
5
Evaluation

We performed some case studies on existing Lua libraries to evaluate

the design of our type system. For each library, we used Typed Lua to either

annotate its modules or to write statically typed interfaces to its modules

through Typed Lua’s description files. In this chapter we present our evaluation

results and discuss some interesting cases.

The Lua Standard Library [IdFC11] was our first case study. We started

to think about how we would type its modules at the same time that we started

to design our type system, as it could give us some hints on our type system.

And it did: optional parameters and overloading on the return type are two

Lua features that our type system should handle to allow us typing some of

the functions that the standard library implements.

The second case study that we chose was the MD5 library [dF14], because

we wanted a simple case study to introduce Typed Lua’s description files and

userdata declarations. These Typed Lua’s mechanisms allow programmers to

give statically typed interfaces to Lua libraries.

LuaSocket [Neh07] and LuaFileSystem [Kep04] were the third and fourth

case studies that we used to evaluate Typed Lua. We chose them because

they are the most popular Lua libraries. We wrote a script that builds the

dependency graph of Lua libraries that are in the LuaRocks repository, and

uses this dependency graph to identify the most popular Lua libraries.

We also randomly selected three case studies from the LuaRocks repos-

itory, they are: HTTP Digest [Cha14], Typical [Hoe12], and Mod 11 [Sch14].

The first provides client side HTTP digest authentication for Lua. The second

is an extension to the primitive function type. The third is a generator and

checker of modulo 11 numbers. We randomly selected three case studies be-

cause we wanted to evaluate Typed Lua for annotating existing libraries that

are written in Lua, as the previous case studies are mostly libraries that are

written in C.

The Typed Lua compiler is the last case study that we evaluated. We

chose it as a case study because it is a large application. Besides, it is a case

study that evaluates the evolution of a script to a program.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 93

We used these case studies to evaluate two aspects of Typed Lua:

1. how precisely it can describe the type of the interface of a module;

2. whether it provides guarantees that the code matches the interface.

percentage of members
Case study easy poly over hard # members
Lua Standard Library 64% 5% 8% 23% 129
MD5 100% 0% 0% 0% 13
LuaSocket 89% 1% 2% 8% 123
LuaFileSystem 89% 0% 11% 0% 19
HTTP Digest 0% 0% 100% 0% 1
Typical 100% 0% 0% 0% 1
Modulo 11 78% 0% 0% 22% 9
Typed Lua Compiler 93% 0% 1% 6% 154

Table 5.1: Evaluation results for each case study

Table 5.1 summarizes our evaluation results for each of the case studies

that we used Typed Lua for typing their members. An exported member is

any Lua value that a module might export. We split the members of each

case study into four categories: easy, poly, over, and hard. In the next four

paragraphs we explain each category in more detail. The last column of the

table shows the total number of members of each case study.

The easy category shows the percentage of members that we could give

a precise static type. For instance, the function string.len from the Lua

standard library is in this category because we could use Typed Lua to describe

its type: (string) -> (integer). This function returns the length of a given

string. Note that the results that we obtained for this category give a lower

bound on how much static type safety we could add to each one of our case

studies.

The poly category shows the percentage of members that we made

minimal use of the dynamic type, as a replacement for the lack of type

parameters. For instance, the function table.sort from the Lua standard

library is in this category because it is a generic function. It sorts a given

list of elements, which is a generic list. However, we had to assign to this

function the type ({any}, nil|(any, any) -> (boolean)) -> () because

Typed Lua does not support parametric polymorphism. A better type for it

would be ({<T>}, nil|(<T>, <T>) -> (boolean)) -> ().

The over category shows the percentage of members that require in-

tersection types to describe their precise static types, as they are overloaded

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 94

functions. For instance, the function math.abs from the Lua standard library

is in this category because it has two types: (integer) -> (integer) and

(number) -> (number). This function returns the absolute value of a given

number, which can be either integer or float. Even though we gave this func-

tion the more general type (number) -> (number), it is not precise enough

because the return type is always number independently of the argument type.

In other words, the return type should be integer when the argument type is

also integer, and the return type should be number when the argument type

is also number. However, we cannot give such a precise type to this function

because Typed Lua does not support overloaded functions.

