
4
The type system

In the previous chapter we presented an informal overview of Typed

Lua. We showed that programmers can use Typed Lua to combine static

and dynamic typing in the same code, and it allows them to incrementally

migrate from dynamic to static typing. This is a benefit to programmers that

use dynamically typed languages to build large applications, as static types

detect many bugs during the development phase, and also provide better

documentation.

In this chapter we present the abstract syntax of Typed Lua types, the

subtyping rules, and the most interesting typing rules. Besides its practical

contributions, Typed Lua also has some interesting contributions to the field

of optional type systems for scripting languages. They are novel type system

features that let Typed Lua cover several Lua idioms and features, such as

refinement of tables, multiple assignment, and multiple return values.

4.1 Types

Typed Lua includes types that can appear in annotations and some

special types that cannot appear in annotations, though they play special

role in type checking some Lua idioms and handling flow typing. Special

types cannot appear in annotations because they do not have a corresponding

concrete syntax, so we also isolated them in the formalization to make the

implementation easier. First we present the types that compose the type

language of our type system, and then we present the special types, indicating

why they are necessary.

Figure 4.1 presents the abstract syntax of Typed Lua types. Typed Lua

splits types into two categories: first-level types and second-level types. First-

level types represent first-class Lua values and second-level types represent

tuples of values that appear in the input and output of functions. First-level

types include literal types, base types, the type nil, the top type value, the

dynamic type any, the type self , union types, function types, table types,

and recursive types. Second-level types include tuple types and unions of tuple

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 4. The type system 62

Type Language

F ::= first-level types:
L literal types
| B base types
| nil nil type
| value top type
| any dynamic type
| self self type
| F1 ∪ F2 union types
| S1 → S2 function types
| {F :V }unique|open|fixed|closed table types
| x type variables
| µx.F recursive types

L ::= literal types:

false | true | int | float | string
B ::= base types:

boolean | integer | number | string
V ::= value types:

F | const F
S ::= second-level types:

P tuple types
| S1 t S2 unions of tuple types

P ::= tuple types:

F∗ variadic types
| F × P pair types

Figure 4.1: The abstract syntax of Typed Lua types

types. Tuple types include variadic types and pair types. Types are ordered

by a subtype relationship that we introduce in Section 4.2, so Lua values may

belong to several distinct types.

Literal types represent the type of literal values. They can be the boolean

values false and true, an integer value, a floating point value, or a string value.

We will see that literal types are important in our treatment of table types as

records.

Typed Lua includes four base types: boolean, integer, number, and

string. The base types boolean and string represent the values that Lua

tags as boolean and string during run-time. Lua 5.3 introduced two internal

representations to the tag number: integer for integer numbers and float for

real numbers. Lua does automatic promotion of integer values to float values

as needed. We introduced the base type number to represent float values,

and the base type integer to represent integer values. In the next section we
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will show that integer is a subtype of number. This allows programmers to

keep using integer values where float values are expected.

The type nil is the type of nil, the value that Lua uses for undefined

variables, missing parameters, and missing table keys.

The type value is the top type, which represents any Lua value. In

Section 4.3 we will show that this type, along with variadic types, helps the type

system to drop extra values on assignments and function calls, thus preserving

the semantics of Lua in these cases.

Typed Lua includes the dynamic type any for allowing programmers to

mix static and dynamic typing.

Typed Lua uses the type self to represent the receiver in object-oriented

method definitions and method calls. As we mentioned in Section 3.7, we need

the type self to prevent programs from indexing a method without calling it

with the correct receiver.

Union types F1 ∪ F2 represent data types that can hold a value of two

different types.

Function types have the form S1 → S2 and represent Lua functions,

where S is a second-level type.

Second-level types are either tuple types or unions of tuple types. Tuple

types are tuples of first-level types that end with a variadic type. Typed Lua

needs second-level types because tuples are not first-class values in Lua, only

appearing on argument passing, multiple returns, and multiple assignments.

A variadic type F∗ represents a sequence of values of type F ∪ nil; it is the

type of a vararg expression. Second-level types include unions of tuples because

Lua programs usually overload the return type of functions to denote error,

as we mentioned in Section 2.5. For clarity, we use the symbol t to represent

the union between two different tuple types. Note that ∪ represents the union

between two first-level types, while t represents the union between two tuple

types.

Back to first-level types, table types represent the various forms

that Lua tables can take. The syntactical form of table types is

{F :V }unique|open|fixed|closed, where the notation F :V denotes the list

F1:V1, ..., Fn:Vn. Each Vi represents the type of the value that table keys

of type Fi map to. Value types represent mutable fields by default, but we

can use the const type to make them represent immutable fields. Making a

field const does not guarantee that its value cannot change, as the table may

have aliases with a non-const type for that field. Typed Lua needs immutable

fields to enable depth subtyping between table types.

We also use the tags unique, open, fixed, and closed to classify table types.
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The tag closed represents table types that do not provide any guarantees about

keys with types not listed in the table type. In particular, in the concrete

syntax, type annotations, interface declarations, and userdata declarations

always describe closed table types. The tags unique, open, and fixed represent

tables with no keys that do not inhabit one of the table’s key types, but with

different guarantees about the reference to a value of that type. A reference to

an unique table is guaranteed to point to a table that has no other references

to it. In particular, the type of the table constructor has this tag, as it allows

greater flexibility in reinterpreting its type. A reference to an open table

is guaranteed to have only closed references pointing to the same table, a

guarantee that still lets the type system reinterpret the type of a reference,

but with more restrictions. A reference to a fixed table can have any number

of fixed or closed references point to it, so its type cannot change anymore. In

particular, the type of a class has this tag in our type system.

A fixed table type guarantees that there are no keys with a type that is

not one of its key types. Even though this guarantee allows type-safe iteration

on fixed table types, it forbids width subtyping that is necessary for object-

oriented programming, so closed table types remove this guarantee to allow

width subytping between other table types and closed table types. This means

that objects have closed table types, while their classes have fixed table types.

Any table type has to be well-formed. Informally, a table type is well-

formed if key types do not overlap. In Section 4.3 we formalize the definition

of well-formed table types. We delay the proper formalization of well-formed

table types because we use consistent-subtyping in this formalization.

Recursive types have the form µx.F , where F is a first-level type that

x represents. For instance, µx.{“info” : integer, “next” : x ∪ nil}closed is a

type for singly-linked lists of integers. In Section 3.5 we mentioned that we can

use the following interface declaration as an alias to this type:

local interface Element

info:integer

next:Element?

end

With recursive types we finish the discussion about Typed Lua types,

and we begin the discussion about special types.

Figure 4.2 presents the special types that Typed Lua includes for typing

some Lua idioms and flow typing. Typed Lua splits special types into three

categories: expression types, expression list types, and filter result types. Ex-

pression types represent the type of expressions in the type system, which can
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Special Types

T ::= expression types:
F first-level types
| φ(F1, F2) filter types
| πx

i projection types
E ::= expression list types:

T∗ variadic types
| T × E pair types

R ::= filter result types:
void void type
| F first-level types

Figure 4.2: The special types used by Typed Lua

be any first-level type, a filter type, or a projection type. Expression list types

represent the type of lists of expressions, which are tuples of expression types

that end with a variadic type. Filter result types are either the type void or

a first-level type. In Section 4.3 we will show that Typed Lua uses filter types

in flow typing, being the type void a type with no values, used by the type

system as a way to detect branches that are unreachable due to flow typing.

