
connected to the basins of Brazilian National system. Regarding transmission
grid characteristics, Brazil can be divided in four sub-systems: South-East
(SE), which also comprises Central-West region, South (S), North-East (NE)
and North (N).

3.2
Operation Planning Overview

In Brazil, the electrical system operation is centralized in an independent
system operator, a non-profitable private company called ONS (Operador Na-
cional do Sistema Elétrico, which means Electrical System National Operator).
This company is responsible not only for controlling the system operation, but
also for planning the operation and assessing system’s security conditions for
next years. The main objective of the operation planning problem is to op-
timize the system operation for a cost-based criterion, considering the future
conditions of the system, such as resources availability, energy demand and
physical constraints, among others. Due to Brazilian hydro plants multi-year
regularization capacity, the planning horizon comprises up to 60 months (5
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Figure 3.1: Brazilian interconnected power system

years). In such a long horizon, the level of details needed by system operator
is different depending on the period, e.g., the closer to the current date the
more detailed the information should be. In order to consider more details in
the solution of such short-term period, the complexity of the modelling pro-
cess, in terms of physical system representation, is higher than for long-term
periods. On the other hand, the uncertainty related to the problem’s variables
increases when we move away from current date, and a different type of com-
plexity arises, this time not related to the physical system modelling, but to
uncertainty modelling. In order to deal with such a diverse problem, which re-
quires an intense computational effort to be solved, a decomposition approach
was used and the problem is solved by several models, as described in [1]. The
main idea of this approach is to use different models for the short-term, in
which the physical representation of the problem is better detailed, and for
the medium-term, in which the uncertainties of the problem are modelled but
the physical representation is sacrificed.

In the next sections we are going to discuss the main idea behind each
solution strategy, and pave the way to discuss the main idea of this work, the
solution variability reduction.

3.2.1
Medium-term problem

The medium-term horizon problem comprises up to five years ahead (dis-
cretized monthly), and is responsible to give the system operator information
regarding future cost, thermal generation expectations, possibility of energy

DBD
PUC-Rio - Certificação Digital Nº 1113687/CA



On the Solution Variability Reduction of Stochastic dual Dynamic
Programming Applied to Energy Planning 20

supply shortages in the future, among others. These results allow the operator
to decide which measures should to be taken to avoid having any problems
with the demand supply during the next years.

The first issue that arises in the medium-term problem is how to solve
the problem in such a way that the model considers it as an infinite horizon
problem, and not a finite 60 months problem. In order to obtain a reasonable
boundary condition that represents the continuity of the energy supply after
the planning horizon, a common practice is to consider 60 additional stages
in the problem. Hence, the objective function of the planning problem is
to minimize a measure of the operation cost (expected value or convex
combination between expected value and a risk measure) along the up to 120
stages of the problem, while supplying the area loads and obeying technical
constraints. The total cost in one stage is the sum of thermal generation costs
plus a penalty term that reflects energy shortage.

By the nature of the results needed for the medium-term horizon and
the computational burden a detailed representation of the physical system
would certainly bring, a simplification of the problem was adopted in this
horizon. In order to reduce the problem dimension, the hydro plants in
regions with similar hydrological behaviour are aggregated in equivalent energy
reservoirs, as proposed by [8] and [9]. This representation considers hydro
plants with reservoirs separately from run-of-river plants, as in the second
ones there is no decision regarding the water storage. As a consequence of
this aggregate representation, the associated measure units are represented as
stored energy and energy inflows. Some systems are connected to each other by
transmission lines, which are represented as a single equivalent connection. The
interconnected Brazilian system can be represented by four generation nodes
– comprising sub-systems South-East (SE), South (S), North-East (NE) and
North (N) – and one transshipment node called Imperatriz (see Figure 3.2).

Figure 3.2: Brazilian interconnected power system representation
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Although this approach is a simplification of the original problem and
a reduction in its size, many characteristics of the original problem are still
represented. As any hydro plant, the resulting energy equivalent systems are
subject to generation and storage capacity, storage availability and uncertain
energy inflows. Moreover, as it happens with any individual hydro plant, the
energy production efficiency of the equivalent systems also decreases when the
storage level decreases. Energy losses due to evaporation are also considered,
and increases proportionally to the stored energy in the reservoirs. The details
of how the equivalent energy modelling was implemented in the models used
by the Brazilian system operator are found in works such as [10], [11], [12] and
[13].

Despite the monthly discretization of the problem, the official modelling
considers three load levels within the month in order to represent difference of
the demand level in different times of the day, such as the peak hours.

Regarding thermal plants, they are represented individually and consider
a minimum and maximum generation capacity, but are not subject to fuel
availability constraints in the current formulation. Unlike hydro plants, thermal
plants have a production cost per energy unit, represented by fuel costs in the
problem formulation.

In summary, the medium term hydrothermal operation planning problem
is a cost expectation minimization, in which the decision variables are asso-
ciated with equivalent systems and thermal plants dispatch and with energy
exchanges between systems. The only uncertainty represented in the problem
is related to the inflows to the equivalent systems. The inflows distribution
at each stage is modelled and, in order to allow the problem to be solved
numerically a finite number of scenarios is sampled from these probability
distributions. In this step, problem becomes deterministic, as the probability
distributions are replaced by the sampled scenarios tree. Although the number
of energy systems is small, the total number of possible states for the problem
grows very fast with the number of scenarios sampled at each stage. In order to
solve this problem, an SDDP-based model is used. This method is capable of
solving large scale problems due to the fact that, instead of using the complete
scenarios tree, it samples subsets of it at each iteration. As a consequence,
the solution of the algorithm – if stopped before the optimality – is random.
Indeed, as the hydrothermal operation planning problem is too large to be
solved in reasonable CPU time, it will always be stopped before optimality.
The SDDP algorithm is based on Benders decomposition, and solves the prob-
lem by iteratively computing functions that couples each stage of the problem.
These functions represent, at a given stage, a lower approximation of the ex-

DBD
PUC-Rio - Certificação Digital Nº 1113687/CA



On the Solution Variability Reduction of Stochastic dual Dynamic
Programming Applied to Energy Planning 22

pected future cost function, and are often called cost-to-go functions. As the
iteration number advances, more cuts are added to the cost-to-go functions,
which become closer to the real (and unknown) future cost functions and the
solution gradually gets closer to the optimal one. Several works give details
about the SDDP method, such as [3], [6] and [14]. Work [13] also provides a
detailed view of the SDDP algorithm and its application to Brazilian problem.

In order to model the inflows uncertainty and therefore be able to obtain
any subset of a theoretical1 scenarios tree, a statistical model needs to be
used. In the energy planning problems in which hydrological uncertainty is
strong, linear regression models are often used to model river flows and energy
reservoir inflows. In Brazilian case a periodic autoregressive (PAR) approach
is used to model the inflows behaviour, and the scenarios are generated using
a combination of a PAR model and a log-normal noise term that guarantees
non-negative inflows values. This approach is described in general terms in the
works [15], [16], [17] and with more details regarding the implementation used
in Brazil in works [18], [19], [20], [21] and [13].

The main characteristic of the autoregressive modelling applied to inflows
is that future conditions of the systems are going to be conditioned by the past
inflows values. This behaviour is desirable, at least in principle, in the sense
that, if there is any sort of correlation in the historical data, this will also
be true for the generated scenarios. In Brazilian medium-term modelling the
past inflows information of up to six months is used to generate the monthly
scenarios for up to five years ahead (plus five years post planning horizon for
boundary conditions), and a scenarios tree is generated using 20 random noises
per stage, including the first one, which is not considered deterministic in this
planning horizon.

3.2.2
Short term problem

The short-term problem, in Brazilian hydrothermal system operation
planning, comprises up to two months. Unlike the medium-term problem,
that considers a longer planning horizon and then sacrifices the physical
representation of the system in order to better model the uncertainty, the
short-term problem is able to model the physical characteristics of the problem
with more details. Although computational power is not a limitation for this
problem nowadays, the uncertainty of the inflows is not considered in the first
month, which is discretized in weekly intervals. The weekly inflows forecasts

1The use of the word theoretical is just to emphasize that the complete scenarios tree
is never totally sampled, as it would require a large amount of memory and could easily
become computationally impracticable.
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are computed using several models, depending on the forecast horizon and
the hydrological post in question. In summary, the first week forecast for the
most of the important posts are calculated using a rainfall-run-off model called
SMAP (Soil Moisture Accounting Procedure) [22] that take not only past
inflows into account, but also current soil conditions combined with observed
and forecast rain. The first week forecasts for the remaining posts, such as the
rest of the month forecast for all posts, are calculated using autoregressive-
moving average family models, and consider only inflows information. In the
second month, on the other hand, the uncertainty is considered by sampling
monthly scenarios using PAR models similarly as done in the medium-term
problem.

Unlike the medium-term problem that is solved by a sampling based
decomposition algorithm (SDDP), the short-term problem is solved using a
deterministic decomposition method, the L-Shaped [23]. The main difference
between both methods is that, unlike the SDDP that samples subsets of the
complete scenarios tree and obtain a random solution, the L-Shaped method
solves the entire scenarios tree and returns the optimal solution (given an
optimality gap). This method is only possible to be applied to the problem
due to its reduced dimension (two months horizon).

Although the short-term planning horizon ends in the second month, the
future cost function for the second month, calculated during the medium-term
problem solution, is used as a boundary condition and is added as a set of
constraints to the second stage problems of the solution algorithm. The main
consequence is that the decisions taken in the short-term problem consider its
impact up to five years ahead, and not only within the two months horizon.

3.2.3
Risk aversion

Although used for many years in Brazil and still nowadays in many
countries, the risk neutral version of SDDP algorithm can lead, in some
situations, to critical states of the system and even to energy shortages.
A possibility to improve SDDP results for hydrothermal operation planning
problem is to resort to a risk averse implementation of SDDP. The probability
of achieving such critical states is reduced when some type of risk aversion
is used within the SDDP algorithm. Shapiro [6] proposes the introduction of
CV@R [24] in the SDDP in his theoretical work. The first numerical results of
this proposal using an implementation that required the use of additional state
space variables is found in [25], which was made available on-line in December
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20102. Later on, another way of implementing the same approach in the SDDP
is published in [26], also making use of an increased state space. In January
2012 a simpler approach to consider the CV@R within the SDDP without
resorting to the use of additional state space variables was made available
on-line3 and published later in [14]. In the meanwhile, an application of a
direct approach in the Brazilian official model was presented in [27] and [28],
and later a real case application to Brazilian problem in [29]. All these works
show that, depending on the parametrization chosen, the probability of critical
states of the system is reduced and thus its security is improved. In this work,
the risk averse approach implemented in [14] is used. There are several other
ways to consider risk averse behaviour of the solution in hydrothermal planning
problems, but this is out of the scope of this work.

Let the equation (3-1) be the t-th stage of our multistage stochastic
optimization problem, for t = 1, · · · , T .

Qt(x∗
t−1, ξt) =


min

xt
c⊤

t xt + ρλ(Qt+1(xt, ξt+1))

s.t. Ttx
∗
t−1 + Atxt = bt

xt ≥ 0,

(3-1)

where

ρλ(Qt+1(xt, ξt+1)) =(1− λ) · E [Qt+1(xt, ξt+1)] + λ · CV @Rα(Qt+1(xt, ξt+1))

is the risk measure that is responsible to consider the trade-off between the risk
neutral expectation value and the CV@R value. This risk measure takes two
parameters into account: α is the percentage of the most expensive scenarios
that are used to estimate the CV@R, and λ ∈ [0, 1] is a risk aversion parameter,
i.e., the CV@R weight in the objective function. The solution of this problem
within the SDDP framework is straightforward and is described in details in
work [14].

3.2.4
Problem Formulation

As stated before, the objective function of the hydrothermal operation
planning problem is to minimize a risk adjusted operation cost along the up to
T stages of the problem, while supplying the area loads and obeying technical
constraints. Note that the demand supply equation is always feasible (i.e., the
problem has relatively complete recourse) due to the inclusion of a dummy
thermal plant with generation capacity equal to the demand and operation

2http://www.optimization-online.org/DB_HTML/2010/12/2861.html
3http://www.optimization-online.org/DB_HTML/2012/01/3307.html
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cost that reflects the social and economic costs of not meeting the energy
demand (deficit cost).The problem can be written, for all t = T, . . . , 1 as:

Q̃t(vt−1, ξt) = min
xt

ctt · gtt +
NS∑
s=1

cd · dt,s + β ·Qt+1 (3-2)

s.t.

vt + ght + st = vt−1 + at (Hydro balance)

vt ≤ vt (Storage limits)

ght ≤ ght (Hydro Generation limits)

gt
t
≤ gtt ≤ gtt (Thermal Generation limits)

ght,s +
∑

j∈NTs

gtt,j + nft,s +
ND∑
i=1

dt,s,i = Dt,s,

∀ s = 1, . . . , NS (Demand supply)

nft,s =
NS∑
l=1

(ft,l,s − ft,s,l), ∀ s = 1, . . . , NS (Net Energy flow)

|ft,s,l| ≤ f t,s,l, ∀ s = 1, . . . , NS; ∀ l = 1, . . . , NS (Energy exchanges limits)

The problem indexes, shown as subscripts in the formulation, are:
t stage identifier;
s system index;
j thermal plants index;
i deficit depth identifier;
l alternative index used to identify the system number.

The variables and parameter dimensions are:
NT total number of thermal plants in the problem;
NS number of systems;
ND total number of deficit depths.

The problem variables are:
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vt vector [NS × 1] of stored volumes in each system at stage t;
gtt vector [NT × 1] of thermal generations gtt = (gtt,1, · · · , gtt,NT );
dt,s vector [ND × 1] of energy deficits in system m in all Nd depths, as

shown in dt,s = (dt,s,1, · · · , dt,s,ND)⊺;
ght vector [NS × 1] of hydro generations ght = (ght,1, · · · , ght,NS)⊺;
st vector [NS × 1] of spilled energy in each system;
ght,s s-th element of ght vector, denotes the hydro generation in system s;
gtt,j j-th element of vector gtt, denotes the generation in thermal plant j;
nft,s net energy flow of system s on stage t;
dt,s,i i-th element of vector dt,s, denotes the deficit in depth level i;
ft,l,s energy exchange [scalar] between systems l and s on stage t;

The problem constants are:
ctt vector [1×NT ] of unit generation cost of thermal plants;
cd vector [1×ND] of unit deficit costs cd = (cd1, · · · , cdNd

);
β discount factor [scalar] used to calculate the present value

of expected future cost;
at vector [NS × 1] of energy inflows in systems equivalent reservoirs;
vt vector [NS × 1] of energy storage capacity in each system;
ght vector [NS × 1] of maximum hydro generation for each system;
gt

t
vector [NT × 1] of minimum thermal generations;

gtt vector [NT × 1] of maximum thermal generation for each plant;
NTs set of indexes of thermal plants of system s;
Dt,m energy demand on system m on stage t;
f t,s,l energy exchange [scalar] capacity from system s to l.

The approximation of the recourse function, Qt+1, denotes the approxi-
mated expected future cost function in risk neutral cases, but can also denote
the convex combination of the expected future cost function with a risk mea-
sure of the future cost distribution.

Although simplified in terms of physical representation of the system,
the presented formulation preserves the main characteristics of the problem
and its large scale size, which is important in order to evaluate the proposed
approaches. The physical modelling used in this work is similar to the one used
in work [14].

It is important to mention that in real applications several details are
modelled in order to better represent the physical behaviour of the system,
even in the medium term problem (in which the hydro plants are modelled as
equivalent reservoirs), such as the existence of run-of-river plants, the energy
production coefficient changes with respect to storage levels, losses due to
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evaporation and different load levels to roughly represent peak and off-peak
hours of the month. In this work all these characteristics are not modelled,
as the main points of interest for this work remain present in the simplified
approach.

3.3
Solution variability

The excessive solution variability of Brazilian energy operation planning
is being discussed for a long time. Since 2006 it is possible to find references,
such as [30]4, that proposes several changes in order to stabilize the models
solutions. This work in particular suggests that, instead of using a weekly
price as currently used in Brazil, an average monthly price would be more
stable. Although this is naturally true, the cause of the variability was not
discussed in this document. In the same line, several proposals were presented
in the energy sector events in 2008, mainly focused on calculating the energy
spot price as an average of past and forecast prices5 given by the optimization
models used for the operation planning. A weekly price calculated by a moving
average of the prices of the last five weeks was almost implemented regarding
sources that published, in 2009, an interview given by the Brazilian System
Operator director6. In the same year, in the event Energy Trading Brasil 2009,
a representative of the system operator gave a speech7 in which five measures
to deal with the price volatility were announced:

1. Inflows time dependence attenuation in the cost-to-go function:
The idea behind this proposal was to consider smaller numbers in the
inflows autoregressive coefficients during the cost-to-go function calcula-
tion, in an attempt to reduce the autoregressive models importance in
the medium-term problem. This approach is the closer to this work.

2. Anchorage of the weekly forecasts:
This proposal consists of – instead of letting the weekly forecasts vary
depending on additional informations (such as rain forecast) – averaging
the weekly forecast with a monthly forecast made in the beginning of the

4Document sent to Brazilian’s energy sector regulator (Aneel)
public hearing AP 18-2006, available on-line at (in Portuguese):
http://www.aneel.gov.br/aplicacoes/audiencia/arquivo/2006/018/contribuicao/duke_-
energy_pld_mensal_carlos_dornellas.pdf

5See the presentation available on-line at (in Portuguese):
http://www.abce.org.br/xivsimposio/downloads/roberto_castro.pdf

6Details can be found on-line at (in Portuguese):
http://www.cerpch.unifei.edu.br/not01.php?id=3129

7Presentation available at the ONS website: http://www.ons.org.br/download/biblioteca_-
virtual/palestras/2009_05_25_Energy_Trading.pdf
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month. The idea is that the resulting forecast was going to be more stable
and, therefore, the resulting prices. Although this proposal could have
some variability reduction within each month, the variability between
months would increase. Moreover, the idea of combining two forecasts
in an unsound methodological way just to avoid solution variability was
not well received by the sector.

