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Abstract. CÉU is a programming language that unifies the features found in dataflow
and imperative synchronous reactive languages, offering a high-level and safe alternative
to event-driven and multithreaded systems for embedded systems.

CÉU supports concurrent lines of execution that run in time steps and are allowed to
share variables. However, the synchronous and static nature of CÉU enables a compile
time analysis that can enforce deterministic and memory-safe programs.

CÉU also introduces first-class support for “wall-clock” time (i.e. time from the real
world), and offers seamless integration with C and simulation of programs in the lan-
guage itself.

The CÉU compiler generates single-threaded code comparable to handcrafted C pro-
grams in terms of size and portability.

Keywords: Concurrency, Synchronous, Determinism, Static Analysis, Embedded Sys-
tems

Resumo. CÉU é uma linguagem que unifica os estilos dataflow e imperativo das lingua-
gens sı́ncronas reativas, oferecendo uma alternativa segura e de alto nı́vel aos modelos
orientados a eventos e multithreaded para sistemas embarcados.

CÉU suporta linhas de execução concorrentes que avançam em passos de tempo e po-
dem compartilhar variáveis. No entanto, a natureza sı́ncrona e estática de CÉU viabiliza
uma análise em tempo de compilação que assegura programas determinı́sticos.

CÉU também introduz suporte de primeira classe para wall-clock time (i.e. tempo do
mundo real) e oferece integração com C e simulação de programas na própria linguagem.

O compilador de CÉU gera código single-threaded comparável a programas C em ter-
mos de tamanho e portabilidade.

Palavras-chave: Concorrência, Sı́ncrono, Determinismo, Análise Estática, Sistemas Em-
barcados.
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1 Introduction

Embedded systems combine hardware, software, and possibly mechanical devices to per-
form a specific dedicated task. They differ from general-purpose systems, which are de-
signed with flexibility in mind and encompass a multitude of applications in a single
system. Examples of embedded systems range from simple MP3 players to complex fly-
by-wire avionic systems. Usually they have a very low tolerance to faults, are constrained
in memory and processing, and must conform with real-time requirements.

Embedded systems are essentially reactive as they interact permanently with the sur-
rounding environment through input and output devices (e.g. buttons, timers, touch
displays, etc.).

Software for embedded systems is usually developed in C, and the addition of a real-
time operating system may extend it with preemptive and/or cooperative multithread-
ing (MT). However, concurrency in C requires a low-level exercise related to the life cycle
of activities (i.e. creating, starting, and destroying threads), besides extra efforts for ex-
plicit scheduling (in cooperative MT) and manual synchronization (in preemptive MT).
Furthermore, these models lack safety warranties, given that cooperative MT is suscep-
tible to unbounded execution, while preemptive MT is subject to race conditions and
deadlocks.

An established alternative to C in the field of safety-critical embedded systems are
reactive synchronous languages [1]. Two major styles of synchronous languages have
evolved: in the control–imperative style (e.g. Esterel [2]), programs are structured with
control flow primitives, such as parallelism, repetition, and preemption; in the dataflow–
declarative style (e.g. Lustre [3]), programs can be seen as graphs of values, in which a
change to a value is propagated through its dependencies without explicit programming.

We believe that embedded systems programming can benefit from a new language
that reconciles both reactive synchronous styles, while preserving typical C features that
programmers are familiarized, such as shared memory concurrency.

In this work, we present CÉU, a reactive language targeting embedded systems that
unifies both imperative and dataflow synchronous programming styles. CÉU is based on
a small set of reactive control primitives similar in functionality to Esterel’s [2]. On top
of this kernel, CÉU provides disciplined side effects, which together with internal events
enable dataflow capabilities to the language.

Besides offering a high-level reactive programming model, a primeval goal of CÉU is
to ensure the correctness of programs through safety warranties. CÉU relies on a compile-
time analysis to detect unbounded loops and concurrent access to variables. The static
analysis precludes any dynamic support in the language, such as memory allocation, a
call stack, and dynamic loading. However, this trade-off seems to be favorable in the
context of embedded systems, as dynamic features are discouraged due to resource limi-
tations and safety requirements.

CÉU has an open source implementation1 targeted at highly constrained embedded
platforms, such as Arduino2 and wireless sensor nodes (e.g. micaz3). The current memory
footprint of the CÉU runtime is around 3Kbytes of ROM and 100bytes of RAM on a 16-bit
platform.

1http://www.ceu-lang.org
2http://www.arduino.cc
3http://www.xbow.com
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This paper is organized as follows. In Section 2, we introduce CÉU: its synchronous
execution model, parallel compositions, dataflow support, first class wall-clock time,
integration with C, safety warranties, and asynchronous execution. In Section 3, we
demonstrate the applicability of CÉU with three demo applications in different scenar-
ios, exploring the programming style promoted by the language. In Section 4, we discuss
the implementation of CÉU. In Section 5, we compare CÉU with common approaches for
programming embedded systems. In Section 6, we make final remarks and conclude the
paper.

2 The Language CÉU

CÉU is a concurrent language in which multiple lines of execution—known as trails—
continuously react to input events from the environment. Waiting for an event suspends
the running trail until that event occurs. The environment broadcasts an occurring event
to all active trails, which share a single global time reference (the event itself).

To illustrate the concurrent reactive nature of CÉU, the example in Figure 1 executes
three trails in parallel through the par statement. The first and second trails wait for
different events and change the value of a variable, notifying all changes to the third
trail, which continuously shows the current value of the variable.

1: input int Restart; // an external event

2: event void changed; // an internal event

3: int v = 0; // a variable

4: par do

5: loop do // 1st trail

6: await 1s;

7: v = v + 1;

8: emit changed;

9: end

10: with

11: loop do // 2nd trail

12: v = await Restart;

13: emit changed;

14: end

15: with

16: loop do // 3rd trail

17: await changed;

18: _printf("v = %d\n", v);

19: end

20: end

Figure 1: A concurrent program in Céu.

Lines 1-3 declare the variables and events used in the program. An event declaration
must include the type of value the occurring event communicates. For instance, the exter-
nal event Restart carries integer values, while the internal event changed is a notify-only
event, holding no values. 4

The loop in the first trail (lines 5-9) waits for 1 second, increments variable v, and
notifies changes through the emit statement (line 8). The loop in the second trail (lines

4CÉU uses uppercase letters to denote external events and lowercase letters to denote variables and inter-
nal events.
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11-14) resets v to the value of every occurrence of the input event Restart (line 12), and
notifies these changes (line 13). The loop in the third trail (lines 16-19) shows the value of
v (line 18) whenever the event change is emitted (line 17).

CÉU uses a verbose notation with plenty of keywords, such as ‘do’ and ‘end’ to delimit
blocks (instead of curly brackets). Types, values, and expressions follow the same con-
ventions of C. Symbols defined externally in C, such as printf in the example, must be
prefixed with an underscore to be used in CÉU programs (to be discussed in Section 2.4).

The complete syntax of CÉU is presented in Appendix A.

CÉU is grounded on a precise definition of time as a discrete sequence of external
input events:5 a sequence because only a single input event is handled at a time; dis-
crete because a complete reaction always executes in bounded time (to be discussed in
Section 2.5). The execution model for a CÉU program is as follows:

1. The program initiates the “boot reaction” in a single trail.

2. Active trails execute until they await or terminate. This step is named a reaction
chain, and always runs in bounded time.

3. If there are no remaining awaiting trails, the program terminates. Otherwise, the
program goes idle and the environment takes control.

4. On the occurrence of a new external input event, the environment awakes the trails
awaiting that event. It then goes to step 2.

When multiple trails are active at a time, CÉU does not specify the order in which
they should execute. The language runtime is allowed to serialize, interleave, or even
parallelize their execution.

If a new external input event occurs while a reaction chain is running (step 2), the
environment enqueues it to run in the next reaction, because reaction chains must run to
completion.

Every occurring event in CÉU has a corresponding reaction chain that spans for a
bounded duration, even if there are no awaiting trails to react to the event. In this case,
an empty reaction chain takes place, and the event is discarded.

To illustrate the execution model of CÉU, Figure 2 corresponds to an execution of the
program in Figure 3.

Figure 2: A sequence of reaction chains for the program in Figure 3.

The program starts in the “boot” reaction in a single trail that splits in three: trails 1
and 3 execute and wait for the event A, while trail 2 waits for the event B. Control next

5We use the terms external input event, external event, and input event interchangeably.
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input void A, B, C;

par/and do // trail 1

... // a sequence of non-awaiting stmts

await A;

...

with // trail 2

...

await B;

...

with // trail 3

...

await A;

...

await B;

par/and do

...

with

...

end

end

Figure 3: An example of a program in Céu.

goes back to the scheduler, which remains idle until a new event occurs. The par/and

statements used in the example only terminate when all of its trails in parallel terminate
(to be discussed in Section 2.1.

The occurrence of A triggers the next reaction chain: trail 1 awakes, executes and
terminates, while trail 3 executes and waits for B. Trail 2 remains suspended, as it was
not awaiting A. Events A, B and C occur while the reaction is executing, so they are
enqueued to be handled in the following reactions.

As A happened first, it is used in the next reaction. However, no trails are awaiting it,
so an empty reaction chain takes place.