The hard category shows the percentage of members that do not fit in

one of the previous categories, as they are difficult to type. For instance, the

function string.format from the Lua standard library is in this category

because it relies on format strings, which are difficult to type. Still, we gave

this function the type (string, value*) -> (string).

In the following sections we discuss each case study in more detail. For

each case study, we split the evaluation results according to the modules that

each one of them include. We use these split results to discuss the contributions

and limitations of our type system.

5.1 Lua Standard Library

All of the modules in the standard library are implemented in C, so we

used Typed Lua to type just the interface of each module. The debug module

is the only one that we did not include in our evaluation results, because

it provides several functions that violate basic assumptions about Lua code

[IdFC11]. For instance, we can use the function debug.setlocal to change

the value of a local variable that is not visible in the current scope. Table 5.2

summarizes the evaluation results for the Lua Standard Library (version 5.3).

The base module was very difficult to type because it includes several

functions that rely on reflection, as the hard category shows. For instance, the

functions pairs and getmetatable are in this category. While pairs traverses

all keys and values that are stored in a given table, getmetatable returns the

metatable of a given table.

There are some functions in the base module that we could not give

a precise static type because our type system does not have parametric

polymorphism, as the poly category shows. This is the case of ipairs.

The base module also includes some overloaded functions, as the over

category shows. We could not type these functions because our type sys-

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 95

percentage of members
Module easy poly over hard # members

base 35% 4% 8% 53% 26
coroutine 14% 0% 0% 86% 7
package 62% 0% 0% 38% 8
string 75% 0% 0% 25% 16
utf8 100% 0% 0% 0% 6
table 14% 72% 14% 0% 7
math 81% 0% 19% 0% 27

io 81% 0% 0% 19% 21
os 82% 0% 18% 0% 11

Table 5.2: Evaluation results for Lua Standard Library

tem does not include intersection types. This is the case of tonumber and

collectgarbage.

In the case of tonumber, it has two different types: (value) ->

(number) and (string, integer) -> (number). This means that the type

of the first parameter depends on the type of the second parameter. For in-

stance, we can call tonumber(1), but we cannot call tonumber(1,2). Note

that the first argument of tonumber can be a value of any type if it is the only

argument, but it must be a string if there is a second argument, which must

be an integer.

In the case of collectgarbage, the return type changes according to an

input literal string. For instance, calling collectgarbage("collect") returns

an integer, calling collectgarbage("count") returns a floating point, and

calling collectgarbage("isrunning") returns a boolean.

The coroutine module was also very difficult to type because our type

system cannot describe the computational effects of a program. The hard

category shows the amount of functions that we could not give a precise static

type for this reason. Lua has one-shot delimited continuations [JS11] in the

form of coroutines [MI09], and effect systems [NN99] are an approach that we

could use to describe control transfers with continuations. However, for now,

coroutines are out of scope of our type system, and we use an empty userdata

declaration to represent the type thread.

Still, we could give a precise static type to one function in the coroutine

module, as the easy category shows. The function coroutine.isyieldable

has no input parameters, and it simply returns a boolean that indicates

whether the running coroutine is yieldable.

We could give precise static types to the constants and functions of

the package module, but we could not give precise static types to the

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 96

following tables that it exports: package.loaded, package.preload, and

package.loaders. The first stores loaded modules, while the others store

module loaders. They are difficult to type because their types rely on reflection,

that is, their types depend on the modules a program loads. For this reason,

they are in the hard category.

We could give precise static types to most of the functions of the string

module, but we could not give precise static types to the functions that rely

on format strings. For instance, the type of the arguments that we pass to

string.format must match the format string we are using. It is fine to call

string.format("%d", 1), but string.format("%d", true) raises a run-

time error. These functions that rely on format strings are in the hard category.

The utf8 module was straightforward to type, as its members are only

operations over strings.

The table module was specially difficult to type because most of its

functions require parametric polymorphism, as the poly category shows. These

functions either receive or return a list of elements, and parametric polymorph-

ism would help us to describe them with a generic type.

However, the lack of parametric polymorphism did not prevent us from

giving a precise type to one function of the table module, as the easy category

shows. We could give a precise static type to table.concat, as it operates over

lists where all elements are strings or numbers.