3. Consideration of the uncertainty of the weekly inflows:
This proposal consists of generating scenarios for the weekly stages of
the first month instead of solving the problem as if the first month was
deterministic. This approach, although has never been implemented in
the official model, has the potential to reduce the variability caused by
the coupling between the SMAP model, used in the first week, with the
Box & Jenkins models used in the other weeks.

4. Selective sampling of the scenarios:
This was the only proposal implemented in the official model, although
the results were not as good as initially expected with respect to the
solution and price variability. It basically changes the way the noises to
generate the scenarios are sampled. First, a very large sample is taken
from the noises distribution considering all subsystems. Second, this large
sample is clustered in a smaller number of noise terms and, with the
resulting noises vector, the scenarios are generated. This approach is
proposed and detailed in [21].

5. Implementation of resampling of the forward scenarios during the SDDP
algorithm solution:
This proposal consists of adjusting the current implementation used in
Brazil to resample the scenarios used in the forward step of the algorithm
at each iteration instead of using a fixed set during the entire iteration
process. This characteristic in the implementation of the SDDP was
already described in its proposal [3] and was essential in the proofs of
convergence published later, such as [31], [32], [6] and [33], but actually
is not going to affect the solution variability as it was believed when this
speech was given, in 2009.

In the years that followed the solution variability continued to appear
in the news, sometimes only as general complains from various energy sector
agents8, and sometimes from investors of specific sectors, as occurred in 2012

8News published in 2010 in Canal Energia website with the title “Ele-
vação de PLD não indica desabastecimento, mas volatilidade preocupa, se-
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when small hydro plants (SHP) investors reported the prices volatility as one
of the sources of the crisis in the SHP sector9. It is also possible to find short
studies from universities trying to identify the causes of prices volatility in
Brazil, such as [34] and [35]. In [34], the main causes identified were the lack
of investments in the energy sector, mainly regarding the system expansion
through hydro plants without storage capacity, environmental constraints and
the system operator operations criteria, which are strongly model based. On
the other hand, in [35], the thermal plants and fuel availability constraints are
pointed out as the major cause for historical episodes of high marginal cost
variability in Brazil. The possible causes for the models solutions variability
are many, some already identified in those works, and are going to be discussed
in this section.

In an attempt to find relations between Brazilian and other markets,
Canal Energia agency even published in 2012 some news comparing Brazilian
and European markets10 in which prices volatility is criticized. Also in 2012
it was reported by Valor Econômico11 newspaper that, in an interview given
by the director of ONS, both ONS and CCEE teams were already working
on the marginal cost volatility issue to propose improvements to mitigate this
problem.

Since then, this topic has come several times to discussion and, in
2014, rumours that changes in Brazilian price formation were imminent were
propagated by energy sector12. In the end of 2014 ONS’s director again talked
about the marginal cost volatility reduction13, and said that ONS was going
to propose during 2015 some changes in the current models in order to reduce
their solution variability.

Although, as seen in this section, the solution variability is one charac-
teristic often criticized about the models used nowadays, the current literature
identifies some variability sources but fails in proposing improvements to re-

gundo agentes”: http://www.canalenergia.com.br/zpublisher/secoes/Principais_Noti-
cias.asp?data=4/3/2010

9News published in 2012 in Canal Energia website with the ti-
tle “Setor de PCH tenta encontrar saídas para crise da fonte”:
http://canalenergia.com.br/zpublisher/secoes/Principais_Noticias.asp?data=22/03/2012

10Published in Canal energia in 2012 with the title “Europa: Mercado livre, trans-
parente e isonômico”: http://www.canalenergia.com.br/zpublisher/secoes/Principais_Noti-
cias.asp?data=04/10/2012

11Available on-line at: http://www.valor.com.br/brasil/1122814
12Some similar news were published by different sources, such as Globo news-

paper, available at: http://oglobo.globo.com/economia/petroleo-e-energia/cesp-defende-
menor-volatilidade-do-preco-da-energia-de-curto-prazo-1-13735032

13This news was published by several sources, one of them available on-line at:
http://gasnet.com.br/conteudo/17000/ONS-quer-alteracoes-para-conter-volatilidade-no-
CMO
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duce the solution variability. In this context, lets first identify some of the main
sources of solution variability in the Brazilian Energy Sector:

– Reduced regularization capacity
One main characteristic of hydrothermal systems strongly hydro based,
such as the Brazilian one, is the possibility to regularize the inflows for
several years, allowing the system operator to smooth the impact that
hydrological variability would have on the system operation. However,
during some time in Brazil – specially during the nineties – the lack of
investments in large projects stopped the system expansion through the
construction of big reservoirs. Moreover, due to the fact that environ-
mental constraints are getting increasing importance in recent years, the
construction of big dams are out of the Brazilian expansion plan. The
immediate impact of the system expansion only through small projects or
big projects by without storage capacity is that the system regularization
capacity decreases over time, together with the benefit of smoothing the
solution variability due to uncertainty of inflows. As examples, consider
two extreme cases: the first one with infinite regularization capacity, and
the second one with no reservoirs at all. In the first case, depending on
the storage level, it could be possible to supply the demand for several
years. In this case, even though the inflows could vary a lot, there would
be no need to keep changing the solution from one stage to the other,
as the stored water could be used to generate energy in case there was
a drought. In the second case, on the other hand, the thermal dispatch
would change all the time depending on the inflows, as there is no stored
water to be used. In this case there is no decision to be taken, and the
solution variability is expected to be very high. As the Brazilian system
is moving towards the second example, it is expected that the solution
variability increases, as the system operator’s ability to regularize the
inflows is reducing. This work is not going to focus on this source of
solution variability.

– Modelling of river basins with different behaviour within the
same equivalent reservoir system
This topic is mainly related to the medium term problem modelling.
When the four systems are modelled into energy reservoirs, it is assumed
that the hydrological behaviour of all plants considered within the same
system are the same, that is, they belong either to the same basin or
to basins with similar behaviours. However, some big projects, such as
Itaipu, were constructed in one physical region (in this example, South-
ern) but are connected directly to other region through long transmis-
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sion lines (in this case, South-eastern region). The main characteristic of
Brazilian South region is the erratic behaviour of the inflows, mainly due
to the soil type in this region, that allows the inflows to increase very fast,
but also to reduce very fast. In this case, the South inflows behaviour
impacts directly the Southeast equivalent energy inflows behaviour, as
Itaipu plant is considered as part of Southeast system. This characteristic
makes the Southeast inflows volatile every time there is a large variation
in Itaipu inflows, and then, can possibly increase the solutions variability.
This problem is currently being solved by the official model developer,
Cepel, in an implementation that allows each system to have different
equivalent reservoirs to deal with very different hydrological behaviours.

– Thermal plants characteristics
Another source of solution variability, in this case totally related to
energy prices, is the thermal plants cost/power characteristics. Figure
3.3 shows the total thermal generation availability on May 2015 on the
vertical axis, and the cost in Brazilian Reais to produce each MWh
(CVU, Portuguese acronym for unit variation cost). The bottom blue are
represents the inflexible thermal generation, while the red area represents
the dispatchable thermal resources. It is clear that, depending on the
current thermal generation, it is possible to vary the thermal dispatch
without changing much the marginal cost (the cost regions with high
vertical steps in this graph allows big changes in thermal generation
without significant changes in marginal cost). On the other hand, thermal
availability [MWa] areas with long horizontal steps implies that any
change in the thermal dispatch can make the marginal cost very different
from its previous value. In practice, as the solution marginal cost can be
the water value instead of the CVU of the marginal thermal plant, this
effect is smaller in reality, but still exists and, depending on the thermal
dispatch, the marginal cost variability can be higher or lower.

– Deterministic approach in the first month and coupling between
different inflows forecasting models
As already mentioned before, the first month of the short-term problem is
deterministic and is discretized weekly. The only decision that is actually
implemented is the first week one and, in the end of the first week,
another problem is solved considering what actually happened during
this week as initial conditions and a new forecast for the second week
of the month (this time considering some rain forecast information to
predict the inflows for this week). The fact that forecasts are never
equal to reality by itself introduces some variability to the problem, as
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Figure 3.3: Thermal generation availability and unit variation cost – May/2015

the solution taken is never perfect for what is really going to happen.
However, this problem can only be reduced with the improvement of the
forecasts quality. This is already being done by the system operator with
the use of SMAP models in an increasing number of hydrological posts.
On the other hand, there is another source of solution variability: the
use of Box & Jenkins models for the rest of the weeks in the first month.
The main reason for that increased variability can be understood in the
following example: there is a cold front reaching South and Southeast
regions in the first week causing the rain forecast models to show strong
rains in both regions during the beginning of the first week. The models
used to forecast inflows for the first week are going to read the rain
forecasts and estimate the amount of water that is likely to become water
flows in the rivers which, in this case, will make the inflows increase in
both regions. The first week inflows prediction, which is high in this case,
is going to be used by models that are, in most cases, autoregressive and
are going to propagate this high inflows for the other weeks of the month.
However, in the end of the first week the system operator is going to solve
a new short-term problem, this time considering what happened in the
first week and the second week of the month as the first week of the
problem. In this case, the rain-flow models are going to be used again,
this time to forecast the second week of the month which may, in this
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case, show no rain forecast for the next ten days. In this situation, the
forecast for the second week of the month is going to be dry, the opposite
as the previous forecast made by the Box & Jenkins model for this very
same week, and the same will happen to the forecasts for the rest of the
month. If we compare the problem that was solved in the beginning of
the month, with a high inflows forecast for the whole month (mainly due
to a rain in the first week) to the problem solved in the beginning of
the second week, with lower inflows for the entire month, we are going
to notice an increased solution variability, mainly related to expectation
reversals. This problem is also related to the next topic and is going
to be discussed later. One possible way to deal with this problem is to
consider the weekly uncertainty on the inflows modelling, as this may
prevent the decision to be totally biased by a bad forecast, for example,
although the entire first month scenarios tree would be biased and so
would the decision. One drawback of modelling the weekly uncertainty
is that the problem can become too big to be solved by the L-Shaped
method and would need a change in the current model used to solve the
problem. In work [36] a scenarios tree reduction technique was used to
sample scenarios tree that would still allows the short-term problem to
be solve by the same method used nowadays.

– Consideration of past inflows in the state space of the problem
The last topic to be discussed is the representation of the past energy
inflows as state variables in the medium term problem. In this case, what
happens is quite similar to what was discussed in the previous topic: the
future expectation (given by the cost-to-go function) is biased by the
recent events, and as expectation reversals occurs, the next problem will
be biased to the opposite direction and can, hence, increase the solution
variability. Although expectation reversals are not always happening in
the next stage (the models used to generate the scenarios are mainly
meant to be used for one-step ahead forecast), as several stages are biased
by the first one and the probability that an expectation reversal happens
before the model mean reverts is much bigger, we can expect that the
solution variability is increased. As an example we show in Figure 3.4
the scenarios generated by the official Brazilian model for January 2015
(in the end of December 2014), together with their average in green, and
the performed value in blue. It is clear that expectation reversals occurs
even in the first month, although most of times it happens after the first
month. The same data is presented for February, and it is possible to see
that in this case the scenarios generated are in line with the performed
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energy inflows. The effect discussed in this topic, combined with the

Figure 3.4: Energy inflows in Southeast system as a % of the monthly historical
average

changes in the first stage forecast presented in the previous topic, is one
of the major responsible for the solution variability found the operation
planning problem in terms of modelling. This is going to be the main
focus of this work, and is going to be discussed in more details in the
next section.

3.3.1
Solution variability with respect to state space variables

Brazilian hydrothermal operation planning problem decision variables are
energy exchanges, thermal generation and hydro plants stored, turbined and
spilled volumes over time, while the only uncertainty represented is associated
to water inflows in hydro plants. Within a time independent framework, the
state of the system at a given stage is described by the stored volumes in
the reservoirs at the beginning of that stage. In real applications, however,
the inflows to power plants are represented by autoregressive time series
models, which requires an augmented state space including past inflows.
Although equally represented as state variables, stored volumes and past
inflows are different in terms of the information they carry on. While stored
volumes accurately represents resources currently available, past inflows helps
to predict future resource availability, which is an uncertain quantity. Another
characteristic of stored volumes is that it varies smoothly over the time frame
considered – at least for most of reservoirs, where water inflow/outflow volumes
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are small compared to storage capacity – while the past inflows show high
variations in short periods of time.

Even though one could intuitively think stored volumes should be more
important due to certainty of information about resources availability it carries
on, the solutions are more sensible to changes on past inflows than to changes
on stored volumes, as it will be shown in the ensuing text. As a consequence,
an undesirable variability occurs, as shown in Figure 3.5 (plotted with data
from [37]). Indeed, it shows Brazilian weekly thermal generations of the South-
East system from October/2012 to March/2013 (red line plot, left axis). Its
percentage variation is shown by the bars (right axis). The mean absolute
percentage weekly variation is equal to 10.3%, with a maximum observed
value of 40%. This high variability is observed on real data, and cannot be
attributed only to inflows variability, but also to the other aspects discussed
in this section, specially to the fact that, although the uncertainty in the first
month is high, it is modelled by a deterministic approach in the weekly stages.

Figure 3.5: Weekly thermal generation and variation – Oct/2012–Mar/2013

Additionally, the high variability on energy prices shown in Figure 3.6
(plotted with data from [37]) also poses a challenge to agents involved in the
Brazilian energy market. The energy price is the marginal cost obtained as the
Lagrange multiplier (dual variable) of the demand supply equation. Figure 3.6
shows a high variation of marginal costs through weeks: the mean percentage
absolute variation is 25.5%. The bars on Figure 3.6 show the changes of
the marginal costs (in R$/MWh), and its breakdown into different types of
variation sources: stored energy, first week energy inflows and other reasons.
The proportion of each variation type is obtained by a sensitivity analysis,
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changing only one data source of the problem from one week to another
(i.e. revised inflows forecast, actual stored volumes, etc.) and computing the
changes in marginal cost. Although the order in which the sensitivity study
is done affects the obtained proportions, the overall picture doesn’t change,
and it is clear that the major source of variations is the change in first week
energy inflows, which is quite intriguing for a problem that has a multi year
regulation capacity. It is important to mention that, as the marginal cost is a
dual variable in the operation problem, a large variation of its value does not
mean that the thermal dispatch has changed much. It is possible to have big
changes in marginal costs even with small changes in thermal dispatch, mainly
due to the need to turn on or off a plant with fuel cost very different from the
previous dispatched one.

Recalling the difference between the two types of state variables previ-
ously described, it seems clear that the second type of state variables, although
uncertain and with a very high short-term variability, has more weight in the
decision process. In Section 4, we show a mathematical evidence to justify
this behaviour, i.e., the solution variability increase is a side effect of using
an autoregressive time series model embedded in SDDP. This side effect is
undesirable in hydrothermal operation problem whose solutions obtained by
SDDP algorithm gives not only the goals for hydro and thermal plants gen-
eration, but also the energy spot prices. It is important to mention that this
model characteristic makes the solution variability increase not only due to
higher variability of the inflows, but also to the inflows uncertainty. Within
a dependent framework the uncertainty regarding the next stage is smaller,
and this information is then taken into account by the optimization model,
which bias the scenarios generated for several stages ahead. The problem is
that whenever there is a expectation reversal there is a potential for a drastic
change in the solutions, which may change from a wet biased decision to a dry
biased one. Actually, if we consider the number of stages until the model mean
reverts, it is quite likely that there is an expectation reversal. As an example,
lets consider a wet inflow recent history. The decision given by the model is
going to be driven by a wet future expectation, which can happen to be wrong.
In this case, if a dry inflow follows, the decision will go from one wet biased
solution to a dry biased solution, when the problem is solved again in the next
stage, this time considering a dry recent history. In such cases, the solution
variability can be even higher than the inflows variability.
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Figure 3.6: Weekly marginal costs and variation – Oct/2012–Mar/2013
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4
SDDP algorithm and time dependency

Multistage stochastic programs with recourse have become very common
over the last two decades, with practical applications specially in energy prob-
lems. The success of stochastic programming, even in large scale problems, is
due to the increase in computer processing capacity and the development of
algorithms capable of solving them in a reasonable time. Multistage stochas-
tic programming problems are usually solved by approximating the random
variables by discrete values sampled from its probability distribution. The re-
sulting large scale problem can be solved by optimization methods such as
the Stochastic Dual Dynamic Programming (SDDP), proposed by Pereira and
Pinto [3], or other sampling-based methods like Abridged Nested Decomposi-
tion (AND) [38], Convergent Cutting-Plane and Partial-Sampling Algorithm
(CUPPS) [39] and ReSa [40]. These methods are extensions of Benders Decom-
position to stochastic programming problems, which use sampling procedures
to construct an outer approximation of the future cost function.

Sampling-based algorithms usually assume stagewise independency,
which guarantees that the cost-to-go functions only depend on the current
time stage, i.e., a cut calculated for a particular scenario is also valid for any
other scenario at the same time stage. Even though stagewise independence is
needed, the problem formulation can be modified using specific type of time
dependent stochastic models for the uncertain parameters, such that stage-
wise independence is preserved and the SDDP method can handle it, see [3].
This is also described by [41], which shows how to consider time dependency
in stochastic parameters of sampling-based algorithms. This makes possible to
represent stochastic parameters using linear models, such as the autoregressive
one. In some applications, such as hydrothermal operation planning problem
[42], this linear uncertainty modelling can improve the solution quality to sat-
isfactory levels, even for large scale problems, while in other applications in
which more complex models are required to represent the uncertainty the linear
assumption requirement is a strong limitation and hampers the SDDP usage.