Then, B is used in the next reaction: trail 2 awakes, executes and terminates, while
trail 3 splits in two and they both terminate. As there are no remaining awaiting trails,
the program terminates and does not react to the enqueued event C.

Note that, based on CÉU’s definition of time, the only statement that takes time is an
await. All other statements execute within the same time unit (i.e. reaction chain) and,
conceptually, take exactly zero time to complete. For instance, the following examples
look similar, but only the first variation reacts to every single occurrence of event A:

input void A; input void A;

loop do loop do

await A; await A;

... await 1us;

end ...

end

In the first variation, no time elapses between two awaits, so the program never misses
an occurrence of A. However, in the second variation, 1 microsecond elapses between the
two awaits, and an A may occur exactly during this period.

A reaction chain may involve emits and reactions to multiple internal events (to be
discussed in Section 2.2), but only a single external input event is handled.

4



The availability of external input events depend on the platform in use. As an exam-
ple, a binding of CÉU targeting Wireless Sensor Networks offers events for the arrival of
radio messages and sensor readings (Section 3 demonstrate some real-world scenarios).

2.1 Parallel compositions

The use of trails in parallel allows the programmer to handle multiple events at the same
time. Furthermore, trails await events without loosing context information, such as locals
and the program counter, what is a desired behavior in concurrent applications. [4]

CÉU supports three kinds of parallel blocks regarding how they rejoin in the future:
a par/and block requires that all trails in parallel terminate before proceeding to the next
statement; a par/or block requires that any trail in parallel terminates before proceeding
to the next statement, destroying all awaiting sibling trails; finally, the par block never
rejoins and should be used when trails in parallel are supposed to run forever (if they
terminate, the scheduler forcedly halts them forever). In the program of Figure 1, all
trails run forever, hence, we opted for the par statement.

To illustrate how trails rejoin, consider the two variations of the following archetype:

loop do loop do

par/and do par/or do

... ...

with with

await 100ms; await 100ms;

end end

end end

In the par/and variation, the computation in the first trail is repeated every 100 mil-
liseconds at minimum, as both sides must terminate before re-executing the loop. In
the par/or variation, if the computation does not terminate within 100 milliseconds, it is
restarted. These archetypes represent, respectively, the sampling and watchdog patterns,
which are very common in reactive applications.

Regarding a par/or rejoin, it is possible that more than one of its trails terminate during
the same reaction chain. The program proceeds to the statement following the par/or

only after all non-awaiting trails execute. For trails that did not terminate, note that they
are necessarily awaiting another event; hence, they are destroyed before proceeding to
the statement after the par/or.

Only parallel statements create new trails in CÉU, and all bookkeeping of trails (e.g.
allocation and scheduling) is done by the language. The runtime overhead for creating
and destroying (rejoining) trails is negligible, promoting a fine-grained use of trails.

Note that allowing trails to share variables obligates the CÉU compiler to perform a
static analysis in order to detect nondeterminism in programs (to be discussed in Sec-
tion 2.6). For instance, the following program, which is refused at compile time, could
return 1 or 2, depending on the exact order the trails in parallel execute:

int v;

par/and do

v = 1;

with

v = 2;

end

return v;

5



2.2 Internal events & Dataflow support

Internal events are used as the single signaling mechanism among trails in CÉU. They
also bring dataflow support to the language, permitting that programs create depen-
dency relationships among variables.

Suppose in a program we want that any change to variable v1 automatically updates
v2 to v2=v1+1, and that any change to v2 updates v3 to v3=v2*2. The program in Figure 4
implements the desired behavior.

1: int v1, v2, v3;

2: event void v1_evt, v2_evt, v3_evt;

3: par do

4: loop do // 1st trail

5: await v1_evt;

6: v2 = v1 + 1;

7: emit v2_evt;

8: end

9: with

10: loop do // 2nd trail

11: await v2_evt;

12: v3 = v2 * 2;

13: emit v3_evt;

14: end

15: with

16: ... // 3rd trail

17: end

Figure 4: A dataflow program.

We start by defining the variables and corresponding internal events that signal changes
(lines 1-2). Any change to a variable in the program must be followed by an emit on the
corresponding event so that dependent variables can react. Then, we create two trails
to await for changes and update the dependency relations among the variables. For in-
stance, the first trail is a loop (lines 4-8) that waits for changes on v1 (line 5), resets v2 to
apply the constraint (line 6), and signals this change (line 7) to make sure that its depen-
dencies are also updated. The behavior for the second trail (lines 10-14), which updates
v3 whenever v2 changes, is similar.

In contrast with external events, which are handled in a queue, internal events follow
a stack policy and are handled within the same reaction chain. In practical terms, this
means that a trail that emits an internal event pauses until all trails awaiting that event
completely react to it, continuing to execute afterwards (but still within the same time
unit).

In the example, suppose v1 is updated twice in sequence with the following code in
the third trail in parallel (line 16):

...

v1 = 10;

emit v1_evt;

v1 = 15;

emit v1_evt;

...

6



The program behaves as follows (with the stack in emphasis):

1. 3rd trail sets v1=10, emits v1 evt, and pauses; (stack: [3rd])
2. 1st trail awakes, sets v2=11, emits v2 evt, and pauses; (stack: [3rd,1st])
3. 2nd trail awakes, sets v3=22, emits v3 evt, and pauses; (stack: [3rd,1st,2nd])
4. no trails are awaiting v3 (the event is discarded), so 2nd trail (on top of the stack) resumes,

loops, and awaits v2 evt again; (stack: [3rd,1st])
5. 1st trail resumes, loops, and awaits v1 evt again; (stack: [3rd])
6. 3rd trail resumes, sets v1=15, emits v1 evt, and pauses; (stack: [3rd])
7. ...

Note that by the time the second “emit v1 evt” executes (step 6), the trails in paral-
lel are already awaiting v1 evt and v2 evt again (steps 4,5); hence, they will react again
during the same reaction chain (step 7 on). This behavior, which we consider to be the
expected one for emits in sequence, is naturally achieved with a stack execution policy.

An intriguing issue in dataflow languages is when programs have to deal with mu-
tual dependency among variables. Such specifications lead to dependency cycles in pro-
grams, which require the explicit placement of delay combinators to break cycles [5].

In CÉU, due to the stacked execution for internal events, such specifications do not
lead to runtime cycles. For instance, as we have a finite number of trails, a cycle requires
the trail that invoked the first emit to be awaken by the trail that invoked the last emit on
the cycle, which is impossible given that the first trail is paused on the emit and cannot
be awaiting an event.

As an example, suppose we want to track a temperature in Celsius and Fahrenheit, so
that whenever the temperature in one unit is set, the other is automatically recalculated.
The program in Figure 5 implements this behavior.

int tc, tf;

event void tc_evt, tf_evt;

par do

loop do // 1st trail

await tc_evt;

tf = 9 * tc / 5 + 32;

emit tf_evt;

end

with

loop do // 2nd trail

await tf_evt;

tc = 5 * (tf-32) / 9;

emit tc_evt;

end

with

... // 3rd trail

end

Figure 5: A program with mutual dependency.

Now, consider that the third trail in parallel executes the sequence “tc=0; emit tc evt”:
the first trail resumes, updates tf with the conversion formula, emits tf evt and pauses
before awaiting tc evt again. Then, the second trail resumes, updates tc and emits tc evt,
with no effect on the first trail, which is still paused after emitting tf evt. Finally, the
trails await tc evt and tf evt again, and no runtime cycles occur.

7



2.3 Wall-clock time

Wall-clock time6 is probably the most common input in embedded systems, as found in
typical patterns like sensor sampling and watchdogs. However, language support for
wall-clock time is somewhat low-level, usually through timer callbacks or sleep blocking
calls.

For any concrete system implementation, a requested timeout may not expire pre-
cisely with zero-delay. We define the difference between the requested timeout and the
actual expiring time as the residual delta time (delta). The recurrent use of timed activ-
ities in sequence might accumulate a considerable amount of deltas that could lead to
incorrect behavior in programs.

CÉU provides an await statement for wall-clock time that handles deltas automatically,
resulting in more robust applications. As an example, consider the following program:

int v;

await 10ms;

v = 1;

await 1ms;

v = 2;

Suppose that after the first await request, the underlying system gets busy and takes
15ms to check for expiring awaits. The scheduler will notice that the await 10ms has
not only already expired, but with delta=5ms, and will awake the awaiting trail, which
sets v=1 and invokes await 1ms. However, the current delta is higher than the requested
timeout (5ms > 1ms), so the trail is immediately rescheduled for execution, now with
delta=4ms.

CÉU also takes into account the fact that time is a physical quantity that can be added
and compared. For instance, for the following program, if CÉU cannot guarantee that the
first trail terminates exactly in 99ms, it can at least ensure that the program returns 1:

par do

await 50ms;

... // any non-awaiting sequence

await 49ms;

return 1;

with

await 100ms;

return 2;

end

2.4 Integration with C

The CÉU compiler generates code that is then redirected to the C compiler for the plat-
form in use in order to generate the final binary. Hence, it is important that programs in
CÉU have access to all library functions, types, constants, and globals that the underlying
C compiler already provides.

Any identifier in a CÉU program prefixed with an underscore is passed as is to the C
compiler (removing the underscore). This way, CÉU programs have access to all global C
symbols the target platform offers.