Typed Lua includes filter types as a way to discriminate the type of

local variables inside conditions. Our type system uses filter types to formalize

the type predicates that we mentioned in Section 3.3. This means that type

predicates use filter types of the form φ(F1, F2) to discriminate local variables

that are bound to union types. In a filter type φ(F1, T2), F1 is the original type

and F2 is the discriminated type.

Typed Lua includes projection types as a way to project unions of tuple

types into unions of first-level types. In Section 4.3 we will show in more

detail how our type system uses them as a mechanism for handling unions of

tuple types, when they appear in the right-hand side of the declaration of local

variables, as we mentioned in Section 3.3. We also show how this feature allows

our type system to constrain the type of a local variable that depends on the

type of another local variable.

4.2 Subtyping

Our type system uses subtyping [Car84, AC96] to order types and

consistent-subtyping [ST07, SVB13] to allow the interaction between static-

ally and dynamically typed code. We explain the subtyping and consistent-

subtyping rules throughout this section. However, we focus the discussion
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on the definition of subtyping because, as we mentioned in Section 2.3, we

can combine the consistency and subtyping relations to achieve consistent-

subtyping. The differences between subtyping and consistent-subtyping are the

way they handle the dynamic type, and the fact that subtyping is transitive,

but consistent-subtyping is not.

We present the subtyping rules as a deduction system for the subtyping

relation Σ ` T1 <: T2, where T1 and T2 are two types of the same kind. The

variable Σ is a set of pairs of recursion variables. We need this set to record

the hypotheses that we assume when checking recursive types.

The subtyping rules for literal types and base types include the rules for

defining that literal types are subtypes of their respective base types, and that

integer is a subtype of number:

(S-FALSE)

Σ ` false <: boolean

(S-TRUE)

Σ ` true <: boolean

(S-STRING)

Σ ` string <: string

(S-INT1)

Σ ` int <: integer

(S-INT2)

Σ ` int <: number

(S-FLOAT)

Σ ` float <: number

(S-INTEGER)

Σ ` integer <: number

Subtyping is reflexive and transitive; therefore, we could have omitted the

rule S-INT2. More precisely, we could have defined a transitive rule for first-

level types instead of defining specific rules for transitive cases. For instance,

a transitive rule would allow us to derive that

Σ ` 1 <: integer Σ ` integer <: number

Σ ` 1 <: number

However, we are using the subtyping rules as the template for defining

the consistent-subtyping rules, and consistent-subtyping is not transitive. More

precisely, we want the subtyping and consistent-subtyping rules to differ only

in the way they handle the dynamic type. Thus, we define the subtyping rules

using an algorithmic approach that is close to the implementation, as this

approach allows us to use subtyping to easily formalize consistent-subtyping.

Our type system includes the top type value, so any first-level type is a

subtype of value:

(S-VALUE)

Σ ` F <: value

Many programming languages include a bottom type to represent an
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empty value that programmers can use as a default expression, and we could

have used the type nil for this role. However, making nil the bottom type

would lead to several expressions that would pass the type checker, but that

would fail during run-time in the presence of a nil value. Thus, our type

system does not have a bottom type, and nil is a subtype only of itself and of

value.

Another type that is only a subtype of itself and of the type value is the

type self .

The subtyping rules for union types are standard:

(S-UNION1)
Σ ` F1 <: F Σ ` F2 <: F

Σ ` F1 ∪ F2 <: F

(S-UNION2)
Σ ` F <: F1

Σ ` F <: F1 ∪ F2

(S-UNION3)
Σ ` F <: F2

Σ ` F <: F1 ∪ F2

The first rule shows that a union type F1∪F2 is a subtype of F if both F1

and F2 are subtypes of F ; and the other rules show that a type F is a subtype

of a union type F1 ∪ F2 if F is a subtype of either F1 or F2.

The subtyping rule for function types is also standard:

(S-FUNCTION)
Σ ` S3 <: S1 Σ ` S2 <: S4

Σ ` S1 → S2 <: S3 → S4

The rule S-FUNCTION shows that subtyping between function types

is contravariant on the type of the parameter list and covariant on the return

type. In the previous section we explained why our type system uses second-

level types to represent the type of the parameter list and the return type.

Now, we explain their subtyping rules.

The subtyping rule for pair types is the standard covariant rule:

(S-PAIR1)
Σ ` F1 <: F2 Σ ` P1 <: P2

Σ ` F1 × P1 <: F2 × P2

The subtyping rules for variadic types are not so obvious. We need three

different subtyping rules for variadic types to handle all the cases where they

can appear.

The rule S-VARARG1 handles subtyping between two variadic types:

(S-VARARG1)
Σ ` F1 ∪ nil <: F2 ∪ nil

Σ ` F1∗ <: F2∗

This rule shows that F1∗ is a subtype of F2∗ if F1 ∪ nil is a subtype of
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F2 ∪ nil. It explicitly includes nil in both sides because otherwise nil∗ would

not be a subtype of several other variadic types. For instance, nil∗ would not

be a subtype of number∗, as nil 6<: number.

The other rules handle subtyping between a varidic type and a pair type:

(S-VARARG2)
Σ ` F1 ∪ nil <: F2 Σ ` F1∗ <: P2

Σ ` F1∗ <: F2 × P2

(S-VARARG3)
Σ ` F1 <: F2 ∪ nil Σ ` P1 <: F2∗

Σ ` F1 × P1 <: F2∗

These rules state the conditions when tuple types of different length

are compatible. In the next section we will show that we use the subtyping

rules for variadic types, along with the types value and nil, to make our

type system reflect the semantics of Lua on discarding extra parameters and

replacing missing parameters.

The subtyping rules for unions of tuple types are similar to the subtyping

rules for unions of first-level types:

(S-UNION4)
Σ ` S1 <: S Σ ` S2 <: S

Σ ` S1 t S2 <: S

(S-UNION5)
Σ ` S <: S1

Σ ` S <: S1 t S2

(S-UNION6)
Σ ` S <: S2

Σ ` S <: S1 t S2

Back to the subtyping rules between first-level types, the subtyping rule

among a fixed or closed table type and another closed table type resembles the

standard subtyping rule between records:

(S-TABLE1)
∀i ∃j Σ ` Fj <: F ′

i Σ ` F ′
i <: Fj Σ ` Vj <:c V

′
i

Σ ` {F :V }fixed|closed <: {F ′:V ′}closed

The rule S-TABLE1 allows width subtyping and introduces the auxil-

iary relation <:c to handle depth subtyping on the type of the values stored

in the table fields. We need an auxiliary relation because the subtyping of the

type of the values stored in the table fields changes according to the tags of

the table types. We define the relation <:c as follows:

(S-FIELD1)
Σ ` F1 <: F2 Σ ` F2 <: F1

Σ ` F1 <:c F2

(S-FIELD2)
Σ ` F1 <: F2

Σ ` const F1 <:c const F2

(S-FIELD3)
Σ ` F1 <: F2

Σ ` F1 <:c const F2

These rules allow depth subtyping on const fields. The rule S-FIELD1
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defines that mutable fields are invariant, while the rule S-FIELD2 defines

that immutable fields are covariant. The rule S-FIELD3 defines that it is

safe to promote fields from mutable to immutable. We do not include a rule

that allows promoting fields from immutable to mutable because this would

be unsafe due to variance.

There is a limitation on closed table types that led us to introduce open

and unique table types. If the table constructor had a closed table type, then

programmers would not be able to use it to initialize a variable with a table

type that describes a more general type. For instance,

local t:{"x":integer, "y":integer?} = { x = 1, y = 2 }

would not type check, as the type of the table constructor would not be a

subtype of the type in the annotation. More precisely,

{“x” : 1, “y” : 2}closed 6<: {“x” : integer, “y” : integer ∪ nil}closed

Simply promoting the type of each table value to its supertype would not

overcome this limitation, as it still would give to the table constructor a closed

table type without covariant mutable fields. Thus, programmers would not be

able to use the table constructor to initialize a variable with a table type that

includes an optional field. Using the previous example,

{“x” : integer, “y” : integer}closed 6<:

{“x” : integer, “y” : integer ∪ nil}closed

We introduced unique table types to avoid this limitation, as they

represent the type of tables with no keys that do not inhabit one of the

table’s key types, and with no alias. In particular, this is the case of the table

constructor. The following subtyping rule defines the subtyping relation among

unique table types and closed table types:

(S-TABLE2)

∀i ∀j Σ ` Fi <: F ′
j → Σ ` Vi <:u V

′
j

∀j @i Σ ` Fi <: F ′
j → Σ ` nil <:o V

′
j

Σ ` {F :V }unique <: {F ′:V ′}closed

The rule S-TABLE2 allows width subtyping and covariant keys. It

allows covariant keys because we also want to use unique table types as a

way to join table fields that inhabit closed table types. For instance, we

want to use the table constructor to initialize a variable with a table type

that describes a hash. More precisely, this rule states that it is safe to
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recast the table type {“x” : integer, “y” : integer, “z” : integer}unique to

{string : integer ∪ nil}closed, as long as the new type becomes inaccessible

with the original type.

The rule S-TABLE2 introduced the auxiliary relations <:u and <:o. The

first allows depth subtyping on all fields, while the second allows the omission

of optional fields. We define them as follows:

(S-FIELD4)
Σ ` F1 <: F2

Σ ` F1 <:u F2

(S-FIELD5)
Σ ` F1 <: F2

Σ ` const F1 <:u const F2

(S-FIELD6)
Σ ` F1 <: F2

Σ ` const F1 <:u F2

(S-FIELD7)
Σ ` F1 <: F2

Σ ` F1 <:u const F2

(S-FIELD8)
Σ ` nil <: F

Σ ` nil <:o F

(S-FIELD9)
Σ ` nil <: F

Σ ` nil <:o const F

Using unique table types to represent the type of the table constructor

allows our type system to type check the previous example. More precisely,

{“x” : 1, “y” : 2}unique <: {“x” : integer, “y” : integer ∪ nil}closed

Even though we allow width subtyping between unique and closed table

types, we do not allow it among unique and other table types because it would

violate our definition of these other table types:

(S-TABLE3)

∀i ∃j Σ ` Fi <: F ′
j ∧ Σ ` Vi <:u V

′
j

∀j @i Σ ` Fi <: F ′
j → Σ ` nil <:o V

′
j

Σ ` {F :V }unique <: {F ′:V ′}unique|open|fixed

The rule that handles subtyping between open and closed table types

allows width subtyping:

(S-TABLE4)

∀i ∀j Σ ` Fi <: F ′
j → Σ ` Vi <:c V

′
j

∀j @i Σ ` Fi <: F ′
j → Σ ` nil <:o V

′
j

Σ ` {F :V }open <: {F ′:V ′}closed

However, the rule that handles subtyping among open and open or fixed
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table types does not allow width subtyping:

(S-TABLE5)

∀i ∃j Σ ` Fi <: F ′
j ∧ Σ ` Vi <:c V

′
j

∀j @i Σ ` Fi <: F ′
j → Σ ` nil <:o V

′
j

Σ ` {F :V }open <: {F ′:V ′}open|fixed

The rules S-TABLE4 and S-TABLE5 allow joining fields plus omitting

optional fields. Both rules use <:c to allow depth subtyping on const fields

only.

We introduced fixed table types because we needed a safe way to represent

the type of classes that can allow single inheritance through the refinement of

table types. The rule that handles subtyping between fixed table types does

not allow width subtyping, joining fields, and omitting fields, but it allows

depth subtyping on const fields:

(S-TABLE6)

∀i ∃j Σ ` Fi <: F ′
j Σ ` F ′

j <: Fi Σ ` Vi <:c V
′
j

∀j ∃i Σ ` Fi <: F ′
j Σ ` F ′

j <: Fi Σ ` Vi <:c V
′
j

Σ ` {F :V }fixed <: {F ′:V ′}fixed

In the next section we will show in more detail how our type system uses

these tags to handle the refinement of table types.

We use the Amber rule [Car86] to define subtyping between recursive

types:

(S-AMBER)
Σ[x1 <: x2] ` F1 <: F2

Σ ` µx1.F1 <: µx2.F2

(S-ASSUMPTION)
x1 <: x2 ∈ Σ

Σ ` x1 <: x2

The rule S-AMBER also uses the rule S-ASSUMPTION to check

whether µx1.F1 <: µx2.F2. Both rules use the set of assumptions Σ, where

each assumption is a pair of recursion variables. The rule S-AMBER extends

Σ with the assumption x1 <: x2 to check whether F1 <: F2. The rule S-

ASSUMPTION allows the rule S-AMBER to check whether an assumption

is valid.

A recursive type may appear inside a first-level type, and our type system

includes subtyping rules to handle subtyping between recursive types and other

first-level types:

(S-UNFOLDR)
Σ ` F1 <: [x 7→ µx.F2]F2

Σ ` F1 <: µx.F2

(S-UNFOLDL)
Σ ` [x 7→ µx.F1]F1 <: F2

Σ ` µx.F1 <: F2
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As an example, the rule S-UNFOLDR allows our type system to type

check the function insert from Section 3.5:

local function insert (e:Element?, v:integer):Element

return { info = v, next = e }

end

that is, the type checker uses the rule S-UNFOLDR to verify whether the

type of the table constructor is a subtype of Element:

{“info” : integer,

“next” : µx.{“info” : integer, “next” : x ∪ nil}closed ∪ nil}unique <:

µx.{“info” : integer, “next” : x ∪ nil}closed

Filter types are subtypes only of themselves. More precisely, a filter type

φ(F1, F2) is a subtype of the same filter type φ(F1, F2), which shares the same

types F1 and F2.

Projection types are subtypes only of themselves. More precisely, a

projection type πx
i is a subtype of the same projection type πx

i , which shares

the same union of tuples x and the same index i.

The subtyping rules for expression list types are similar to the subtyping

rules for tuple types.

The dynamic type any is neither the bottom nor the top type, but a

separate type that is subtype only of itself and of value.

Even though the dynamic type any does not interact with subtyping, it

does interact with consistent-subtyping. We present the consistent-subtyping

rules as a deduction system for the consistent-subtyping relation Σ ` T1 . T2,

where T1 and T2 are two types of the same kind. As in the subtyping relation, Σ

is also a set of pairs of recursion variables. We define the consistent-subtyping

rules for the dynamic type any as follows:

(C-ANY1)

Σ ` F . any

(C-ANY2)

Σ ` any . F

If we had set the type any as both bottom and top types of our subtyping

relation, then any type F1 would be a subtype of any other type F2. The

consequence of this is that all programs would type check without errors. This

would happen due to the transitivity of subtyping, that is, we would be able

to down-cast any type F1 to any and then up-cast any to any other type F2.

The rules C-ANY1 and C-ANY2 are the rules that allow the dynamic type

to interact with other first-level types, and thus allow dynamically typed code
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to coexist with statically typed code. Because of these two rules, consistent-

subtyping cannot be transitive. These two rules are the only rules that differ

between subtyping and consistent-subtyping, if we implement the subtyping

rules as we do in this section.

In the implementation of Typed Lua we also use consistent-subtyping

to normalize and simplify union types, though we let union types free in the

formalization. For instance, the union type boolean|any results in the type

any, because boolean is consistent-subtype of any. Another example is the

union type number|nil|1 that results in the union type number|nil, because

1 is consistent-subtype of number.

4.3 Type checking

In this section we use a reduced core of Typed Lua to present the

most interesting rules of our type system. These rules type check multiple

assignment, table refinement, and overloading on the return type of functions.

Appendix C presents the full set of typing rules.

Our core limits control flow to if and while statements; it has explicit

type annotations, explicit scope for variables, explicit method declarations,

and explicit method calls. Here is a list of features that are not present in our

reduced core:

– labels and goto statements (they are difficult to handle along with our

simplified form of flow typing, and they are out of scope for now);

– explicit blocks (we are already using explicit scope for variables);

– other loop structures such as repeat-until, numeric for, and generic for

(we can use while to express them);

– table fields other than [e1] = e2 (we can use this form to express the

missing forms);

– arithmetic operators other than + (other arithmetic operators have

similar typing rules);

– relational operators other than == and < (inequality has similar typing

rules to == and other relational operators have similar typing rules to

<);

– bitwise operators other than & (other bitwise operators have similar

typing rules).

Our reduced core does not lose much expressiveness, as it can express

any Lua program except those that use labels and goto statements.
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Abstract Syntax

s ::= statements:
skip skip
| s1 ; s2 sequence

| l = el multiple assignment
| while e do s | if e then s1 else s2 control flow

| local id:F = el in s variable declaration

| local id = el in s variable declaration
| rec id:F = e in s recursive declaration
| return el return
| bac0 application with no results
| fun id1:id2 (pl):S s ; return el method declaration

e ::= expressions:
nil nil
| k other literals
| id variable access
| e1[e2] table access
| <F> id type coercion
| f function declaration

| { [e1] = e2 } | { [e1] = e2,me } table constructor
| e1 + e2 | e1 .. e2 | e1 == e2 | e1 < e2 binary operations
| e1 & e2 | e1 and e2 | e1 or e2 binary operations
| not e | # e unary operations
| bmec1 expressions with one result

l ::= left-hand values:
idl variable assignment
| e1[e2]l table assignment
| id[e] <V > type coercion

k ::= literal constants:
false | true | int | float | string

el ::= expression lists:
e | e,me

me ::= multiple results:
a application
| ... vararg expression

a ::= applications:
e(el) function application
| e:n(el) method application

f ::= function declarations:
fun (pl):S s ; return el

pl ::= parameter lists:

id:F | id:F , ...:F

Figure 4.3: The abstract syntax of Typed Lua
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Figure 4.3 presents the abstract syntax of core Typed Lua. It splits

the syntactic categories as follows: s are statements, e are expressions, l

are left-hand values, k are literal constants, el are expression lists, me are

expressions with multiple results, a are function and method applications, f

are function declarations, pl are parameter lists, id are variable names, F are

first-level types, and S are second-level types. The notation id:F denotes the

list id1:F1, ..., idn:Fn.

Our reduced core includes two statements for declaring local variables,

one with and another without type annotations. While we use the former to

formalize how our type system handles the declaration of annotated variables,

we use the latter to formalize how our type system handles the declaration of

unannotated variables through local type inference and also the introduction

of projection types.

Our reduced core also includes a truncation operator bc for function

applications, method applications, and the vararg expression. We use bac0 to

denote function and method applications that produce no value, because they

appear as statements. We use bmec1 to denote function applications, method

applications, and vararg expressions that produce only one value, even if they

return multiple values.

We also include two kinds of type coercions in our core language: the left-

hand value id[e] <V > and the expression <F> id. Both allow the refinement

of table types. We also split variable names into two categories to have safe

aliasing of tables in the presence of refinement. We use id when variable names

appear as expressions and idl when variable names appear as left-hand values.

Even though we can assign only first-level types to variables, functions

and methods can return unions of second-level types, and our type system

should be able to project these unions of second-level types into unions of

first-level types. We use two different environments to handle this feature. The

first environment is the type environment Γ that maps variables to expression

types, as the type of an expression can be a first-level type, a filter type, or

a projection type. We use Γ1[id 7→ T ] to extend the environment Γ1 with the

variable id that maps to type T . The second environment is the projection

environment Π that maps projection variables to second-level types. We use

Π[x 7→ S] to extend the environment Π with the projection variable x that

maps to type S. In Section 4.3 we will show how our type system uses the

projection environment Π for handling projection types, and also for projecting

unions of second-level types into unions of first-level types.

We present the typing rules as a deduction system for two typing

relations, one for typing statements and another for typing expressions.
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We use the relation Γ1,Π ` s,Γ2 for typing statements. This relation

means that given a type environment Γ1 and a projection environment Π, we

can check that a statement s produces a new type environment Γ2.

We use the relation Γ1,Π ` e : T,Γ2 for typing expressions. This relation

means that given a type environment Γ1 and a projection environment Π,

we can check that an expression e has type T and produces a new type

environment Γ2.

Assignment and function application

Lua has multiple assignment, and our type system uses three different

kinds of typing rules to type check this feature. It uses typing rules that type

check the different forms of expression lists that can appear in the right-hand

side, a typing rule that type checks a list of left-hand values, and a general

rule that uses consistent-subtyping to check whether the type of the right-hand

side is consistent with the type of the left-hand side.

As an example, lets assume that x and y are variables in the environment

with types integer and string. Let us see how our type system type checks

the following assignment:

x, y = 1, “foo”

First, our type system type checks the expression list in the right-hand

side of the assignment. In our example, the right-hand side of the assignment

has type 1 × “foo” × nil∗. Note that our type system includes the type nil∗
to replace missing values. The rules that type check expression lists introduce

the type nil∗ to let the right-hand side produce fewer values than expected

in the left-hand side. Our example uses the rule T-EXPLIST1 to type check

the right-hand side of the assignment. The rule T-EXPLIST1 is the rule that

type checks an expression list where all expressions can only produce a single

value:

(T-EXPLIST1)
Γ1,Π ` ei : Fi,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | e |

Γ1,Π ` e : F1 × ...× Fn × nil∗,Γf

Later, in this section we will show that table refinement can change the

type environment while typing an expression or a left-hand value. Thus, the

rules that type check lists of expressions and lists of left-hand values use a

partial auxiliary function merge to collect all environment changes in a new

environment Γf , if there are no conflicts. We will also show that we can only

change the environment to add new table fields in a table type, and we cannot
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change the type of a variable or a table field which is already present in a table

type.

After type checking the right-hand side, our type system type checks the

list of left-hand values. In our example, the left-hand side of the assignment

has type integer × string × value∗. Note that our type system uses the

type value∗ to discard extra values. The rule that type checks lists of left-

hand values introduces the type value∗ to let the right-hand side produce

more values than expected in the left-hand side. Our example uses the rule

T-LHSLIST to type check a list of left-hand values:

(T-LHSLIST)

Γ1,Π ` li : Fi,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | l |
Γ1,Π ` l : F1 × ...× Fn × value∗,Γf

After type checking the right-hand side and the left-hand side of an

assignment, our type system checks whether their types are consistent. The

rule T-ASSIGNMENT is the general rule that expresses this idea:

(T-ASSIGNMENT)

Γ1,Π ` el : S1,Γ2 Γ2,Π ` l : S2,Γ3 S1 . S2

Γ1,Π ` l = el,Γ3

Back to our example, it type checks through rule T-ASSIGNMENT

because

1× “foo”× nil∗ . integer× string × value∗

As another example, lets assume that x, y, and z are variables in the

environment with types integer, string, and string ∪ nil. The assignment

x, y, z = 1, “foo”

type checks because

1× “foo”× nil∗ . integer× string × (string ∪ nil)× value∗

Note how nil∗ replaces any missing values. This example type checks

because nil∗ produces as many nil values as we need, and nil is consistent

with string ∪ nil, which is the type of z.

Conversely, the assignment

x = 1, “foo”
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type checks because

1× “foo”× nil∗ . integer× value∗

Note how value∗ discards extra values. This example type checks because

value∗ discards as many extra values as we need, and “foo” is consistent with

value.

Rules for function applications are similar to the rule for multiple

assignment. The rule T-APPLY1 handles the case where function applications

are expressions that produce multiple values:

(T-APPLY1)
Γ1,Π ` e : S1 → S2,Γ2 Γ2,Π ` el : S3,Γ3 S3 . S1

Γ1,Π ` e(el) : S2,Γ3

We also use the rule T-APPLY1 as the base case for the rules that

handle the cases where function applications are either statements that pro-

duce no value or expressions that produce only one value. The rule T-

STMAPPLY1 discards the produced values, while the rule T-EXPAPPLY1

uses the auxiliary function proj to ensure that only the first value is produced:

(T-STMAPPLY1)
Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c0,Γ2

(T-EXPAPPLY1)
Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c1 : proj(S, 1),Γ2

We can define proj inductively as follows:

proj(S1 t S2, i) = proj(S1, i) ∪ proj(S2, i)

proj(F∗, i) = nil(F )

proj(F × P, 1) = F

proj(F × P, i) = proj(P, i− 1)

proj(E∗, i) = nil(E)

proj(T × E, 1) = T

proj(T × E, i) = proj(E, i− 1)

nil(T ) =

{
T if nil . T

T ∪ nil otherwise

As an example, let us assume that f is a local function in the environ-

ment, and that f has type string×(integer∪nil)×(integer∪nil)×value∗ →
integer∗. The function call

f(“foo”)

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 4. The type system 79

type checks through the rule T-APPLY1, because

“foo”× nil∗ . string × (integer ∪ nil)× (integer ∪ nil)× value∗

and the function call

f(“foo”, 1, 2, 3)

also type checks through the rule T-APPLY1, because

“foo”× 1× 2× 3×nil∗ . string× (integer∪nil)× (integer∪nil)×value∗

Our type system also catches arity mismatch. To do that, we end the

input type of a function with type nil∗ instead of value∗. For instance, let us

assume that f has type string × (integer ∪ nil) × (integer ∪ nil) × nil∗ →
integer∗. The function call

f(“foo”)

type checks through the rule T-APPLY1, because

“foo”× nil∗ . string × (integer ∪ nil)× (integer ∪ nil)× nil∗

but the function call

f(“foo”, 1, 2, 3)

does not type check through the rule T-APPLY1, because

“foo”× 1× 2× 3× nil∗ 6. string × (integer ∪ nil)× (integer ∪ nil)× nil∗

We just mentioned that when our type system type checks an expression

list, it always includes nil∗ in the end of the type of this expression list if its

type does not end in a variadic type. This behavior preserves the semantics

of Lua on replacing missing values, and it is necessary when we omit optional

parameters in a function call, like the previous example showed.

Using nil∗ in the end of the type of expression lists also allows our type

system to catch arity mismatch in function calls without optional parameters.

For instance, let us assume that f has type integer × integer × nil∗ →
integer× nil∗. The function call

f(1)

does not type check through the rule T-APPLY1, because

1× nil∗ 6. integer× integer× nil∗
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and the function call

f(1, 2, 3)

also does not type check through the rule T-APPLY1, because

1× 2× 3× nil∗ 6. integer× integer× nil∗

Tables and refinement

Our abstract syntax reduces the syntactic forms of the table constructor

into two forms: { [e1] = e2 } and { [e1] = e2,me }. The first uses a list of table

fields ([e1] = e2)1, ..., ([e1] = e2)n. The second uses a list of table fields and an

expression that can produce multiple values.

The simplest expression involving tables is the empty table constructor

{}; it always has type {}unique.
As a more interesting example, let us see how our type system type checks

the table constructor {[1] = “x”, [2] = “y”, [3] = “z”}.
First, Typed Lua uses the auxiliary relation Γ1,Π ` [e1] = e2 : (F, V ),Γ2

to type check each table field. This auxiliary relation means that given a type

environment Γ1 and a projection environment Π, checking a table field [e1] = e2

produces a pair (F, V ) and a new type environment Γ2. A pair (F, V ) means

that e1 has type F and e2 has type V , where F is the type of the key and V

is the type of the field value.

After type checking each table field, our type system uses each pair (F, V )

to build the table type that express the type of a given constructor, and uses the

predicate wf to check whether this table type is well-formed. The predicate wf

also uses the auxiliary predicate tag to forbid unique and open fields. Formally,

we can define wf inductivelly as follows:

wf({F : V }unique|open|fixed|closed) = ∀i ((@j i 6= j ∧ Fi . Fj) ∧ wf(Vi)∧
¬tag(Vi, unique) ∧ ¬tag(Vi, open))

wf(const F ) = wf(F )

wf(F1 ∪ F2) = wf(F1) ∧ wf(F2)

wf(µx.F ) = wf(F )

wf(S1 → S2) = wf(S1) ∧ wf(S2)

wf(S1 t S2) = wf(S1) ∧ wf(S2)

wf(F∗) = wf(F )

wf(F × P ) = wf(F ) ∧ wf(P )

wf(F ) = > for all other cases

Well-formed table types avoid ambiguity. For instance, this rule detects
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that the table type {1 : number, integer : string, any : boolean} is

ambiguous, because the type of the value stored by key 1 can be number,

string, or boolean, as 1 . 1, 1 . integer, and 1 . any. Moreover, the type

of the value stored by a key of type integer, which is not the literal type 1,

can be number or boolean, as integer . integer, and integer . any.

Well-formed table types also do not allow unique and open table types

to appear in the type of the field values. We made this restriction because

our type system does not keep track of aliases to table fields. This means that

allowing unique and open table types to appear in the type of a value would

allow the creation of unsafe aliases. Due to this restriction, the rule that type

check table fields use the auxiliary function fix (in the definition of vt) to

change any unique and open table types used in the field initializer to fixed.

Rule T-FIELD defines this behavior:

(T-FIELD)
Γ1,Π ` e2 : V,Γ2 Γ2,Π ` e1 : F,Γ3

Γ1,Π ` [e1] = e2 : (F, vt(F, V )),Γ3

The rule T-FIELD uses the auxiliary function vt to adjust the type of

the value according to the type of the key. More precisely, vt includes the type

nil in the type of the value when the type of the key is not a literal type. It

also uses fix to prevent unique and open table types to appear in the type of

the field values. We define these functions as follows:

vt(L, V ) = fix(V )

vt(F1, F2) = nil(fix(F2))

vt(F1, const F2) = const nil(fix(F2))

fix(F1 ∪ F2) = fix(F1) ∪ fix(F2)

fix({F :V }unique|open) = {F :V }fixed
fix(F ) = F

The rule T-CONSTRUCTOR1 uses these steps to type check a table

constructor with a list of table fields that do not end with an expression that

potentially returns multiple values:

(T-CONSTRUCTOR1)

Γ1,Π ` ([e1] = e2)i : (Fi, Vi),Γi+1 T = {F1:V1, ..., Fn:Vn}unique
wf(T ) n = | [e1] = e2 | Γf = merge(Γ1, ...,Γn+1)

Γ1,Π ` { [e1] = e2 } : T,Γf
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Back to our example, the constructor {[1] = “x”, [2] = “y”, [3] = “z”} has

type {1 : “x”, 2 : “y”, 3 : “z”}unique through rule T-CONSTRUCTOR1. The

subtyping rule for unique table types allows us assigning this table to a variable

with a more general type such as {1 : string, 2 : string, 3 : string}closed or

even {integer : string ∪ nil}closed.
As another example, the constructor {[“x”] = 1, [“y”] = {[“z”] = 2}} has

type {“x” : 1, “y” : {“z” : 2}fixed}unique through rule T-CONSTRUCTOR1.

The inner table is fixed to prevent the creation of unsafe aliases.

After presenting some typing rules of the table constructor, we start the

discussion of the rules that define the most unusual feature of our type system:

the refinement of table types. The first kind of refinement allows programmers

to add new fields to unique or open table types through field assignment. For

instance, in Section 3.4 we presented the following example:

local person = {}

person.firstname = "Lou"

person.lastname = "Reed"

We can translate this example to our reduced core as follows:

local person = {} in

person[“firstname”] <string> = “Lou”;

person[“lastname”] <string> = “Reed”

In this example, we assign the type {}unique to the variable person, then

we refine its type to {“firstname” : string}unique, and then we refine its type

to {“firstname” : string, “lastname” : string}unique. Rule T-REFINE1

type checks this use of refinement:

(T-REFINE1)

Γ1(id) = {F :V }unique
Γ1,Π ` e : Fnew,Γ2 @i ∈ 1..n Fnew . Fi Vnew = vt(Fnew, V ) n = |F :V |

Γ1,Π ` id[e]<V > : Vnew,Γ2[id 7→ {F :V , Fnew:Vnew}unique]

The rule for refining open table types is similar, changing only the tag in

the type of id:

(T-REFINE2)

Γ1(id) = {F :V }open
Γ1,Π ` e : Fnew,Γ2 @i ∈ 1..n Fnew . Fi Vnew = vt(Fnew, V ) n = |F :V |

Γ1,Π ` id[e]<V > : Vnew,Γ2[id 7→ {F :V , Fnew:Vnew}open]
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Our type system also includes analogous rules for adding methods to

unique and open tables as a side-effect of type checking a method declaration,

but we will not discuss them in this section for brevity.

We use the refinement of table types to handle the declaration of new

global variables. In Lua, the assignment v = v + 1 translates to the statement

_ENV["v"] = _ENV["v"] + 1 when v is not a local variable, where _ENV is a

table that stores the global environment. For this reason, Typed Lua treats

accesses to global variables as field accesses to an open table in the top-level

scope. In the following examples we assume that ENV is in the environment

and has type {}open.

As an example,

ENV [“x”] <string> = “foo” ; ENV [“y”] <integer> = 1

uses field assignment to add fields “x” and “y” to ENV . Therefore, after these

field assignments ENV has type {“x” : string, “y” : integer}open.

We do not allow the refinement of table types to add a field if it is already

present in the table’s type. For instance,

ENV [“x”] <string> = “foo” ; ENV [“x”] <integer> = 1

does not type check, as we are trying to add “x” twice.

We also do not allow the refinement of table types to introduce fields

with table types that are neither fixed nor closed. For instance,

ENV [“x”] <{}unique> = {}

refines the type of ENV from {}open to {“x” : {}fixed}open. Currently, our

type system can only track unique and open table types that are bound to

local variables.

We can also use multiple assignment to refine table types:

ENV [“x”] <string>, ENV [“y”] <integer> = “foo”, 1

This example type checks because all the environment changes are

consistent, and “foo”× 1× nil∗ . string× integer× value∗. By consistent

we mean that we are only adding new fields. More precisely, the first coercion

expression refines the type of ENV to {“x” : string}open, while the second

coercion expression refines the type of ENV to {“y” : integer}open. Merging

the two yields {“x” : string, “y” : integer}open. Nevertheless, the next

example does not type check because it tries to add the same field to ENV ,
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but with different types:

ENV [“x”] <string>, ENV [“x”] <integer> = “foo”, 1

Aliasing an unique or an open table type can produce either a closed or

a fixed table type, depending on the context that we are using a variable. As

we mentioned in Sections 3.7 and 4.2, we need fixed table types to type classes

in object-oriented programming. In the implementation we fix the aliasing of

unique and open table types that appear in a top-level return statement, and

in other cases we close the aliasing of unique and open table types. However, in

the formalization we chose to define this behavior in a not deterministic way,

as it makes easier the presentation of this behavior.