Basically, the SDDP algorithm consists of two procedures, one forward in
time and one backward in time. The forward procedure of the SDDP algorithm
is carried out by sampling a subset of scenarios from a finite scenario tree and
running a forward in time simulation for each one of the sampled scenarios. The
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most important feature of the forward procedure is to provide trial decisions for
the backward step of the algorithm. Moreover, it can also be used to evaluate
an upper bound for the policy value. This last feature will not be used in this
work as a stopping criterion given that, as commented in [6], in large scale
problems the optimality gap may be too loose to be useful. In Section 5.2.2 we
are going to discuss this topic in more details.

The backward procedure of the algorithm is done backwards in time,
and its objective is to estimate the cost-to-go function for each trial decision
given by the forward procedure. Details of the algorithm can be found in many
works, such as [3] and [14].

In some problems, with the objective of improving the solution by taking
into account a more realistic representation of the uncertainties, the stochastic
process is modelled by time series models, which requires proper adjustments
on the state space modelling before resorting to SDDP algorithm. In the hy-
drothermal operation problem, modelling the time dependency of the inflows
may have consequences other than an improvement on the problem representa-
tion. A question that is very often risen on Brazilian energy operation problem
is why does the variability of the inflows forecasts seem to impact the decision
so much more than the stored volumes for the optimization problem. Indeed,
the impact observed on the (primal and dual) solution variables of stage t is
higher for a unit change in past inflows when compared to a unit change on
the initial volume, as it was mentioned in Chapter 3. Although both variables
change the right hand side (RHS) of the same equation of the problem, a
change in the inflows forecast has a direct impact on the expected cost for the
future stages.

In this section we are going to describe the Benders cut calculation
procedure in a SDDP iteration and show that, with time dependent stochastic
process, the decisions of the algorithm considers the past inflows to be more
important than the stored volumes. As the inflows are more volatile than stored
volumes, the results of the dependent SDDP are more volatile than the ones
that uses independent time series model.

4.1
Independent SDDP algorithm

Assuming a discrete probability space with a stage-wise independent
process ξt ∈ {ξ1

t , . . . , ξNt
t }, ∀t ∈ {2, . . . , T}, let us define a T -stage stochastic

programming problem by the dynamic programming equations (4-1) and (4-2):
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Q̃t(xt−1, ξt) = min
xt

c⊤
t · xt + Q̃t+1(xt)

s.t. Atxt = bt −Btxt−1

xt ≥ 0
(4-1)

and
z = min

x1
c⊤

1 · x1 + Q̃2(x1)

s.t. A1x1 = b1

x1 ≥ 0.

(4-2)

In this case, the recourse function Q̃t(xt−1, ξt) depends on the state of
the system, xt−1, and on the uncertainty parameter ξt = (bt).

The main idea of the solution algorithm is to iteratively approximate
the expected value of the recourse function Q̃t(xt−1) using Benders cuts. The
approximated function is denoted by Qt(xt−1). Thereby, the approximate t-th
stage problem after iteration k of the SDDP algorithm may be written as:

min
xt

c⊤
t · xt + Qk

t+1(xt)

s.t. Atxt = bt −Btxt−1

xt ≥ 0
(4-3)

The maximum of a collection of cutting planes, Qk
t+1(xt), can be ex-

pressed in a linear programming context with the use of an additional variable,
αt+1. The resulting problem with k cutting planes can be written as:

min
xt,αt+1

c⊤
t · xt + αt+1

s.t. Atxt = bt −Btxt−1

αt+1 ≥ Q̃t+1(x∗
t,1) + g̃⊤

t+1,1 · (xt − x∗
t,1)

αt+1 ≥ Q̃t+1(x∗
t,2) + g̃⊤

t+1,2 · (xt − x∗
t,2)

...
αt+1 ≥ Q̃t+1(x∗

t,k) + g̃⊤
t+1,k · (xt − x∗

t,k)
xt ≥ 0, αt+1 ≥ 0.

(4-4)

To calculate a k-th cut for stage t − 1 using a decision point x∗
t−1,k, the

problem (4-4) is solved for all bt ∈ {b1
t , · · · , bNt

t }. Let Q̃t,j(x∗
t−1,k) be the optimal

value of problem (4-4) for bj
t , and π∗

t,k,j its optimal dual variable vector. The
cut for stage t− 1 is:

αt ≥ Q̃t(x∗
t−1,k) + g̃⊤

t,k · (xt−1 − x∗
t−1,k) (4-5)

where Q̃t(x∗
t−1,k) = 1

Nt

∑Nt
j=1 Q̃t,j(x∗

t−1,k) and g̃t,k = − 1
Nt

∑Nt
j=1 π∗

t,k,jBt.
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4.1.1
Example: hydrothermal operation planning

To illustrate the above procedure and to help us analyse the impact
of a change in the problem’s RHS, let’s consider a small and simplified
hydrothermal generation problem with T stages, one hydro plant and one
thermal plant. The SAA problem defined by dynamic programming equations
is given by

z1 = min
gt1,gh1,v1

c1 · gt1 + Q̃2(v1)

s.t.
gt1 + gh1 = D1

gh1 + v1 = a1 + v0

and
Q̃t(vt−1, ξt) = min

gtt,ght,vt

ct · gtt + Q̃t+1(vt)

s.t.
gtt + ght = Dt

ght + vt = at + vt−1,

where the uncertainty parameter refers only to inflow at to the hydro plant,
that is, at(ξt), and is considered independent of ξt−1. The decision variables of
stage t are: thermal generation (gtt), hydro generation (ght) and final stored
volume (vt). The unit cost of thermal plant is given by ct and the energy
demand is Dt.

In this example, our main interest is to investigate the impact of varia-
tions in the initial stored volumes V0 and first stage inflows a1 in the problem
solution. Let’s consider a three stages problem, T = 3, and analyse the first
iteration of the SDDP algorithm. For a given trial decision v∗

2 and consid-
ering aj

3 sampled from the discretized probability distribution of the inflows,
{a1

3, · · · , aN3
3 }, the third stage problem for aj

3 may be written as

min
gt3,gh3,v3

c3 · gt3

s.t.
gt3 + gh3 = D3 (π∗

d,3,j)
gh3 + v3 = aj

3 + v∗
2 (π∗

hb,3,j)

with optimal value Q̃3,j(v∗
2), where π∗

d,3,j denotes the demand supply equation
optimal simplex multiplier and π∗

hb,3,j the hydro balance equation optimal
simplex multiplier.

The Benders cut for stage 2 can be calculated as:

α3 ≥ Q̃3(v∗
2) + π̃hb,3 · (v2 − v∗

2)

where π̃hb,3 = 1
N3

∑N3
j=1 π∗

hb,3,j and Q̃3(v∗
2) = 1

Nt

∑Nt
j=1 Q̃3,j(v∗

2).
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This cut is added to approximate the second stage problem, which can
be written, for v∗

1 trial decision and for all aj
2 ∈ {a1

2, · · · , aN2
2 }, as:

min
gt2,gh2,v2,α3

c2 · gt2 + α3

s.t.
gt2 + gh2 = D2 (π∗

d,2,j)
gh2 + v2 = aj

2 + v∗
1 (π∗

hb,2,j)
α3 ≥ Q̃3(v∗

2) + π̃hb,3 · (v2 − v∗
2) (π∗

c,2,j)

where π∗
c,2,j refers to the Benders cut optimal dual variables. The Benders cut

for stage 1 can be calculated as:

α2 ≥ Q̃2(v∗
1) + π̃hb,2 · (v1 − v∗

1)

and the first stage problem results as:

z1 = min
gt1,gh1,v1,α2

c1 · gt1 + α2

s.t.
gt1 + gh1 = D1 (πd,1)
gh1 + v1 = a1 + v0 (πhb,1)
α2 ≥ Q̃2(v∗

1) + π̃hb,2 · (v1 − v∗
1) (πc,1).

From the first stage problem one can see that the impact of a variation
in the initial stored volume v0 on z1 is equal to πhb,1, which is equal to the
impact given by the same variation in hydro plant inflow a1. This property is a
consequence of the assumed time independence of the hydrological stochastic
process, and is going to be illustrated by a numerical example.

Numerical Example

The characteristics of the hydrothermal problem in this example are
described below. For simplicity and to avoid conversions from water inflows
to generated energy, all numbers refer to the same energy unit, which was
omitted. The demand at each stage is D = 50 energy units.

Hydro plant:

– Initial stored energy v0 = 30.

– First stage inflows forecast a1 = 18.

– Second and third stages scenarios: at = (4, 15, 25), t = 2, 3.

Thermal plant:

– Thermal plant cost c = 90 monetary units per energy unit.

– Unlimited maximum capacity.
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The sampled trial points for the current iteration were: v∗
1 = 25 and

v∗
2 = 30. The third stage problem needs to be solved for each scenario

considering the starting volume v∗
2.

1. Scenario a1
3 = 4:

The problem can be written as:

min
gt3,gh3,v3

90 · gt3

s.t.
gt3 + gh3 = 50 (π∗

d,3,1)
gh3 + v3 = 4 + 30 (π∗

hb,3,1)

The optimal solution is gh3 = 34, v3 = 0, gt3 = 16 and Q̃3,1(v∗
2) =

16·90 = 1440. The dual variables are π∗
d,3,1 = 90 and π∗

hb,3,1 = −90, which
means that a one unit increase in the right hand side of the problem’s
constraints increases the objective function by 90, if this increase happens
in the demand supply equation, and decreases the objective function by
90 if this change happens in the hydro balance equation.

2. Scenario a2
3 = 15:

The problem can be written as:

min
gt3,gh3,v3

90 · gt3

s.t.
gt3 + gh3 = 50 (π∗

d,3,2)
gh3 + v3 = 15 + 30 (π∗

hb,3,2)

The optimal solution is gh3 = 45, v3 = 0, gt3 = 5 and Q̃3,2(v∗
2) = 5 · 90 =

450. The dual variables are π∗
d,3,2 = 90 and π∗

hb,3,2 = −90.

3. Scenario a3
3 = 25:

The problem can be written as:

min
gt3,gh3,v3

90 · gt3

s.t.
gt3 + gh3 = 50 (π∗

d,3,3)
gh3 + v3 = 25 + 30 (π∗

hb,3,3)

The optimal solution is gh3 = 50, v3 = 5, gt3 = 0 and Q̃3,2(v∗
2) = 0. The

dual variables are π∗
d,3,3 = 0 and π∗

hb,3,3 = 0.

The average cut to be added to the second stage problem is:

α3 ≥
(1440 + 450 + 0)

3
+ (−90− 90 + 0)

3
· (v2 − 30)
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which gives:
α3 ≥ 2430− 60 · v2.

The second stage problem considering trial point v∗
1 is solved for each

scenario, and the cut for the first stage is calculated.

1. Scenario a1
2 = 4:

The problem can be written as:

min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,1)
gh2 + v2 = 4 + 25 (π∗

hb,2,1)
α3 ≥ 2430− 60 · v2 (π∗

c,2,1)

The optimal solution is gh2 = 29, v2 = 0, gt2 = 21 and Q̃2,1(v∗
1) =

21 · 90 + 2430 = 1890 + 2430 = 4320. The dual variables are π∗
d,2,1 = 90

and π∗
hb,2,1 = −90.

2. Scenario a2
2 = 15:

The problem can be written as:

min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,2)
gh2 + v2 = 15 + 25 (π∗

hb,2,2)
α3 ≥ 2430− 60 · v2 (π∗

c,2,2)

The optimal solution is gh2 = 40, v2 = 0, gt2 = 10 and Q̃2,2(v∗
1) =

10 · 90 + 2430 = 900 + 2430 = 3330. The dual variables are π∗
d,2,2 = 90

and π∗
hb,2,2 = −90.

3. Scenario a3
2 = 25:

The problem can be written as:

min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,3)
gh2 + v2 = 25 + 25 (π∗

hb,2,3)
α3 ≥ 2430− 60 · v2 (π∗

c,2,3)

The optimal solution is gh2 = 50, v2 = 0, gt2 = 0 and Q̃2,3(v∗
1) = 2430.

The dual variables are π∗
d,2,3 = 90 and π∗

hb,2,3 = 0.
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The average cut to be added to the first stage problem is:

α2 ≥
(4320 + 3330 + 2430)

3
+ (−90− 90 + 0)

3
· (v1 − 25)

which gives:
α2 ≥ 4860− 60 · v1.

The first stage problem can be written as:

min
gt1,gh1,v1

90 · gt1 + α2

s.t.
gt1 + gh1 = 50 (π∗

d,1)
gh1 + v1 = a1 + v0 (π∗

hb,1)
α2 ≥ 4860− 60 · v1 (π∗

c,1)

The solution of this problem with a1 = 18 and v0 = 30 is gh1 = 48,
v1 = 0, gt1 = 2 and Q̃1(v0) = 2 · 90 + 4860 = 5040, with dual variables
π∗

d,1 = 90 and π∗
hb,1 = −90. In other words, within the independent approach,

the impact of a unit variation on either a1 and v0 is given by π∗
hb,1 = −90,

that is, both sources of information are considered equally important within
the independent approach. On the other hand, as it is going to be discussed
in the next section, if the stochastic process is assumed to be autoregressive,
the impact of an additional resource is different depending if it comes from an
increment in initial stored volume or from hydro plant inflow.

4.2
SDDP algorithm with time dependent time series model

An independent time series model is usually too simple to represent
the stochastic process properly. An usual approach to get a more realistic
representation of the underlying stochastic process is to resort to a linear
model, such as a periodic autoregressive model (PAR). Unlike the independent
case shown in Section 4.1, with such a dependent representation, the impacts
of the variation of different components of the state vector on the solution
are different. For instance, in the hydrothermal problem, it is observed that
the solution becomes more sensitive to variations in the initial inflows forecast
than to the initial stored volumes. This section formalizes this result.

Let’s consider that bt is modelled as a linear function of bt−1, that is,
bt = ϕt · bt−1 + εt, where ϕt is a diagonal matrix and εt is a vector of constants
of proper dimension. The t-th stage problem can then be written as:
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Q̃t(xt−1, bt−1, ξt) = min
xt

c⊤
t · xt + Q̃t+1(xt)

s.t. Atxt =
[
−Bt ϕt

]
·

 xt−1

bt−1

 + εt

xt ≥ 0.

(4-6)

Note that the probability distribution of ξt = (εt) is considered to be
known and independent of state variables xt−1 and bt−1. This problem is solved
by the same approach of the independent case for εt ∈ {ε1

t , · · · , εNt
t }. Solving

the problem using the SDDP algorithm, the approximate t-th stage problem
at iteration k is:

min
xt

c⊤
t · xt + Qk

t+1(xt)

s.t. Atxt =
[
−Bt ϕt

]
·

 xt−1

bt−1

 + εt

xt ≥ 0

(4-7)

and the Benders cut calculated at iteration k is written as

αt ≥ Q̃t(x∗
t−1,k) + g̃⊤

t,k ·

 xt−1 − x∗
t−1,k

bt−1 − b∗
t−1,k

 (4-8)

where the sub-gradient can be estimated as g̃t,k = − 1
Nt

∑Nt
j=1 π∗

t,k,j

[
Bt −ϕt

]
.

4.2.1
Example: hydrothermal operation planning with time dependent inflows

Consider a first iteration of the same problem described in Section 4.1,
with a lag-one periodic autoregressive time series model for the inflows at =
ϕtat−1+εt. For a given trial decision (v∗

2, a∗
2) and considering ε3 ∈ {ε1

3, · · · , εN3
3 },

the third stage problem for εj
3 is:

min
gt3,gh3,v3

c3 · gt3

s.t.
gt3 + gh3 = D3 (π∗

d,3,j)
gh3 + v3 = ϕ3a

∗
2 + εj

3 + v∗
2 (π∗

hb,3,j)

with optimal value Q̃3,j(v∗
2, a∗

2), where π∗
d,3,j denotes the demand supply equa-

tion optimal simplex multiplier and π∗
hb,3,j the hydro balance equation optimal

simplex multiplier.
The Benders cut for stage 2 can be calculated as:

α3 ≥ Q̃3(v∗
2, a∗

2) + π̃hb,3 · (v2 − v∗
2) + ϕ3 · π̃hb,3 · (a2 − a∗

2)

where π̃hb,3 = 1
N3

∑N3
j=1 π∗

hb,3,j.
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This cut is added to the second stage approximate problem, which can
be written for trial decision (v∗

1, a∗
1) and ε2 ∈ {ε1

2, · · · , εN2
2 } as:

min
gt2,gh2,v2,α3

c2 · gt2 + α3

s.t.
gt2 + gh2 = D2 (πd,2)
gh2 + v2 = ϕ2a

∗
1 + εj

2 + v∗
1 (π∗

hb,2,j)
α3 ≥ Q̃3(v∗

2, a∗
2) + π̃hb,3 · (v2 − v∗

2) + ϕ3 · π̃hb,3 · (a2 − a∗
2) (π∗

c,2,j).

The Benders cut for stage 1 can be calculated as:

α2 ≥ Q̃2(v∗
1, a∗

1) + π̃hb,2 · (v1 − v∗
1) + ϕ2 · (π̃hb,2 + ϕ3π̃hb,3π̃c,2) · (a1 − a∗

1)

and the first stage problem is going to be:

z1 = min
gt1,gh1,v1

c1 · gt1 + α2

s.t.
gt1 + gh1 = D1 (πd,1)
gh1 + v1 = a1 + v0 (πhb,1)
α2 ≥ Q̃2(v∗

1, a∗
1) + π̃hb,2 · (v1 − v∗

1)+
+ϕ2 · (π̃hb,2 + ϕ3π̃hb,3π̃c,2) · (a1 − a∗

1) (πc,1).