6 By wall-clock time we mean the passage of time from the real world, measured in hours, minutes, etc.
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Programs in CÉU can also define new symbols through C blocks, as Figure 6 shows.
All code inside “C do ... end” is passed as is to the C compiler for the final genera-
tion phase. Only global definitions are allowed inside C blocks. Note that CÉU mimics
the type system of C, and values can be seamlessly passed back and forth between the
languages.

C do

#include <assert.h>

int I = 0;

int inc (int i) {

return I+i;

}

end

return _assert(_inc(_I));

Figure 6: A program with C definitions.

2.5 Bounded execution

A reaction chain must run in bounded time to ensure that a program is responsive and
can handle upcoming input events. In CÉU, only loops and C calls might cause a reaction
chain to run in unbounded time.

To guarantee that loops run in bounded time, we demand that each possible path in
a loop body contains at least one await or break statement. For instance, based on this
restriction, the following loops are refused at compile time:

// ex. 1: // ex. 3:

loop do loop do

v = v + 1 par/or do

end await A;

with

v = 1; // no await

// ex. 2: end

loop do end

if v then

await A;

end // else does not await

end

Conversely, the following loops are accepted:

// ex. 4: // ex. 5:

loop do loop do

await A; par/and do

end await A;

with

v = 1;

end

end

By structural induction on the program AST, it is trivial to infer whether a given loop
body satisfies that restriction or not.

9



For C calls, CÉU just assumes that they do not loop forever. This responsibility is
left to the programmer, and can be easily met by avoiding the use of loops, and block-
ing/recursive calls. As a general remark, whenever an underscore appears in the code,
the programmer must be aware that he is using the “C hat” and is on his own.

2.6 Determinism

Determinism is usually a desired safety property, making concurrent programs predictable
and easier to debug.

Concurrency in CÉU is characterized when two or more trails segments execute during
the same reaction chain. For instance, in the following example, the assignments run
concurrently:

int v;

par/and do

v = 1;

with

v = 2;

end

while in

input void A, B;

int v;

par/and do

await A;

v = 1;

with

await B;

v = 2;

end

there is no possible concurrency between the assignments, as A and B are external
events and cannot happen at the same time (by CÉU’s definition of time).

There are three possible sources of nondeterminism in CÉU: concurrent access to vari-
ables, concurrent access to internal events, and concurrent C calls.

During compile time, CÉU performs a temporal analysis in order to detect nondeter-
minism in programs. The static analysis generates a deterministic finite automata that
represents a program and covers exactly all possible points it can reach during runtime.

As an example, the DFA in Figure 8 corresponds to the program in Figure 7. In state
DFA #8 (after six occurrences of A) the variable v is accessed concurrently (note the out-
lined nodes), qualifying a nondeterministic behavior in the program, which is refused at
compile time.

If a variable is written in a trail segment, it cannot be read or written in any other
concurrent trail segment. For internal events, the reasoning is similar: if an event is
emitted, it cannot be awaited or emitted in any other concurrent trail segment.

10



input void A;

int v;

par do

loop do

await A;

await A;

v = 1;

end

with

loop do

await A;

await A;

await A;

v = 2;

end

end

Figure 7: A nondeterministic program.

Figure 8: DFA for the nondeterministic example.

Regarding concurrent C calls, CÉU supports annotations that allow specific functions
to run concurrently with others. Consider the following program:

par/and do

_led1On();

with

_led2On();

end

11



The two calls affect different LEDs, and the order each LED is turned on cannot be
perceived in practice. Nonetheless, CÉU is strict about determinism and refuses this pro-
gram by default.

The pure modifier of CÉU specifies functions that may run concurrently with any other
function in the program, while the deterministic modifier specifies sets of functions that
may run concurrently among each other.

For instance, in the following code:

pure _abs;

deterministic _led1On, _led2On;

deterministic _led1Off, _led2Off;

The function abs may run concurrently with any other functions, while led1On/ led2On

and led1Off/ led2Off may run concurrently among them.

Finally, the temporal analysis of CÉU also embraces the semantics for wall-clock time.
The program

int v;

par/or do

await 50ms;

await 49ms;

v = 1;

with

await 100ms;

v = 2;

end

is deterministic, while the program

int v;

par/or do

loop do

await 10ms;

v = 1;

end

with

await 100ms;

v = 2;

end

is nondeterministic, as the variable v is accessed concurrently every ten iterations of
the first trail.

Note that CÉU may refuse some deterministic programs (the so called false positives).
For instance, the following program is deterministic, but is recognized as nondetermin-
istic by CÉU:

int v;

par/and do

v = 1;

with

v = 1;

end

return v;

Programs that access the same variables concurrently are always detected as nonde-
terministic, regardless of the values being assigned or read.
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2.7 Asynchronous execution

The main limitation of the synchronous execution model is its inability to perform long
computations requiring unbounded loops. Asynchronous blocks fill this gap in CÉU and
can contain unbounded loops that run asynchronously with the rest of the program (re-
ferred to as the synchronous side).

The program in Figure 9 returns the factorial of 10. The loop (lines 4-11) must be
inside the async (lines 2-12) as it contains no await statements. The return statement
(line 6) terminates the asynchronous execution setting the variable ret (line 2). We use a
watchdog in the enclosing par/or to cancel the computation if it takes longer than 10ms
(line 15).

1: par/or do

2: int ret = async do

3: int num=10, fat=1;

4: loop do

5: if num == 0 then

6: return fat;

7: else

8: fat = fat * num;

9: num = num - 1;

10: end

11: end

12: end;

13: _printf("fat: %d\n", ret);

14: with

15: await 10ms;

16: end

Figure 9: A program with a long computation.

CÉU specifies that asynchronous code cannot execute when there are pending input
events in the synchronous side, which always has higher priority. It gives no warranty
that an async will ever terminate. Also, to preserve the disciplined synchronous seman-
tics of CÉU, asynchronous blocks cannot use parallel blocks, cannot await input events,
cannot manipulate internal events, and cannot assign to variables defined in outer blocks.

From the synchronous perspective, an async can be thought as an external process that
generates an input event back into the program when it terminates. The following code
express this idea:

_start_NNN(); // NNN is an unique identifier

ret = await NNN; // that represents the async

The call to start NNN() requests the asynchronous computation to start, while the sub-
sequent “await NNN” resumes when the computation terminates, yielding its final result.

This equivalence emphasizes that asynchronous blocks have a localized impact on the
synchronous side of programs (to be discussed in Section 2.9).
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2.8 Simulation in CÉU

Simulation is an important aspect in cross-compiling platforms, such as embedded sys-
tems. It is usually employed to test applications before deploying them on the target
platform. However, simulators are usually inaccurate, may require additional knowl-
edge to operate, and vary among different developing platforms.

CÉU can simulate programs in the language itself, not depending on any external
tool to test its programs: asynchronous blocks are allowed to emit input events and also
events that represent the passage of wall-clock time towards the synchronous side of the
program. This way, it is easy to simulate and test the execution of programs with total
control and accuracy with regard to the order of input events—all is done with the same
language and inside the programs themselves.

Note that in a reactive language, a program execution depends solely on the events it
receives from the environment. Also, in a deterministic program, the exact timings for
the incoming events are irrelevant to the application outcome, only the order they arrive.

Suppose we want to simulate the execution of the program in Figure 10, which initially
awaits the input event Start and then increments v every 10 minutes during 1 hour and
35 minutes.

1: input int Start;

2: int v = await Start;

3: par/or do

4: loop do

5: await 10min;

6: v = v + 1;

7: end

8: with

9: await 1h35min;

10: end

Figure 10: The program to be simulated.

To test this code, we simulate the occurrence of the event Start and the passage of
1h35min in a parallel trail, as shown in Figure 11.

0: par/or do

(1-10): // ORIGINAL CODE

11: _assert(v == 19);

12: with

13: async do

14: emit Start = 10;

15: emit 1h35min;

16: end

17: _assert(0);

18: end

Figure 11: A program that embeds the code in Figure 10 and simulates it.
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The sequence of execution for the simulation will be as follows:

1. The original code (lines 1-10) executes before the async and initially awaits the event Start
(line 2).

2. The async (lines 13-17) begins, emits Start=10 (line 14) and is suspended (the original code
takes the priority again).

3. The original code resumes and awaits 10min and 1h35min in parallel trails (lines 5 and 9).
4. The async resumes and signals that 1h35min have elapsed (line 15).
5. The original code completely reacts to all time: the loop iterates exactly 9 times (lines 4-7)

before the trail awaiting 1h35min resumes (line 9) and terminates the innermost par/or.
The assertion test on line 11 executes before the one on line 17 (which never executes due
to the outermost par/or) and terminates the program successfully.

The original code remains unmodified and is simply pasted into the template that
runs the simulation in parallel. With the proper tools, this integration can be made even
simpler (e.g. we developed a framework to run tests for the implementation of CÉU with
hundreds of programs and test cases defined in separate).

It should be clear from the example that simulation does not test true I/O, only the
program behavior given an arbitrary input sequence. For instance, the simulation does
not take 1 hour to complete, but actually a negligible time. Also, simulation can be
employed—with the exact same behavior—in the developing platform (given CÉU is
available) or in the target platform.

2.9 GALS execution

CÉU complies with the GALS (globally asynchronous, locally synchronous) model of com-
putation, which states that local activities run synchronized with a common clock, while
global activities run with independent clocks. The globally asynchronous part of CÉU is
restricted to external input events, C code, and asynchronous blocks, while the locally
synchronous part of CÉU extends to all other primitives, such as parallel compositions,
variable manipulation, and internal events.

The temporal analysis of CÉU discussed in Section 2.6 ensures that only the locally
synchronous part of programs is deterministic. Therefore, CÉU is not an absolutely de-
terministic language, that is, the behavior of programs may vary from execution to exe-
cution.

However, nondeterminism in CÉU is exclusively a consequence of globally asynchronous
execution. For instance, the program in Figure 12 is nondeterministic, given that the
async runs for an undetermined time, and may terminate before or after the statement
await 1s. Even so, the CÉU compiler does not complain about nondeterminism, because
the assignments cannot run concurrently.

Note that for simulation purposes, the asynchronous execution can be entirely guided
by synchronous code, making programs fully deterministic. For instance, the simulation
example of Figure 11 can be repeated many times, with the exact same behavior.
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int ret;

par/or do

async do

... // a long computation

end

ret = 1;

with

await 1s;

ret = 2;

end

return ret;

Figure 12: The assignments never run concurrently.

3 Demo applications

To demonstrate the expressiveness of CÉU, we implemented three applications in differ-
ent domains and platforms.

The first example explores Wireless Sensor Networks (WSNs), which are networks
composed of a large number of tiny devices (known as “motes”) capable of sensing the
environment and communicating among them. We integrated CÉU with the TinyOS op-
erating system [6] in order to use the abstracted radio services the operating system pro-
vides for motes.

The second example uses the Arduino platform, a popular choice among hobbyists
aiming to experiment with electronic components and software. Here, we cannot rely on
device drivers and abstract services, as the I/O devices and pin connections vary from
application to application. In this context, we make extensive use of thin libraries for
specific devices and program directly in the “bare metal”.

The third example uses CÉU with the SDL graphics library7 under linux. With a more
powerful platform, we can explore some simulation techniques that require fast process-
ing.

The three demos also illustrate different ways to integrate CÉU with an underlying
platform.

For TinyOS, we developed a binding that maps all OS services to CÉU. As TinyOS is
event-driven, we intercept every possible event it can generate and emit a corresponding
external input event in CÉU. The binding is generic and applications can be developed
entirely in CÉU.

For Arduino, we do not know in advance which I/O devices are available, hence, it is
impossible to provide a unique high-level binding. Instead, we developed a binding that
generates events that notify changes on pins used as input ports in the CÉU program.

For SDL, we opted to use the “standalone” binding of CÉU, which starts the applica-
tion and expects it to generate all input events to itself (inside asynchronous blocks).

The applications are somewhat simple to fit the paper (ranging from 70 to 200 lines),
but still complete enough to explore the programming techniques promoted by CÉU.

7http://www.libsdl.org
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3.1 WSN ring

In the first demo, we implement a fixed ring topology with three motes placed side by
side within their radio ranges.8

All motes should follow the same behavior: receive a message with an integer counter,
show it on the LEDs, wait for 1 second, increment the counter, and forward it to the mote
on its right. Note that using fixed topologies and running the same application in all
motes are common practices in the context of WSNs.

As the topology constitutes a ring, the counter will be incremented forever while
traversing the three motes. If a mote does not receive a message within 5 seconds, it
should blink the red LED every 500 milliseconds until a new message is received. In a
ring topology, communications traverse all motes, and the network goes down with a
failure in a single mote, making tests much easier.

The mote with id=0 is responsible for initiating the process at boot time, and also when
the network is down. On perceiving the failure, mote 0 should wait for 10 seconds before
retrying the communication.

The code in Figure 13 shows the communicating trail, which receives and forwards
the messages forever. The code is an endless loop that first awaits a radio message (line
2), gets a pointer to its data region (line 3), shows the received counter on the LEDs (line
4), and then awaits 1s (line 5) before incrementing the counter in the message (line 6) and
forwarding it to the next mote (line 7).

1: loop do

2: _message_t* msg = await Radio_receive;

3: int* cnt = _Radio_getPayload(msg);

4: _Leds_set(*cnt);

5: await 1s;

6: *cnt = *cnt + 1;

7: _Radio_send((_TOS_NODE_ID+1)%3, msg);

8: end

Figure 13: Communicating trail for the ring application.

Because this code does not handle failures, it is straight to the point and easy to follow.
Actually, this is the final code for this task, as the task for handling errors is placed in a
parallel trail.

Note that the program uses several services provided by the underlying operating
system as C functions (LEDs and radio facilities), and none of these calls are blocking.

To handle failures, we use a monitoring trail in parallel with the communicating trail,
as Figure 14 shows. The network-down behavior constitutes the lines 12 to 24. After 5
seconds of inactivity is detected (line 12), two new activities run parallel: one that retries
the communication every 10 seconds (lines 14-17) by signaling the internal event retry;
and another that blinks the red LED every 500 milliseconds (lines 19-23).

The trick to restore the normal behavior of the network is to await the Radio receive

event (line 26) in a par/or (line 11) with the network-down behavior to kill it whenever
the network link is restored. By surrounding everything with a loop (line 10), we ensure
that the error detection is continuous.

8The complete source code and a video demo for the ring application can be found at http://www.
ceu-lang.org/TR/#ring.
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0: par do

(1-8): // COMMUNICATING TRAIL

9: with

10: loop do

11: par/or do

12: await 5s;

13: par do

14: loop do

15: emit retry;

16: await 10s;

17: end

18: with

19: _Leds_set(0);

20: loop do

21: _Leds_led0Toggle();

22: await 500ms;

23: end

24: end

25: with

26: await Radio_receive;

27: end

28: end

29: end

Figure 14: Monitoring trail for the ring application.

Note that both the communicating trail and the monitoring trail waits for the event
Radio receive (lines 2 and 26, respectively), and both react concurrently to it. The first is
responsible for handling the message and forwarding it, while the second just kills the
network-down behavior (the blinking red LED).

Finally, we need to code the initiating/retrying process that sends the first message
from the mote with id=0. As expected we place the code in parallel with the other activi-
ties, as Figure 15 shows.

0: par do

(1-8): // COMMUNICATING TRAIL (lines 1-8)

9: with

(10-28): // MONITORING TRAIL (lines 10-28)

29: with

30: if _TOS_NODE_ID == 0 then

31: loop do

32: _message_t msg;

33: int* cnt = _Radio_getPayload(&msg);

34: *cnt = 1;

35: _Radio_send(1, &msg)

36: await retry;

37: end

38: else

39: await forever;

40: end

41: end

Figure 15: Retrying trail for the ring application.
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We start by checking if the mote has id=0 (line 30). If this is not the case, we simply
await forever9 on this trail (line 39). Otherwise, the loop (lines 31-37) sends the first
message as soon as the mote is turned on (line 35). It then waits for a retry emit (line 36)
to loop and resend the initial message.

The example shows how complementary activities in an application can be written
in separate and need not to be mixed in the code. The activities are then combined to-
gether through parallel compositions and communication via internal events to achieve
the intended behavior.

The complete source code is less than 70 lines and includes all definitions and code to
initialize the radio.

As a final consideration, we can extend the idea of compositions to a new level by
combining different applications together. In the context of WSNs, it is usually difficult to
physically recover motes in a deployed network, and by combining multiple applications
in a single image, we can switch their execution remotely via radio.

The program in Figure 16 illustrates this idea. The input event Switch (line 1) is used to
request application switches remotely.10 Initially, the code behaves as application 1 (lines
7-9), but is also waiting for a Switch request in parallel (line 5). Whenever a new request
occurs, the par/or terminates, kills the running application, and restarts as the requested
application. The await forever statement (line 13) ensures that a terminating application
does not restart by itself.

1: input int Switch;

2: int cur_app = 1;

3: loop do

4: par/or do

5: cur_app = await Switch;

6: with

7: if cur_app == 1 then

8: // CODE for APP1

9: end

10: if cur_app == 2 then

11: // CODE for APP2

12: end

13: await forever;

14: end

15: end

Figure 16: Composition of two applications.

This idea can also be used to reboot a mote remotely, in the case of a strange behavior
in an application.

Note that the final ROM image on the mote requires the sum of all installed applica-
tions. However, as the applications never execute in parallel, the requirement for RAM
is equal to the highest footprint among all installed applications (to be discussed in Sec-
tion 4.2).

9forever is a reserved keyword in CÉU, and represents an external input event that never occurs.
10 We are assuming the existence of an hypothetical high-level event Switch that abstracts the radio

protocol for requests to change the current running application.
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Figure 17: The “ship” game

3.2 Arduino ship game

In this demo, we control a ship that moves on space and has to avoid collisions with
meteors until reaching a finish line.11

We use an Arduino connected to a two-row LCD display and two buttons that control
the ship. Figure 17 shows the picture of a running quest.

We specify the behavior of the game along with the code and follow a top-down ap-
proach. The outermost loop of the game in Figure 18 is responsible for restarting the
game every new phase or on “game over”. The complete code is constituted of CODE 1,
CODE 2, and CODE 3, which are expanded further.

