
3
Typed Lua

Typed Lua is an optional type system for Lua, and its main goal is

to provide static type checking for Lua. To do that, Typed Lua extends the

syntax of Lua 5.3 to introduce optional type annotations, and performs local

type inference [PT00] to detect more precise types for unannotated expressions.

Even though the compiler warns the programmer about type errors, it always

removes the type annotations to generate Lua code that runs in unmodified

Lua implementations.

Another goal of Typed Lua is to be backwards compatible with Lua. This

means that any Lua code is valid Typed Lua code. To be backwards compatible

with Lua, the syntactic extensions introduced by Typed Lua do not include

new reserved words. Appendix B presents the complete syntax of Typed Lua

in extended BNF.

We use the consistent-subtyping relation of gradual typing [ST07, SVB13]

to formalize Typed Lua, though it does not insert run-time checks in the

gradual typing style. In gradual typing, run-time checks inspect the interac-

tion between dynamically typed and statically typed code to guarantee that

dynamically typed code does not violate statically typed code during run-time.

We did not insert run-time checks at this moment because they can decrease

run-time performance [AFT13]. We believe that a careful evaluation of run-

time checks should be done before inserting them in the type system. However,

this evaluation is out of scope of this work.

Unlike Dart [Goo11] and TypeScript [Mic12], we are designing Typed

Lua aiming soundness to make it possible to switch Typed Lua from optional

typing to gradual typing in the future. A sound type system is a prerequisite to

insert run-time checks after static type checking, because a sound type system

ensures that statically typed code will not throw type errors during run-time.

In this chapter we use some examples of Typed Lua code to show how

they relate to Lua. These examples give an informal overview of our optional

type system. In the next chapter we will use typing rules to present the

formalization of the most interesting features of our optional type system. All

the examples that we present in this chapter run in our Typed Lua compiler.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 30

3.1 Optional type annotations

Lua values can have one of eight tags: nil, boolean, number, string,

function, table, userdata, and thread. Typed Lua includes types for the first

six. Typed Lua also includes a syntactical extension that programmers can use

to define the types of userdata. We use this syntactical extension to define the

type thread. In this section we present the Typed Lua types that may appear

on annotations. We explain all Typed Lua types and syntactical extensions in

this chapter.

Types

type ::= primarytype [‘?’]

primarytype ::= literaltype | basetype | nil | value | any | self | Name

| functiontype | tabletype | primarytype ‘|’ primarytype

literaltype ::= false | true | Int | Float | String

basetype ::= boolean | integer | number | string

functiontype ::= tupletype ‘->’ rettype

tupletype ::= ‘(’ [typelist] ‘)’

typelist ::= type {‘,’ type} [‘*’]

rettype ::= type | uniontuple [‘?’]

uniontuple ::= tupletype | uniontuple ‘|’ uniontuple

tabletype ::= ‘{’ [tabletypebody] ‘}’
tabletypebody ::= maptype | recordtype

maptype ::= [keytype ‘:’] type

keytype ::= basetype | value

recordtype ::= recordfield {‘,’ recordfield} [‘,’ type]

recordfield ::= [const] literaltype ‘:’ type

Figure 3.1: The concrete syntax of Typed Lua types

Figure 3.1 presents the concrete syntax of Typed Lua types in extended

BNF. We classify Typed Lua types into two categories: first-level types and

second-level types. First-level types consist of type and represent Lua values,

while second-level types consist of either tupletype or rettype and represent

the type of expression lists, multiple assignments, and function applications.

First-level types include literal types, base types, the type nil, the top type

value, the dynamic type any, the self type self, named types, function types,

table types, and union types. Second-level types include vararg types, tuple

types, and unions of tuple types.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 31

Typed Lua uses subtyping to order types. Any first-level type is a subtype

of value. Union types are supertypes of their parts. The base types boolean,

integer, number, and string are supertypes of their respective literal types.

The base type integer is subtype of number. Function types are related by

contravariance on the input and covariance on the output. Table types have

width subtyping, with depth subtyping on const fields. Tuple and vararg types

are covariant. Unions of tuple types are also supertypes of their parts. We will

present the formalization of the subtyping relation in Section 4.2.

Typed Lua uses consistent-subtyping to check the interaction among the

dynamic type any and other types. The dynamic type any is a subtype of

value, but it is neither a supertype nor a subtype of any other type. Our

consistent-subtyping relationship follows the standards defined by the gradual

typing of objects [ST07, SVB13]. In practice, we can pass a value of the

dynamic type anytime we want a value of some other type, and we can pass

any value where a value of the dynamic type is expected, but the compiler

tracks these operations, and the programmer can choose to be warned about

them. We will discuss the formalization of the consistent-subtyping relation in

Section 4.2.

Before we start discussing examples of Typed Lua code, it is worth

mentioning that there is a subtle difference between the dynamic type any and

the top type value. Although both types mean that they accept a value of any

other type, the type value is not a good option for handling the interaction

between dynamically typed and statically typed code. Gradual typing uses

the dynamic type any to identify where it should insert run-time checks for

asserting that dynamically typed code does not violate statically typed code.

Typed Lua also uses the dynamic type any in this sense, though it is an optional

type system. More precisely, we use any instead of value to allow programmers

blending dynamic and static typing because we use the consistent-subtyping

relation to formalize our optional type system, as it is a first step to switch

Typed Lua from optional typing to gradual typing in the future.

Typed Lua allows optional type annotations in variable and function

declarations. We use the following example to illustrate how we can annotate

a function declaration and a variable declaration:

local function succ (n:integer):integer

return n + 1

end

local x:integer = 7

x = succ(x)

print(x) --> 8

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 32

Typed Lua uses local type inference to assign more specific types to

some unannotated declarations. More precisely, Typed Lua can infer the type

of local variables and the return type of local functions that are not recursive.

The inference that we implement in Typed Lua is quite simple, as it uses only

the type of the local expression. For local variables, Typed Lua uses the type of

the initialization expression to assign a more specific type to an unannotated

local variable. For local functions, Typed Lua uses the type of the returned

expression to assign a more specific type to an unannotated return type.

This means that we can rewrite the previous example to use local type

inference for inferring the return type of succ and also for inferring the type

of x:

local function succ (n:integer)

return n + 1

end

local x = 7

x = succ(x)

print(x) --> 8

In this example, the compiler uses local type inference to assign the type

integer to the local variable x and to the return type of the local function

succ, making this example compile without any warnings. Local type inference

always uses the most general type. In this example, the compiler does not use

the literal type 7, instead of the base type integer, because this would generate

a warning when we try to assign other integer value to the variable x. Still,

programmers can use literal types in type annotations if they need a variable

that has a very specific type. In Section 3.4 we will see in more detail that

literal types are essential to type Lua tables.