As an example,

local a : {}unique = {} in

local b : {}open = a in

a[“x”] <string> = “foo”;

b[“x”] <integer> = 1

does not type check, as aliasing a produces the type {}closed that is not a

subtype of {}open, the type of b. Our type system has this behavior to warn

programmers about potential unsafe behaviors after this kind of alias. In this

example, it is unsafe to add the field “x” to b, as it changes the value that is

stored in the field “x” of a.

Rules T-IDREAD1 and T-IDREAD2 define this non-deterministic

behavior. Rule T-IDREAD1 uses the auxiliary function close to produce a

closed alias. It also uses the auxiliary function open to change the type of the

original reference from unique to open, because aliasing an unique table type

while keeping the original reference unique can be unsafe. Rule T-IDREAD2

uses the auxiliary function fix to produce a fixed alias. It also uses fix to change

the type of the original reference to fixed, because a fixed table type does not

allow width subtyping. We define these rules as follows:

(T-IDREAD1)
Γ1(id) = F

Γ1,Π ` id : close(F ),Γ1[id 7→ open(F )]

(T-IDREAD2)
Γ1(id) = F

Γ1,Π ` id : fix(F ),Γ1[id 7→ fix(F )]

We do not need to close unique and open tables that appear in the

left-hand side of assignments, because T-IDREAD1 and T-IDREAD2 are
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sufficient to forbid the creation of an alias to another unique or open table. For

this reason, identifiers that appear in the left-hand side of assignments have

their own rule T-IDWRITE1:

(T-IDWRITE1)
Γ1(id) = F

Γ1,Π ` idl : F,Γ1

Our type system also has different rules for type checking table indexing

to avoid changing table types in these operations, as they cannot create aliases.

These rules also use the auxiliary function rconst to strip the const type from

the type of the value, if present. We define these rules as follows:

(T-INDEXREAD1)

Γ1(id) = {F :V } Γ1,Π ` e2 : F,Γ2 ∃i ∈ 1..n F . Fi n = |F :V |
Γ1,Π ` id[e2] : rconst(Vi),Γ2

(T-INDEXREAD2)

Γ1,Π ` e1 : {F :V },Γ2 Γ2,Π ` e2 : F,Γ3 ∃i ∈ 1..n F . Fi n = |F :V |
Γ1,Π ` e1[e2] : rconst(Vi),Γ3

Rule T-INDEXREAD1 defines the case where using an identifier to

index a table does not create an alias, while rule T-INDEXREAD2 defines

the case for indexing expressions where the expression denoting the table is

not an identifier. The rules for indexing left-hand values are similar to these

rules, except that they ensure that the field is not const.

A second form of refinement happens when we want to use an unique or

open table type in a context that expects a fixed or closed table type with a

different shape. This kind of refinement allows programmers to add optional

fields or merge existing fields. To do that, Typed Lua includes a type coercion

expression <F> id. For instance, we can use this type coercion expression to

make the following example type check:

local a : {}unique = {} in

a[“x”] <string> = “foo”;

a[“y”] <string> = “bar”;

local b : {“x” : string, “y” : string ∪ nil}closed =

<{“x” : string, “y” : string ∪ nil}open> a in a[“z”] <integer> = 1

We can use a to initialize b because the coercion converts the type of a

from {“x” : string, “y” : string}unique to {“x” : string, “y” : string∪nil}open,

and results in {“x” : string, “y” : string ∪ nil}closed, which is a subtype of

{“x” : string, “y” : string∪nil}closed, the type of b. We can continue to refine
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the type of a after aliasing it to b, as it still holds an open table. At the end of

this example, a has type {“x” : string, “y” : string ∪ nil, “z” : integer}open.

Rules T-COERCE1 and T-COERCE2 define the behavior of the type

coercion expression:

(T-COERCE1)
Γ1(id) <: F tag(F, closed)

Γ1,Π ` <F> id : F,Γ1[id 7→ reopen(F )]

(T-COERCE2)
Γ1(id) <: F tag(F, fixed)

Γ1,Π ` <F> id : F,Γ1[id 7→ F ]

Note that the coercion rules only allow changing the type of a variable

if the new type is a supertype of the previous type, and the resulting type is

always fixed or closed to prevent the creation of unsafe aliases. If the coercion

is to a closed table type the type of the table changes to an open table type

with the same shape, but if the coercion is to a fixed table type the table has

to assume the same type.

We also need to make sure to close all unique and open table types before

we type check a nested scope. To do that, our type system uses some auxiliary

functions to change the type of variables before type checking a nested scope

and also to change the type of assigned and referenced variables after type

checking a nested scope. The function closeall closes all unique and open table

types. The function closeset closes a given set of free assigned variables, which

is given by the function fav. The function openset changes from unique to open

a given set of referenced variables, which is given by the function frv.

As an example,

local a : {}unique, b : {}unique = {}, {} in

local f : integer× nil∗ → integer× nil∗ =

fun (x : integer) : integer× nil∗
b = a ; return x+ 1

in a[“x”] <integer> = 1 ; b[“x”] <string> = “foo” ; bf(a[“x”])c0

does not type check because we cannot add the field “x” to b, as its type is

closed. The assignment b = a type checks because, at that point, a and b have

the same type: {}closed. Their type was closed by closeall before type checking

the function body. Their type would be restored to {}unique after type checking

the function body, but that assignment also triggers other two type changes.

First, the function fav includes b in the set of variables that should be closed

by closeset. Then, the function frv includes a in the set of variables that should

change from unique to open by openset. After declaring f , a has type {}open
and b has type {}closed, so we can refine the type of a, but we cannot refine the

type of b.
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Rule T-FUNCTION1 types non-variadic function declarations, and it

illustrates this case:

(T-FUNCTION1)

closeall(Γ1)[id 7→ F ],Π[ρ 7→ S] ` s,Γ2

Γ3 = openset(Γ1, frv(fun (id:F ):S s))

Γ4 = closeset(Γ3, fav(fun (id:F ):S s))

Γ1,Π ` fun (id:F ):S s : F1 × ...× Fn × nil∗ → S,Γ4

This rule also extends the environment Π, bounding the special variable

ρ to the return type S. Rule T-RETURN uses the type that is bound to ρ in

Π to type check return statements:

(T-RETURN)
Γ1 ` el : S1,Γ2 Π(ρ) = S2 S1 . S2

Γ1 ` return el,Γ2

The rules for declaring variadic functions and recursive functions are

similar to T-FUNCTION1, and we did not discuss them in this section for

brevity.

Projections

Lua programmers often overload the return type of functions to denote

errors, returning nil and an error message in case of error instead of the usual

return values, and our type system uses projection types to handle this idiom.