Even if our type system had parametric polymorphism, there is still one

function of the table module that we could not give a precise static type

because it is an overloaded function, as the over category shows. This function

is table.insert, and its type depends on the calling arity. That is, calling

table.insert(l, v) inserts the element v at the end of the list l, while

table.insert(l, p, v) inserts the element v at the position p of the list l,

and generates a run-time error when p is out of bounds. This function also does

not follow the semantics of Lua on discarding extra arguments, and generates

a run-time error whenever we pass more than three arguments, even if the first

three arguments match its signature.

Even though the math module looks straightforward to type, the over

category shows that it includes several overloaded functions. For instance, the

function math.random is in this category because it has two different types:

() -> (number) and (integer, integer?) -> (integer). This means that

the type of math.random depends on the calling arity. Calling math.random()

returns a random floating point between 0 and 1. Calling math.random(10)

is equivalent to math.random(1,10), and returns an integer between this

interval. Like table.insert, this function also does not follow the semantics

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 97

of Lua on discarding extra arguments, and generates a run-time error whenever

we pass more than two arguments.

The io module provides operations for manipulating files, and these

operations can use implicit or explicit file descriptors. The implicit operations

are functions in the io table, while the explicit operations are methods of a

file descriptor. We used an userdata declaration to introduce the type file

for representing the type of a file descriptor and its methods. The evaluation

results include both implicit and explicit operations.

We could give precise static types to most of the members of the io

module, but the hard category shows that it includes some members that we

could not give a precise static type. The functions io.read and io.lines are

in the hard category along with the methods file:read and file:lines.

We could not precisely type io.read because its return type relies on

format strings. For instance, calling io.read("l") returns a string or nil,

io.read("n") returns a number or nil, and io.read("l", "n") returns a

string or nil and a number or nil. The function io.lines, and the methods

file:read and file:lines have the same issue.

There are two functions in the os module that we could not give a precise

static type because they are overloaded functions. The functions that are in

the over category are os.date and os.execute.

The evaluation results show that our type system should include inter-

section types, parametric polymorphism, and effect types, as these features

would help us increase the static typing of the Lua Standard Library. Inter-

section types would allow us to define overloaded function types. Parametric

polymorphism would allow us to define generic function and table types. Effect

types would allow us to type coroutines.

5.2 MD5

The MD5 library is an OpenSSL based message digest library for Lua.

It contains just the md5 module that is written in C, so we used Typed Lua’s

description file to type it. Table 5.3 summarizes the evaluation results for MD5.

percentage of members
Module easy poly over hard # members

md5 100% 0% 0% 0% 13

Table 5.3: Evaluation results for MD5

Even tough it was straightforward to type the MD5 library, we found a

little difference between its documentation and its behavior. The document-

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 98

ation suggests that the type of md5.update is (md5_context, string) ->

(md5_context), though there is a call to this function in the test script that

passes an extra string argument. Reading the source code, we found that its

actual type is (md5_context, string*) -> (md5_context), that is, we can

pass zero or more strings to md5.update.

This case study shows that type annotations help programmers maintain

the documentation updated, as the type checker always validates them.

5.3 LuaSocket

LuaSocket is a library that adds network support to Lua, and it is split

into two parts: a core that is written in C and a set of Lua modules. The C core

provides TCP and UDP support, while the Lua modules provide support for

SMTP, HTTP, and FTP client protocols, MIME encoding, URL manipulation,

and LTN12 filters [Neh08]. We used Typed Lua’s description files to type both

parts, as we also wanted to use LuaSocket to test description files to statically

type the interface of modules that are written in Lua. Table 5.4 summarizes

the evaluation results for LuaSocket.

percentage of members
Module easy poly over hard # members

socket 83% 0% 0% 17% 60
ftp 83% 0% 17% 0% 6

http 80% 0% 20% 0% 5
smtp 100% 0% 0% 0% 7
mime 100% 0% 0% 0% 17
ltn12 95% 5% 0% 0% 20
url 100% 0% 0% 0% 8