Typed Lua assigns the dynamic type any to the unannotated declarations

that it does not infer a more specific type. More precisely, Typed Lua does not

infer more specific types to the input parameters of function declarations and

to the return type of recursive functions. The Typed Lua compiler cannot

infer them because it performs type checking in a single step that simulates

the program execution. We could have split type checking into two steps to try

solving this limitation, but it would have implications in the mechanisms that

Typed Lua uses to handle the discrimination of union types and the refinement

of table types. We will discuss these features in Section 3.3 and Section 3.4,

respectively.

We use the following example to illustrate type annotations in the

declaration of a recursive function:

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 33

local function factorial (n:integer):integer

if n == 0 then

return 1

else

return n * factorial(n - 1)

end

end

This example compiles without any warnings because we annotated the

return type of factorial. Local type inference cannot use the type of the

returned expression when it includes a function call to the function that is

being type checked, as its return type is still unknown to the type checker. For

this reason, we need to annotate the return type of recursive local functions

to inform the type checker what type it should use while type checking their

body.

We use the following example to illustrate the omission of type annota-

tions in the input parameters of a local function, and also to show that Typed

Lua allows programmers to combine statically typed code with dynamically

typed code:

local function absolute (n:integer):integer

if n < 0 then

return -n

else

return n

end

end

local function distance (x, y)

return absolute(x - y)

end

The function distance receives two parameters of type any and returns

a value of type integer. The compiler assigns the dynamic type any to the

input parameters of distance because they do not have type annotations and

the compiler does not use global type inference, as we mentioned previously.

Even though we did not annotate the return type of distance, the compiler

is able to infer its return type because it is local and not recursive.

In this example, Typed Lua cannot guarantee that distance is never

going to call absolute with a parameter that is not an integer, because in the

semantics of Lua the minus operator can result in a value that is not an integer

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 34

number. In fact, we can overload the minus operator to return a value that is

not even a number. However, we can call absolute inside distance because

the subtraction expression x - y has type any, and it is consistent with type

integer. Still, the dynamic type any may be hiding a value of a type that

is not an integer, making the dynamically typed code break the guarantees

provided by the statically typed code. This is a typical example where run-

time checks would ensure safety between the interaction of dynamically typed

and statically typed code.

Even though Typed Lua can type check recursive functions when we

annotate their return type, it has some limitations for type checking mutually

recursive functions, even if we annotate their return type. We will use the

following example for discussing this limitation and also for presenting an

alternative solution:

local even, odd

function even (n:integer):boolean

if n == 0 then return true

elseif n > 0 then return odd(n - 1)

else return odd(n + 1)

end

end

function odd (n:integer):boolean

if n == 0 then return false

elseif n > 0 then return even(n - 1)

else return even(n + 1)

end

end

This example shows an attempt of annotating a common idiom that Lua

programmers use for defining mutually recursive functions, but it generates

compile-time warnings. The problem is related to the fact that Lua does not

split a program into declarations and statements, and also to the fact that

Typed Lua performs type checking in a single step. This means that forwarding

the declaration of a local variable assigns the type any to it, making the

compiler warn the programmers about function calls to this variable, as they

can assign any value to a variable that has the dynamic type. In this example,

the Typed Lua compiler generates warnings when we call even and odd.

One way to overcome these warnings is to predeclare these functions

with an empty body before the actual declaration. Even though this is a

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 35

verbose solution and the Typed Lua compiler has an option to suppress

warnings related to the dynamic type any, it ensures that further assignments

to forwarded local variables will not change their type. Next we show how we

can apply this alternative solution to the previous example, making it compile

without any warnings:

local function even (n:integer):boolean return true end

local function odd (n:integer):boolean return false end

function even (n:integer):boolean

if n == 0 then return true

elseif n > 0 then return odd(n - 1)

else return odd(n + 1)

end

end

function odd (n:integer):boolean

if n == 0 then return false

elseif n > 0 then return even(n - 1)

else return even(n + 1)

end

end

3.2 Functions

Lua has first-class functions, and they have some peculiarities. First, the

number of arguments of a function call does not need to match the arity of the

function declaration, as Lua silently drops extra arguments after evaluating

them, or uses nil to replace missing arguments. Second, functions can return

any number of values, and this number of returned values may not be statically

known. Third, Lua has multiple assignment, and the semantics of argument

passing is the same of the multiple assignment, that is, calling a function is

like doing a multiple assignment where the left-hand side is the parameter list

and the right-hand side is the argument list.

Typed Lua uses second-level types to encode function types and to

preserve these peculiarities. We call them second-level because these types do

not correspond to actual Lua values and we cannot use them to type variables

or parameters. Second-level types represent tuple types that can appear in

multiple assignment. Since the semantics of argument passing is the same of

multiple assignment, second-level types also appear in function types.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 36

Function types

functiontype ::= tupletype ‘->’ rettype

tupletype ::= ‘(’ [typelist] ‘)’

typelist ::= type {‘,’ type} [‘*’]

rettype ::= type | uniontuple [‘?’]

uniontuple ::= tupletype | uniontuple ‘|’ uniontuple

Figure 3.2: The concrete syntax of Typed Lua function types

Figure 3.2 shows that Typed Lua uses second-level types in the definition

of function types. A second-level type is either a tuple of first-level types

optionally ending in a variadic type or a union of these tuples. A variadic

type t* is a generator for a sequence of values of the union type t|nil. The

empty tuple () is syntactic sugar to (nil*), as we will show that Typed Lua

always ends a tuple type in a variadic type. Union of tuple types appear in the

return type of function types to represent overloading on the return type. We

will explain union types in more detail in the next section. We can use only

one first-level type t in the return type because it is syntactic sugar to the

tuple type (t).

Typed Lua provides two modes of operation: the default mode and the

strict mode. In the default mode, the compiler adds value* to the type of

the parameter list and nil* to the return type when the programmer does

not specify a variadic tail. It has this behavior to preserve the semantics of

function calls in Lua, that is, it uses value* to discard extra arguments and

nil* to replace missing arguments. In the strict mode, the compiler adds nil*

to both parts of the function type. Even though it still uses nil* to replace

missing values, it also uses nil* instead of value* to catch arity mismatch.