By the problem of stage one, it is easy to see that the impact on z1 of
a unit variation on the initial stored volume v0 is given by the hydro balance
equation dual variable πhb,1, while the impact of a similar change in the inflow
a1 is equal to (πhb,1 + ϕ2π̃hb,2πc,1 + ϕ2ϕ3π̃hb,3π̃c,2πc,1). To compare both impacts
we shall check the behaviour of the dual variables. The hydro balance equation
dual variable πhb,i ≤ 0, as an increase in the available resources will always
decrease or not change the objective function value. The dual variables πc,i, on
the other hand, are non-negative, as an increase in the cut RHS can only make
the objective function value higher (or doesn’t change it), that is, πc,i ≥ 0.
Assuming positive autoregressive coefficients ϕi, which is usually true for real
hydrothermal operation planning problems, the impact of a1 in the objective
function is greater than the impact of initial stored volume v0.

Note that allowing autoregressive models with orders greater than one
can make this difference even higher, as the state space of the problem is going
to increase. As an example, consider the same problem as before, but an order
two autoregressive model in the last stage: a3 = ϕ3,1a2 + ϕ3,2a1 + ε3. The
remaining models stay the same. The cut for the second stage is going to have
an extra term to account for the new state variable in the third stage, a∗

1, and
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is going to be:

α3 ≥ Q̃3(v∗
2, a∗

2) + π̃hb,3 · (v2 − v∗
2) + ϕ3,1π̃hb,3 · (a2 − a∗

2) + ϕ3,2π̃hb,3 · (a1 − a∗
1).

After solving the second stage problems, the cut to be added to the first stage
is:

α2 ≥ Q̃2(v∗
1, a∗

1)+π̃hb,2·(v1−v∗
1)+[ϕ2 · (π̃hb,2 + ϕ3,1π̃hb,3π̃c,2) + ϕ3,2π̃hb,3π̃c,2]·(a1−a∗

1).

The impact of a change in the inflows a1 is:

(πhb,1 + ϕ2π̃hb,2πc,1 + ϕ2ϕ3,1π̃hb,3π̃c,2πc,1 + ϕ3,2π̃hb,3πc,1) ,

which can be even higher than the previous example depending on the
autoregressive parameters. A discussion of this effect for a general case with T

stages and autoregressive models with orders higher than one is presented on
Appendix B.

Numerical Example

The characteristics of the hydrothermal problem in this example are the
same as the one presented in previous section. The main difference is that the
stochastic process is now modelled by an autoregressive model of the form
at = 0.9 · at−1 + εt. The additional information needed in this problem is:

– Inflows trial points: a∗
1 = 18 and a∗

2 = 15.

– Sampled noises for each stage: ε2 = (−12.2,−1.2, 8.8) and ε3 =
(−9.5, 1.5, 11.5).

The third stage problem needs to be solved for each scenario considering
the starting volume v∗

2 and inflow a∗
2.

1. Scenario a1
3 = 0.9 · 15− 9.5 = 4:

The problem can be written as:

min
gt3,gh3,v3

90 · gt3

s.t.
gt3 + gh3 = 50 (π∗

d,3,1)
gh3 + v3 = 4 + 30 (π∗

hb,3,1)

The optimal solution is the same as for the independent case, that is,
gh3 = 34, v3 = 0, gt3 = 16 and Q̃3,1(v∗

2) = 16 · 90 = 1440. The dual
variables are π∗

d,3,1 = 90 and π∗
hb,3,1 = −90.
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The problems for scenarios a2
3 = 0.9·15+1.5 = 15 and a3

3 = 0.9·15+11.5 =
25 are also the same as in the third stage of last section, and will be omitted.

The average cut to be added to the second stage problem is:

α3 ≥
(1440 + 450 + 0)

3
+(−90− 90 + 0)

3
·(v2−30)+0.9·(−90− 90 + 0)

3
·(a2−15)

which gives:
α3 ≥ 3240− 60 · v2 − 54 · a2.

The second stage problem considering trial points v∗
1 and a∗

1 is solved for
each scenario, and the cut for the first stage is calculated.

1. Scenario a1
2 = 0.9 · 18− 12.2 = 4:

The problem can be written as:

min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,1)
gh2 + v2 = 4 + 25 (π∗

hb,2,1)
α3 ≥ 3240− 60 · v2 − 54 · 4 (π∗

c,2,1)

The optimal solution is gh2 = 29, v2 = 0, gt2 = 21 and Q̃2,1(v∗
1) =

21 · 90 + 3024 = 4914. The dual variables are π∗
d,2,1 = 90, π∗

hb,2,1 = −90
and π∗

c,2,1 = 1.

2. Scenario a2
2 = 0.9 · 18− 1.2 = 15:

The problem can be written as:

min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,2)
gh2 + v2 = 15 + 25 (π∗

hb,2,2)
α3 ≥ 3240− 60 · v2 − 54 · 15 (π∗

c,2,2)

The optimal solution is gh2 = 40, v2 = 0, gt2 = 10 and Q̃2,2(v∗
1) =

10 · 90 + 2430 = 3330. The dual variables are π∗
d,2,2 = 90, π∗

hb,2,2 = −90
and π∗

c,2,2 = 1.

3. Scenario a3
2 = 0.9 · 18 + 8.8 = 25:

The problem can be written as:
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min
gt2,gh2,v2

90 · gt2 + α3

s.t.
gt2 + gh2 = 50 (π∗

d,2,3)
gh2 + v2 = 25 + 25 (π∗

hb,2,3)
α3 ≥ 3240− 60 · v2 − 54 · 25 (π∗

c,2,3)

The optimal solution is gh2 = 50, v2 = 0, gt2 = 0 and Q̃2,3(v∗
1) = 1890.

The dual variables are π∗
d,2,3 = 90, π∗

hb,2,3 = 0 and π∗
c,2,3 = 1.

The average cut to be added to the first stage problem is:

α2 ≥ 3378 + (−90− 90 + 0)
3

· (v1−25) + 0.9 ·
[

(−90− 90 + 0)
3

− 54
]
· (a1−18)

which gives:
α2 ≥ 6724.8− 60 · v1 − 102.6 · a1.

The first stage problem can be written as:

min
gt1,gh1,v1

90 · gt1 + α2

s.t.
gt1 + gh1 = 50 (π∗

d,1)
gh1 + v1 = a1 + v0 (π∗

hb,1)
α2 ≥ 6724.8− 60 · v1 − 102.6 · a1 (π∗

c,1)

The solution of this problem with a1 = 18 and v0 = 30 is gh1 = 48,
v1 = 0, gt1 = 2 and Q̃1(v0) = 2 · 90 + 6724.8 = 4878, with dual variables
π∗

d,1 = 90, π∗
hb,1 = −90 and π∗

c,1 = 1. The impact of a variation on v0 is
given by π∗

hb,1 = −90, while the impact of the same variation on a1 forecast
is π∗

hb,1 − 102.6 · π∗
c,1 = −192.6, that is, 2.14 greater than the impact of v0.

This effect is cumulative with the number of stages and, depending on the
autoregressive parameters, can add up to more than five times. Although the
first stage solution of both independent and dependent problems were the same
in this small example, this is not true for all problems, otherwise it would
not matter which SDDP modelling choice to use. Indeed, as the number of
thermal plants with distinct costs increases, the decision in the first stage is
going to change in order to reduce the expected future cost and, hence, the
total expected cost.

This characteristic of autoregressive linear models explains why in real
applications, although unintentionally, the impact on decision due to state
variables linked to uncertain information about availability of future resources
(inflows) is greater than the one provided by variables linked to certain
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information (stored volume). This explains the higher variability of the solution
when inflows are modelled as a dependent time series as compared to the
independent case: the solution inherits its irregular behaviour from the most
influential state variable, the inflows.
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5
On the solution variability reduction

In hydrothermal operation planning problem formulation, the inflows to
the hydro plants (vector bt) appear on the right hand side of the hydro balance
equation. The vector bt is usually modelled as a function of past state values,
such as bt = Φ · [bt−1, · · · , bt−p]⊤ + εt, where p is the linear model order, Φ is
the regression coefficients matrix and εt is the innovations vector.

This type of time series model is being used together with the SDDP
algorithm for years aiming at better representation of the real problem.
Although we cannot deny this improvement, we cannot also deny the side
effect of increasing the solution variability, as shown in Section 4.2. With the
purpose of reducing such variability, in this section we propose two different
formulations of the problem. The first one, aimed at reducing the thermal
generation variability, is focused on controlling the variation of this variable
between stages, at the cost of increasing the state space. The second one was
motivated by the results of Section 4.2, and is aimed at reducing the variability
of both thermal generation and marginal costs. It uses the reduction of the state
space of the problem to avoid fast responses of the system to small changes in
the past inflows.

5.1
Thermal generation stabilization: risk-averse SDDP with increased state
space

The first approach described in this work to reduce the SDDP solution
variability is focused mainly on the control of primal variables, in particular
thermal generation. This approach increases the state space of the problem
in order to make possible to control variability of any primal variable. The
decision to control primal variables variability resorting to an increase the
hydrothermal problem state space was also taken in [43], where additional
variables were added to consider the necessity of ordering in advance the
liquefied natural gas that is going to be used in some thermal plants several
stages later. An application on the same problem was published in [44]. In [45]
the control of primal variables related to hydro plants was proposed, and [46]
proposes the control of any primal variable variation, both works related to
a deterministic hydrothermal operation programming problem with an up to
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two weeks horizon.
In hydrothermal operation planning problem, one important primal

variable is thermal generation decision, and its value changes significantly over
time due to changes in inflows. One possibility to stabilize individual thermal
generation is to add, for each thermal plant, a state variable to the cost-to-go
function and, in the objective function, penalize any changes greater than a
threshold. The downside of this approach is that the state space of the problem
can become significantly large and an unnecessary computational burden is
added to the problem. Another possibility, more pragmatic, is to consider that
we want to stabilize the total thermal generation in each system, and not
individual generations. This is a much simpler approach, as only one state
variable for each system should be added to the problem, and is also more
coherent with our main objective, that is to restrain total amount of thermal
generation within a certain range from one stage to another.

This proposal needs three main changes in the original problem:

1. The current stage total thermal generation needs to be calculated by a
constraint and an additional variable in the problem, in this case, gTt,m,
which is the total thermal generation at stage t and system m.

2. Constraints on thermal generation gTt,m must also be added. In this work,
we want to restrict gTt,m to vary between (1 + R) and (1−R) of the last
stage thermal generation gTt−1,m. The constant R ∈ (0, 1) is responsible
for how much free variability is allowed in the problem. In order to allow
changes greater than the desired range and to penalize such variations,
slack variables must also be considered in such constraints.

3. The last change in the problem formulation is to consider, in the
objective function, a penalty term for the variations outside the range
[(1−R) · gTt−1,m, (1 + R) · gTt−1,m].

The choice of R ∈ (0, 1) was made to limit the thermal generation gTt,m interval
choice to [0, 2gTt−1,m], but it is not a requirement of the proposed approach.
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The hydrothermal problem can be written, for all t = T, . . . , 1 as:

Q̃t(vt−1, gTt−1, ξt) = min
xt

ctt · gtt +
NS∑
s=1

cd · dt,s + pup · δup + pdown · δdown + β ·Qt+1

(5-1)

s.t.

vt + ght + st = vt−1 + at

vt ≤ vt

ght ≤ ght

gt
t
≤ gtt ≤ gtt

ght,s +
∑

j∈NTs

gtt,j + nft,s +
ND∑
i=1

dt,s,i = Dt,s, ∀ s = 1, . . . , NS

nft,s =
NS∑
l=1

(ft,l,s − ft,s,l), ∀ s = 1, . . . , NS

|ft,s,l| ≤ f t,s,l, ∀ s = 1, . . . , NS; ∀ l = 1, . . . , NS

gTt,s −
∑

j∈NTs

gtt,j = 0, ∀ s = 1, . . . , NS

gTt,s − δup,s ≤ (1 + R) · gTt−1,s, ∀ s = 1, . . . , NS

gTt,s + δdown,s ≥ (1−R) · gTt−1,s, ∀ s = 1, . . . , NS

where the decisions variable vector, xt, is defined by xt =
(gtt, ght, dt, vt, st, ft, nft, gTt, δup, δdown). The additional problem variables
are:
gTt,s total thermal generation of system s at stage t;
δup ramp-up constraint slack variable vector;
δdown ramp-down constraint slack variable vector.

The additional problem constants are:
pup penalty vector of excessive thermal generation increase, of size NS,

in R$/MWa;
pdown penalty vector of excessive thermal generation decrease,of size NS,

in R$/MWa;
R constant in (0, 1) that defines the allowed variability range.

Note that the gTt−1,s variable, in stage t problem, is a constant and is
part of the state of the system. The cut calculation procedure is done in the
same way as before, but now considering the stages coupling matrix Bt of the
reformulated problem.

Within this approach framework there are two possibilities to control the
thermal generation variability: changing the penalty term value and changing
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the allowed range size. In this work we consider a range of 5%, that is, current
thermal generation is allowed to be inside the range [95%, 105%] of last stage
thermal generation without being penalized. The penalty term, on the other
hand, is a more difficult choice, as it impacts the solution behaviour and can
make the main goal to be achieved or not. While a high penalty value would for
sure reduce the variability, it would also increase the total operation cost, as
in some critical situations an increase in thermal generation would be avoided
due to the high penalty value. A low value, on the other hand, wouldn’t have a
big impact on the total operation cost, but could also not reduce the solution
variability to an acceptable level. Several penalty values choices are discussed
in Appendix C.

One point that was not considered in the experiments performed in this
work is the thermal generation seasonality that is naturally present in any
hydrothermal system, mostly caused by the inflows and demand seasonality.
To consider this seasonality we would have to change, at each stage, the
interval of allowed thermal generation change in order to make possible for
the total thermal generation to follow its natural seasonality without being
penalized. In this case we would have asymmetric intervals depending on the
thermal generation seasonal movement. Although it is very simple to consider
this asymmetric intervals in the above formulation, the choice of the intervals
would require a broader study of the systems behaviour and is out of the
scope of this work. Another point worth to mention is that controlling the
absolute variation of thermal generation instead of the percentage variation
may be more interesting in real applications, as the percentage variation may
allow very small changes in low thermal generation situations but, again,
would require further investigations. A final comment, this time regarding
the consideration of more than one load level: with more load levels there
are different options of thermal generation stabilization, such as within each
load level and within all load levels. In the medium term operation planning
problem, however, it seems reasonable to control only the total thermal
generation variation over time.

5.2
Thermal generation and marginal costs stabilization: risk-averse
backward-independent SDDP algorithm

This proposal is aimed at stabilizing both primal and dual variables of
the problem. In hydrothermal operation planning framework, the variables
of interest are thermal generation (primal) and marginal costs (dual). The
main assumption behind this proposal is that the state of the problem should
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only consider variables the give certain information about future resources
availability. In hydrothermal problem this implies that the coupling between
stages is a function of stored volumes only and that no information about
the past inflows are used to calculate the Benders cuts during the backward
step of the SDDP algorithm. An immediate consequence of such approach is
the reduction in the solution variability but, on the other hand, the decision
quality (in terms of cost and security) is also reduced.

To deal with this drawback, we propose a twofold approach:

1. sample the trial decisions (state values) x∗
t−1 using a time series model

that complies with the behaviour of the nature – be it linear or not –
so as to guarantee that the future-cost-function is estimated for realistic
values; and

2. use a risk averse weight λ so as to compensate for not taking into account
the time dependency in the backward step and avoid high costs in critical
situations.

Details regarding this proposal are discussed in the following sections.

5.2.1
Backward step of SDDP algorithm

While the forward step has only an auxiliary function for the SDDP
algorithm (to sample state trial decisions and to estimate the problem bounds),
the backward step is responsible for the solution of the problem. Its major
objective is to estimate piecewise affine functions representing the coupling
between stages. These functions are estimated for all states sampled at the
forward step of the algorithm, and constitute a lower approximation of the
true cost-to-go functions of the problem.

To achieve the objective of reducing the solution variability, the proposal
described in this work requires that the backward step of the algorithm is
solved considering only controllable variables as states, which means that an
independent time series model has to be used for the stochastic inflows process
in the hydrothermal planning problem. An independent time series model
does not mean that we cannot use any information to generate scenarios, it
means that its distribution cannot change due to different past conditions.
This implies that the backward scenarios for each stage can be sampled
unconditionally from the same model used in the forward step of the algorithm.
Moreover, since stagewise independence is preserved, the more information
that is used to estimate the distribution of the uncertainty model – such as
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future climate information and the lag zero correlation between systems – the
better the solutions can be.

Although the correlation between stages are not considered in the back-
ward step, this information is not disregarded, as the forward simulation con-
siders a realistic time series model to estimate the states for which the cost-to-
go function is calculated. However, depending on the quality of models used
in the forward and backward steps, this is not enough to guarantee the same
improvement1 in the solution that the algorithm with time dependency and
CV@R can provide, and an additional criterion is needed to guarantee the
same solution quality. For instance, consider the occurrence of a sequence of
low inflows, where stages with low inflows are followed by similar low inflows
stages. In this case, as the autoregressive model has the ability of generating
such a dry sequence, the use of an autoregressive model allows the algorithm
to obtain good solutions. On the other hand, if no information such as climate
forecasts is used to condition the uncertainty distribution, an independent time
series model is not going to be able to generate sequences of critical inflows
with the same frequency as the PAR model. Thereafter, the obtained solution
is expected to be less conservative than the one obtained with the use of a
PAR model and can be insecure in low inflows situations.