Table 5.4: Evaluation results for LuaSocket

We could give precise static types to most of the members in the socket

module, which is the C core. However, this module includes some functions

that we could not give a precise static type because they rely on reflection, as

the hard category shows. For instance, socket.skip is a function that is in this

category. We can use this function to choose the number of values that we want

to return. As an example, calling socket.skip(1, nil, "hello") returns

only the string "hello", because 1 indicates that we do not want to return

the first value. Passing a negative number to socket.skip can be dangerous,

as it returns anything that might be in the stack. As an example, calling

socket.skip(-1, nil, "hello") returns the tuple (-1, nil, "hello"),

because -1 makes socket.skip not skip any values. As another example, the

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 99

code f = socket.skip(-2) assigns socket.skip to f, as -2 gets socket.skip

from the stack. Our type system cannot handle the type of negative numbers,

as this requires more complex types such as the refinement types from hybrid

type checking [Fla06].

We could give precise static types to most of the members of the modules

ftp and http, but we could not precisely type two overloaded functions:

ftp.get and http.request.

The function ftp.get downloads data from a given URL, which can

be either a string or a table. More precisely, ftp.get(url) returns the

tuple (string) | (nil, string) if url is a string, and it returns the tuple

(number) | (nil, string) if url is a table.

The function http.request downloads data from a given URL, which

can be either a string or a table. More precisely, http.request(url, body)

returns the tuple type (string, number, {string:string}, number) |

(nil, string) if url is a string and body is another string or nil, but

it returns the tuple type (number, number, {string:string}, number) |

(nil, string) if url is a table and body is nil.

The modules mime and ltn12 have a strong connection. The mime

module offers low-level and high-level filters that apply and remove some text

encodings. The low-level filters are written in C, while the high-level filters use

the function ltn12.filter.cycle along with the low-level filters to create

standard filters.

Even though we could type all the members of the mime module, the

function ltn12.filter.cycle is the only member of the ltn12 module that

we could not give a precise type. This function is difficult to type because it

is polymorphic.

The modules smtp and url were straightforward to type. The smtp mod-

ule provides functions that send e-mails. The url module provides functions

that manipulate URLs.

5.4 LuaFileSystem

LuaFileSystem is a library that extends the set of functions for manip-

ulating file systems in Lua. It contains just the lfs module that is written in

C, so we used Typed Lua’s description files to type it. Table 5.5 summarizes

the evaluation results for LuaFileSystem.

Even though we could precisely type most of the functions exported by

the lfs module, we could not type two overloaded functions due to the lack

of intersection types in our type system.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 100

percentage of members
Module easy poly over hard # members

lfs 89% 0% 11% 0% 19

Table 5.5: Evaluation results for LuaFileSystem

5.5 HTTP Digest

The HTTP Digest library implements client side HTTP digest authentic-

ation for Lua. Table 5.6 summarizes the evaluation results for HTTP Digest.

percentage of members
Module easy poly over hard # members

http-digest 0% 0% 100% 0% 1

Table 5.6: Evaluation results for HTTP Digest

It is difficult to type the interface of the http-digest module because

it is an extension to the http module from LuaSocket. The http-digest

module only exports the function http-digest.request, which extends

the function http.request with MD5 authentication. Like http.request,

http-digest.request is also an overloaded function.

Even though we could not precisely type the interface that http-digest

exports, we could use only static types to annotate this module, and they

pointed a bug in the code. The problem was related to the way the library was

loading the MD5 library that should be used. This part of the code checks the

existence of three different MD5 libraries in the system, and uses the first one

that is available, or generates an error when none is available. The code that

loads the first option was fine, but the code that loads the second and third

options were trying to access an undefined global variable.

5.6 Typical

Typical is a library that extends the behavior of the function type. Table

5.7 summarizes the evaluation results for Typical.

percentage of members
Module easy poly over hard # members
typical 100% 0% 0% 0% 1

Table 5.7: Evaluation results for Typical

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 101

The interface of the typical module is straightforward to type, as it

contains only the function typical.type, which has the same type of the

function type: (value) -> (string).

However, we hit some limitations of our type system while annotating

this module.

First, it uses the getmetatable to get a table and checks whether this

table has the field __type. We could not give a precise type to getmetatable,

so we used the dynamic type any as its return type, and this generates a

warning.

Second, it returns a metatable that extends __call with typical.type,

that is, we can use the module itself as a function, though it is a table. Our

type system still does not support metatables, so we did not extend our version

of the typical module to support __call.