As an example, let us assume that idiv and print are functions in the

environment. As we mentioned in Section 3.3, idiv performs integer division

and has type

integer× integer×nil∗ → (integer× integer×nil∗)t (nil×string×nil∗)

In case of success, it returns two integers: the result and the remainder. In case

of failure, it returns nil plus an error message that describes the error. The

function print is a variadic function of type value∗ → nil∗. Let us also assume

that a and b are local variables in the environment, and that both have type

integer. Let us see how our type system type checks the following program:

local q, r = idiv(a, b) in

if q then bprint(q + r)c0 else bprint(“ERROR : ” .. r)c0
First, our type system uses the auxiliary relation Γ1,Π ` el : E,Γ2, (x, S)

for type checking idiv(a, b). This relation means that given a type environment

Γ1 and a projection environment Π, we can check that an expression list el has
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type E and produces a new type environment Γ2 and produces a pair (x, S).

This pair means that the last expression of an expression list el produces an

union of second-level types S that should be bound to a fresh variable x in the

projection environment Π, as the resulting type of this expression is a tuple of

projection types πx
i . In our example, our type system uses rule T-EXPLIST3

for type checking idiv(a, b):

(T-EXPLIST3)

Γ1,Π ` ei : Fi,Γi+1 Γ1,Π ` me : S,Γn+2

S = Fn+1 × ...× Fn+m × nil∗ t F ′
n+1 × ...× F ′

n+m × nil∗
Γf = merge(Γ1, ...,Γn+2) n = | e |

Γ1,Π ` e,me : F1 × ...× Fn × πx
1 × ...× πx

m × nil∗,Γf , (x, S)

Note that idiv(a, b) has type πx
1 × πx

2 × nil∗ and produces the pair

(x, (integer× integer× nil∗) t (nil× string × nil∗))

In the rule that type checks the declaration of unannotated variables, our

type system uses the pair (x, S) to bound a union of second-level types S to

a variable x in the projection environment Π. In our example, declaring q and

r bounds the projection type πx
1 to q and bounds the projection type πx

2 to r,

where the projection variable x bounds to

(integer× integer× nil∗) t (nil× string × nil∗)

in the projection environment Π. Rule T-LOCAL2 illustrates this intuition:

(T-LOCAL2)

Γ1,Π ` el : E,Γ2, (x, S)

Γ3 = Γ2[id1 7→ infer(E, 1), ..., idn 7→ infer(E, n)]

Γ3,Π[x 7→ S] ` s,Γ4 n = | id |
Γ1,Π ` local id = el in s, (Γ4 − {id})[id 7→ Γ2(id)]

This rule uses the auxiliary function infer to get the most general types

of each variable that should be introduced in the type environment for type

checking s. After type checking the statement s, rule T-LOCAL2 produces a

new type environment Γ4 without the variables that it introduced before type

checking s. We can define infer as follows:

infer(T1 × ...× Tn∗, i) =

{
general(Ti) if i < n

general(nil(Tn)) if i >= n
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general(false) = boolean

general(true) = boolean

general(int) = integer

general(float) = number

general(string) = string

general(F1 ∪ F2) = general(F1) ∪ general(F2)

general(S1 → S2) = general2(S1)→ general2(S2)

general({F1:V1, ..., Fn:Vn}tag) = {F1:general(V1), ..., Fn:general(Vn)}tag
general(µx.F ) = µx.general(F )

general(T ) = T

general2(F∗) = general(F )∗

general2(F × P ) = general(F )× general2(P )

general2(S1 t S2) = general2(S1) t general2(S2)

After assigning projection types to q and r, reading q will use the

projection type πx
1 to project the type of q into the union type integer ∪ nil,

while reading r will use the projection type πx
2 to project the type of r into the

union type integer ∪ string. Our type system defines this behavior through

rule T-IDREAD4, which uses the auxiliary function proj to project an union

of second-level types into an union of first-level types:

(T-IDREAD4)
Γ1(id) = πx

i

Γ1,Π ` id : proj(Π(x), i),Γ1

Now, we may want to discriminate q and r to check whether the function

call returned with success. Introducing a projection variable x in the projection

environment allows our type system to discriminate projection types πx
i , as

they are a general way to not compromise the dependency between the types

of q and r after discriminating one of them, so flow typing can narrow the type

of both variables by testing just one of them because the projection types of

both variables bound to the same projection variable.

The rule T-IF5 shows the case where our type system discriminates

a projection type based on the tag nil. It uses the auxiliary functions fopt

and fipt to filter a projection x, affecting all variables that bind to the same

projection. More precisely, the former function filters out the tuples that
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contain a type F in the i-th component, while the latter function filters out

the tuples that do not contain F in the i-th component. We define T-IF5 as

follows:
(T-IF5)

Γ1(id) = πx
i

St = fopt(Π(x),nil, i) Se = fipt(Π(x),nil, i)

Γ1,Π[x 7→ St] ` s1,Γ2

Γ1,Π[x 7→ Se] ` s2,Γ3

Γ4 = join(Γ2,Γ3)

Γ1,Π ` if id then s1 else s2,Γ4

Our previous example type checks through rule T-IF5, because it uses

the information provided by the projection type πx
1 , which is the type of q, to

make the rule T-IF5 use the function call

fopt((integer× integer× nil∗) t (nil× string × nil∗),nil, 1)

to discriminate the projection x to the single tuple integer× integer× nil∗
inside the if branch, and the function call

fipt((integer× integer× nil∗) t (nil× string × nil∗),nil, 1)

to discriminate the projection x to the single tuple nil×string×nil∗ inside the

else branch. Thus, reading q and r projects πx
1 to integer and πx

2 to integer

inside the if branch, but it projects πx
1 to nil and πx

2 to string inside the else

branch. Outside the condition, q and r use the original projection, that is, they

project to integer ∪ nil and integer ∪ string, respectively.

Our type system also includes rules that check whether a branch is

unreachable. Rules T-IF6 and T-IF7 respectively cover the case where the

else branch is unreachable and the case where the then branch is unreachable,

because either the projected type of πx
i is not a supertype of nil or it is nil.

We define these rules as follows:

(T-IF6)

Γ1(id) = πx
i

St = fopt(Π(x),nil, i)

fit(proj(Π(x), i),nil) = void

Γ1,Π[x 7→ St] ` s1,Γ2

Γ1,Π ` if id then s1 else s2,Γ2

(T-IF7)

Γ1(id) = πx
i

Se = fipt(Π(x),nil, i)

fot(proj(Π(x), i),nil) = void

Γ1,Π[x 7→ Se] ` s2,Γ2

Γ1,Π ` if id then s1 else s2,Γ2

Typed Lua does not allow assignments to left-hand values that are bound

to a projection type. This kind of assignment would be unsound, because it

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA



Chapter 4. The type system 91

could break the dependency relation that the components of each tuple of the

union have. For instance, the following example does not type check:

local q, r = idiv(a, b) in

r = “foo”;

if q then bprint(q + r)c0 else bprint(“ERROR : ” .. r)c0

In this example, the projected type of r outside of the if statement is

integer ∪ string, so the assignment looks fine. However, the projected type

of r inside the if branch is integer, not matching the string value that r has

after the assignment.
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