We will use the following function to illustrate how these two modes

work:

local function sum (x:integer, y:integer):integer

return x + y

end

In the default mode, sum has type (integer, integer, value*) ->

(integer, nil*). The compiler adds value* to the type of the parameter

list to discard extra arguments. For instance, the call sum(1, 2, 3) compiles

without any warnings because Typed Lua uses value* to drop the extra

argument 3.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 37

In the strict mode, sum has type (integer, integer, nil*) ->

(integer, nil*). The compiler adds nil* to the type of the parameter list

to catch arity mismatch. For instance, the call sum(1, 2, 3) compiles with a

warning because we are passing an extra argument 3 to sum.

Even though these modes of operation affect function calls, they do not

affect other multiple assignments. This means that both modes discard extra

arguments in multiple assignments and they also use nil to replace missing

arguments in multiple assignments. We made this design decision to avoid

being too restrictive, that is, we did not want to give unnecessary warnings

to programmers, as discarded values do not have any implications during run-

time.

As an example,

local x:integer, y:integer = 1, 2, 3

compiles without any compile-time warnings in both modes of operation. This

means that the left-hand side of this local declaration has the tuple type

(integer, integer, value*), while the expression list in the right-hand side

of this local declaration has the tuple type (1, 2, 3, nil*) in both modes.

The literal type 3 is consistent with value, and the type nil* generates a

value of type nil that is also consistent with value.

As another example,

local x:integer, y:integer = sum(2, 2)

compiles with one compile-time warning in both modes of operation. This

means that the left-hand side of this local declaration has the tuple type

(integer, integer, value*), while the expression list in the right-hand

side of this local declaration has the tuple type (integer, nil*) in both

modes. The type nil* generates a value of type nil that is not consistent

with integer, the type of y.

A variadic type can only appear in the tail position of a tuple, because

Lua takes only the first value of any expression that appears in an expression

list that is not in tail position. We will use the following function to illustrate

the interaction between multiple returns and expression lists:

local function m ():(integer, string)

return 2, "foo"

end

As an example,

local x:integer, y:integer, z:string = m(), m()

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 38

compiles without compile-time warnings in both modes of operation. This

happens because in the right-hand side of the multiple assignment, only the

first value produced by the first call to m gets used, so the type of the right-

hand side is (integer, integer, string, nil*), which is consistent with

the type of the left-hand side (integer, integer, string, value*).

Typed Lua always includes nil* in the end of the type of an expression

list that does not end in a variadic type. This behavior preserves the semantics

of Lua on replacing missing values, and it is necessary when we omit optional

parameters in a function call. We will discuss optional parameters in the next

section.

We can also type variadic functions. For instance,

local function v (...:string):(string*)

return ...

end

has type (string*) -> (string*) in both modes of operation. The function

call v() compiles without any compile-time warnings in both modes because

the type of the argument list is (nil*), which is consistent with (string*).

The call v("hello", "world") also compiles without any warnings in both

modes because the type of the argument list is ("hello", "world", nil*),

which is consistent with (string*). Calling v(...) compiles without any

warnings in both operation modes because the type of the argument list is

(string*), assuming that the vararg expression (...) has type string.

3.3 Unions

Typed Lua includes union types to encode three common Lua idioms: the

use of optional values, the overloading based on the tags of input parameters,

and the overloading on the return type of functions.

Optional values are unions of some type t and nil, and Typed Lua

includes the syntactic sugar t? to represent them because they appear quite

often. The concrete syntax t? is syntactic sugar for t|nil. Optional values

can appear when a function has optional parameters and when the program

reads a value from an array or a map. The following example shows a function

that has an optional parameter:

local function message (name:string, greeting:string?)

local greeting = greeting or "Hello "

return greeting .. name

end

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 39

Although the parameter greeting is optional, and has type string|nil,

the concatenation does not generate a warning because we used the short-

circuiting or operator to declare a new variable greeting that is guaranteed

to have type string. In Lua, only the values nil and false represent a false

condition, so programmers often use the or operator as a common idiom to

assign a default value to an optional parameter. Typed Lua uses the following

rule to type this idiom: if the left-hand side of or has type t|nil and the

right-hand side has type t then the or expression has type t.

In fact, we do not need to declare a new variable greeting that shadows

the optional parameter:

local function message (name:string, greeting:string?)

greeting = greeting or "Hello "

return greeting .. name

end

Typed Lua allows the assignment v = v or e to change the type of v

from t|nil to t if it matches the following rules: the type of e is a subtype

of t, and the variable v is local to the current function and it is not being

assigned in another function. The change only affects the type of v in the

remainder of the current scope. Any assignment to v restores its type back to

the original type. In the case of greeting, the assignment changes its type

from string|nil to string.

After we define the function message, we can call it with a missing

argument in both modes of operation:

print(message("Typed Lua")) --> Hello Typed Lua

print(message("Typed Lua", "Hi ")) --> Hi Typed Lua

The type of the function message is (string, string|nil, value*)

-> (string, nil*) in the default mode, and (string, string|nil, nil*)

-> (string, nil*) in the strict mode. The call message("Typed Lua") com-

piles without any compile-time warnings in both modes, because the argument

list ("Typed Lua") has type ("Typed Lua", nil*) that is consistent with the

input type (string, string|nil, value*) in the default mode, and that

is also consistent with the input type (string, string|nil, nil*) in the

strict mode. The compiler includes nil* in the tail of an argument list in both

modes, as it is necessary to replace any optional parameters that may appear

in a function declaration. In Section 4.3 we will formalize this behavior.

Lua programmers often overload the input parameters of functions, and

use the type function to inspect the tag of the input parameters to take

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 40

different actions depending on what those tags are. The simplest case overloads

on just a single parameter:

local function overload (s1:string, s2:string|integer)

if type(s2) == "string" then

return s1 .. s2

else

-- string.rep : (string, integer, string?) -> (string)

return string.rep(s1, s2)

end

end

Typed Lua has a small set of type predicates that allows programmers to

constrain the type of a local variable inside a condition. This example uses the

predicate type(v) == "string" that constrains the type of v from string|t

to string when the predicate is true and t otherwise. This is a simplified form

of flow typing [GSK11, THF10]. As with or, the variable must be local to the

function and it is not being assigned in another function.

The type predicates can only discriminate based on tags, so they are

limited on the kinds of unions that they can discriminate. For instance, the

predicates can discriminate a union that combines a table type with a base

type, or a table type with a function type, or two base types, but they cannot

discriminate a union that combines two different table types, or two different

function types.