Third, the module uses ipairs to iterate over an array of functions, but

our type system also has limited support to ipairs, and generates a warning

when we try to use the indexed value inside the for body. As we mentioned

in this chapter, we use the dynamic type as a replacement for the lack of

type parameters. This means that we get warnings inside an ipairs iteration,

because all iterated elements have the dynamic type. We removed this warning

using the numeric for to perform the same loop.

5.7 Modulo 11

Modulo 11 is a library that generates and verifies modulo 11 numbers.

Table 5.8 summarizes the evaluation results for Typical.

percentage of members
Module easy poly over hard # members
mod11 78% 0% 0% 22% 9

Table 5.8: Evaluation results for Modulo 11

The mod11 module was written using an object-oriented idiom that our

type system does not support, and that is the reason why we could not

type all the members of its interface. More precisely, the original code uses

setmetatable to hide two attributes, which our type system cannot hide.

In addition, it returns a metatable that extends __call with the class

constructor. This allows us to use the module itself to create new instances of

a Modulo 11 number. However, our type system does not support this feature,

and we need to make explicit calls to the constructor whenever we want to

create a new instance.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 102

Even though we had these two issues to annotate the mod11 module,

we could use only static types to annotate it, and we found some interesting

points. The code relies on implicit conversions between strings and numbers,

and some parts of the code keep on changing the type of local variables. These

are two practices that may hide bugs.

5.8 Typed Lua Compiler

The Typed Lua compiler is the last case study that we evaluated. Table

5.9 summarizes its evaluation results.

percentage of members
Module easy poly over hard # members

tlast 98% 0% 2% 0% 47
tltype 100% 0% 0% 0% 65

tlst 100% 0% 0% 0% 26
tllexer 18% 0% 0% 82% 11

tlparser 100% 0% 0% 0% 1
tldparser 100% 0% 0% 0% 1
tlchecker 100% 0% 0% 0% 2

tlcode 100% 0% 0% 0% 1

Table 5.9: Evaluation results for Typed Lua Compiler

The tlast module implements the Abstract Syntax Tree for the compiler.

We could not precisely type just one function, because it has an overloaded

type that requires intersection types.

The tltype module implements the types introduced by Typed Lua.

It also implements the subtyping and consistent-subtyping relations. The

interface that this module exports was straightforward to type.

The tlst module implements the symbols table for the compiler. The

interface that this module exports was also straightforward to type.

The tllexer module defines common lexical rules for the Typed Lua

parser and the description file parser. This module is hard to type because

it uses LPeg [Ier08, Ier09] patterns, and LPeg uses overloaded arithmetic

operators to build LPeg patterns. Even though LPeg is the third most popular

Lua module, we cannot precisely type LPeg patterns because our type system

still does not support overloading arithmetic operators. In the tllexer module,

we could only give precise static types to two error reporting functions that it

exports.

The tlparser and tldparser modules implement the Typed Lua parser

and the description file parser, respectively. Even though they use LPeg to

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 5. Evaluation 103

implement the grammar rules, they only export a parsing function. Both use

LPeg to parse a string and return the corresponding AST.

We could type the interfaces that modules tlchecker and tlcode export.

The former traverses the AST to perform type checking, while the latter

traverses the AST to perform code generation.

Even though we could precisely type the interface that most of the

modules export, we had issues to write mutually recursive functions. This

kind of functions often appear in compilers construction to traverse the data

structures that they use. However, Typed Lua still does not support mutually

recursive functions. A way to overcome this limitation was to predeclare these

functions with an empty body, and then redeclare them with their actual body.

The first declaration specifies the function type, while the second specifies what

the function actually does without changing any type definition.

Traversing the AST would also be problematic if we had not included

a way to discriminate unions of table types, as we mentioned in Section 3.5.

Without a way to discriminate a union of table types, any attempt to index

this union of table types would generate a warning.

Bootstraping the compiler also helped revealing some bugs. We found

some accesses to undeclared global variables and also to undeclared table fields.

The compiler also helped pointing the places where we should narrow a nilable

value before using it. In fact, this point appeared in all the case studies that

we used Typed Lua to annotate Lua code. This means that Lua programmers

often use possibly nil values before checking whether it is nil.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA




