

Fernando Duarte Azevedo

Recalques do Depósito de Solos Moles de Camboinhas, RJ

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Civil do Departamento de Engenharia Civil PUC-Rio.

Orientador: Alberto de Sampaio Ferraz Jardim Sayão Co-orientador: Sandro Salvador Sandroni

> Rio de Janeiro Março de 2015

Fernando Duarte Azevedo

Recalques do Depósito de Solos Moles de Camboinhas, RJ

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto de Sampaio Ferraz Jardim Sayão Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Sandro Salvador Sandroni Co-orientador SEA – Sandro Sandroni Engenheiros Associados Ltda

> Prof. José Tavares Araruna Júnior Departamento de Engenharia Civil – PUC-Rio

Prof. Edgar Odebrecht Universidade do Estado de Santa Catarina

Prof. Roberto Francisco de Azevedo Universidade Federal de Viçosa

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 11 de Março de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Fernando Duarte Azevedo

Graduou-se em Engenharia Civil pela Universidade Federal de Viçosa, Minas Gerais, em julho de 2010. Ingressou no mestrado na PUC-Rio em março de 2013, desenvolvendo dissertação na linha de pesquisa de Geotecnia Experimental.

Ficha Catalográfica

Azevedo, Fernando Duarte

Recalques do Depósito de Solos Moles de Camboinhas, RJ / Fernando Duarte Azevedo; orientador: Alberto de Sampaio Ferraz Jardim Sayão; coorientador: Sandro Salvador Sandroni. – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Civil, 2015.

1.1. v., 144 f.: il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2015.

Inclui referências bibliográficas.

1. Engenharia Civil - Teses. 2. Monitoramento de recalques. 3. Solos moles. 4. Ensaios de campo. 5. Ensaios de laboratório. 6. Compressão secundária. I Sayão, Alberto de Sampaio Ferraz Jardim. II Sandroni, Sandro Salvador. III Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV Título.

PUC-Rio - Certificação Digital Nº 1313456/CA

A meus pais.

Agradecimentos

À PUC-Rio, pela oportunidade de fazer o Mestrado.

Ao CNPq, pelo apoio financeiro.

Aos Professores Alberto Sayão e Sandro Sandroni, pelos ensinamentos e pela orientação neste trabalho.

Ao amigo Michel Tassi, pelo apoio ao longo dos meses desta pesquisa.

Ao Eng. Divalter, da Geoprojetos, pelo auxílio nos trabalhos de campo.

Ao Eng. Edgar Odebrecht e demais colaboradores da empresa Geoforma, pela extração das amostras *Shelby* e pela realização dos ensaios de campo.

Aos Engs. Paulo Henrique Dias e Tiago Proto e demais colaboradores da empresa Seel, pela instalação do *benchmark*, em Camboinhas.

Ao IME-RJ, pelo empréstimo do equipamento utilizado nas medições de recalque.

À Eng. Marilene Ramos, por possibilitar o acesso ao local onde foram realizadas as medições, enquanto presidente do INEA-RJ.

Aos demais professores e funcionários do Departamento de Engenharia Civil da PUC-Rio, pelos ensinamentos e apoio ao longo do curso.

A toda equipe do Laboratório de Geotecnia da PUC-Rio – Edson, Amaury, Josué e Carlos – pelo suporte nos ensaios de laboratório e pela boa convivência.

Aos meus pais, Professores Izabel Duarte e Roberto Azevedo, pelas críticas e sugestões e pelo suporte incondicional em todo este período.

À minha família, que teve paciência para entender a minha ausência em momentos importantes. À minha Bruna Martini, pelo apoio nos momentos difíceis, sempre me incentivando.

Aos irmãos que fiz na PUC, Adriano Malko e Nathália Louzada, pela amizade e convivência ao longo destes dois anos.

Aos amigos do Futsal dos Mestres e da Geotecnia da PUC-Rio, pela amizade.

À amiga Andrea Vecci, por ter me ajudado de forma tão importante em um momento difícil durante a pesquisa.

À Professora Ângela Pasture e demais amigos do Francês 2, pelo convívio, debates e mensagens que me foram passadas.

A todos os amigos de Viçosa (Coluni, Civil 2005 e Acamari), pela amizade e incentivo.

Foram exatamente dois anos de mestrado (primeira aula no dia 11/03/2013 e defesa no dia 11/03/2015), que culminaram na realização deste trabalho e num crescimento pessoal imenso. Dedico-o a todos vocês.

Resumo

Azevedo, Fernando Duarte; Sayão, Alberto de Sampaio Ferraz Jardim (Orientador); Sandroni, Sandro Salvador (Co-orientador). **Recalques do Depósito de Solos Moles de Camboinhas, RJ.** Rio de Janeiro, 2015. 144 p. Dissertação de Mestrado. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O acompanhamento dos recalques de aterros, por meio de nivelamento topográfico periódico, permite estimar a evolução dos mesmos, bem como retroanalisar os parâmetros adotados em determinado projeto. Neste trabalho, recalques foram medidos em um aterro experimental sobre um depósito com 12 m de espessura de solos moles em Camboinhas, Niteroi (RJ), construído entre o final de 1977 e o início de 1978. O aterro serviu como modelo em escala real para a realização de estudos geotécnicos diversos na PUC-Rio, auxiliando o projeto de um empreendimento imobiliário da época. A obra foi embargada pouco tempo após seu início e, desde então, nenhum empreendimento foi realizado. Em 2013, novas amostras Shelby foram extraídas, para a realização dos ensaios de laboratório desta pesquisa. Ensaios de campo também foram realizados. Verificou-se que os recalques causados pela construção do aterro ainda estão ocorrendo, 37 anos após sua execução. Compararam-se, também, os valores de OCR de laboratório com os obtidos por meio de correlações empíricas com os resultados de campo. Por fim, foram feitas previsões da evolução do recalque médio com o tempo e da magnitude do valor total médio.

Palavras-chave

Monitoramento de recalques; solos moles; ensaios de campo; ensaios de laboratório; compressão secundária.

Abstract

Azevedo, Fernando Duarte; Sayão, Alberto de Sampaio Ferraz Jardim (Advisor); Sandroni, Sandro Salvador (Co-Advisor). **Settlements of the soft soils deposit Camboinhas, RJ.** Rio de Janeiro, 2015. 144 p. MSc. Dissertation. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Monitoring of embankment settlements using periodic topographic leveling allows one to preview their evolution, and to assess the parameters used in a specific design. In this research, settlements of an experimental embankment constructed between the end of 1977 and the beginning of 1978, over a 12 m thick soft soils deposit in Camboinhas, Niteroi (RJ), were monitored. At that time, the embankment served as large model to help designing of a commercial housing development. The work was hampered shortly after the end of embankment's construction and, since then, no enterprise was held. In 2013, in this research, new Shelby samples were obtained in order to carry out series of laboratory tests. Settlements due to the embankment construction were noted to be still progressing. Also, OCR values from laboratory tests were compared to those empirically evaluated from field results. Finally, the magnitude of total settlement and its progress with time were estimated.

Keywords

Settlements monitoring; soft soils; field tests; laboratory tests; secondary compression.

Sumário

1	Introdução		21	
	1.1	Cor	ntexto	21
	1.2	Obj	jetivos e Motivação	26
	1.3	Est	rutura do Trabalho	27
2	Rev	/isãc	Bibliográfica	28
	2.1	Asp	pectos Gerais sobre Solos Moles	28
	2.2	Ens	saios de Laboratório	29
	2.2.	.1	Caracterização	29
	2.2.	.2	Adensamento	30
	2.3	Ens	saios de Campo	38
	2.3.	.1	SPT (Standard Penetration Test)	38
	2.3.	.2	Piezocone (CPTu)	38
	2.3.	.3	Palheta (<i>Vane Test</i>)	41

2.4	Medição de Recalques em Aterros	43
2.5	Aspectos da Compressão Secundária de Solos	44
2.6	O Método de Asaoka (1978)	47

3	Mate	riais e Métodos	49
;	3.1 (Generalidades	49
	3.1.1	Aspectos Geológico-Geomorfológicos do Local	49
	3.1.2	Perfil Geotécnico	49
	3.1.3	Amostragem de Campo	52
	3.2 I	ledições de Recalque	56
	3.3 E	Ensaios de Campo	67
	3.4 E	Ensaios de Laboratório	69
	3.4.1	Caracterização	69
	3.4.2	Adensamento	71

4	An	álise	dos Resultados	79
2	1.1	Ens	saios de Laboratório e Campo	79
	4.1	.1	Ensaios de Caracterização	79
	4.1	.2	Ensaios de Piezocone e Dissipação	81
	4.1	.3	Ensaios de Palheta	83
	4.1	.4	Ensaios de Adensamento	84
2	1.2	Ме	dições de Recalque	94
2	4.3	Est	imativa de Recalques	101
	4.3	3.1	Recalque Primário	101
	4.3	3.2	Recalque Secundário	103
5 Re	Co ferêi	nclus	sões e Sugestões Bibliográficas	107 109
Ар	êndi	ces		115
	Apêr	ndice	1 – Aspecto visual das amostras	
	Apêr	ndice	2 – Gráficos dos ensaios de piezocone	
	Apêndice 3 – Gráficos dos ensaios de dissipação em piezocone			
Apêndice 4 – Gráficos dos ensaios de palheta				
	Apêndice 5 – Curvas de compressibilidade e c_v dos ensaios de aden-			aden-
sar	samento			
	Apêr	ndice	6 – Incerteza nas curvas "recalque x tempo" – Camboir	has

Lista de Figuras

Figura 1.1 – Local estudado – Camboinhas, Niterói (imagem do Google Maps)	22
Figura 1.2 – Depósito mole estudado em Camboinhas, destacado em vermelho - a oeste da Lagoa de Itaipu (imagem do Google Maps)	23
Figura 1.3 - Plano urbanístico previsto para a região (Russo Neto, 1980)	24
Figura 1.4 – Imagem ampliada do local onde foi executado o aterro experimental – planta (imagem do Google Maps)	25
Figura 2.1 – Índices de compressibilidade do solo (Sayão, 1980)	31
Figura 2.2 – Determinação de σ' _p pelo Método de Casagrande (1936)	32
Figura 2.3 – Determinação de σ'_p pelo Método de Pacheco Silva (1970)	32
Figura 2.4 – Determinação de σ' _p pelo Método de Sridharan <i>et al</i> . (1991)	33
Figura 2.5 – Método de Casagrande para determinação de c $_{ m v}$	34
Figura 2.6 – Método de Taylor para determinação de c _v	34
Figura 2.7 – Dimensões dos tubos amostradores	36
Figura 2.8 – Gráficos F _r x Q _t e B _q x Q _t (Robertson, 1990)	39
Figura 2.9 – Correção de s _u de palheta (Bjerrum, 1973)	42
Figura 2.10 – Curva recalque x log tempo (Pinto, 2001)	45
Figura 2.11 – Definição de C $_{\alpha}$ (Lambe e Whitman, 1969)	46
Figura 2.12 – Recalque nos tempos "k" e "k-1" (Asaoka, 1978)	48
Figura 3.1 – Perfil geotécnico ao longo do eixo leste-oeste do aterro (Russo Neto, 1980)	50
Figura 3.2 – Perfil geotécnico obtido em ensaios de piezocone, em 2013	51
Figura 3.3 – Localização do aterro experimental (Russo Neto, 1980)	52
Figura 3.4 – Dimensões do aterro e do espaçamento entre placas de recalque, e local aproximado das verticais de retirada das amostras (imagem do Google Maps)	53
Figura 3.5 – Foto do local verticais de retirada das amostras indeformadas	53

Figura 3.6 – Procedimento de amostragem	55
Figura 3.7 – Instalação do novo <i>benchmark</i>	58
Figura 3.8 – Pino metálico, à esquerda, e cabeça boleada, à direita	58
Figura 3.9 – Instalação de pino metálico	59
Figura 3.10 – Circuito fechado de medições (localização aproximada dos pontos)	60
Figura 3.11 – Nível NA2 com micrômetro acoplado	61
Figura 3.12 – Execução de nivelamento, com a mira suportada por tripé metálico	63
Figura 3.13 – Visada em campo	65
Figura 3.14 – Visada em campo	65
Figura 3.15 – Ensaios de campo – planta (localização aproximada dos pontos)	67
Figura 3.16 – Ensaios de palheta e piezocone em andamento	67
Figura 3.17 – Ponteira cônica com pedra porosa na base do cone (medições de u ₂)	68
Figura 3.18 – Difratometria de Raios-X (Carvalho, 1980)	70
Figura 3.19 – Amostra de solo orgânico sobrenadando a água destilada	71
Figura 3.20 – Moldagem do corpo-de-prova do ensaio de adensamento	74
Figura 3.21 – (a) Prensas de adensamento; (b) Célula de adensamento	74
Figura 3.22 – Braço de alavanca da prensa de adensamento impedido de se deslocar pelo apoio de segurança	75
Figura 4.1 – Variação da umidade, limites de consistência e teor de matéria orgânica	80
Figura 4.2 – Curvas granulométricas das amostras	80
Figura 4.3 – Relação $B_q \times Q_t$ para diferentes velocidades de ensaio	82
Figura 4.4 – Perfis de s _u nas condições indeformada e amolgada	83
Figura 4.5 – Oxidação interna do tubo	86
Figura 4.6 – Perfis de OCR - Velocidade de cravação normal (20 mm/s)	88
Figura 4.7 – Perfis de OCR - Velocidade de cravação rápida (58,4 mm/s)	89
Figura 4.8 – Perfis de OCR - Velocidade de cravação lenta (6,0 mm/s)	90
Figura 4.9 – Perfis de OCR - Velocidade de cravação muito lenta (2,0 mm/s)	91

Figura 4.10 – Curva "recalque x log tempo" do ensaio AD-1.2	94
Figura 4.11 – Última etapa de carregamento - escala ampliada	94
Figura 4.12 – Recalques medidos em Camboinhas	96
Figura 4.13 – Análise dos erros das medições de recalque	98
Figura 4.14 – NA nos locais das antigas placas de recalque	99
Figura 4.15 – Recalques médios e curva logarítmica de ajuste	103
Figura 4.16 – Aplicação do Método de Asaoka	104
Figura 4.17 – Evolução dos recalques primário e secundário -	
$C_{\alpha}/(1+e_{o}) = 0,094$	106
Figura 4.18 – Recalques estimados - OCR _{sf} = 1,60	106

Lista de Tabelas

37
37
39
41
56
64
66
68
72
78
78
79
83
84
85
86
87
92
93
00

Tabela 4.10 – Cálculo do recalque primário com dados (à exceção de c_v) de Carvalho (1980)

102

Lista de Abreviaturas e Símbolos

Romanos

a	Coeficiente angular de ajuste - método de Asaoka
b	Coeficiente linear de ajuste - método de Asaoka
BM	Benchmark (referência de nível)
$\mathbf{B}_{\mathbf{q}}$	Parâmetro de poropressão
Ca	Razão de áreas do tubo amostrador
Ci	Folga interna do tubo amostrador
C_{α}	Coeficiente de compressão secundária
C _c	Índice de compressão do solo
C _r	Índice de recompressão do solo
Cs	Índice de descompressão do solo
c_h	Coeficiente de adensamento horizontal
c _v	Coeficiente de adensamento vertical
c _{v 50}	Coeficiente de adensamento vertical (Casagrande)
c _{v 90}	Coeficiente de adensamento vertical (Taylor)
CPTu	Ensaio de piezocone
Da	Diâmetro da ponta do tubo amostrador
D _e	Diâmetro externo do tubo amostrador
D _i	Diâmetro interno do tubo amostrador
e	Índice de vazios
eo	Índice de vazios inicial
$e_{\sigma'vo}$	Índice de vazios correspondente a σ'_{vo}
\mathbf{f}_{s}	Atrito da luva do cone
F _r	Atrito lateral normalizado
Gs	Densidade real dos grãos do solo
Н	Espessura da camada de solo mole
Ha	Distância vertical máxima de drenagem

IP	Índice de plasticidade
I _R	Índice de rigidez do solo
k	Coeficiente de permeabilidade
k _h	Coeficiente de permeabilidade horizontal
$\mathbf{k}_{\mathbf{v}}$	Coeficiente de permeabilidade vertical
\mathbf{k}_0	Coeficiente de empuxo lateral no repouso
K ₁ , K ₂	Fatores de correlação empíricos para tensão de sobreadensa-
	mento (ensaio CPTu)
L	Comprimento da mira
L _R	Leitura de ré
L_V	Leitura de vante
LL	Limite de liquidez
LP	Limite de plasticidade
М	Torque máximo – ensaio de palheta
m _v	Coeficiente de deformação volumétrica
m	Parâmetro empírico (equação SHANSEP)
m	Coeficiente angular do ajuste (método da raiz do tempo)
МО	Matéria orgânica
N _{SPT}	Número de golpes no ensaio SPT
OCR	Overconsolidation ratio (razão de sobreadensamento)
p_0	Tensão vertical efetiva inicial no centro da camada
pc	Tensão de sobreadensamento no centro da camada
PPI	Perda por ignição
q_c	Resistência de ponta – ensaio CPTu
q_t	Resistência de ponta corrigida – ensaio CPTu
Qt	Resistência de ponta normalizada – ensaio CPTu
r	Razão entre a compressão primária e a compressão total
R	Raio do piezocone
S	Parâmetro de ajuste – equação SHANSEP
\mathbf{S}_{t}	Sensitividade da argila
s _u	Resistência não drenada
Sur	Resistência não drenada amolgada (ou residual)
Su palheta	Resistência não drenada obtida no ensaio de palheta

Su campo	Resistência não drenada corrigida pelo fator de Bjerrum
SPT	Ensaio SPT (Standard Penetration Test)
t	Tempo
t _{pf}	Tempo para término do adensamento primário
t _{sf}	Tempo estimado de término do recalque secundário
ТМО	Teor de matéria orgânica
T*	Fator tempo modificado
U	Excesso de poropressão normalizado
U_{v}	Porcentagem de adensamento vertical
u	Poropressão
u _e	Excesso de poropressão no tempo "t"
u ₀	Excesso de poropressão inicial
u ₂	Poropressão na base do cone – ensaios de piezocone
v _m	Velocidade média de recalque
Z	Profundidade em relação ao topo da camada em adensamento
z _i	Cota do ponto "i"

Gregos

Parâmetro adimensional da correlação de Mayne e
Mitchell
Fator de proporcionalidade de Buisman
Indicador de variação no valor de uma variável
Razão de incremento de carga
Derivada parcial
Deformação vertical
Velocidade de deformação vertical (o mesmo que
$d\epsilon/dt)$
Incerteza associada ao processo de nivelamento geo-
métrico
Peso específico do solo
Peso específico do aterro
Peso específico natural do solo

$\gamma_{\rm sat}$	Peso específico saturado do solo
$\gamma_{ m w}$	Peso específico da água
$\gamma_{ m sub}$	Peso específico submerso do solo
μ	Fator de correção de Bjerrum
μ	Média da amostra
ρ	Recalque total
$ ho_t$	Recalque no tempo "t"
$\rho_{t+\Delta t}$	Recalque no tempo "t+ Δt "
$ ho_{\mathrm{f}}$	Recalque final
ρ_{pf}	Recalque primário final
$\rho_{\rm sf}$	Recalque secundário final
σ	Desvio padrão da amostra
$\sigma_{\rm v}$	Tensão vertical total
σ'_{vo}	Tensão vertical efetiva inicial ou de campo
σ' _v	Tensão vertical efetiva
σ' _p	Tensão de sobreadensamento
τ	Resistência não drenada
ω	Teor de umidade do solo

PUC-Rio - Certificação Digital Nº 1313456/CA

Não diga que a vitória está perdida, se é de batalhas que se vive a vida.

Raul Seixas.