To deal with these critical situations, the proposed approach considers
a risk measure such as the CV@R. This risk measure in particular increases
the relative weight of expensive scenarios in the cut calculation and is similar
to a distortion in the uncertainty probability distribution, as each scenario is
going to have a different weight in the cut calculation that is proportional to
its associated cost. The resulting policy is going to be much more conservative
than the one considering independent time series model and a risk neutral
approach, and can be as secure as the risk averse calculated considering a
PAR model, as it is going to be shown later in this work.

5.2.2
Forward step of SDDP algorithm

The forward step of the algorithm is a direct simulation on time, from
which the system’s behaviour is simulated for realistic conditions and likely
state values are estimated, as well as the expected cost of the policy corre-
sponding to the entire planning horizon. In standard risk neutral approach,
this expected policy value is known to be, on average, an upper bound for the
problem solution. In the proposal described in this work, this property does not

1By improvement we mean greater guaranties on meeting the demand requirements which
can be associated with changes in the solution such as reduction on the risks of deficit and
increase in the average of stored volumes distribution.
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hold because of two reasons: (i) we consider the risk averse SDDP approach;
and (ii) the forward step of the algorithm makes use of a time dependent time
series model, while the backward step’s uncertainty model is stagewise inde-
pendent. This means that the estimated operation cost cannot be used as a
stopping criterion for the algorithm as in traditional approaches. Note that
in real sized problems this upper bound estimate is usually of no use, as it is
going to be discussed.

Discussion on SDDP convergence and Stopping criteria

Although Donohue [47] claimed that the finite convergence of SDDP
algorithm should follow from the finite convergence of the Nested Decompo-
sition algorithms [48] if the scenarios used to calculate optimality cuts are re-
sampled at each iteration, the first formal proof of almost-sure convergence for
SDDP-like algorithms was derived only in [39] for the CUPPS method. Later,
Linowsky and Philpott [31] have identified some crucial conditions to guar-
antee the convergence of sampling-based multistage stochastic decomposition
methods, such as SDDP, AND, CUPPS, and ReSa, which are the indepen-
dence between forward scenarios, the need to re-sample forward scenarios at
each iteration and ensure that the samples used to create it are also used in cut
generation. In 2008, Philpott and Guan [32] gave a simpler proof of almost-
sure convergence of SDDP-like algorithms based on the finiteness of the set of
distinct cut coefficients. A proof of finite convergence of the SDDP algorithm
was also given by Shapiro [6] using similar assumptions. Recently, Girardeau,
Lecrere and Philpott [33] gave a more general proof of convergence for models
with convex sub-problems, and Barty [49] proves SDDP convergence for a gen-
eral convex stochastic control program, not necessarily linear, without making
assumptions on the finite representation of randomness.

Despite the finite convergence of SDDP, on real problems the number
of possible scenarios and cuts can be very large, and hence the time required
for an algorithm to converge to the true optimum could be unreasonable [6].
Indeed, on practical applications the SDDP algorithm has to be stopped before
the optimal solution is found. The standard stopping criteria for the SDDP
method was proposed in [3], and consists of stopping the algorithm when the
lower bound reaches the lower end of the upper bound confidence interval. This
criterion can lead to premature termination when the sample size is small [50],
that is, it can be too optimistic with respect to the solution optimality [6].

Hindsberger and Philpott [50] compares the SDDP standard stopping
criteria to more restrictive statistical ones and to non statistical methods based
on the lower bound stabilization during the iteration process. The results of
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this paper show that some of the non-statistical criteria are superior due to
a better compromise between CPU time and solution quality. The authors,
on the other hand, point out that the non-statistical criteria lack the quality
assessment provided by statistical ones. However, as discussed in [6], it is true
that stabilization of the lower bound does not mean that the solution is close
to optimality, but it is also true that statistical criteria like the standard one
does not ensure the quality of the obtained solution.

Another statistical approach, proposed in [6], is to use the difference
between the upper end of the upper bound’s confidence interval and the lower
bound. This difference gives an estimate of a statistic upper bound on the
optimality gap, and may be used to stop the algorithm if it is smaller than a
specified accuracy. However, as shown in [51], in large problems this gap may
not become small enough in a reasonable computational time. In [51] it was
also tested a criterion based on the stabilization of the policy value distribution
between iterations by the use of a t-test. In paper [52] a new statistical stopping
criterion was proposed, as well as some modifications on the standard criterion
to avoid it stopping prematurely.

Even though all discussion on SDDP stopping criteria, the best way to
stop this algorithm in large scale problems stills as an open question. In the
absence of a definite way to stop the algorithm, in this work we are going to
use a maximum number of iterations criterion. Although it doesn’t guarantee
optimality of the solution, at least it makes possible to compare different
experiments in a fair basis, i.e., all experiments have the same number of
calculated cuts.

5.2.3
SDDP algorithm description

The SDDP algorithm for the proposed approach is presented in Algo-
rithm 1. For simplicity, in the forward step of the algorithm it is assumed an
autoregressive model of order one and one forward scenario per iteration. The
stopping criterion adopted was the maximum iteration number.

The algorithm requires the cut sets for each stage – usually initialized
as empty sets – the boundary condition for the last stage and a maximum
number of iterations. In line 1 the lower bound estimate and iteration counter
are initialized. The backward scenarios for each stage are sampled in line 2.
As the scenarios considered in the backward step are stagewise independent,
these scenarios will not change during the iteration process. The scenarios for
the forward step of the algorithm, on the other hand, are re-sampled at each
iteration using a time series model. In this case, an order one autoregressive
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model was used in line 7. The trial decisions x∗
t are calculated in line 8 and used

during the backward step, which starts in line 10. Then, the backward problem
is solved for all Nt scenarios (lines 12 to 14) and the average simplex multiplier
and expected cost are calculated (line 15). The CV@R is considered in line 16,
where the conditional average simplex multiplier and costs are calculated. The
risk averse cut is calculated in line 17 as a convex combination of the average
cut with the CV@R cut and added to the cuts set of stage t. Then, the lower
bound is updated (line 19) and the current iteration ends (line 21).
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Algorithm 1 Proposed approach to SDDP algorithm
Require: {Qt}t=2,...,T +1 = ∅(Cuts sets), imax(max. iterations) and x∗

0 (initial state)

1: Initialize: i← 0, z = 0 (Lower bound)
2: Sample Nt scenarios for backward step:

{{
bj

t

}
1≤j≤Nt

}
2≤t≤T

3: while i < imax do

4: (Forward step)
5: Sample 1 scenario: {εt}2≤t≤T , ε1 = 0
6: for t = 1→ T do
7: bt = Φbt−1 + εt, (or any time series model)

8: x∗
t ← arg min

xt


c⊤

t xt + Qt+1 :
Ttx

∗
t−1 + Atxt = bt,

xt ≥ 0


9: end for

10: (Backward step)
11: for t = T → 2 do
12: for j = 1→ Nt do

13:
[
Q̃∗

t,j(x∗
t−1), π∗

t,j

]
← min

xt


c⊤

t xt + Qt+1 :
Ttx

∗
t−1 + Atxt = bj

t ,
xt ≥ 0


14: end for
15: Q̃∗

t (x∗
t−1) = 1

Nt

∑Nt
j=1 Q̃∗

t,j(x∗
t−1) ; π̃∗

t = 1
Nt

∑Nt
j=1 π∗

t,j

16: Define l ∈ {1, · · · , Nt} corresponding to the (1−α) sample quantile of
ordered Q̃∗

t,j(x∗
t−1);

Q̃′∗
t (x∗

t−1) = Q̃∗
t,l(x∗

t−1) + 1
αNt

∑Nt
j=1

[
Q̃∗

t,j(x∗
t−1)− Q̃∗

t,l(x∗
t−1)

]
+

; π̃′∗
t =

π∗
t,l + 1

αNt

∑Nt
j=1 γt,j ;

where γt,j =
{

0, if Q̃∗
t,j(x∗

t−1)− Q̃∗
t,l(x∗

t−1) < 0
π∗

t,j − π∗
t,l, if Q̃∗

t,j(x∗
t−1)− Q̃∗

t,l(x∗
t−1) ≥ 0

17: Qi
t =

{
(1− λ)Q̃∗

t (x∗
t−1) + λQ̃′∗

t (x∗
t−1)− [(1− λ)π̃∗

t + λπ̃′∗
t ]⊤ · Tt · (xt−1 − x∗

t−1)
}

Qt ← Qt ∪Qi
t

18: end for

19: (Lower bound update)

20: z ← min
x1


c⊤

1 x1 + Q2 :
A1x1 = b1 − T1x∗

0,
x1 ≥ 0


21: i← i + 1
22: end while
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6
Solution Quality Indexes for Hydrothermal Operation Plan-
ning Problem

In real applications of large scale optimization problems, it is usually
impossible to find an optimal solution, even with the use of parallel processing
and advanced computing techniques. Moreover, we usually have several ways to
model the problems in order to solve them with different techniques, each one
having its own strengths and simplifications of the problem. Sometimes, when
different techniques or parametrizations of the same technique are applied
to a problem, it is difficult to decide whether to use one or another. This
difficulty arises because of the large variety of implicit criteria involved with
such problems and due to the lack of methodological ways to compare these
policies.

In this work two approaches to solve the hydrothermal operation planning
problem using SDDP algorithm are proposed, and we want to compare these
proposals with both risk neutral and risk averse SDDP algorithms. In order to
do this comparison in a way that the most important criteria are taken into
account, this section presents some indexes that are later going to be used to
compare different alternatives to solve the problem.

Although in hydrothermal operation planning problem the only criterion
explicitly considered is cost minimization, other two criteria are important and,
in a simplified way, considered as constraints or indirectly using a penalization
approach in the objective function. An example is the system’s security, which
is considered by a penalization approach using an increasing cost for deficits,
by the CV@R that penalizes the most expensive scenarios and some simplified
constraints that tries to represent electrical security constraints. The other
criterion, which is not represented in the problem at all, is the predictability
and stability of solutions and marginal costs (and its derived curve PLD) of
the problem.

In order to allow us to compare different policies with respect to these
criteria, this section defines some indexes, and describes how we are going to
use them to compare different approaches to solve the problem. Some of those
indexes are already used in hydrothermal operation problem, while others were
created to meet our purposes. Later in this work, a simplified hydrothermal
operation problem is going to be used to assess the solution properties of the
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proposed and traditional approaches. The solution for each approach is going
to be evaluated using the same set of 2000 scenarios, and the indexes are going
to be calculated using the results for this scenarios set.

6.1
Solution predictability and variability

An important criterion to evaluate an hydrothermal operation planning
problem policy is to assess its solution uncertainty, together with its variability.
Although this is the main topic of this work, among the three criteria discussed,
this is the less important one. This means that in order to achieve the main
objective of this work, we cannot deteriorate the results with respect to the
other two criteria.

In this section we are going to assess two types of solution variability: the
predictability of the solution at each given stage for a set of scenarios and the
variability over time for each scenario, during all stages of the planning horizon.
Although both are going to be studied, the first type is more important, as it
gives more relevant information about the uncertainty of the future solution
than the second one.

6.1.1
Solution predictability at each stage

The first type of solution variability, and the most important one, is
related to the uncertainty at each stage, and is going to be assessed in three
ways, described below.

Solution predictability index: 1–SAFE measure

The first way we are going to assess the solution predictability is resorting
to the concept that the volatility is directly related to the unpredictability of
a variable. Unlike the unconditional uncertainty shown in previous section,
the volatility of a variable at stage t measures the unpredictability of stage t

given the past values. The proposed index is going to be called 1–SAFE, which
stands for the volatility of the “one step ahead forecast error”. This index can
be calculated by resorting to a linear regression of type xt = β0,t +β1,txt−1 +et,
where xt can be either the thermal generation or the PLD, β1,t is the regression
coefficient, β0,t its intercept and et the error term.

The procedure to estimate a volatility index is summarized below:

1. Run a simulation with N scenarios, from stage 1 to T .

2. For each stage t = 2, · · · , T proceed as follows:
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(a) Take all PLDs or thermal generations at stage t − 1 and t as xt−1

and xt.

(b) Discard all pairs (xt−1, xt) in which there is spillage in stage t − 1
or t.

(c) Fit a linear model xt = β0,t + β1,txt−1 + et to the data.

(d) Calculate the models residuals by taking ẽt = xt−β0,t + β1,txt−1 for
all scenarios.

(e) The volatility index of stage t is going to be the standard deviation
of the model errors, which is directly related to the predictability
of the data:

V It [R$/MWh] = sd (et) . (6-1)

The described procedure is going to be done for PLDs and thermal generation
discarding the scenarios in which the system is spilling. The changes from
spilling to not spilling and the other way round can be seen as changes in
regimes, and a single linear model would not fit well both cases. Although
this model is simple enough to be able to forecast situations which system
is about to spill, in real world applications it is possible to forecast spillages,
as information regarding reservoirs levels, together with inflows and weather
forecast, is available.

The effect of discarding such values is shown for a hypothetical case
study in Figure 6.1. The regression considering all points, including the red
triangle ones, is shown by the dashed red line, while the regression discarding
such points is shown by the blue line. As the discarded points are usually
related to large forecast errors, the 1–SAFE index can be highly impacted
by the increased presence of spilling in risk aversion cases. In this example,
the VI index considering all the data points equals to 48.37, while without
considering the spillage points the VI index equals to 19.49. This emphasizes
the importance of discarding the points in which there is spillage, as the impact
on the results are huge, but could be easily predicted in most cases.

There are several other ways to compute a predictability index such as the
one proposed in this work. Models considering not only past PLDs, but also the
storage levels and energy inflows could give better results to forecast future
PLDs and, therefore, would give lower predictability indexes. On the other
hand, the relation between the results calculated for each solution approach
would not change much. In the development of this variability index both
storage levels and energy inflows were considered in the initial assessments,
but due to the small improvement achieved and the higher complexity of the
model, a simple order one regression was applied to the data.
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Figure 6.1: 1–SAFE index estimation – dashed red line is the regression
including the red triangle spilling points; the blue line is the adopted regression,
discarding such points

Solution uncertainty at each stage

The second way we are going to assess the solution variability for a given
stage is by examining the graph of the average thermal generation, PLD and
energy stored levels for each stage, together with their 5% and 95% quantiles,
similarly as shown in Figure 6.2 for hypothetical energy stored levels. These
results allow us to visually compare the dispersion of each distribution, together
with its expected value, and is directly related to the unconditional solution
uncertainty at a given stage t, which is important in medium-term analysis to
assess the behaviour of this system index not driven by the current situation.

This result can be summarized by an index that express the overall
dispersion of the variable along time. In this work we propose the use of the
average 90% empirical confidence interval given by:

1
T

T∑
t=1

(
Q95%

t −Q5%
t

)
, (6-2)

where Qx%
t represents the x% quantile of a given variable at stage t.

Solution variability given the same initial conditions

In this analysis, we are going to compare the thermal generations and
PLDs of the second stage of the problem. As the first stage of the problem is
deterministic, the second stage problems have similar initial conditions, and
differ from each other by the energy inflows to equivalent reservoirs, which
are different for every sampled scenario. This implies that the distribution of
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Figure 6.2: Hypothetical energy stored levels average, 5% and 95% quantiles
for each stage [MWmonth]

the second stage solution gives us information regarding the variability of the
solution with respect to changes in the inflows, which is exactly the problem
that motivated this work in the first place.

These results are going to be summarized in graphs like the one shown in
Figure 6.3, where we can see the second stage PLD histograms of two example
case studies, together with their first stage PLDs (dashed vertical lines). It is
expected that the second stage values are distributed around the first stage
one, and the smaller the deviation, the better the policy may be considered.

Figure 6.3: Second stage solution PLD
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6.1.2
Solution variability over time

This type of solution variability is related to the variability of thermal
generation over time. Figure 6.4 shows an example of a variable behaviour over
time for a given scenario, in this case, the historical inflows between the years
of 1936-1940. The main objective of this section is to propose a way that allows
a comparison of several case studies such that it is possible to distinguish which
one has the smoother variable behaviour for a set of scenarios. In this example,
the Case Study B has a smoother behaviour, and the proposed index should
reflect that.

Figure 6.4: Variable results for a given scenario

For each simulated scenario s, we propose the following procedure to
estimate a variability index:

1. Thermal generation variation over time [%] for scenario s:

δs,t [%] = 100× gts
t − gts

t−1
gts

t−1
, ∀t = 2, · · · , T

where T is the total number of stages and gts
t is the thermal generation

on stage t and scenario s.

2. For all δs,i where the marginal cost is below the minimum spot price
defined for Brazilian energy market its value is discarded and considered
as “missing value”. This procedure is done in order to avoid contamina-
tion of the variability index due to periods when spillage is responsible
for drastic drops in thermal generations and marginal costs. As spillage
increases when risk averse measures are implemented, we could mislead-
ingly correlate the use of a risk measure with an increase in solution
variability.
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3. The variability of scenario s is defined as:

Vs [%] = 1
T − 1

T∑
t=2
|δs,t|. (6-3)

For each scenario we know the variability index Vs, and we can plot the
distribution of this index to compare the variability of thermal generation of
several approaches. The same analysis can be done to compute the variability
index of PLDs. Figure 6.5 shows the distributions of an example variable, and
it is clear that Case Study B has a more stable behaviour.