Lua programmers also overload the return type of functions, usually

for signaling the occurrence of errors. In this idiom, a function returns its

normal set of return values when it successfully finished its execution, and it

returns nil plus an error message or other data that describes the error when

something failed during its execution. Next, we show an example:

local function idiv (dividend:integer, divisor:integer):

(integer, integer)|(nil, string)

if divisor == 0 then

return nil, "division by zero"

else

local r = dividend % divisor

local q = (dividend - r) // divisor

return q, r

end

end

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 41

Typed Lua also includes a syntactic sugar for this idiom: we can annotate

the return type of idiv with (integer, integer)? to denote the same union.

The parentheses are always necessary in this case, because t? is syntactic sugar

for t|nil, while (t)? is syntactic sugar for (t)|(nil, string).

A typical client of this function would use it as follows:

local q, r = idiv(a, b)

if q then

print(a == b * q + r)

else

print("ERROR: " .. r)

end

When Typed Lua finds a union of tuples in the right-hand side of a de-

claration, it assigns projection types to the variables that appear unannotated

in the left-hand side of the declaration. Projection types do not appear in type

annotations, but Typed Lua uses them to project unions of tuple types into

unions of first-level types that have a dependency relation. We will discuss

projection types in more detail in Section 4.3.

So far, Typed Lua replaces projection types with the union of the

corresponding component of each tuple, when it infers that a local variable

has a projection type. In our example, the variables q and r get projection

types that map to the first and second components of the union of tuple

types (integer, integer, nil*)|(nil, string, nil*). This means that

variables q and r have types integer|nil and integer|string, respectively.

If a variable with a projection type appears in a type predicate, it

discriminates all tuples in the projected union. In our example, the projected

union has type (integer, integer, nil*)|(nil, string, nil*) outside

of the if statement, but (integer, integer, nil*) inside the then block,

and (nil, string, nil*) inside the else block. Thus, variable q has type

integer|nil and variable r has type integer|string outside of the if

statement; but variable q has type integer and variable r also has type

integer inside the then block; and variable q has type nil while variable

r has type string inside the else block.

We could have used math.type(q) == "integer" or even math.type(r)

== "integer" as the predicate of our example, as both predicates would

produce the same result. However, the form that appears in our example is

much more succinct and idiomatic. Note that the type integer is restricted

to Lua 5.3, as we use the function math.type to decide whether a number is

integer.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 42

Typed Lua does not allow assignments to variables that hold a projection

type. Unrestricted assignment to these variables would be unsound, as it could

break the dependency relation among the types in each tuple that is part of

the union.

The overloading mechanism of Typed Lua has a limitation: the return

type cannot depend on the input types. Next, we show an example:

local function limitation (x:number|string)

if type(x) == "number" then

return x + x

else

return x .. x

end

end

This example means that we cannot write a function that is guaranteed

to return a number when we pass a number and guaranteed to return a string

when we pass a string. Even though we could have used an intersection type

(number) -> (number) & (string) -> (string) to express the type of this

function, intersection types require more sophisticated flow typing to check

whether a function has this type, and we still need to work on this problem.

3.4 Tables

Tables are the only mechanism that Lua has to build data structures;

they are associative arrays where any value (except nil) can be used as a

key. Programmers can use tables to represent tuples, arrays (dense or sparse),

records, graphs, modules, objects, etc. Lua has syntactic sugar for indexing

tables as records: t.k is syntactic sugar for t["k"]. In this section, we show

how Typed Lua types tables that encode maps, arrays, and records.

Figure 3.3 shows that the concrete syntax of Typed Lua table types is

restricted to either the type of the empty table, maps, arrays, or records with

an optional array part. We made this design choice due to the results that

we obtained about the usage of the table constructor, which we discussed in

Section 2.5. More precisely, those results indicated that programmers seldom

define a table constructor that is neither an empty table nor a table that

contains only literal keys. This means that our design can type check most of

the usages of the table constructor. Later in this chapter we will show that we

use the syntax of records to type modules and objects. We will also show that

we need the const modifier while typing object-oriented code.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 43

Table types

tabletype ::= ‘{’ [tabletypebody] ‘}’
tabletypebody ::= maptype | recordtype

maptype ::= [keytype ‘:’] type

keytype ::= basetype | value

recordtype ::= recordfield {‘,’ recordfield} [‘,’ type]

recordfield ::= [const] literaltype ‘:’ type

Figure 3.3: The concrete syntax of Typed Lua table types

The table type {k:t} represents the type of a map from values of type

k to values of type t|nil. Table types that represent maps always include the

type nil, because Lua returns nil when we use a non-existing key to index

a table. The types of the keys are restricted to either base types or the type

value due to the statistics of the table constructor, which we discussed in

Section 2.5. More precisely, those results indicated that programmers seldom

use non-literal keys in the definition of a table constructor. For typing maps,

base types can type check most of the cases where programmers use a table

constructor to initialize a map, while the type value is still an option to allow

programmers to type check uncommon table constructors. This means that

this restriction to key types in maps has no impact in the usability of Typed

Lua. Next, we show one example of table type to type a map from strings to

integers:

local t:{string:integer} = { foo = 1 }

local x:integer = t.foo --> compile-time warning

local y:integer? = t.bar --> y gets nil

local z:integer = t["bar"] or 0 --> z gets 0

The second line of this example raises a warning, because we are attempt-

ing to assign a value of type integer|nil to a variable that accepts only values

of type integer. Although the field bar does not exist in t, the third line of

this example does not raise a warning, because the annotated type matches

the type of the values that can be stored in t. The last line shows that the or

idiom is also useful to give a default value to a missing table field.

The table type {t} represents the type of an array that maps values of

type integer to values of type t|nil. In other words, Typed Lua handles

arrays as syntactic sugar to the table type {integer:t}. Next, we show one

example of table type to type an array of strings:

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 44

local days:{string} = { "Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday",

"Saturday" }

local i = 5

local x = days[1] --> x gets "Sunday"

local y = days[8] --> y gets nil

local z = days[i] --> z gets "Thursday"

In this example, the type of i is integer, while the type of x, y, and

z is string|nil. An inconvenient aspect of making the types of maps and

arrays always include the type nil is to overload the programmers, as they

need to use the logical or operator or the if statement to narrow the type of

the elements they are accessing.

The table type {l1:t1, ..., ln:tn} represents the type of a record

that maps literal types li, ..., ln to values of types ti, ..., tn. Most

programming languages treat records as maps from names to types, but we

chose to use literal types instead of names due to the statistics results that

we obtained about the usage of the table constructor, which we discussed in

Section 2.5. This means that we can use the syntax of records to type a list

that has a fixed number of elements, like the variable days from the previous

example.

When we know that a list has fixed elements, we can leave the variable

declaration unannotated and let local type inference assign a more specific

table type to the variable. If we remove the annotation in the previous example,

the compiler uses the syntax of records to infer the following table type to days:

{ 1:string, 2:string, 3:string, 4:string,

5:string, 6:string, 7:string }

When we use the syntax of records to type an array, the compiler raises a

warning when we try to access an index that is out of bounds. In the previous

example, the expressions days[8] and days[i] would raise warnings if we had

used the records syntax, as both the literal type 8 and the base type integer

would not map to any value.

We can also use the syntax of records to type heterogeneous tuples:

local album:{1:string, 2:integer, 3:string} =

{ "Transformer", 1972, "Lou Reed" }

Next, we show one example of table type to type a record that maps

names to strings:

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 45

local person:{"firstname":string, "lastname":string} =

{ firstname = "Lou", lastname = "Reed" }

In these two previous examples, local type inference would infer the very

same table types that we used to annotate the variables album and person.

Lua programmers often build records incrementally, that is, they usually

declare a local variable with an empty table, and then use assignment to add

fields to this table:

local person = {}

person.firstname = "Lou"

person.lastname = "Reed"

print("bye bye " .. person.firstname) --> bye bye Lou

In this example, we want to refine the type of person as we build

the table: starting with {}, and then refining to {"firstname":string},
and finally reaching {"firstname":string, "lastname":string}. This type

change is trickier than the one that we introduced for narrowing union types,

as we are not just allowing the programmer to change the type of the variable

person, but we are actually allowing the programmer to change the type of

the value that person points to.

Typed Lua tags table types as either unique, open, fixed, or closed to

identify which operations are safe. Type annotations define closed table types,

as this tag describes table types that do not provide any guarantees about

keys that do not appear in the table type. In contrast, unique, open, and fixed

table types guarantee that a table does not contain any keys which are not

listed in its table type, though they provide different guarantees over their

references. An unique table type guarantees that it has only one reference. In

particular, this is the case of table constructors, so they always have unique

table types. In the previous example, person has an unique type because it

has no alias. Any alias to unique tables makes them open, as we use this tag

to keep track of unique aliasing. This means that open table types can only

have closed aliases, and it is guaranteed that only one reference remains open.

Finally, fixed table types can have any number of closed and fixed aliases, so

its type cannot change. In Section 3.7 we will show that we use fixed table

types to describe the type of classes. Typed Lua also has different subtyping

rules that handle these different tags, which we explain in Section 4.2.

Typed Lua uses three rules to check whether field assignment can change

the type of unique and open tables: the table must be assigned to a local

variable to the current block, the new type must only add new fields, and the

variable cannot have been assigned in another function.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 46

Even though both unique and open table types allow the refinement of

table types, we need both tags to increase usability and to avoid some unsafe

behaviors. If we did not have unique table types and open table types had the

same behavior that they have now, we would not be able to type check some

safe constructions, like in the following example:

local t:{"x":integer, "y":integer?} = { x = 1, y = 2 }

Typed Lua type checks this example because the table constructor has

an unique table type {"x":1, "y":2} that is consistent with the type in

the annotation. However, if the table constructor had an open table type,

it would not type check because it does not allow us to convert a table field

from integer to integer?. We need this kind of behavior to avoid unsafe

constructions while aliasing unique table types, like in the following example:

local t1 = { x = 1 }

local t2:{"x":integer} = t1

local t3:{"x":integer?} = t1 --> compile-time warning

t3.x = nil

Typed Lua generates a compile-time warning in this example because

aliasing t1 changes its type from unique to open. First, Typed Lua assigns an

unique table type to t1, but then it changes its type to open before aliasing t1

to t2. Even though it is safe aliasing t1 to t2, it is not safe aliasing t1 to t3,

as it allows removing the value that is stored in the field x from t1 through

an assignment to field x from t3. Typed Lua uses open table types to prevent

this kind of unsafe behavior, as it would be allowed by unique table types due

to their loose subtyping rules.

Back to the rules that Typed Lua uses to allow the refinement of table

types, the following example shows that it is forbidden to change the type of

existing fields:

local person = { firstname = "Lewis", lastname = "Reed" }

person.middlename = "Allan"

person.firstname = 1942 --> compile-time warning

person.lastname = 2013 --> compile-time warning

print("bye bye " .. person.firstname)

In this example, both third and fourth lines are not valid because they

are trying to change the type of fields that already exist. Even though it would

be sound to allow changing the type of fields in unique table types because

they cannot have any alias, this could still lead to a weak static type checking

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 47

approach. In other words, allowing the type of the fields to evolve from a base

type to an union type or even to the dynamic type could hide some type errors,

so our design choice was to keep it as precise as we could. Moreover, it would

be unsound to allow changing the type of fields in open table types because

they can have closed aliases, so it made more sense to have the same rule to

both table types.

The following example shows that it is not allowed to change the type of

an alias:

local person = {}

local bogus = person

person.firstname = "Lou"

person.lastname = "Reed"

bogus.firstname = true --> compile-time warning

print("bye bye " .. person.firstname)

In this example, the fifth line is unsound because it allows the program-

mer to change the type of the value that is stored in person.firstname, and

makes the last line break the guarantees provided by the statically typed code.

In the first line, we assign an empty table to person. In the second line, we

assign the type of person to bogus. In the third and fourth lines we change

the type of person. In the fifth line we try to change the type of bogus from

{} to {"firstname":boolean}, but if we allow this type change we also allow

changing the value that is stored in person.firstname, regardless of its type.

Taking the changes individually looks fine, but the truth is that aliasing makes

one of them unsound.

We can create aliases to open tables, but they are always closed. Any

mutation in the original reference and in the aliased reference is not a problem,

as the type of the original reference can only add new fields. For mutable fields

this means that the type of a field cannot change after it is added to the type

of a table. In our previous example, the second line changes the type of person

from unique to open and makes the type of bogus closed.