1: loop do

(2-12): // CODE 1: set game attributes

13:

14: _map_generate();

15: _redraw(step, ship, points);

16: await Key; // starting key

17:

18: win =

(19-45): // CODE 2: the central loop

46:

(47-60): // CODE 3: game over

61: end

Figure 18: The outermost loop for the ship game.

Every time the loop is executed, it resets the game attributes, such as points and speed
(CODE 1, lines 2-12), generates a new map and redraws it on screen (lines 14-15). Then, it
waits for a starting key (line 16), and executes the main logic of the game in the central
loop (CODE 2, lines 18-45) until the ship reaches the finish line or collides with a meteor.
Based on the return status (line 18), the “game over” code (CODE 3, lines 47-60) may dis-
play an animation before restarting the game.

The game attributes (CODE 1, in Figure 19) change depending on the result of the pre-
vious iteration of the outermost loop.

11The complete source code and a video demo for the ship application can be found at http://www.
ceu-lang.org/TR/#ship.
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2: ship = 0; // 1st LCD row

3: if !win then

4: dt = 500; // game speed (500ms/step)

5: step = 0; // current step

6: points = 0; // number of steps alive

7: else

8: step = 0;

9: if dt > 100 then

10: dt = dt - 50;

11: end

12: end

Figure 19: The attributes settings for the ship game.

For the first game execution and whenever the ship collides with a meteor, variable
win is set to 012, hence, the attributes are reset to their initial values (lines 4-6). Otherwise,
if the player reached the finish line (win=1), then the game gets faster, keeping the current
points (lines 8-11).

The central loop of the game (CODE 2, in Figure 20) is responsible for moving the ship
as time elapses and for checking whether the ship reached the finish line or collided with
a meteor.

// CODE 2: the central loop

19: par do

20: loop do

21: await(dt*1000);

22: step = step + 1;

23: _redraw(step, ship, points);

24:

25: if _MAP[ship][step] == ’#’ then

26: return 0; // a collision

27: end

28:

29: if step == _FINISH then

30: return 1; // finish line

31: end

32:

33: points = points + 1;

34: end

35: with

36: loop do

37: int key = await Key;

38: if key == _KEY_UP then

39: ship = 0;

40: end

41: if key == _KEY_DOWN then

42: ship = 1;

43: end

44: end

45: end;

Figure 20: The central loop for the ship game.

12We omitted all global declarations in the code.
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The central loop is actually split in two loops in parallel, one to run the game steps
(lines 20-34), and the other to handle input from the player (lines 36-44).

The game steps run periodically, depending on the current speed of the game (line 21).
For each loop iteration, the step is incremented and the screen is redrawn (lines 22-23).
Then, the ship is checked for collision with meteors (lines 25-27), and with the finish line
(lines 29-31). CÉU supports returning from blocks with an assignment, hence, lines 26
and 30 escape the whole par and assign to the win variable in the outer loop (line 18). The
points are incremented before each iteration of the loop (line 33).

To handle input events, we wait for key presses in a loop (line 37) and change the
ship position accordingly (lines 39, 42). Note that there are no possible race conditions
on variable ship because the two loops in the par statement react to different events (i.e.
wall-clock time and keys).

After returning from the central loop, we run the code for the “game over” behavior,
in Figure 21, which starts an animation if the ship collided with a meteor.

// CODE 3: game over

47: par/or do

48: await Key;

49: with

50: if !win then

51: loop do

52: await 100ms;

53: _lcd.setCursor(0, ship);

54: _lcd.write(’<’);

55: await 100ms;

56: _lcd.setCursor(0, ship);

57: _lcd.write(’>’);

58: end

59: end

60: end

Figure 21: The “game over” code for the ship game.

The animation loop (lines 51-58) continuously displays the ship in the two directions,
suggesting that it has hit a meteor. The animation is interrupted when the player presses
a key (line 48), proceeding to the game restart.

Finally, we need to generate the key events from the program itself, as we use a third-
party push-button component not present in all Arduino boards. For this, we place the
whole program in parallel with the input event generator, as Figure 22 shows.

The code samples data of an analog port with a delay of 50ms to avoid bouncing
(lines 65-67). If two consecutive reads point to the same key and they are different from
the previous change (line 68), then we change the key (line 69) and generate a new event
(in the case of a key press, lines 70-74). The async block is mandatory for generating input
events to the program.

The static analysis complains about concurrent C calls of the game code (i.e. map generate

and redraw) against the event generator code (i.e. analog2key and analogRead). By an-
notating functions with proper modifiers, we get rid of all nondeterministic errors:

pure _analog2key; // just a mapping function

deterministic _analogRead with _map_generate, _redraw;
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0: par do

(1-61): // CODE FOR THE GAME

62: with

63: int key = _KEY_NONE;

64: loop do

65: int read1 = _analog2key(_analogRead(0));

66: await 50ms;

67: int read2 = _analog2key(_analogRead(0));

68: if read1==read2 && key!=read1 then

69: key = read1;

70: if key != _KEY_NONE then

71: async do

72: emit Key = read1;

73: end

74: end

75: end

76: end

77: end

Figure 22: Event generator for the ship game.

The complete source code is around 170 lines and also contains C definitions to gen-
erate the map, redraw the scene on the LCD, etc.

3.3 SDL game simulation

In the third demo, we implement a simple game to experiment with simulation tech-
niques. Our goal is to show how a self-contained application can be embedded unmodi-
fied in an enclosing environment that may re-execute the application in many ways with
the same behavior.

In our game13, Mario Bros moves in one direction with a constant speed and jumps in
reaction to key presses. A turtle moves in the opposite direction randomly. In the case of a
collision with the turtle, Mario is thrown back forcedly. The game is intentionally simple
as our main objective is to play with simulation. Figure 23 shows the initialization code
for the game.

The first three lines specify the game input interface. Seed is an input event that is
emitted once to be used in the generation of random numbers. Key is emitted whenever
the player presses a key to jump. Step is emitted every 10ms and conducts the execution
of the game in discrete steps. The internal event collision (line 4) is generated whenever
Mario collides with the turtle.

The game starts waiting for the event Seed (line 6), which is expected to be generated
by the environment at the beginning of the game. Then, it proceeds to set the initial
positions and speeds for the characters. Mario starts on the left side of the screen and
initially moves at a constant speed to the right (lines 9-12). The turtle starts on the right
side and initially does not move (lines 14-16). The characters are then displayed on the
screen (line 18).

The actual game action follows with three loops that run in parallel (lines 19-59 in
Figure 24).

13The source code and video demos can be found at http://www.ceu-lang.org/TR/#mario.
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1: input int Seed;

2: input void Key;

3: input void Step;

4: event void collision;

5:

6: int seed = await Seed;

7: _srand(seed);

8:

9: int mario_x = 10;

10: int mario_dx = 1;

11: int mario_y = 236;

12: int mario_dy = 0;

13:

14: int turtle_x = 600;

15: int turtle_y = 250;

16: int turtle_dx = 0;

17:

18: _redraw(mario_x,mario_y, turtle_x,turtle_y);

Figure 23: Code for the Mario Bros

The first loop (lines 21-24) randomly changes the turtle speed every 50ms.

The second loop (lines 26-46) is responsible for controlling the speed of Mario, which
can be either reacting to a key press (line 29) or to a collision with the turtle (line 32).
Whatever happens first is assigned to variable v (line 27), and the speed of Mario in one
of the axis is changed temporarily (lines 35-45). During this period, new key presses and
collisions are ignored.

The third loop (lines 48-59) reacts to event Step and is responsible for updating the
characters positions (lines 50-52), checking for collisions (lines 53-56), and redrawing the
screen (line 57-58).

We embed the presented game code in three different environments. The first varia-
tion just provides input for the game (e.g. keys presses and wall-clock time) and does
not interfere with it. The second variation also shows the replay of the game after 10 sec-
onds of gameplay (in an increased speed). The third variation shows the replay running
backwards.

In the remainder of this section, we only discuss the third variation, which encom-
passes all difficulties found in the other variations.

In order to exhibit the replay of the gameplay, we need to record the input sequence
performed by the player and then re-execute the game from scratch by repeating the same
input sequence. As discussed in Section 2.8, the behavior of a program in CÉU depends
solely on the input order: re-executing a program with the same input must yield the
exact same behavior.

However, we want the replay to execute backwards after 10 seconds of gameplay (or
1000 execution steps). For instance, the last scene in the normal execution must be the
first one in the replay. To address this requisite, we simulate the passage of all 1000 steps
without any delay and without any redrawing of intermediate scenes. Then, we redraw
the last scene of the simulation and repeat the whole process, now for one step less (e.g.
9999).

A possible source of nondeterminism in the game are the calls to srand and rand
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19: par do

20: loop do

21: await 50ms;

22: turtle_dx = - (_rand()%4-1);

23: end

24: with

25: loop do

26: int v =

27: par do

28: await Key;

29: return 1;

30: with

31: await collision;

32: return 0;

33: end;

34: if v == 1 then

35: mario_dy = -2;

36: await 500ms;

37: mario_dy = 2;

38: await 500ms;

39: mario_dy = 0;

40: else

41: mario_dx = -4;

42: await 300ms;

43: mario_dx = 1;

44: end

45: end

46: with

47: loop do

48: await Step;

49: mario_x = mario_x + mario_dx;

50: mario_y = mario_y + mario_dy;

51: turtle_x = turtle_x + turtle_dx;

52: if !( mario_x+32<turtle_x ||

53: turtle_x+32<mario_x ) then

54: emit collision;

55: end

56: _redraw(mario_x,mario_y,

57: turtle_x,turtle_y);

58: end

59: end

Figure 24: Code for the Mario Bros (cont)
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(lines 7,23), however, they become deterministic when we repeat the seed used in the
original execution.

Figure 25 and 26 shows the complete code for the game simulation. As we are not
using a preexisting SDL binding for CÉU, we need to emit all events from an async placed
in parallel with the game.

1: input void Restart;

2: par do

3: loop do

4: par/or do

5: // CODE FOR THE GAME

6: with

7: await Restart;

8: end

9: end

10: with

11: async do

12: // CODE FOR THE EVENT GENERATOR

13: int seed = _time(0);

14: emit Seed = seed;

15:

16: int[10] keys; // keys vector

17: keys[0] = -1; // no keys so far

18: int idx = 0; // next key index

19:

20: int step = 0;

21: loop do

22: _SDL_Event event;

23: if _SDL_PollEvent(&event) then

24: if event.type == _SDL_KEYDOWN then

25: keys[idx] = step;

26: idx = idx + 1;

27: keys[idx] = -1;

28: emit Key;

29: end

30: else

31: _SDL_Delay(10);

32: step = step + 1;

33: emit 10ms;

34: emit Step;

35: if step == 1000 then

36: break;

37: end

38: end

39: end

40:

41-71: // CODE FOR THE BACKWARDS REPLAY

72: end

73: end

Figure 25: Code for the Mario Bros simulation.

The game code (line 5) runs in parallel with the async responsible for generating events
(lines 11-72). Also, we need to be able to restart the game from any point, so we use the
event Restart (line 1) as a watchdog running in parallel with the game code (lines 3-9).
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41: // CODE FOR THE BACKWARDS REPLAY

42: int step_ref = 1000;

43: loop do

44: _redraw_on(0);

45: emit Restart;

46: emit Seed = seed;

47:

48: step = 0;

49: idx = 0;

50: loop do

51: if step == keys[idx] then

52: emit Key;

53: idx = idx + 1;

54: else

55: step = step + 1;

56: emit 10ms;

57: emit Step;

58: if step == step_ref then

59: break;

60: end

61: end

62: end

63: _redraw_on(1);

64: _redraw(0,0,0,0);

65:

66: _SDL_Delay(1);

67: step_ref = step_ref - 1;

68: if step_ref == 0 then

69: break;

70: end

71: end

Figure 26: Code for the Mario Bros simulation (cont.).

The event generator starts emitting the random Seed, which is saved on variable seed

to be reused in the replay (lines 13-14).

We use the vector keys to record all steps in which the player presses a key (lines 16-
18). Each index on the vector holds the step in which a key was pressed. Then, every
time the player presses a key, the current step is written on the vector (lines 25-27). The
variable step (line 20) keeps track of the current running Step.

The loop in lines 21-39, continuously polls for key events to emit to the game (lines
22-29), and also emits wall-clock time and the event Step periodically (lines 30-38). After
1000 steps (i.e. 10 seconds), we escape the event generator (lines 35-37) and proceed to
the replay code (lines 41-71).

With the original execution recorded, we can now re-execute the game by feeding it
with the same input sequence as many times as desired, as Figure 26 shows.

The variable step ref (line 42) varies from 1000 to 0 and guides the backwards sim-
ulation in the outermost loop following it (lines 43-71). For each step ref, we first call
redraw on(0) (line 44) to disable redrawing of intermediates scenes. Then, we emit a
Restart and the original Seed to the game (lines 45-46) and simulate the execution in the
innermost loop up to the current step ref (lines 50-62). The innermost loop emits a Key

event for each step matching the recorded vector (lines 51-53). Also, it simulates the steps
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(lines 55-57), escaping the loop when reaching the current step ref. After that, the simu-
lation reached the last scene for the current step ref, so we redraw it on the screen (lines
63-64). Before proceeding to the next outermost loop iteration (i.e. the previous step), we
delay the execution to make the replay visible (lines 66-70).

Note that all variables in the code for the game are local to it, hence, they are reinitial-
ized correctly after each Restart. It is fundamental that all side effects in the game code
are localized and do not extrapolate it.

In our example, the only exception to this rule is the call to redraw, which is handled
with the specific tweak that enables and disables screen redrawing.

4 Implementation of CÉU

As a static language, much of the complexity of the implementation of CÉU resides in the
compile phase. Nonetheless, some complexity is left to the runtime phase, which has to
handle multiple queues for active trails, asynchronous code, and wall-clock time.

The CÉU parser is written in LPeg [7], and converts a program into an abstract syntax
tree (AST) to be used in the following phases.

The program in Figure 27 is used as our guiding example for this section.

input int A, B, C;

int ret;

loop do

par/or do

int a = await A; // 1st trail

int b = await B;

ret = a + b;

break;

with

par/and do // 2nd trail

await C;

with

await A;

end

end

end

... // code after the loop

Figure 27: Guiding example for Section 4.

4.1 Temporal analysis

The temporal analysis phase detects inconsistencies in CÉU programs, such as tight loops
and the forms of nondeterminism, as discussed in Sections 2.5 and 2.6. It is also responsi-
ble for setting the priorities for trails (see further) and determining the sizes of the queues
that are used during runtime.

The program AST is first converted into a graph that represents the execution flow.
Figure 28 shows the corresponding graph for our example.
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Figure 28: Flow graph for our guiding example

By default, all nodes in a flow graph have priority 0 (highest). However, as the figure
shows, nodes that represent the termination of par/ors and loops have lower priorities
(the outer, the lower). The priority scheme is needed to avoid glitches during runtime,
and is equivalent to traversing a dependency graph in topological order, as employed in
functional reactive programming implementations. [5]

The flow graph is then converted to a DFA, as exemplified in Section 2.6.

4.2 Memory layout

CÉU favors a fine-grained use of trails, being common to use trails that await a single
event. For this reason, CÉU does not allocate per-trail stacks; instead, all data resides in
fixed memory slots—this is true for the program variables as well as for temporary values
and flags needed during runtime. For instance, the first trail in the guiding example
requires temporary slots to hold the locals a and b, while the second trail must keep flags
to remember which sides of the par/and have already terminated.

Memory for trails in parallel must coexist, while statements in sequence can reuse it.
In the example, the code following the loop (identified as ...) reuses all memory from
the loop.

CÉU statically allocates a one dimension vector to hold all memory slots, whose size is
the maximum the program uses at a given time. A given position in the vector may hold
different data (with variable sizes) during runtime.

4.3 Gate allocation

Each await statement has an associated gate that indicates whether it is currently active
(awaiting) or not. Gates for the same event are grouped in a list that is traversed when-
ever the event occurs, waking the statements whose gates are active. In contrast with
memory slots, gates are global and cannot be reused in different parts of the program.

In the example, there is one gate for each of the four await statements. For instance,
when the event A occurs, its list of two gates is traversed in order to awake its currently
active awaiting trails.

All gates are set to inactive when a program starts. Once an await statement is reached,
its corresponding gate is turned on. Once an await statement awakes, its corresponding
gate is turned off.

In CÉU, there is a strict relation between gates and trails. A trail can be seen as a
sequence of atomic operations with await statements separating them. If a trail is active,
it must be awaiting an event. Therefore, a trail can be destroyed by blindly setting all of
its gates to inactive. Also, gates in parallel trails use consecutive memory slots, hence,
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destroying trails in parallel is as easy as setting the respective range of gate slots to zero
with a memset operation. This is exactly what CÉU does to sibling trails when a par/or or
loop terminates.

4.4 Code generation

The final output of the CÉU compiler is code in pure C, which is not only highly portable
across platforms, but also omnipresent in embedded systems. For some CÉU statements,
such as calls and expressions, the conversion is straightforward and maps directly to C.

The biggest semantic mismatch between C and CÉU resides in the await and paral-
lel statements, which have no analogous in C. Consider the follows sequence from the
example:

int a = await A;

int b = await B;

ret = a + b;

It is clear that before performing the assignment to ret, the program must yield con-
trol to the environment twice to await the input events A and B. Hence, the generated
code must be split in three parts: before awaiting A, before awaiting B, and finally per-
forming the addition and assignment. Figure 29 shows the pseudo-code generated for
that sequence.

Sub_1:

GATES[A1] = Aft_A; // activates gate A1

halt; // awaits A

Aft_A:

GATES[A1] = 0; // deactivates gate A1

DATA[a] = DATA[A]; // a = A

GATES[B1] = Aft_B; // activates gate B1

halt; // await B

Aft_B:

GATES[B1] = 0; // deactivates gate B1

DATA[b] = DATA[B]; // b = B

DATA[ret] = DATA[a]+DATA[b]; // ret = a+b

halt;

Figure 29: Pseudo-code for a sequence of awaits.

Labels Sub 1, Aft A, and Aft B represent entry points into the code, known as tracks,
held in gates and which CÉU spawns according to the occurring input event and state of
gates. Recall that locals such as a and b cannot be held on the stack, as the halt instruction
yields control back to the environment between awaits.

CÉU holds spawned tracks in a queue that is traversed respecting their priorities. This
way, a parallel statement simply inserts its tracks (one for each sub-block) into this queue
and halts, letting the scheduler decide when they execute.
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For instance, the par/or in the example spawns the track Sub 1 of the previous chunk:

Par_1:

enqueue Sub_1;

enqueue Sub_2;

halt;

Sub_1:

...

Sub_2:

...

...

In the final code, illustrated in Figure 30, the track labels become C switch case labels,
which are all enclosed by a loop that traverses the queue of spawned tracks (Q TRACKS).

while ( track = remove(Q_TRACKS) )

{

_SWITCH:

switch (track) {

case Par_1:

enqueue Sub_1;

enqueue Sub_2;

break; // halts

case Sub_1:

GATES[A1] = Aft_A; // activates gate A1

break; // awaits A

case Sub_2:

...

...

}

}

Figure 30: Traversal of the queue for tracks.

Note the SWITCH goto label, which is used for control-flow statements (i.e. loops and
conditionals): in our example, the track Aft B must escape the loop after the assignment.
Its actual code is as follows:

Aft_B:

GATES[B1] = 0; // deactivates gate B1

DATA[b] = DATA[B]; // b = B

DATA[ret] = DATA[a]+DATA[b]; // ret = a+b

track = Loop1_esc; // escapes the loop

goto _SWITCH;

As the code suggests, all tracks execute atomically. This way, even if the temporal anal-
ysis is turned off, there are no possible race conditions on shared variables. A possible
CÉU implementation exploring parallelism must ensure atomicity among tracks sharing
state.

4.5 Reactive execution

As a reactive language, the execution of a program in CÉU is guided by the occurrence of
external events. From the implementation perspective, there are four external sources of
input into programs, which are all exposed as functions in a C API:
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ceu go init: initializes internal state (e.g. queues and gates) and executes the “boot”
reaction.

ceu go event: executes the reaction for the received input id and associated data.

ceu go time: receives the current wall-clock time and checks for timeouts (running a
reaction if needed).

ceu go async: executes a single loop iteration for the next async, switching among them
in a round robin policy.

The functions take a bounded time to execute and represent a reaction chain in CÉU.
They also return a status code that says if the CÉU program has terminated after reacting
to it. Further calls to the API have no effect on terminated programs.

Note that CÉU code running from a call to ceu go async may emit an input event or the
passage of time. In this case, the C implementation makes a tail call to the corresponding
handler (i.e. ceu go event or ceu go time), as synchronous code has higher priority.

The API reflects the global asynchronous part of CÉU, as discussed in Section 2.9. A sim-
ple and opaque API hides local state from the environment, suggesting that the execution
varies entirely according to the sequence (and parameters) of API calls.

The bindings for the specific platforms are responsible for calling the functions in the
API in the order that better suit their requirements. As an example, it is possible to
set different priorities for events that occur concurrently (i.e. while a reaction chain is
running). However, a binding must never interleave or run multiple of these functions in
parallel. This would break the CÉU sequential/discrete semantics of time, as discussed
in Section 2.

4.6 Evaluation

In order to evaluate the current implementation of CÉU, we performed initial experi-
ments in the domain of Wireless Sensor Networks14. Our goal is to compare CÉU with
other languages implementations regarding two important aspects for WSNs: memory
usage and responsiveness15.

Memory usage

In the first experiment, we ported preexisting nesC [8] applications to CÉU. We chose
nesC given its popularity in the context of WSNs, and because it is event based, consum-
ing less memory than multithreaded languages. By using preexisting applications in our
experiment, we intend not to choose specific scenarios that favor one language or the
other.

Table 1 shows the amount of ROM and RAM for the same applications written in nesC
and CÉU. The third line for each application shows the difference for a given measure,
for example: the Client application written in CÉU uses 3490 more bytes than its nesC
counterpart.

Our experiment suggests that as application complexity grows, the memory footprint
of CÉU becomes diluted, and the difference in consumption decreases, showing that CÉU

is a viable alternative.
14The complete source code for the evaluation can be found at

http://www.ceu-lang.org/TR/#exp1.
15Responsiveness is the ability of a system to promptly acknowledge high-priority requests (e.g. radio

messages).
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ROM RAM

Blink
nesC 2048 bytes 51 bytes
CÉU 5882 bytes 168 bytes

CÉU–nesC 3834 117

Sense
nesC 4366 bytes 84 bytes
CÉU 8086 bytes 195 bytes

CÉU–nesC 3720 111

Client
nesC 11838 bytes 329 bytes
CÉU 15328 bytes 482 bytes

CÉU–nesC 3490 153

Server
nesC 14648 bytes 373 bytes
CÉU 15686 bytes 443 bytes

CÉU–nesC 1038 70

Table 1: Céu vs TinyOS: memory usage

no comp. 5 loops

1 sender MantisOS 23.2s 23.3s
CÉU 23.3s 23.3s

2 senders MantisOS 19.8s 19.9s
CÉU 12.3s 12.4s

(the measures are the average of three consecutive executions)

Table 2: Céu vs MantisOS: responsiveness

Responsiveness

In the second experiment, we measure how fast motes can answer radio requests when
subjected to long computations. We chose to compare CÉU with MantisOS [9], given that
multithreaded systems perform better in this aspect [10]. Table 2 summarizes the results
of this experiment, which is described next.

Initially, we created two simple applications that send and receive radio messages—
with no processing in parallel—to measure how fast they exchange 3000 messages with-
out losses. We varied the sending speed, and the fastest the receiving side could sustain
without losses was around 7ms for each message (coincidently, in both implementations),
resulting in 23s for the entire process (“1 sender/no comp.” in Table 2).

In order to evaluate the responsiveness of the receiving side, we changed it to also
execute in parallel five infinite loops that run forever (to represent long computations). In
both CÉU and MantisOS implementations, the 3000 messages were still received without
losses, while the increase in the total receiving time was negligible (“1 sender/5 loops” in
Table 2).

In MantisOS, we had to change the priority of the receiving thread to be higher than
the others. In CÉU the receiving part (which is synchronous) already runs with higher
priority than long computations (which run inside asyncs).

In another test, we kept the single receiver and used two senders to measure how fast
the receiving side receives 3000 messages (now ignoring the losses) while running long
computations in parallel.

Although CÉU performs better than MantisOS (probably due to TinyOS higher per-
formance), our objective is to measure the increase in the total time due to the long com-
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putations running in parallel. Again the increase in time is negligible in both implemen-
tations. (“2 senders” in Table 2).

From the second experiment, we conclude that CÉU is comparable to a multithreaded
implementation in terms of responsiveness, both having nearly optimal behavior for the
tests we performed. Although not in the scope of this work, we asserted that, for all tests,
both implementations performed a fair scheduling among long computations.

5 Related work

Programming languages can be generically classified in two major execution models.

In the asynchronous model, the program activities (e.g. threads and processes) run inde-
pendently of one another as result of nondeterministic preemptive scheduling. In order
to coordinate at specific points, these activities require explicit use of synchronization
primitives (e.g. mutual exclusion and message passing).

In the synchronous model, the program activities (e.g. coroutines and CÉU trails) re-
quire explicit scheduling primitives (e.g. yield and CÉU await). For this reason, they are
inherently synchronized, as the programmer himself specifies when they should execute.

We use this classification to give an abstract overview of related works in this section,
although we also comment about specific languages and systems in our discussion.

Note that the terms synchronous and asynchronous are somewhat ambiguous, as
they may be used in different contexts. The reason is that synchronous languages require
asynchronous primitives (i.e. nonblocking calls), while asynchronous languages require syn-
chronous primitives (e.g. locks and semaphores). We use the definition of synchronous
languages as found in [1, 11].

5.1 Synchronous model

In this section, we present a review of some synchronous languages and techniques that
relate to CÉU.

Event-driven programming

At the lowest abstract level of the synchronous model, event-driven programming is
usually employed as a technique in general-purpose languages with no specific support
for reactivity. Because a single line of execution and stack are available, programmers
need to deal with the burden of manual stack management and inversion of control. [4]

In the context of embedded systems, the programming language nesC [8] offers event-
driven programming for the TinyOS operating system. The concurrency model of nesC
is very flexible, supporting the traditional serialization among callbacks, and also asyn-
chronous callbacks that interrupt others. To deal with race conditions, nesC supports
atomic sections with a similar semantics to mutual exclusion in asynchronous languages.
We use nesC as the back end of CÉU for TinyOS.

Cooperative multithreading

Cooperative multithreading is an alternative approach to preemptive multithreading
where the programmer is responsible for scheduling activities in the program (known as
coroutines [12] in this context). With this approach, there are no possible race conditions
on global variables, as the points that transfer control in coroutines are explicit (and,
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supposedly, are never inside critical sections).

Protothreads [13] offer very lightweight cooperative multithreading for embedded
systems. Its stackless implementation reduces memory consumption but precludes sup-
port for local variables. Furthermore, Protothreads provide no safety warranties besides
being race-free: a program can loop indefinitely, and access to globals is unrestricted.

Coroutines are similar to CÉU trails, as they both offer multiple sequential lines of ex-
ecution to handle concurrent activities. However, CÉU’s par/and and par/or composition
statements offer a powerful abstraction to avoid manual bookkeeping of activities, such
as creating, starting, rejoining, and destroying them. Also, the semantics for rejoins in
parallel compositions is fundamental for the temporal analysis of CÉU, which cannot be
done effectively with coroutines.

Finite state machines

The use of finite state machines (FSMs) is a classic technique to implement reactive
applications, such as network protocols and graphical user interfaces. A contemporary
work [14], based on the Statecharts formalism [15], provides a textual FSM language
targeting Wireless Sensor Networks.

FSMs have some known limitations. For instance, writing purely sequential flow is
tedious, requiring to break programs in multiple states with a single transition connecting
each of them. Another inherent problem of FSMs is the state explosion phenomenon. To
alleviate this problem, some designs support hierarchical FSMs running in parallel [14].
However, adopting parallelism precludes the use of shared state, or at least requires a
static analysis such as that of CÉU.

Dataflow

Dataflow programming [3, 16] differs from the traditional “Von Neumann” impera-
tive style, where programs are defined as sequences of steps. With a declarative style,
dataflow programs define high-level dependency relationships among data. The lan-
guage is responsible for scheduling activities that propagate external changes into the
dependency graph that represents a program.

The Functional Reactive Programming (FRP) paradigm brings dataflow behavior to func-
tional languages [17]. CÉU borrows some ideas from a FRP implementation [5], such as
a push-driven evaluation and glitch prevention. Dataflow in CÉU is limited to static re-
lationships, and the way dataflow programs are expressed is less abstract than in FRP.

However, embedded systems are typically characterized by control-intensive appli-
cations, where programs have to deal with low-level I/O and handle explicit state. In
this context, dataflow programming does not provide proper abstractions, being more
suitable for data-intensive applications.

Esterel

Our work is strongly influenced by the Esterel language [2], which also provides an
imperative reactive style with a similar set of parallel compositions.

However, a fundamental distinction exists: in Esterel, the semantics for time is similar
to that of digital circuits, where an external clock defines discrete steps in which multiple
signals (events in CÉU) can be queried for their presence status.

With such semantics in CÉU, multiple input events could be active at the same time,
making its temporal analysis impossible. As a consequence, access to shared state would
be nondeterministic, also breaking dataflow support in CÉU. In Esterel, “if a variable is
written in a thread, then it can be neither read nor written in any concurrent thread”. [18]

35



Regarding features that are orthogonal to the distinction regarding events, CÉU sup-
ports “wall-clock” time and simulation from asynchronous blocks, while Esterel provides
a suspend statement that cannot be easily implemented on top of the existing primitives
(and which we are considering to incorporate into CÉU).

5.2 Asynchronous model

The asynchronous model of computation can be sub-divided in how independent activ-
ities coordinate. In shared memory concurrency, communication is via global state, while
synchronization is via mutual exclusion. In message passing, both communication and
synchronization happen via exchanging messages.

The default behavior of activities being independent hinders the development of highly
synchronized applications. As a practical evidence, we developed a simple application
that blinks two LEDs in parallel with different frequencies16. We implemented it in CÉU

and also in the two asynchronous styles. For shared memory concurrency, we used a mul-
tithreaded RTOS17, while for message passing, we used an occam for Arduino [19].

The LEDs should blink together at a specific rate, depending on the chosen blinking
frequencies. We tested several combinations of frequencies looking for asynchronism on
the implementations.18 As expected, the LEDs in the two asynchronous implementa-
tions lost synchronism after some time of execution. The CÉU implementation remained
synchronized for all tests that we have performed.

The implementations are intentionally naive: they just spawn the activities that blink
the LEDs in parallel. The behavior for the asynchronous implementations of the blinking
application is perfectly valid, as the preemptive execution model does not ensure implicit
synchronization among activities. We used timers in the application, but any kind of high
frequency input would also behave nondeterministically in asynchronous systems.

Although this application can be implemented correctly with an asynchronous exe-
cution model, it circumvents the language style, as timers need to be synchronized in a
single thread. Furthermore, it is common to see similar naive blinking examples in of-
ficial examples of asynchronous systems19, suggesting that LEDs are supposed to blink
synchronized.

6 Conclusion

We presented CÉU, a language targeting embedded systems that unifies imperative and
dataflow reactive programming. CÉU is based on a synchronous kernel that provides
reactions to events and imperative control primitives.

For dataflow support, CÉU relies on disciplined access to variables together with inter-
nal events as a communication mechanism among trails. The stack execution policy for
internal events can express nested emits, and also avoids dependency cycles in programs.

16The complete source code and a video demos for the application can be found at http://www.ceu-lang.
org/TR/#blink.

17http://www.chibios.org/dokuwiki/doku.php?id=start
18We settled at 400ms and 1000ms, but any combination of two non-divisor numbers behaved the same

way in our tests.
19 Example 1 in the RTOS DuinOS v0.3: http://multiplo.org/duinos/wiki.

Example 3 in the occam-based Concurrency for Arduino v20110201.1855: http://concurrency.cc/download.
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CÉU provides a convenient syntax for wall-clock time, which is justified by the recur-
rent use of timed activities in embedded applications. Furthermore, native support also
avoids dealing explicitly with residual delta times in time awaits.

For time-consuming operations, CÉU provides asynchronous blocks that can execute
unbounded loops. By also allowing them to emit events towards the program, CÉU sup-
ports simulation in the language itself, not depending on external tools to test programs.

In the design of CÉU we favored safety over expressive power, by restricting the lan-
guage to static capabilities only. This limitation can be considered (to some extent) ad-
vantageous for embedded systems, given that CÉU enforces the prevailing discipline in
this context.

Although CÉU trails are allowed to share memory, they are completely race free, and
no mutual exclusion mechanisms are required. Also, all memory required during ex-
ecution is allocated previously, at compile time. CÉU does not use heap storage, nor
dynamically growing stacks to hold local variables.

We propose a temporal analysis in programs that prevents unresponsiveness and en-
forces deterministic behavior by default. Although the temporal analysis conversion al-
gorithm is exponential, it is applicable in practice, considering the size of applications in
the context of embedded systems.

The three demo applications we presented illustrate the programming techniques of
CÉU in two embedded domains (Wireless Sensor Networks and Arduino), and also in
standalone mode to explore simulation. The examples show how complementary activi-
ties in a program can be written in separate to run in parallel and need not be mixed with
the final code. The examples also make recurrent use of C to interact seamlessly with the
underlying platforms.

The CÉU runtime requires a small footprint suitable for highly constrained embedded
systems. We presented an initial evaluation of our implementation, showing that CÉU

is a viable option regarding memory usage and responsiveness in programs. Moreover,
we believe that the gains with a safer and higher-level language pays off minor drops in
performance.
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A Syntax of CÉU

Block ::= (Stmt ‘;)+

Stmt ::= nothing

/* declarations */

| input ID_type ID_ext (‘, ID_ext)*

| event ID_type ID_int (‘, ID_int)*

| ID_type (‘[ NUM ‘])? ID_var (‘, ID_var)*

/* determinism */

| pure ID_c (‘, ID_c)*

| deterministic ID with ID (‘, ID)*

/* event manipulation */

| await (ID_ext|ID_int)

| await (WCLOCKK|WCLOCKE)

| await Forever

| emit (ID_ext|ID_int) (‘( Exp ‘))?

| emit (WCLOCKK|WCLOCKE)

/* flow control */

| if Exp then Block (elseif Exp then Block)* (else Block)? end

| loop do Block end

| break

/* parallel statements */

| par do Block (with Block)+ end

| par/or do Block (with Block)+ end

| par/and do Block (with Block)+ end

/* other */

| C do <code_with_C_syntax> end

| ID_c ‘( ExpList? ‘)

| Exp ‘= SetExp

| return Exp

| do Block end

| async do Block end

VarList ::= ID_var (‘, ID_var)*

ExpList ::= Exp (‘, Exp)*

SetExp ::= Exp | <await_stmt> | set <block_stmt>

WCLOCKK ::= (NUM h)? (NUM min)? (NUM s)? (NUM ms)? (NUM us)?

/* (at least one of these) */

WCLOCKE ::= ‘( Exp ‘) (h|min|s|ms|us)
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/* The operators follow the same precedence of C. */

Exp ::= UNOP Exp | Exp BINOP Exp

| sizeof ‘< ID_type ‘>

| ‘< ID_type ‘> Exp

| Exp ‘[ Exp ‘]

| Exp ‘(’ ExpList? ‘)

| ‘( Exp ‘)

| ID_int | ID_var | ID_c | NUM

| STRING | null

UNOP ::= ‘! | ‘& | ‘- | ‘+ | ‘~ | ‘*

BINOP ::= ‘|| | ‘&& | ‘| | ‘^ | ‘& | ‘!= | ‘==

| ‘<= | ‘>= | ‘< | ‘> | ‘<< | ‘>>

| ‘+ | ‘- | ‘* | ‘/ | ‘. | ‘->

ID ::= <a-z, A-Z, 0-9, _> +

ID_type ::= ID /* not beginning with a digit */

ID_ext ::= ID /* beginning with an uppercase letter */

ID_int ::= ID /* beginning with a lowercase letter */

ID_var ::= ID /* beginning with a lowercase letter */

ID_c ::= ID /* beginning with an underscore */
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