Figure 6.5: Variability index

It is important to note that the proposed index measures the average
changes over time of a given scenario, and has no relation with the solution
uncertainty, that is, with the easiness to forecast future values. A time series
with a deterministic seasonal behaviour or a deterministic trend may show a
high variability index value, but could be easily forecast. The main point in
assessing the smoothness of a given variable is that a very erratic behaviour
usually means that there is an extra effort to accomplish the same task that
a smooth behaviour would accomplish. Although this is not always true, for
thermal generation variable, for example, a stable behaviour can give the same
amount of energy in a certain period of time that a solution with an erratic
behaviour, and possibly with a lower cost in cases in which the obtained
solution is not optimal, such as in the operation planning problem, which
is too large to be solved to optimality.
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6.2
Cost-based indexes

The next criterion to be discussed, and for many people the most
important one, is operation cost. As Brazilian laws for the energy sector are
mainly guided by a low tariff policy, this criterion is the most important one,
together with the security of supply. In this work we are going to present three
cost-based results.

6.2.1
Simulation costs over time

The first one presents information about the distribution of operation
costs along stages (the penalty costs at each stage are disregarded). It shows
in one graph, for each stage, the average cost value and the 99% quantile of the
cost distribution. With this result we can check whether one approach implies
in a cost expectation increase, and for which stages this happens, and if there
is a reduction on price peaks, which means that the high costs of dry scenarios
were avoided. An example of this result is shown in Figure 6.6.

Figure 6.6: Average and 99% quantile costs for each stage

6.2.2
Policy values and its confidence interval

The second result summarizes the cost information in one present value
and its 95% confidence interval. For each scenario i, we compute the sum of the
present values of all stages, such as in Equation 6-4, with an annual discount
rate r and a cost ct,i at each stage t.
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Zi =
T∑

t=1

 1
12
√

1 + r
100

t−1

· ct,i (6-4)

The expectation is taken over N scenarios with equal probability, as in Equa-
tion 6-5, and the expected policy value 95% confidence interval is computed
as in Equation 6-6, where sd(·) denotes standard deviation.

E[Z] = 1
N
·

N∑
i=1

Zi (6-5)

CIE[Z] =
[
E[Z]− 1.96 · sd(Z)√

N
,E[Z] + 1.96 · sd(Z)√

N

]
(6-6)

This index gives information about the uncertainty on the expected total
cost estimator, and allows us to measure the expected increase in the policy
value between risk neutral and the other approaches. We expect that we are
able to find parametrizations of the proposed approaches that gives similar
results, although we would allow a small increase in cost expectation if the
solution variability is reduced. An example of such result is shown for two case
studies in Figure 6.7.

Figure 6.7: Policy values [R$ ×106] and its 95% confidence interval

6.2.3
Conditional value at risk

The third result reflects the average cost in the worst scenarios, and is
given by the CV @Rα risk measure:

CV @Rα(Z) = V @Rα(Z) + α−1E[(Z − V @Rα(Z))+] (6-7)
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where V @Rα(Z) is the (1 − α)-quantile of the distribution of Z, and (x)+ is
the maximum between 0 and x. In this work we are going to use α = 0.05, as
this is an usual value in risk applications. Note that Z is the present value of
the policy values. This index should be smaller for risk aversion cases, as the
objective function considers CV @R minimization explicitly, although in the
optimization the CV@R is considered in a nested formulation, and not taken
over the present values of the policy values. This is an important measure, as
it is directly related to the cost of worst scenarios and shows which approach
deals better with dry situations.

6.3
Continuity of energy supply

The last criterion to be assessed is the continuity of energy supply. This
criterion is often referred to as system operation security. A solution approach
that disregard this criterion could have drastic economical impacts in case the
continuity of energy supply is compromised. Therefore, this criterion rivals with
the minimum cost objective and for some policy makers it can be considered
as the most important one. The security provided by each approach is going
to be assessed by two indexes: the stored energy and the annual risk of deficit.

6.3.1
Stored Energy

The stored hydro energy is directly related to the security of hydrother-
mal systems that strongly relies on hydro plants to supply its demand, such
as the Brazilian one. In those cases, the more water stored in hydro plants,
the longer dry period the system can manage to supply its demand without
resorting to an energy rationing. The stored energy for all case studies are
going to be compared in two ways.

The first way consists of a graph that shows, for each stage, the average
stored energy value and the 5% and 95% quantiles of the stored energy
distribution, as shown in Figure 6.2. This graph allows the comparison of
the level and variability of the distribution. For instance, it emphasizes the
effect of including risk aversion concerns in the problem: higher stored levels
in the reservoirs. This result also gives a clue about the behaviour of the tails
of stored volumes distribution, such as which approach keeps the reservoirs in
higher levels in dry situations, for example.

Although this result gives a general overview, it lacks a more objective
way of comparing the results and, in some cases, can be insufficient to
distinguish between two different solutions. To deal with this lack of objectivity,
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we have created an index that results from the comparison of the stored
volumes distribution at each stage. It is summarized, for each stage, as follows:

1. Calculate de empirical cumulative distribution function of the stored
energy volumes for all case studies, as shown in Figure 6.8. This gives
the sorted vectors StoV oli, for all case study i, with dimension N , where
N is the number of scenarios (in our case, 2000).

2. For all N probability levels p = 1
N

, · · · , 1, calculate the maximum stored
volume among the case studies, which gives the vector StoV ol. This is
the best solution found at each probability level, that is, it dominates
all solutions, and is shown by the blue dashed line in Figure 6.8. This
procedure is repeated to calculate the minimum stored volumes, StoV ol.

3. For each probability level and case study i calculate a score vector
by dividing (term by term) its stored volume vector by the maximum
values vector: I tmp

i = StoV oli
StoV ol

. The resulting vector I tmp
i indicates, for all

probability levels, the relation of case study i with the best value found,
with 1 being the best possible score.

Figure 6.8: Stored Energy Volume Analysis

Although this score vector I tmp
i allows us to compare all solutions i at

each stage and probability level, it does not make any distinction between
stored levels, that is, the importance of all scores in the vector I tmp

i is the
same, no matter to which stored level it is related. From a practical point of
view, it seems much more important to have the highest stored volume in low
storage (dry) situations than when the reservoirs are almost at full level. To
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represent this, we define a function f(x), which gives a weight for each storage
level interval:

f(x) =



1.2, if x ∈ [0, 30%]
1.1, if x ∈ (30%, 50%]
1.0, if x ∈ (50%, 70%]
0.9, if x ∈ (70%, 90%]
0.8, if x ∈ (90%, 100%].

(6-8)

The values that define this function should account for the decision maker
preferences, and were chosen in a way that reflects a preference for higher
stored volumes in critical situations. This function f(x) is then applied to all
probability levels p, using the minimum stored volume at each level, StoV ol,
as the variable x of function f . The resulting weights are stored in a vector W ,
which gives the importance of the scores I tmp

i for each probability level. The
final index vector is calculated by an element-wise product Ii = W · I tmp

i . The
quality index for case study i at a given stage is QIi = 1

N

∑N
j=1 Ii,j, where Ii,j

denotes the j–th element of vector Ii.
The above result allows us to compare, in one graph, the stored energy

quality index in all stages for every approach. Moreover, it allows us to estimate
the average quality index for each solution being compared.

6.3.2
Risks of deficit

The last index measures security explicitly: the annual frequency of
deficits for several deficit depths. For each system and deficit depth (greater
than 1%, 5%, 10% and 20% of the demand), we compute how many scenarios
lies within the level of deficit in each year of the study horizon, and divide by
the total number of scenarios. As a result, for each case study and deficit depth,
we have an annual deficit frequency. This result is shown for a hypothetical
case study in Figure 6.9, where each line represents one deficit depth and the
dots represent the years, from year one up to five and can be used to explicit
which proposal is related to smaller risks of deficit.

6.4
Summary indexes

The previous topics presented a variety of ways to compare different
solutions for many criteria. In order to give a brief overview of each solution
approach with respect to all three criteria at a glance, this section presents
a summary index for each criterion. The cost-based criterion is going to be
summarized by the expected total cost and confidence interval (Section 6.2.2),
which gives an idea of costs level for each approach. The second criterion,
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Figure 6.9: Annual risks of deficit [%]

system security, is going to be summarized by the average of the annual deficits
frequency, for deficits greater than 1% of the demand. The third criterion is
going to be summarized by the average 90% PLD empirical confidence interval
calculated by Equation (6-2), that is, the average of the distances between 5%
and 95% quantiles of the PLD distribution. These summary indexes are not
meant to decide between approaches, as they lack many details assessed in
previous topics, but just to give an idea of which are the strengths of each
methodology.
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7
Computational experiments

In order to compare both proposed approaches with standard risk neutral
and risk averse SDDP algorithm, a computer implementation was written in
C++ using Soplex Solver [53], and considered the risk neutral and risk averse
SDDP approaches. Detailed description of the risk neutral and risk averse
algorithm can be found in [14]. The codes were run on 1 core of a quad-core
Intel Xeon 3.4GHz with 16GB RAM machine.

7.1
Case studies description

7.1.1
Problem description

The cases studies considered a hydrothermal operation planning prob-
lem and were based on a simplified Brazilian Interconnected Power System
configuration, as of January 2012. The problem was discretized monthly in
120 stages (60 stages of operation planning horizon and 60 stages as a bound-
ary condition). The system was represented as in Figure 3.2, with four energy
systems interconnected by transmission lines. The PLDs were calculated as
the marginal cost values, limited to the interval [12.20, 727.52], which was the
PLD interval used in 2012. The same yearly discount rate used in the official
problem was adopted, that is, 12%. The equivalent systems maximum genera-
tion values, storage availability and initial conditions are shown in Table 7.1.
A thermal plants summary for each system is shown in Table 7.2, where it is
possible to see the installed capacity and the price range for each system. It
is important to note in both Tables 7.1 and 7.2 that the South-East system is
the biggest one, and it is going to be the main focus of our analysis.

System Maximum Maximum Initial
Generation Storage Volume Stored Volume

South-East 45829.1 200717.6 119428.8
South 13381.8 19617.2 11535.1

North-East 9780.9 51806.1 29548.2
North 7740.2 12679.9 6649.4

Table 7.1: Equivalent reservoirs data [MWmonth]
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System Installed Minimum Maximum
Capacity [MW] Price [R$/MWh] Price [R$/MWh]

South-East 13772 0.01 1047.38
South 3630 53.82 780

North-East 4336 70.16 926.43
North 332 463.5 463.5

Table 7.2: Thermal plants summary

The demand for each system is considered deterministic, such as in
Brazilian real operation planning applications. The energy inflows in equivalent
systems reservoirs, on the other hand, are uncertain and are represented by the
use of scenarios, modelled by a periodic autoregressive, or by an independent
time series model, depending on the case study.

The load of each area must be supplied by local hydro and thermal plants
or by power flows among the interconnected areas. The load shortage at each
area is taken into account by a slack thermal generator with costs that increase
with the amount of load curtailment (Table 7.3). The interconnection limits
between areas may differ depending of the flow direction, see Table 7.4. The
energy balance equation for each sub-system must be satisfied at each stage
and scenario. The case’s general data, such as hydro and thermal plants data
and interconnections capacities were taken as static values through time, while
the demand for each system and the energy inflows in each reservoir were taken
as time varying.

% of total Cost
load curtailment [R$/MWh]

1 0 – 5 1206.38
2 5 – 10 2602.56
3 10 – 20 5439.12
4 20 – 100 6180.26

Table 7.3: Deficit costs and depths

It is important to emphasize again that the modelling used in this work
is simplified in comparison with the official model used in Brazilian operation

to
SE S NE N IM

from

SE – 7700 1000 0 4000
S 5670 – 0 0 0

NE 600 0 – 0 3000
N 0 0 0 – –
IM 2854 0 3960 3149 –

Table 7.4: Interconnection limits between systems [MWavg]
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planning. We used the same modelling described in [14], which is able to
preserve the main characteristics of the problem and its large scale size. The
main simplifications were the lack of a run-of-river equivalent reservoirs, the
absence of minimum flows constraints (that are responsible for a minimum
generation, as each reservoir must let an amount of water to go down the
river), the consideration of only one load depth, no correction to the equivalent
reservoirs production due to storage levels and no water evaporation considered
in the equivalent reservoirs. Although these simplifications could be seen as
a weakness of the current experiments, the consideration of these problem
characteristics would not reduce the solution variability and, therefore, their
absence does not invalidate the results show in this section.

7.1.2
Solution approaches description

In order to evaluate the performance of the proposed approaches for
solving multi-stage linear stochastic long-term operation planning problems,
we carried out numerical experiments considering two reference cases:

– Risk neutral case: the main objective of this study is to establish a
reference for the problems solution when no risk measure is taken
into account. A periodic autoregressive model was used to sample the
scenarios for the backward and forward procedure. This case study, a
risk neutral with backward dependent procedure, is going to be called
“RN BW-D” from here onwards.

– Risk averse case (α = 0.05, λ = 0.15): this case study establishes a
reference for a good solution in the sense that the risks of load curtailment
are small and the increase in the operation cost is acceptable. It uses the
same scenarios tree as the “RN BW-D” case, and is going to be called
“RA BW-D (α = 0.05, λ = 0.15)”. The choice of the quantile α was the
standard used in most risk aversion applications.

Additionally, each proposal described in this work is represented by one
case study. The choice of each parametrization was done empirically, and is
described in Appendix C. The proposed case studies, to be compared with the
reference cases, are:

– RA BW-D-GT (α = 0.05, λ = 0.15, ∆GT = 5%, p = 100): chosen
parametrization of thermal generation as state variable approach, with
a maximum variability in the generation of thermal plants of 5% over
stages, and penalty term values p = 100.
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– RA+ BW-I (α = 0.05, λ = 0.40): risk averse backward independent
approach, with the same CV@R level as the reference risk averse case, but
with a higher risk aversion weight. This higher risk aversion is emphasized
by the “+” superscript, and can be interpreted as an uncertainty (or
ambiguity) aversion, and is trying to compensate the fact that we are
using a distribution that is known to be different from reality.

Where clear from the context, the case studies names are going to appear
without the parameter values to avoid either being repetitive or due to space
and formatting issues.

The SDDP algorithm was run with 1 trial solution per iteration for a total
of 3000 iterations. The choice of 1 forward scenario at each iteration is already
in use for a long time in the DOASA software [54], and was also studied in [51],
where it was shown that for a strategy of keeping a fixed number of scenarios
during the iteration process, this seems to be the most efficient parametrization
to compute SDDP cuts. In [51] it was also shown that a strategy of increasing
the number of sampled scenarios during the iteration process can give even
better results, but due to the lack of studies regarding its parametrization it
was not used in this work. The choice of 3000 iterations in our experiments
was the same as used in [51], which had the same modelling simplifications and
showed that the optimality gap is usually stable by the 3000-th iteration, and
that the improvement in the solution is not worth the computational effort
after that iteration. However, this choice is not meant to be the same in other
implementations, as the detail level can increase the problem complexity and,
then, increase the number of iterations required to get a reasonable solution.
Another important point to mention is that, with a fixed number of iterations,
the comparison among the cases are done in a fair basis, as all approaches have
the possibility to calculate the same number of cuts. Figure 7.1 shows the lower
bound convergence during the 3000 iterations. It is clear that the Backward
independent cases stabilize before the dependent ones, and that the later ones
stabilize after 2500-th iteration. Figure 7.2 shows the simulation costs in each
forward simulation (with 1 scenario). The results of the risk averse cases are
clearly more expensive than in the risk neutral one, as it was expected.

The scenarios tree used in the case studies had 100 realizations per
stage with the total number of scenarios 1 × 100 × · · · × 100 = 100119. As
a consequence, the backward procedure used 100 scenarios at each stage. For
each approach, at the end of the iteration process two extra forward simulations
were done, one with 2000 out-of-sample randomly generated scenarios using
the periodic autoregressive model and another with 75 historical inflows. Most
comparisons are shown using the generate scenarios, but in some cases in which
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Figure 7.1: Lower bound over the iteration process

Figure 7.2: Simulation cost over the iteration process (cost for 1 forward
scenario)

specific behaviour of some series are the focus of the analysis the historical
scenarios are shown.

7.2
Comparison between chosen case studies

In this section we are going to compare both risk neutral and risk
averse cases with the solutions of each proposed approach. In order to have a
comparison of all solutions at a glance we are going to present the summary
indexes first, followed by more detailed results regarding solution variability,
cost and security.
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7.2.1
Summary results

The summary indexes results for the case studies are shown in Table
7.5. Although all of them should be minimized, they represent conflicting
objectives. The reference case, “RA BW-D”, is shown in bold. While the
risk neutral case shows the best results for expected total cost, it does not
show good results for system security and solution variability. The proposed
approach “RA BW-D-GT” shows the best results for system security, but the
worst for expected total cost criterion. Also, it does not show good results
regarding solution variability, which in this case is only related to PLDs. The
proposed approach “RA+ BW-I” shows the best results considering all criteria
together. Although it does not show good results for cost-based criterion if
compared to RN BW-D case, it is the best among the risk averse cases.
Moreover, its system security results are similar to the other risk averse cases
(although it is more than twice the value found by the other risk averse cases,
all average risks over 5 years are lower than 1%), and the variability criterion
is best performed by this approach, suggesting that this is the best approach
within the studied options. The increase in the cost for all risk averse cases
can be seen as a premium paid to increase security of the solution.

Cost index Security index Variability index
Case study (×106) (%) (R$/MWh)
RN BW-D 40,300.79 2.26 261.44

RA BW-D 49,035.34 0.23 234.77
RA BW-D-GT 49,862.23 0.20 239.78

RA+ BW-I 47,944.02 0.48 188.71

Table 7.5: Summary results indexes

These results give an overview of the solutions obtained with each
approach to solve the problem, and show that the objective of this work is
accomplished. A more detailed analysis of the results is given in the ensuing
text.

7.2.2
Solution variability indexes

The proposal of this work is to reduce the SDDP solution uncertainty
and variability, and the investigation of this topic is the main objective of this
section.

As mentioned before – and despite not being considered in the problem
formulation – one could favour thermal generation decisions that do not change
very much on a weekly basis, as it may imply in fuel logistic difficulties and
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in higher total operation cost for the system along the planning horizon.
Moreover, as a long-term operation problem, the weekly decisions shouldn’t
be so strongly based on recent inflows information.

Solution uncertainty index: 1–SAFE measure

The first results are focused on the measurement of the volatility reduc-
tion over time, which is directly related to the predictability of the solution.
This volatility was assessed using the 1–SAFE measure, which methodology
is described in Section 6.1.1. Figures 7.3 and 7.4 depict the 1–SAFE index
over time, and it is clear that the proposed methodologies are able to reduce
the solution volatility, with RA BW-D-GT reducing only thermal generation
volatility, while RA+ BW-I reduces also PLD volatility.

This result is very important, because it shows that the solution pre-
dictability is increased by the proposed approaches and, if the remaining char-
acteristics of the solution are not deteriorated, implies that the main objective
of this work is achieved. However, before assessing the other criteria of inter-
est, let us first evaluate the solution variability and uncertainty with respect
to different measures.

Figure 7.3: Thermal Generation volatility 1–SAFE measure over time

Solution uncertainty at each stage

The second results, presented in Figure 7.5, depicts the average ther-
mal generation and the 5% and 95% quantiles, and show that the thermal
generation uncertainty at each stage is reduced in both proposed approaches,
although in RA BW-D-GT proposal the reduction is not very significant. Ad-
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Figure 7.4: PLD volatility 1–SAFE measure over time

ditionally, Figure 7.6 shows that the uncertainty of PLDs distribution at each
stage is reduced only in RA+ BW-I approach. This result reinforces the appro-
priateness of the presented proposals, and shows that the uncertainty regarding
the solution can be reduced.

Figure 7.5: Thermal Generation average and 5% and 95% quantiles

An uncertainty index can be calculated by the average 90% empirical
confidence interval for both variables, and is shown in Table 7.6. This index
was already shown for PLDs in the summary results.
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Figure 7.6: PLDs average and 5% and 95% quantiles

Thermal generation PLD
Case study (MWavg) (R$/MWh)
RN-BW-D 7533.70 261.44
RA-BW-D 7633.50 234.77

RA-BW-D-GT 7115.70 239.78
RA+ BW-I 6333.45 188.71

Table 7.6: Uncertainty indexes

Solution variability over time

The next result we are going to show in this section is related to the
variability of thermal generation over time for a given scenario. The procedure
used to calculate this index was described in Section 6.1. The distribution
of the variability index Vs for thermal generation is shown in Figure 7.7. It is
clear that both proposed approaches imply in a reduction of thermal generation
variability over time. It is important to note that in the RA+ BW-I case this
result is uncontrollable, while in the RA BW-D-GT case the adjustment of the
penalty value and ∆GT allows the decision makers to fine tune the variability
over time.

This result is summarized by its mean and standard deviation for all
systems in Table 7.7 and Table 7.8. It is possible to notice that not only the
expected variability, but also its standard deviation, is reduced in all systems
but North. The exception of the North system is related to its very small
thermal generation capacity, with only two thermal plants in this case study,
with installed capacity of 166 MW each – note that for the North system the
total installed capacity is 7740 MW.

The reduction in thermal generation variability is also illustrated by
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Figure 7.7: Thermal generation variability

RN BW-D RA BW-D RA BW-D-GT RA+ BW-I
Southeast 8.64 11.13 5.72 6.09

South 13.66 17.74 7.10 10.39
Northeast 17.13 14.58 6.77 7.53

North 5.51 2.61 3.93 3.45

Table 7.7: Thermal Generation Average Variability

RN BW-D RA BW-D RA BW-D-GT RA+ BW-I
Southeast 2.84 2.43 0.98 1.79

South 5.06 6.25 2.25 4.88
Northeast 5.86 4.89 2.32 3.15

North 42.54 6.62 26.41 7.60

Table 7.8: Thermal Generation Variability Standard Deviation

Figure 7.8, which shows, for a given scenario, the thermal generation behaviour
over monthly stages for a simulation with a historical scenario. The chosen
scenario was the period between 2001 and 2005, which comprehends Brazilian
energy rationing occurred between 2001 and 2002.

The same procedure described in Section 6.1 was applied to PLDs, and its
variability index was calculated for all scenarios. The distributions of variability
indexes Vs for PLDs are shown in Figure 7.9. Unlike seen in thermal generation
results, where both proposed approaches implied in a reduction of thermal
generation variability, only the RA+ BW-I proposal resulted in a reduction of
PLDs variability over time. This result was expected, since the RA BW-D-GT
approach is aimed just at controlling thermal generation variability over time.

This result is emphasized for all systems in Table 7.9 and Table 7.10,
where only RA+ BW-I case shows a reduction on both average and standard
deviation for all systems.

DBD
PUC-Rio - Certificação Digital Nº 1113687/CA



On the Solution Variability Reduction of Stochastic dual Dynamic
Programming Applied to Energy Planning 85

Figure 7.8: Thermal generation for simulation with historical inflows occurred
between 2001-2005

Figure 7.9: PLD variability

The previous results are illustrated for a particular historical scenario
2001–2005 in Figure 7.10, where the PLDs over time are shown.

Solution variability given the same initial conditions

The last set of results regarding solution variability that is going to be
shown is the second stage thermal generations distribution. The “RA BW-D
(λ = 0.15, α = 0.05)” case is the reference on Figure 7.11, and is shown by
the blue histogram. On top of Figure 7.11 we can see that the variability of
thermal generations in the second stage is higher in RA BW-D case, with a high
frequency of thermal dispatches far from first stage solution, while in the risk
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RN BW-D RA BW-D RA BW-D-GT RA+ BW-I
Southeast 21.62 19.27 19.66 9.99

South 21.88 19.05 20.60 9.48
Northeast 25.45 21.09 22.12 11.64

North 30.55 24.26 25.38 15.03

Table 7.9: PLD Average Variability

RN BW-D RA BW-D RA BW-D-GT RA+ BW-I
Southeast 6.16 8.05 7.41 5.99

South 6.18 7.82 7.52 5.47
Northeast 6.98 7.72 7.23 4.96

North 12.90 12.53 10.22 7.98

Table 7.10: PLD Variability Standard Deviation

Figure 7.10: PLDs for simulation with historical inflows occurred between 2001-
2005

neutral case this variability is lower due to smaller dispatch values. On the other
hand, on both proposed approaches, on the pictures at the bottom of Figure
7.11, the second stage variability is much smaller and concentrated near the
first stage value. Some summary statistics of second stage thermal generation
are shown in Table 7.11. The average and maximum thermal dispatch is greater
in risk averse cases, and the minimum is similar in first three cases and equals
to the inflexibility of thermal generators, while in RA BW-D-GT case it has a
bit higher value. As a consequence of a higher average while still presenting low
dispatch values in many scenarios, the standard deviation of risk averse cases
are higher than risk neutral one. On the other hand, comparing the standard
risk averse case with proposed approaches, there is a reduction in the standard
deviation and in the maximum value.

The same kind of results are shown for second stage PLDs, in Figure 7.12,
and the summary statistics in Table 7.12. We can see that PLDs distribution
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Figure 7.11: Second stage thermal generation [MWmonth]

Case study Std. Deviation Average Median Minimum Maximum
RN BW-D 432.00 4084.54 3996.40 2584.60 5018.40
RA BW-D 1335.95 6330.93 6784.20 2584.60 8290.20

RA BW-D-GT 765.83 6528.14 6500.20 3996.40 7200.20
RA+ BW-I 642.02 6811.62 7200.20 2584.60 7200.20

Table 7.11: Second stage thermal generation statistics [R$/MWh]

of the proposed approach RA+ BW-I are much more concentrated around
the first stage value and that its standard deviation and maximum value are
smaller than the standard risk-averse approach. The proposed approach RA
BW-D-GT does not show good results for PLDs, as already mentioned in this
work.

Conclusions

The main conclusion of this subsection is that it is possible to reduce the
solutions uncertainty and variability over time with both proposed approaches.
While the first proposal deals only with the thermal generation behaviour,
the second proposal allows the stabilization of both thermal generation and
PLDs. This characteristic makes the “RA+ BW-I” a better choice to stabilize
SDDP solutions in the energy operation planning framework. In order to assess
other properties of the proposed approaches and to check whether the same
properties of the reference case “RA BW-D” still hold in these alternatives,
the next section will investigate the cost based indexes that were presented in
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Figure 7.12: Second stage PLDs

Case study Std. Deviation Average Median Minimum Maximum
RN BW-D 27.93 71.42 77.60 0.00 118.10
RA BW-D 43.24 143.48 156.60 0.00 201.50

RA BW-D-GT 47.18 133.43 144.20 0.00 202.00
RA+ BW-I 18.49 161.11 166.60 0.00 181.10

Table 7.12: Second stage PLDs statistics

Section 6.2.

7.2.3
Cost-based indexes

Besides being able to reduce the solution uncertainty, the proposed
approaches must be able to find solutions similar to the ones obtained by
the RA BW-D case with respect to the simulations costs and systems security.
The following sections investigate whether these characteristics are kept by the
proposed approaches.

Simulation costs

The operation costs for each stage are shown in Figure 7.13. The thicker
continuous lines are the average costs for a 2000 scenarios simulation and the
dotted lines show the 99% quantiles of the individual stages cost. We can see
that the risk averse cases results are very similar and that there is a reduction
in the cost peaks with a small increase in the average cost. This is a first
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evidence that the proposed approaches are able to give solutions as good as
the standard risk-averse SDDP.

Figure 7.13: Average and 99% quantile costs for each stage

Policy values

The second cost-based index is the resulting average policy values for 2000
scenarios and is shown in Table 7.13 together with its 95% confidence interval
upper and lower bounds. The results for the RA BW-D-GT approach, although
slightly higher than the standard risk averse case, shows an intersection
between their average confidence interval. This difference may be explained
by the slightly safer solution, and then using more thermal dispatch, given
by this approach in comparison with the RA BW-D case. The same applies
to the RA+ BW-I case, which has a lower value than RA BW-D case, and
which found a solution that is less safe than the one found by RA BW-D
case. Although the RA+ BW-I has a higher risk aversion than the RA BW-D
cases, this increased risk aversion is working as an ambiguity aversion, and is
not necessarily expected to give higher costs in comparison to the other risk
averse cases. In fact, the risk aversion level was increased in order to give, in
conjunction to the lack of information in the backward scenarios, a similar risk
aversion level as the RA BW-D cases and, then, similar policy values.

Conditional Value at Risk

The conditional value at risk results are consistent with the expected
results, that is, the RN BW-D shows the worst result, which means that the
average cost of the 5% most expensive scenarios in this approach is much higher
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LB CI Average UB CI
Case study (95%) Policy value (95%)
RN BW-D 39,229.02 40,300.79 41,372.57
RA BW-D 48,306.27 49,035.34 49,764.40

RA BW-D-GT 49,151.69 49,862.23 50,572.77
RA+ BW-I 47,187.80 47,944.02 48,700.25

Table 7.13: Policy values [R$ ×106]

than in cases where the CV@R is taken into account in the objective function.
Moreover, the best results were achieved by RA BW-D case, in which the only
objective is to minimize total expected cost and CV@R.

Case study CV@R
RN BW-D 115,487.90
RA BW-D 92,195.88

RA BW-D-GT 94,611.50
RA+ BW-I 96,972.39

Table 7.14: 5% Conditional Value at Risk [R$ ×106]

Conclusions

The results shown in this section makes clear that the proposed ap-
proaches have the same cost behaviour as the reference case. Moreover, the
“RA+ BW-I” was able to achieve similar results with a smaller expected cost.
The only result which the proposed approaches have underperformed the ref-
erence case was the CV@R one, although the reduction compared to the risk
neutral case was significant.

7.2.4
Operation security indexes

Stored volumes

In hydrothermal operation planning problem, a conservative solution
may be characterized as the one in which thermal plants are dispatched more
frequently, specially in dry inflows periods. This means that the hydro plants
are used with more caution and the stored volumes are kept in higher levels
aiming at reducing the costs during dry seasons. This behaviour is shown in
Figure 7.14, where all risk averse cases have higher stored volumes (on average
– continuous line – and on 5% and 95% quantiles – dashed lines). Another
behaviour that can be observed is that the RA BW-D and RA BW-D-GT
cases show higher 5% quantile and lower 95% quantile if compared to the
RA+ BW-I approach. This can be explained by the past inflows dependent
characteristic taken into account by backward dependent policy approaches. In
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critical situations it rises thermal generation, and hence, tries to keep reservoirs
levels high, while in wet situations it decreases thermal generation and reduces
the stored volumes. This characteristic is intuitive and seems to be correct, but,
due to expectation reversals, it increases solution variability, which ultimately
cause undesired effects in the operation planning and its related areas.

Figure 7.14: Average, 5% and 95% quantile stored volumes for each stage
[MWmonth]

Although it is possible to see that the proposed approaches are very
similar to standard risk averse case, this analysis lacks a more objective
comparison of the stored energy for all alternatives. In order to make this
comparison more objective we have calculated the stored energy quality indexes
presented in Chapter 6, which distinguishes between solutions that are better
in dry and wet situations, for example. The quality index for each stage for the
total stored volume (sum of all systems) is shown in Figure 7.15, from which
we conclude that standard risk averse and RA BW-D-GT cases are better in
almost every stage, with RA+ BW-I coming on third, and the risk neutral case
with very poor results.

Moreover, the results for all systems (shown in Table 7.15) are standard-
ized with respect to the best solution for each system to simplify our analysis
process. In this way, the best solution for each system always appears as 1.00.
The standard RA BW-D case shows the best performance for all systems ex-
cept for the South, where the RA+ BW-I performed best. The fact RA+ BW-I
was better in South can be explained by the high variability and low stagewise
correlation of the inflows in this system, which makes an independent approach
as good as a dependent one. Moreover, the proposed approaches have scores
greater than 0.90 in all systems, which means that even in situations where
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Figure 7.15: Stored Energy Quality Index for each stage

the proposed approaches don’t have the best performance, the results are not
far from the best solution.

RN BW-D RA BW-D RA BW-D-GT RA+ BW-I
Southeast 0.709 1.000 0.991 0.961

South 0.569 0.881 0.925 1.000
Northeast 0.662 1.000 0.933 0.976

North 0.831 1.000 0.911 0.953

Table 7.15: Stored Energy Quality Indexes

Risks of deficit

Although the reduction of cost peaks may indicate a more conservative
system operation, it is very important to certify that the risks of deficit are
kept below certain levels. In Figure 7.16 we show the Southeast annual risks
of deficits greater than 1%, 5%, 10% and above 20% of demand. We can see
that the proposed approaches are able to reduce the risks of deficits greater
than 1% to a level below 1%. Moreover, the RA BW-D-GT case shows risks
that are similar to the ones observed in the standard risk averse case.

Discussion on the solution security

Although the previous results show that the security level obtained by
the proposed approaches are similar to the ones observed in the standard risk
averse SDDP, one may argue that in critical situations the operation calculated
by the standard RA BW-D SDDP and the proposed approach RA BW-D-GT
are much more secure due to the consideration of the autoregressive model in
the backward procedure.
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Figure 7.16: Annual risks of deficit [%]

In order to assess whether this claim is true, we compared the solution
behaviour of each approach in several hydrological situations: wet, regular and
dry. The results are aggregated for all systems, that is, represents the sum of
the results for SE, S, NE and N.

– Wet hydrological condition: this situation is exemplified by the
historical scenario occurred between 1979–1983, which was extremely
wet in comparison to the rest of the historical record. The stored energies
for a simulation with such scenario are shown in Figure 7.17, and show
that the RA+ BW-I approach keeps the reservoir in a higher level, as
expected due to the already shown results. In such a wet scenario, we
could expect that this solution approach would result in a higher spillage
if compared to the backward dependent approaches. However, this is not
observed, as shown in Figure 7.18. Although the stored level is higher in
the RA+ BW-I case, actually the reservoir level recovery of RA+ BW-I
case is slower than the recovery observed on the other approaches, and
the maximum capacity is often reached around the same stage.

– Regular hydrological condition: to exemplify this condition the
period between 2004 and 2008 was chosen. There is no clear bias on
the RA+ BW-I solution (see Figure 7.19) and, with the exception of the
last stages, the storage remains close the other solutions.

– Dry hydrological condition: this is the main objective of this analysis,
and two different periods were chosen: 2001–2005, which comprises the
Brazilian energy rationing, and 1952–1956, the most critical period so
far in the Brazilian inflows record. Figure 7.20 shows the stored volumes,
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Figure 7.17: Total stored energy for simulation with historical inflows occurred
between 1979-1983

Figure 7.18: Total spilled Energy for simulation with historical inflows occurred
between 1979-1983

and it is possible to see that all risk averse cases kept the stored levels
much higher than the risk neutral case. In this simulation, no deficit was
observed in any case. The next step is to assess the solution under the
most extreme situation ever observed, the period between 1952–1956.
As expected, Figure 7.21 shows that the RA+ BW-I case gives a stored
volume lower than the backward dependent cases, although they all end
up with the same stored level. In order to clarify the impact of such a
lower storage level, Figure 7.22 shows the total deficit for each case. It
is not clear that the backward dependent cases are more secure than
the independent one. Moreover, for practical purposes, once the stored
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Figure 7.19: Total stored energy for simulation with historical inflows occurred
between 2004-2008

Figure 7.20: Total Brazilian stored energy for simulation with historical inflows
occurred between 2001-2005

volumes achieve a very low level, the system operator would not allow
the thermal plants to be turned off, what would reduce the chances of
having such deficit spikes as observed in the picture.

Conclusions

The last criterion evaluated was the solutions security. The results
show that both proposed approaches achieves the same security levels as the
reference case, with “RA+ BW-I” case being slightly worse than “RA BW-D-
GT” case. However, this difference is negligible, and can be overlooked due
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Figure 7.21: Total Brazilian stored energy for simulation with historical inflows
occurred between 1952-1956

Figure 7.22: Total Brazilian energy deficit for simulation with historical inflows
occurred between 1952-1956

to the better performance of “RA+ BW-I” in both variability and cost based
criteria.
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8
Conclusions and Future Work

8.1
Conclusions

In this work, it was shown that when an autoregressive model is used
in the hydrothermal operation planning problem formulation, the variability
of the solutions increases due to changes in the initial conditions of the time
series model. Although the quality of the solutions are also increased by the
consideration of such autoregressive models, the increase in the variability is
often seen as an undesirable characteristic. In this context, the main focus
of this work was to reduce the solution unpredictability and variability of
Stochastic Dual Dynamic Programming (SDDP) method when applied to the
hydrothermal operation planning problem.

Two approaches were proposed; the first one aimed at reducing primal
solutions variability (thermal generations, in this case), and a second one with
the objective of reducing both primal and dual solutions (in particular, thermal
generation and PLDs – Portuguese translation of Differences Settlement Price,
which are, in theory, the system’s marginal costs).

The first proposal consists of considering the total thermal generation of
each system as a state variable in the problem and penalize its variation over
time. The second one consists of solving the algorithm with an independent
model in the backward procedure, to ensure solution variability reduction, and
a realistic time series model in the forward procedure, to ensure good trial
decisions for the backward step. Additionally, in order to deal with the lack of
ability of the independent time series model to generate persistent low inflow
sequences, a more severe risk averse parametrization is used.

In order to compare the alternatives with respect to three criteria –
variability, cost and security – several solution quality indexes were proposed.
Computational results applied to a hydrothermal operation problem have
shown that a significant uncertainty and variability reduction is achieved
with both proposals. The first proposal, “RA BW-D-GT”, stabilizes thermal
generation and results in reduction of its unpredictability and variability. The
second proposal, “RA+ BW-I”, stabilizes both thermal generations and PLDs,
and has shown the best results for this criterion.
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Regarding the cost based criterion, both proposed approaches show re-
sults that are comparable to the “RA BW-D” reference case, with the pro-
posed approach “RA+ BW-I” again showing better results. The last investi-
gated criterion was the system security, and presented satisfactory results by
both proposed approaches (risks smaller than 1%), with no clear evidence that
this criterion can be used to choose within possible alternatives to solve the
problem. It is important to mention that regarding this criterion, although the
“RA+ BW-I” results were satisfactory, the risk averse backward dependent ap-
proaches performed better, and further investigation may be required to assess
the behaviour of the independent approach in more extreme situations.

As a conclusion of the performed experiments, this thesis shows that
it is possible to obtain solutions with smaller uncertainty and variability,
while showing characteristics that are close to the ones obtained by standard
way to solve the problem. Considering all results shown in this work, the
recommend approach is the “RA+ BW-I”. However, due to the fact that the
experiments were based on a single operation planning problem using one
initial condition, more investigation is required in order to assure that the
recommended approach is able to guarantee the security of the system in
different conditions, in particular very extreme initial conditions.

8.2
Future Work

In Section 3 several sources of solution variability were mentioned, some
of which are physical and cannot be solved by a model change, such as the
regularization capacity reduction and the thermal plants characteristics, and
others that are somehow related to the problem modelling choices, such as
the consideration of river basins with different behaviour within the same
equivalent reservoir system, the choice to use a deterministic forecast in the first
month together with a coupling between different inflows forecasting models,
and last but not least, the consideration of past inflows in the state space of
the problem.

In this work the only source of variability that was studied was the last
one, and the results were very promising. However, as the problem is complex
and there are still other variability sources to be investigated, some future
works are suggested.

A first topic that is likely to give good results is the consideration of
uncertainty in the weekly stages of the first month, which may reduce the
solution variability, although we believe that it is not going to be close to the
levels achieved by the presented proposal. Such belief is supported by the fact
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that, even with a scenarios tree in the first month, the scenarios would still be
biased by the past inflows information and would then change frequently over
time. It is important to mention that, without empirical evidence, it is hard to
be sure about the results that are going to be achieved by this approach. On
the other hand, the potential improvement to the problem modelling brought
by the consideration of the uncertainties in the first month is so big that this
topic is an interesting future work, even if the solution variability is not reduced
at all.

Another future investigation is regarding the impact of the coupling
between a rain-flow model and a pure statistical one, such as an autoregressive
model. This coupling, as mentioned before, is a likely cause of variability
increase in the problem solution.

As a final suggestion, in order to better evaluate the impact of the
approach proposed in this work, and also the ones suggested in this Section,
a rolling horizon experiment comprising several years would give a better
understanding of how much the solution variability would be decreased in
practice, when one optimization problem is solved at the beginning of each
week.
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During the development of this thesis several works considering the
SDDP methodology were published. Some of these works, though not directly
related to the main focus of this thesis, provide the basis on which the ideas
of this thesis were developed.
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– Shapiro, A., Tekaya, W., Paulo da Costa, J. and Pereira Soares, M., Risk
neutral and risk averse Stochastic Dual Dynamic Programming method,
European Journal of Operations Research, vol. 224, pp. 375-391, 2013.

– Shapiro, A., Tekaya, W., Pereira Soares, M. and Paulo da Costa, J.,
Worst-case-expectation approach to optimization under uncertainty, Op-
erations Research, v. 61, p. 1435-1449, 2013.
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– Soares, M. P., Street, A. and Valladão, D. M., On the solution variability
reduction of SDDP applied to energy planning, to be submitted.

Complete papers presented on Conferences

– Soares, M. P., Street, A. and Valladão, D. M., On the solution variability
reduction of SDDP applied to energy planning, IEEE PES Power General
Meeting 2014, Washington, USA, presented by Murilo Soares.

– Soares, M. P., Street, A. and Valladão, D. M., Redução da Variabilidade
da Solução da Programação Dinâmica Dual Estocástica Aplicada ao
Planejamento da Operação de Sistemas Hidrotérmicos, IEEE INDUS-
CON 2014, Juiz de Fora, Brazil, presented by Murilo Soares.
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International Thematic Week, Paris, France, presented by Alexander
Shapiro.
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B
Autoregressive model impact on a general problem

The effect of considering autoregressive models within SDDP was dis-
cussed on Chapter 4, where it was shown, by a simple example, that the relative
importance of first stage inflows is increased if such models are considered. In
this Appendix we are going to shown an intuitive way to estimate the impact
of the inflow of stage t in a general problem, with T stages and autoregressive
models with orders higher than one.

In order to reach a closed formula to estimate this impact, we are going
to proceed by steps, assessing the impact It of inflows of stage t, at, on each
stage separately and, then, writing the cumulative effect. We are assuming that
the inflows variables are already energy inflows with a coefficient equal to one
in the RHS of hydro balance equations, such as in the examples used in this
work. The impact for each stage t + i can be calculated in a recursive way, as
follows:

– Stage t:
On stage t, the inflow at has the same impact as the initial stored volume.
In this case, let us assume a unitary impact It = 1.

– Stage t + 1:
On stage t + 1, we are interested on the impact of stage t inflows. On
the problems of this stage, at appears as regressors in the autoregressive
model at the RHS of hydro balance equation. Then, the impact is going
to be It+1 = ϕt+1,1, where ϕt+1,1 is the first autoregressive coefficient of
the stage t + 1 model.

– Stage t + 2:
On stage t + 2, we are interested on the impact of stage t inflows. On
the problems of this stage, at+1 and at appears as regressors. The impact
of the second of the regressors is ϕt+2,2 · It, and the first one is given by
ϕt+2,1 ·It+1. Then, the impact is going to be It+2 = ϕt+2,1 ·It+1 +ϕt+2,2 ·It.

– Stage t + i:
As a general rule, we can write the impact of inflows at on stage t + i as:

It+i =
i∑

j=1
ϕt+i,j · It+i−j.
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Anytime j > pt+i, where pt+i is the stage t+i model order, the coefficient
ϕt+i,j is equal to 0.

The impacts It+i measure the relative impact of at if compared to initial
stored energy on stage t + i, vt+i−1, referenced to stage t + i.

Our target now is to calculate the accumulated impact of at in the
problem, which can be done by the discounted sum of It+i indexes from t

to T considering that, at each stage, the impact It+i is multiplied by the
hydro balance equation average dual variable π̃hb,t+i. This variable is written
without any additional indexes for simplification, but it can belong to different
iterations and subproblems within SDDP solution process. The total impact
is:

I total
t =

T −t∑
i=0

π̃hb,t+i · It+i · βi.

This equation is not useful in the sense that there is no way to know π̃hb,t+i

values without solving the problem and getting to know the active cuts in the
desired iteration, as it was done in the examples of Chapter 4.

In order to allow us to reach a useful expression, the hydro balance
equation dual variable πhb,t+i is going to be dropped by, which is similar to
consider that πhb,t+i = πhb,t+j,∀i, j, and that the total impact calculated is a
relative impact, that is, it is the impact of inflows over the impact of initial
volume. This simplification is quite strong, but allows us to obtain a rough
estimation of the relative impact.

The estimative is going to be:

I total′

t =
T −t∑
i=0

It+i · βi.

The impact index I total′
t can be very useful in real applications, as it

allows the estimation of the total relative impact of the inflows at each stage,
and can be used to track whether the importance of inflows increases in some
stages, for example.
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C
Case study parametrization

In the next two sections we are going to compare different parametriza-
tions of the proposed approaches in order to choose one among them. In Section
7.2 we have compared the results of the best parametrizations of the two pro-
posed approaches with risk neutral and risk averse case studies to show that we
can reduce the solution variability of the problem and yet have good solutions
when compared to the standard SDDP algorithm.

C.1
Thermal generation stabilization

The first approach to stabilize SDDP solutions was to augment the state
space of the problem by adding variables that takes thermal generation into
consideration. This allows us to add a penalty term in the objective function
to limit variations in thermal generation over time.

In this experiment we have chosen a maximum thermal variability level of
5% over stages, and penalty term values p ∈ {50, 100, 250, 500, 1000}. The same
parametrization was adopted in other experiment, this time penalizing only
reductions of thermal generation. This approach allows the thermal generation
to increase as fast as needed, but forces it to stay on for a longer period, as
every reduction greater than 5% is penalized. The cases with a penalty term
only for ramp-down variations are indicated by the variable pd, and are shown
below the cases in which a penalty is applied both directions.

In order to choose between the different solutions we are going to assess
some of its properties. Our approach to choose between cases is going to be
the following:

1. Policy value: this criterion is going to be used to discard expensive
solutions but, once the solution has shown similar or cheaper results
than standard risk averse case, it is not going to be used to rank the
alternatives, except when we cannot rank them using the risks of deficit.
This criterion considers only the operation costs and disregards any
penalty costs that may appear in a certain problem.

2. Risks of deficit: this is going to be considered the most important crite-
rion. The alternatives are going to be ranked regarding its comparison
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with standard risk averse case (which is our reference of security in this
experiment).

3. Thermal generation and PLD volatilities: these criteria must be improved
in comparison with standard approaches. In this comparison these crite-
ria are going to be used to discard alternatives, but not to rank them.

This is not the only possible way to choose between the solutions, and not the
most correct either. As this is in fact a multi-criteria problem, the relative
importance of each criterion must be taken into account. In our case, we
are considering that the most important objective is security, followed by an
assumption that any proposed alternative should have an expected cost similar
or smaller than our reference risk averse case. The third criterion, which is the
main objective of this work, is the solution variability, which we require to be
reduced by both proposed alternatives.

C.1.1
Policy values

The risk neutral approach has the lowest average cost, while the inclu-
sion of risk averse consideration on the algorithm increased the cost by ap-
proximately 20%, as shown in Figure C.1. This Figure also shows that limiting
thermal generation variability with low penalty value (p = 50) results in a
policy value that is already higher than the standard risk averse approach,
and increases as the penalty term value increases. This result is expected, as
the proposed formulation is equivalent to standard risk averse, with the addi-
tion of a penalty term that changes the objective function to consider another
criterion. The result is that the operation cost minimization is less important
in the new formulation and, then, a higher operation cost is expected to be
found in the new solution. As the penalty cost increases, the importance of
operation cost minimization decreases and the policy values are expected to
increase. The candidate parametrizations are the ones with smaller penalty
terms, p = 50 and p = 100 in the first experiment, and pd = 50, pd = 100 and
pd = 250 in the second one. In an environment where the solution variability is
worth increasing the expected policy value, higher values for the penalty could
also be chosen.

C.1.2
Risks of deficit

Figure C.2 shows that all results are satisfactory in terms of security, with
no way of distinguishing among the parametrizations. The solution variability
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Figure C.1: Thermal generation approach – Policy values and 95% confidence
interval

indexes are going to be used to choose among them.

C.1.3
Solution variability indexes

Thermal generation uncertainty index: 1–SAFE measure

Thermal generation volatility over time can be measured by the pro-
cedure described in Section 6.1.1, Equation (6-1). The thermal generation
volatility over time, as explicitly considered in the problem formulation, is
very sensible to the penalty value. With a very high penalty value the solution
variability is close to 5% with a small standard deviation. When the penalty
value decreases, the average variability and its standard deviation increases,
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Figure C.2: Thermal generation approach – Annual risks of deficit

as expected, because in some scenarios the penalty term becomes too small to
be able to keep variability within desired limits. Figure C.3 shows this result,
where it is possible to see that the second candidate parametrization (p = 100)
was able to reduce substantially the thermal generation variability without in-
creasing the expected operation cost to prohibited levels. The p = 250 solution,
on the other hand, had good results regarding the solution variability, but has
a bigger impact on the expected cost. The results of the second experiment,
pd, were not satisfactory, as the reduction achieved is too small if compared to
the first experiment. This result may be explained by the fact that, although
thermal generation reductions were controlled, the spikes due to the need to
increase thermal generation in some cases contributed to keep the variability
high.
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Figure C.3: Thermal generation approach – Thermal generation 1–SAFE index

PLD uncertainty index: 1–SAFE measure

The variability of PLD is not considered explicitly in this formulation
and, as a consequence, its behaviour cannot be anticipated. Figure C.4 shows
that there is no relation between the penalty term value and PLD uncertainty.
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Figure C.4: Thermal generation approach – PLD 1–SAFE index

C.1.4
Conclusions

Given the previous results, the chosen parametrization was p = 100. This
solution presents a good compromise between the increase in the expected
policy value and the reduction in thermal generation variability, while keeping
the security index, deficit risk, at the same level as in the reference case.

C.2
Risk averse backward independent SDDP

In order to chose a parametrization for the backward independent ap-
proach, several experiments were run, considering different weights for risk
aversion (λ ∈ {0.30, 0.35, 0.40, 0.50}) and a fixed α = 0.05. The choice among
the solutions was done using the same approach as before.
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C.2.1
Policy values

Figure C.5 shows the average policy values, together with its 95%
confidence interval, for “RN BW-D”, “RA BW-D (α = 0.05, λ = 0.15)” and
all four λ parametrizations of the “RA BW-I” case. Regarding the backward
independent approach, all solutions but λ = 0.50 are satisfactory in the sense
that they have expected costs between both standard approaches, while the
λ = 0.50 increases the expected cost to an unjustifiable level.

Figure C.5: BW-I approach – Policy values and 95% confidence interval

C.2.2
Risks of deficit

Figure C.6 depicts the annual risks of deficit, for several deficit depths,
that is, greater than 1%, 5%, 10% and 20% of the demand. The best result
was shown by the backward independent case with λ = 0.50, but, as already
mentioned, the cost of this parametrization is too high. The better backward
independent parametrization, in this case, is the one given by λ = 0.40, for
which all risks are bellow 1% and less than half of risk neutral value.

DBD
PUC-Rio - Certificação Digital Nº 1113687/CA



On the Solution Variability Reduction of Stochastic dual Dynamic
Programming Applied to Energy Planning 111

Figure C.6: BW-I approach – Annual risks of deficit

C.2.3
Solution variability indexes

The last variables that we are going to use to compare the parametriza-
tions are thermal generation and PLDs.

Thermal generation uncertainty index: 1–SAFE measure

Figure C.7 shows the volatility results, and its clear that the best result is
given by λ = 0.30 approach, and it becomes worse as we increase λ value. With
the exception of λ = 0.50 case, the others have shown a significant reduction
in the variability compared to both standard cases.

PLD uncertainty index: 1–SAFE measure

Another important result is the volatility of PLDs, which, although de-
rived from a dual variable, is also desirable to be stabilized. Figure C.8 shows
that this objective is accomplished by all backward independent parametriza-
tions. Indeed, the results are very similar between them, with only λ = 0.50
case being slightly different.
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Figure C.7: BW-I approach – Thermal generation 1–SAFE index

Figure C.8: BW-I approach – PLD 1–SAFE index

C.2.4
Conclusions

Given the presented results, the choice of one parametrization should
be straightforward. Policy values results were responsible for taking out the
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λ = 0.50 case due to its excessively high cost. The next result, risks of deficit,
although couldn’t discard any approach, has been better performed by case
λ = 0.50 (already discarded), followed by λ = 0.40, and so on. The volatility
indexes show great reduction in most stages for the proposed approach, and
cannot be used to discard any parametrization in particular. The selected
parametrization to be used in this work, due to its compromise between
security, operation cost and solution variability reduction, is λ = 0.40.
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