The location of the change also matters, as the next example shows:

local person = { lastname = "Reed" }

local function spoil ()

person.firstname = nil --> compile-time warning

end

person.firstname = "Lou"

spoil()

print("bye bye " .. person.firstname)

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 48

In this example, the third line is unsound because this line allows the

programmer to change the type of person outside of the scope that person

was declared. The call to spoil erases the field firstname from person, and

makes the last line break the guarantees provided by the statically typed code.

In Section 4.3 we present the formalization of the rules that type check

the refinement of table types.

3.5 Type aliases and interfaces

Typed Lua includes type aliases for allowing programmers to define

their own data types. Figure 3.4 shows the concrete syntax of the typealias

construct.

Type aliases

typealias ::= [local] typealias Name ‘=’ type

Figure 3.4: The concrete syntax of Typed Lua type aliases

As an example, the following declaration defines the type Person as an

alias to the table type {"firstname":string, "lastname":string} in the

remainder of the current scope:

local typealias Person = { "firstname":string,

"lastname":string }

Typed Lua also includes interfaces as syntactic sugar to aliases for table

types that specify records, as writing table types can be unwieldy when records

get bigger and the types of record fields get more complicated. Figure 3.5 shows

the concrete syntax of the interface construct. In Section 3.7 we will show

that we can also use interface to document the type of objects, and that

methodtype is syntactic sugar to express the type of methods.

As an example, we can use the following interface to define the type

Person from the previous example:

local interface Person

firstname:string

lastname:string

end

After we define the type Person, we can use it in type annotations:

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 49

Interfaces

interface ::= [local] interface typedec

typedec ::= Name {decitem} end

decitem ::= idlist ‘:’ idtype

idtype ::= type | methodtype

idlist ::= id {‘,’ id}
id ::= [const] Name

Figure 3.5: The concrete syntax of Typed Lua interfaces

local function byebye (person:Person):string

return "Goodbye " .. person.firstname ..

" " .. person.lastname

end

local user1 = { firstname = "Lewis",

middlename = "Allan",

lastname = "Reed" }

local user2 = { firstname = "Lou" }

local user3 = { lastname = "Reed",

firstname = "Lou" }

local user4 = { "Lou", "Reed" }

print(byebye(user1)) --> Goodbye Lewis Reed

print(byebye(user2)) --> compile-time warning

print(byebye(user3)) --> Goodbye Lou Reed

print(byebye(user4)) --> compile-time warning

This example shows that our optional type system is structural rather

than nominal, that is, it checks the structure of types instead of their names,

and it uses subtyping and consistent-subtyping for checking types.

Even though the interface declaration may look redundant due to the

type alias declaration, it has a more convenient syntax for declaring table

types that express records. For this reason, it is worth having two different

constructs, one specifically for records and another for more general types.

The interface and typealias constructs also allow the declaration of

recursive types. For instance, the following interface defines a type for singly-

linked lists of integers:

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 50

local interface Element

info:integer

next:Element?

end

Now we can use Element to annotate a function that inserts an element

at the beginning of a list:

local function insert (e:Element?, v:integer):Element

return { info = v, next = e }

end

We need an explicit type declaration in the return type because the

Typed Lua compiler cannot infer recursive types, though it has subtyping

rules to check that the inferred return type matches the annotation.

Now we can write a program that declares a list, inserts some elements

in it, and then traverses the list printing each element:

local l:Element?

l = insert(l, 4)

l = insert(l, 3)

l = insert(l, 2)

l = insert(l, 1)

while l do

print(l.info)

l = l.next

end

Note that the type of l is Element inside the while body, and the

assignment l = l.next restores the type of l to Element|nil. This means

that this example compiles without any warnings, because the while statement

also uses the small set of type predicates that we mentioned in Section 3.3.

As another example of recursive type, the following type alias defines a

type for the abstract syntax tree of a language of simple arithmetic expressions:

local typealias Exp = {"tag":"Number", 1:number}

| {"tag":"Add", 1:Exp, 2:Exp}

| {"tag":"Sub", 1:Exp, 2:Exp}

| {"tag":"Mul", 1:Exp, 2:Exp}

| {"tag":"Div", 1:Exp, 2:Exp}

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 51

The type Exp is a recursive type that resembles the algebraic data

types from functional programming. The small set of type predicates that

we mentioned in Section 3.3 also includes a specific rule that is not based on

tags. This specific rule lets programmers discriminate unions of table types and

resembles the pattern matching from functional programming. We can use this

feature to write an evaluation function for our simple language:

local function eval (e:Exp):number

if e.tag == "Number" then return e[1]

elseif e.tag == "Add" then return eval(e[1]) + eval(e[2])

elseif e.tag == "Sub" then return eval(e[1]) - eval(e[2])

elseif e.tag == "Mul" then return eval(e[1]) * eval(e[2])

elseif e.tag == "Div" then return eval(e[1]) / eval(e[2])

end

end

When Typed Lua finds the predicate v[e1] == e2, it checks whether the

type of the variable v is an union of table types, whether the type of e1 is a

literal type l1, and whether the type of e2 is a literal type l2. If that is the

case, it constrains the type of v inside the if to the table type that has a key

of type l1 which maps to a value of type l2. In our example, the expression

e.tag == "Add" makes the Typed Lua compiler constrain the type of e to

{"tag":"Add", 1:Exp, 2:Exp}. If we did not add this special predicate, we

would not be able to traverse an AST, as any attempt to index an union raises

a compile-time warning.

3.6 Modules

Lua does not set policies on how programmers should define modules,

but it provides mechanisms for organizing a program in modules. To load a

module, Lua first checks whether the module is already loaded. When the

module is not loaded, Lua executes its source file, and the value returned is

the module. Although programmers can use functions for defining modules, our

survey from Section 2.5 confirms that the convention among Lua programmers

is to use tables for defining modules. In this convention, the fields of the table

are the functions and other values that the module exports.

An idiomatic way for defining modules in Lua is to declare only locals

and return a table constructor at the end of the source file. The returned con-

structor includes the members that the module should export. The following

example illustrates this case in Typed Lua:

local RADIANS_PER_DEGREE = 3.14159 / 180.0

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 52

local function deg (x:number):number

return x / RADIANS_PER_DEGREE

end

local function rad (x:number):number

return x * RADIANS_PER_DEGREE

end

local function pow (x:number, y:number):number

return x ^ y

end

return {

deg = deg,

rad = rad,

pow = pow,

}

In this example, Typed Lua uses the type of the table constructor to

allow the programmer to build the type of the module. The local variable

RADIANS_PER_DEGREE is private because we did not include it in the list of

exported members. The return at the end of the source file gives the type of

the module:

{ "deg":(number) -> (number),

"rad":(number) -> (number),

"pow":(number, number) -> (number) }

Typed Lua always fixes unique and open table types that appear in a

top-level return statement. This means that modules have fixed table types in

Typed Lua. This behavior ensures that classes always have fixed table types.

In the next section we will show that we build classes in a similar way that

we use to build modules, and we will also show that classes should have fixed

table types to allow safe single inheritance.

Another idiomatic way for defining modules in Lua is to declare an empty

table at the begin of the source file, populate this table with the members that

the module should export, and return this table at the end of the source file.

The following example illustrates this case in Typed Lua:

local mymath = {}

local RADIANS_PER_DEGREE = 3.14159 / 180.0

mymath.deg = function (x:number):number

return x / RADIANS_PER_DEGREE

end

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 53

mymath.rad = function (x:number):number

return x * RADIANS_PER_DEGREE

end

mymath.pow = function (x:number, y:number):number

return x ^ y

end

return mymath

In this example, Typed Lua uses the refinement of table types

to incrementally build the type of the module mymath. The variable

RADIANS_PER_DEGREE is private because we declared it as local to the module.

The return at the end of the source file gives the type of the module, which

is the same type of the variable mymath. This module has the same type of the

module from the previous example.

After we define the module mymath, regardless of the adopted style, users

can use it in the standard way, but with the static type checking provided by

Typed Lua. Next we show an example:

local mymath = require "mymath"

print(mymath.pow(2, 3)) --> 8

print(mymath.pow(2, "foo")) --> compile-time warning

In Typed Lua, require is a primitive that statically type checks a given

module to infer its type. This means that the type of its input parameter must

be a literal string, as Typed Lua uses this literal string to find the source file

that implements the given module. To statically type check a module, Typed

Lua follows the same rules that Lua follows to load a module. Typed Lua

first checks whether the module is already statically type checked. When the

module is not yet statically type checked, Typed Lua statically type checks its

source file, and the type returned is the type of the module. Typed Lua raises

a compile-time warning when it cannot find the source file of a given module.

After we use require to statically type check a module, Typed Lua can

statically type check the usage of this module. In our previous example, the

call to require assigns the type of the module mymath to the local mymath, so

Typed Lua can catch misuses of the module.

The way that Typed Lua handles modules using fixed table types is also

relevant for supporting object-oriented programming, as we discuss in the next

section.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 54

3.7 Object-Oriented Programming

Lua provides minimal support for object-oriented programming. The

basic mechanism is the : syntactic sugar for method definitions and method

calls. In the case of method definitions, the Lua compiler translates function

obj:method(args) end into an operation that assigns a function to the field

method in obj. This function includes a first parameter named self plus any

other parameters. In the case of method calls, the Lua compiler translates

obj:method(args) into an operation that evaluates obj, uses method to index

obj, and then calls obj.method with the result of evaluating obj as the first

argument, followed by the result of evaluating the argument list in the original

expression.

Typed Lua uses closed table types along with the type self to represent

objects. We use the following example to discuss this feature:

local Shape = { x = 0.0, y = 0.0 }

function Shape:move (dx:number, dy:number)

self.x = self.x + dx

self.y = self.y + dy

end

Typed Lua assigns the type self to the implicit parameter self. The

type self represents the type of the receiver in method definitions and method

calls. In this example, Typed Lua binds the type self to the closed table

type {"x":number, "y":number} inside move. This example also uses the

refinement of table types to build the type of Shape:

{ "x":number, "y":number,

"move":(self, number, number) -> () }

While : is syntactic sugar in Lua, Typed Lua uses it to check method

calls, binding any occurrence of the type self in the type of the method to the

receiver. Indexing a method and not immediately calling it with the correct

receiver is a compile-time warning:

Shape.move(Shape, 10, 10) --> Shape.x = 10 and Shape.y = 10

Shape:move(5, 20) --> Shape.x = 5 and Shape.y = 20

local p = Shape.move --> compile-time warning

Lua has a mechanism for self-like (or JavaScript-like) delegation of

missing table fields. After the call setmetatable(t1, { __index = t2 }),

Lua looks up in t2 for any missing fields of t1. As we mentioned in Section

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 55

2.5, Lua programmers often use this mechanism to simulate classes. We will

use the following example to discuss this feature:

local Shape = { x = 0.0, y = 0.0 }

const function Shape:new (x:number, y:number):self

local s:self = setmetatable({}, { __index = self })

s.x = x

s.y = y

return s

end

const function Shape:move (dx:number, dy:number):()

self.x = self.x + dx

self.y = self.y + dy

end

return Shape

In Typed Lua, setmetatable is a strict primitive that obeys three typing

rules. The reason for being so strict with setmetatable is because it is the

only mechanism that Typed Lua has to create classes as prototype objects.

The first setmetatable rule appears in our previous example. In a

setmetatable expression setmetatable({},{__index = id}), if id has type

self then the expression also has type self. We will explain the other two

rules while we explain how Typed Lua type checks single inheritance.

In our example, we are using the refinement of table types to build the

type of the variable Shape, as it should work as our class. This means that

the local Shape has type {"x":number, "y":number} inside the definition of

new. This also makes Typed Lua bind the type of the local Shape to the type

self inside the definition of new, allowing us to access fields x and y. After the

definition of new, the local Shape has type {"x":number, "y":number, const

"new":(self, number, number) -> (self)}, which is the type that Typed

Lua binds to the type self inside the definition of move. We use the const

annotation in the type of the methods because it is necessary for covariance

among object types to work. Finally, the top-level return statement fixes the

type of Shape, because fixed table types do not allow width subtyping, and

this behavior allows Typed Lua to use the refinement of table types to type

check single inheritance, as we will see in this section.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 56

A return statement that appears in the top-level also exports an interface

which we can use in type annotations. For instance, our previous example

exports the following interface:

interface Shape

x, y:number

const new:(number, number) => (self)

const move:(number, number) => ()

end

We use a double arrow instead of a single arrow because it is syntactic

sugar for defining the type of methods, as it includes an implicit first input type

self. The double arrow can appear only inside the declaration of interfaces

and userdata, which we will introduce in the next section.

The style of classes definition from the previous example allows us to

use require for creating prototype objects that work as classes, along with

an alias to the object type. This allows us to use the exported alias in type

annotations, as we show in the following example:

local Shape = require "shape"

local shape1 = Shape:new(0, 5)

local shape2:Shape = Shape:new(10, 10)

Note that Shape has a fixed table type, because it describes the type of

the class Shape, but shape1 and shape2 have closed table types, because they

describe the type of objects from the class Shape. Now, we will see that we

need fixed table types to allow setmetatable to simulate single inheritance.

We use the following example to discuss single inheritance in Typed Lua:

local Shape = require "shape"

local Circle = setmetatable({}, { __index = Shape })

Circle.radius = 0.0

const function Circle:new (x:number, y:number,

radius:value):self

local c:self = setmetatable(Shape:new(x, y),

{ __index = self })

c.radius = tonumber(radius) or 0.0

return c

end

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 57

const function Circle:area ():number

return math.pi * self.radius * self.radius

end

return Circle

In this example, we use the other two setmetatable rules. The second

rule appears to trigger the refinement of table types, as we need this rule to

add new methods and also to override existing methods in Circle. The third

rule appears to redefine the constructor new.

In a setmetatable expression setmetatable({},{__index = id}), if

id has a fixed table type then it is safe to produce an equivalent open table

type, as fixed table types do not allow hiding fields. In our example, it is safe

to use the type of Shape to initialize Circle, opening the type of Circle to

allow the refinement of table types to build the type of the class Circle.

In a setmetatable expression setmetatable(e,{__index = id}), if

the expression e has a closed table type t, id has type self, and the type

bound to self is a subtype of t, then the expression has type self. Note

how we can use this rule to call the constructor of Shape inside the overridden

constructor. A limitation of this class system is that the overridden constructor

must be a subtype of the original constructor, so the type of the input

parameter radius has to be quite permissive. Also note that this is the only

form of refinement that allows changing the type of a table field, if the new

type is a subtype of the previous type.

Like in the example that we introduced the class Shape, in the example

that we introduced the class Circle, the top-level return statement exports

an interface which we can use in type annotations:

interface Circle

x, y, radius:number

const new:(number, number, value) => (self)

const move:(number, number) => ()

const area:() => (number)

end

Even though the class Circle is not a subtype of the class Shape, because

fixed table types do not have width subtyping, the objects that have the

exported type Circle are subtypes of the objects that have the exported type

Shape, because closed table types have width subtyping. We discuss fixed and

closed table types in more detail in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 58

We can use both exported aliases in type annotations, as we show in the

following example:

local Circle = require "circle"

local circle1 = Circle:new(0, 5, 10)

local circle2:Circle = Circle:new(10, 10, 10)

local circle3:Shape = circle1

local circle4:Shape = circle2

print(circle2:area()) --> 314.15926535898

print(circle3:area()) --> compile-time warning

In all examples, if we erase all type and const annotations, they become

valid Lua code, which run with the same semantics as Typed Lua code.

The current version of Typed Lua has some limitations regarding the

use of setmetatable that are on plans for future work. One limitation is that

Typed Lua does not have polymorphism, so programmers cannot hide the

calls to setmetatable behind nicer abstractions, as some Lua libraries do.

Another limitation is that Typed Lua does not support operator overloading,

so programmers cannot use setmetatable to change the behavior of predefined

operations, as some Lua libraries do.

Our classes system also does not support multiple inheritance and does

not offer privacy rules, but these limitations are not on plans for future work

anyway.

3.8 Description files

Typed Lua allows programmers to create description files for exporting

statically typed interfaces to dynamically typed modules. This means that

programmers can have some of the benefits of static types even without

converting existing Lua modules to Typed Lua, as a dynamically typed module

can export a statically typed interface, and statically typed users of the module

have their use of the module checked by the compiler.

Furthermore, Typed Lua also allows programmers to create description

files for exporting statically typed interfaces for Lua modules that are written

in C.

Figure 3.6 shows the complete syntax of Typed Lua description files

in extended BNF. A Typed Lua description file defines the table type that

represents a certain module and the type names that are exported along with

this table type. We can export a type name through the declaration of either

an interface, an userdata, or a type alias. As we mentioned in Section 3.5,

a type alias declaration creates an alias to a more general type, while an

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 59

The complete syntax of description files

description ::= desclist

desclist ::= descitem {descitem}
descitem ::= typedid | interface | userdata | typealias

typedid ::= [const] id ‘:’ type

interface ::= interface typedec

userdata ::= userdata typedec

typedec ::= Name {decitem} end

decitem ::= idlist ‘:’ idtype

idtype ::= type | methodtype

idlist ::= id {‘,’ id}
id ::= [const] Name

typealias ::= typealias Name ‘=’ type

Figure 3.6: The concrete syntax of Typed Lua description files

interface declaration creates an alias to a table type that represents a record.

An userdata declaration is similar to an interface declaration, but it also

includes its name as the brand of the table type. The Typed Lua compiler uses

this brand to combine structural with nominal type checking, so two userdata

that export exactly the same members, but do not have the same name, are

not subtype of each other, because they do not share the same brand.

The following example shows the description file for lmd5 [dF14], a MD5

digest library for Lua that is written in C:

userdata md5_context

__tostring : (self) -> (string)

clone : (self) -> (self)

digest : (self, value) -> (string)

new : (self) -> (self)

reset : (self) -> (self)

update : (self, string*) -> (self)

version : string

end

__tostring : (md5_context) -> (string)

clone : (md5_context) -> (md5_context)

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

Chapter 3. Typed Lua 60

digest : (md5_context|string, value) -> (string)

new : () -> (md5_context)

reset : (md5_context) -> (md5_context)

update : (md5_context, string*) -> (md5_context)

version : string

This description file exports the type md5_context through an userdata

declaration and the table type that represents the type of the module. Now

we can use the Typed Lua compiler to check for type errors in our use of the

lmd5 library:

local m = require "md5"

local x = m.new()

local y = x:clone()

local z = m.clone("foo") --> compile-time warning

print(x:digest() == m.digest(y)) --> true

The Typed Lua compiler searches for a description file when it cannot find

the respective Typed Lua file that is the argument of require. In this example,

the call to require assigns to the local m the table type that the description file

of the lmd5 library exports. Thus, the compiler raises a compile-time warning

in the fourth line, as the function clone expects a value of type md5_context

instead of a value of type string.

The description files are the mechanism that we used to include the typing

of the Lua standard library inside Typed Lua. In Chapter 5 we will discuss

the issues that we found while typing the Lua standard library and other case

studies, which include the lmd5 library.

DBD
PUC-Rio - Certificação Digital Nº 1012679/CA

