3 Método dos elementos finitos com representação explicita da falha por elementos de interface

Neste capítulo, apresentam-se a formulação em elementos finitos do elemento de interface, os modelos constitutivos adotados e os algoritmos de solução empregados para a integração das tensões. Os desenvolvimentos apresentados a seguir são baseados na nomenclatura e formulações apresentadas por Schellekens et al. (1992), Day & Potts (1994), Azevedo (1997) e Abbo (2005).

3.1. Elementos de interface

As descontinuidades geológicas como as falhas nas rochas apresentam comportamentos complexos onde a distribuição das tensões depende fundamentalmente das condições de interface do problema mecânico. Para representar corretamente este comportamento é necessário utilizar elementos especiais chamados elementos de interface, os quais são de grande relevância para este trabalho.

A seguir é apresentada uma revisão dos elementos de interface mais utilizados, suas características, formulações, desvantagens e sua evolução na história.

3.1.1. Elemento de Goodman, Taylor e Brekke (1967)

O elemento de interface de Goodman et al. (1967) foi originalmente desenvolvido para a análise de juntas em estruturas rochosas. Este elemento possui uma espessura nula e é formado por 4 nós com deslocamentos na direção normal e tangencial à direção da interface como ilustrado na Figura 3.1.

Figura 3.1 - Geometria do elemento de interface de Goodman et.al (1967)

As deformações são os deslocamentos relativos entre o topo e a base e podem ser relacionadas com os deslocamentos nodais através da matriz B, como segue:

$$\begin{cases} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \end{cases} = \begin{cases} \mathbf{U}_{x}^{\text{topo}} - \mathbf{U}_{x}^{\text{base}} \\ \mathbf{U}_{y}^{\text{topo}} - \mathbf{U}_{y}^{\text{base}} \end{cases}$$
(3.1)

ou,

$$\varepsilon = B u \tag{3.2}$$

onde u é o vetor de deslocamentos nodais, o qual pode ser escrito como:

$$\mathbf{u} = \left\{ \mathbf{u}_{x}^{1}, \mathbf{u}_{y}^{1}, \mathbf{u}_{x}^{2}, \mathbf{u}_{y}^{2}, \mathbf{u}_{x}^{3}, \mathbf{u}_{y}^{3}, \mathbf{u}_{x}^{4}, \mathbf{u}_{y}^{4} \right\}$$
(3.3)

A matriz B pode ser expressa como:

$$\mathbf{B} = \begin{bmatrix} -N_1 & 0 & -N_2 & 0 & N_2 & 0 & N_1 & 0 \\ 0 & -N_1 & 0 & -N_2 & 0 & N_2 & 0 & N_1 \end{bmatrix}$$
(3.4)

onde N_1 e N_2 são as funções de interpolação lineares definidas como:

$$N_1 = \frac{1}{2} \left(1 - \frac{2x}{L} \right) \tag{3.5}$$

$$N_2 = \frac{1}{2} \left(1 + \frac{2x}{L} \right) \tag{3.6}$$

A matriz de rigidez local do elemento pode ser calculada pelo principio do trabalho virtual como:

$$K_{e} = \int_{-L/2}^{L/2} B^{T} D_{t} B \frac{L}{2} dx$$
(3.7)

onde D_t é a matriz constitutiva do elemento de interface.

A matriz de rigidez deve ser transformada em relação às coordenadas globais.

3.1.2. Elemento de Ghaboussi, Wilson e Isenberg (1973)

Ghaboussi et.al(1973), propuseram um elemento de interface com espessura não nula e simetria axial para a análise das descontinuidades representadas por ligações de rochas, falhas e interfaces (Recka, 2009). Seus deslocamentos entre o topo e a base são considerados como graus de liberdades independentes como ilustrado na Figura 3.2.

Figura 3.2 – Geometria do elemento de interface de Ghaboussi et.al (1973)

em que:

 $\mathbf{u}_{\mathrm{x}}^{5} = \mathbf{u}_{\mathrm{x}}^{4} + \Delta \mathbf{u}_{\mathrm{x}}^{5} \tag{3.8a}$

 $\mathbf{u}_{y}^{5} = \mathbf{u}_{y}^{4} + \Delta \mathbf{u}_{y}^{5} \tag{3.8b}$

$$u_x^6 = u_x^3 + \Delta u_x^6$$
 (3.8c)

$$\mathbf{u}_{y}^{6} = \mathbf{u}_{y}^{3} + \Delta \mathbf{u}_{y}^{6} \tag{3.8d}$$

Os deslocamentos relativos na direção normal Δu_{η} , e na direção tangencial Δu_{ξ} , ilustrados na Figura 3.3, variam ao longo do elemento de interface (Romanel, 2011), como segue:

$$\Delta \mathbf{u}_{\xi} = \mathbf{N}_{1} \,\Delta \mathbf{u}_{\xi}^{5} + \mathbf{N}_{2} \,\Delta \mathbf{u}_{\xi}^{6} \tag{3.9a}$$

$$\Delta u_{\eta} = N_1 \Delta u_{\eta}^5 + N_2 \Delta u_{\eta}^6 \tag{3.9b}$$

onde N_1 e N_2 são as funções de interpolação lineares do elemento, definidas como:

As deformações podem ser definidas como os deslocamentos relativos nas componentes normal e tangencial sobre a espessura inicial do elemento, t, de acordo com:

$$\varepsilon_{\eta} = \frac{\Delta u_{\eta}}{t}$$
(3.11a)

$$\varepsilon_{\xi} = \frac{\Delta u_{\xi}}{t}$$
(3.11b)

A matriz B que relaciona as deformações com os deslocamentos relativos pode ser escrita como:

$$\mathbf{B} = \frac{1}{t} \begin{bmatrix} N_1 & 0 & N_2 & 0\\ 0 & N_1 & 0 & N_2 \end{bmatrix}$$
(3.12)

As componentes de tensão são definidas através da matriz constitutiva, D_t, do elemento de interface, como segue:

$$\begin{cases} \sigma_{\eta} \\ \sigma_{\xi} \end{cases} = \mathbf{D}_{t} \begin{cases} \varepsilon_{\eta} \\ \varepsilon_{\xi} \end{cases}$$
(3.13)

A matriz de rigidez local do elemento pode ser determinada pela seguinte equação:

$$K_{e} = \int_{V} B^{T} D_{t} B dV$$
(3.14)

devendo ser transformada com respeito ao sistema global de coordenadas para sua composição na matriz de rigidez global.

3.1.3. Elemento de Pande e Sharma (1979)

Este elemento de interface é uma extensão do elemento de Ghaboussi et.al (1973) mas adotando um elemento parabólico de 8 nós, como ilustrado na Figura 3.4.

Figura 3.4 – Detalhe do elemento de interface de Pande et.al (1973)

3.1.4. Elemento de Desai, Lightner e Siriwardane (1984)

Este elemento de interface foi utilizado inicialmente na modelagem de solos, possui uma espessura delgada e pode representar problemas de interação solo estrutura sobre vários modos de deformação. Sua principal vantagem é que sua formulação é a mesma de um elemento quadrilateral plano, sendo fácil sua implementação computacional (Desai et al., 1984).

3.1.5. Elemento de Beer (1985)

O elemento de Beer é baseado no elemento desenvolvido por Ghaboussi et.al (1973). As principais diferenças propostas por Beer (1985) foram: uma formulação isoparamétrica e a espessura nula do elemento de interface, com o objetivo de fazer uma adequada análise no contato de juntas como na análise do comportamento na fratura de rochas.

3.1.6. Elemento de Day & Potts (1994)

O elemento de interface de Day & Potts (1994) possui uma espessura zero e seu elemento é baseado no elemento de Goodman et.al (1967). São propostas algumas melhorias e estudam as dificuldades numéricas quando se apresentam grandes diferenças na rigidez do elemento de interface com respeito aos elementos contínuos adjacentes. Os problemas de geração de malha devido à característica do elemento de apresentar as mesmas coordenadas nos nós dos lados adjacentes são tratados no trabalho de Day e Potts (1994).

3.2. Equações de equilíbrio

Para lograr um equilíbrio mecânico em um sistema, sua posição no espaço de configuração deve ser um ponto onde o gradiente de energia potencial seja zero. Para interfaces deformáveis devem-se satisfazer localmente as equações diferenciais de equilíbrio:

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + b_{x} = 0$$

$$\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yx}}{\partial x} + b_{y} = 0$$
(3.15)

onde b_x e b_y são componentes das forças de corpo nas direções x e y, respectivamente. Na forma vetorial as equações de equilíbrio são:

$$\nabla^{\mathrm{T}}\boldsymbol{\sigma} + \mathbf{b} = \mathbf{0} \tag{3.16}$$

em que ∇ é um operador diferencial de primeira ordem definido como:

$$\nabla^{\mathrm{T}} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} & 0 & \frac{\partial}{\partial \mathbf{y}} & 0\\ 0 & \frac{\partial}{\partial \mathbf{y}} & 0 & \frac{\partial}{\partial \mathbf{x}} \end{bmatrix}$$
(3.17)

 σ é o vetor das componentes das tensões definido como:

$$\{\sigma_{x} \quad \sigma_{y} \quad \tau_{xy} \quad \tau_{yx}\}^{T}$$
(3.18)

e b representa o vetor de forças de corpo definido como:

$$\mathbf{b} = \begin{pmatrix} \mathbf{b}_{\mathrm{x}} & \mathbf{b}_{\mathrm{y}} \end{pmatrix}^{\mathrm{T}}$$
(3.19)

Ao satisfazer as equações de equilíbrio em todo o corpo juntamente com as condições de contorno, podem-se determinar as tensões, deformações e deslocamentos dentro do corpo. Para a aproximação das equações diferenciais este trabalho utiliza o método dos resíduos ponderados. O processo de minimização do resíduo usado pelo método dos resíduos ponderados consiste da seguinte equação integral.

$$\mathbf{W} = \int_{\mathbf{V}} \mathbf{w}^{\mathrm{T}} \left(\nabla^{\mathrm{T}} \boldsymbol{\sigma} + \mathbf{b} \right) d\mathbf{V} = 0$$
(3.20)

onde dV é o domínio da integração e w é o vetor das funções de ponderação do erro com componentes nas direções x e y, o qual é definido como:

$$\mathbf{w} = \left\{ \mathbf{w}_{x} \quad \mathbf{w}_{y} \right\}^{\mathrm{T}}$$
(3.21)

Integrando por partes, usando o teorema de Green-Gauss, a Equação (3.20) pode ser escrita como:

$$\int_{V} w^{T} (\nabla w)^{T} \sigma dV - \int_{V} w^{T} b dV - \int_{S} w^{T} t dS + \sum R_{c} \delta u = 0$$
(3.22)

em que t é o vetor de forças de superfície expresso como:

$$\mathbf{t} = \left\{ \mathbf{t}_{\mathrm{x}} \quad \mathbf{t}_{\mathrm{y}} \right\}^{\mathrm{T}} \tag{3.23}$$

Rc são as forças externas concentradas e δu vetor de deslocamentos de ponderação. As forças de superfície devem satisfazer as seguintes condições de equilíbrio na fronteira

$$t_{x} = n_{x}\sigma_{x} + n_{y}\tau_{xy}$$

$$t_{y} = n_{y}\tau_{xy} + n_{y}\sigma_{y}$$
(3.24)

em que n_x e n_y são os cossenos diretores do vetor normal à superfície.

Uma aproximação da Equação (3.22) pode ser obtida através do método dos elementos finitos. O método subdivide o domínio da integração em vários subdomínios conhecidos como elementos finitos, para os quais, as aproximações das variáveis dependentes podem ser feitas por meio de um número de pontos de controle e funções de interpolação simples, Soares (2005). Considerando que o domínio é dividido em m elementos a equação 3.22 pode ser escrita como:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} \, d\mathbf{V} - \int_{S} \mathbf{N}^{\mathrm{T}} \mathbf{t} \, d\mathbf{S} - \int_{V} \mathbf{N}^{\mathrm{T}} \mathbf{b} \, d\mathbf{V} - \mathbf{K} \mathbf{u} = 0 \tag{3.25}$$

em que u é o vetor com os deslocamentos nodais, K é a matriz de rigidez que será apresentada adiante e N é a matriz de interpolação que contem as funções de interpolação expressa como:

$$\overline{\mathbf{N}} = \begin{bmatrix} \mathbf{n} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{n} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{n} \end{bmatrix}$$
(3.26)

em que n denota o vetor com as funções de interpolação, $n = \{N_1 \ N_2 \cdots N_{m'^2}\}^T$

Para um elemento com m nós o campo de deslocamentos para qualquer ponto interno pode ser expresso como:

$$\mathbf{U} = \mathbf{N} \mathbf{u} \tag{3.27}$$

onde u es o vetor de deslocamentos nodais e U é o vetor de deslocamentos contínuos com componentes na direção das coordenadas s e n. Este vetor pode ser definido como:

$$\mathbf{U} = \left\{ \mathbf{U}_{s}^{\text{bot}} \quad \mathbf{U}_{n}^{\text{top}} \quad \mathbf{U}_{s}^{\text{top}} \quad \mathbf{U}_{n}^{\text{top}} \right\}$$
(3.28)

Os sobrescritos bot e top indicam o topo e a base do elemento. As deformações internas podem ser calculadas como:

$$\varepsilon = Bu$$
 (3.29)

onde B é a matriz que relaciona as deformações aos deslocamentos nodais e depende do tipo de elemento de interface (Taylor e Brekke, 1967; Wilson e Isenberg, 1973; Pande e Sharma, 1979; Lightner e Siriwardane, 1984; Beer, 1985; Day & Potts, 1994).

A solução da Equação (3.25) não é trivial e às vezes se torna possível dependendo da geometria, tipo de carregamento e condições de contorno. Estas equações, as quais governam o comportamento de cada elemento finito, são aplicáveis para qualquer relação constitutiva e podem ser reescritas na forma do método dos elementos finitos como:

$$F_{int} = F_{ext} \tag{3.30}$$

onde F_{int} é o vetor de forças internas correspondente ao estado de tensão σ de um elemento dado, definido como:

$$F_{int} = \int_{V} B^{T} \sigma \, dV \tag{3.31}$$

 F_{ext} é o vetor de forças externas de um elemento calculado por três parcelas:

$$F_{ext} = F_s + F_b + F_\delta$$
(3.32)

em que F_s é o vetor de forças de superfície de um elemento que pode ser escrito como:

$$F_{s} = \int_{S} N^{T} t \, dS \tag{3.33}$$

F_b é o vetor de força devido ao peso próprio de um elemento definido como:

$$F_{b} = \int_{V} N^{T} b \, dV \tag{3.34}$$

e F_{δ} é o vetor devido aos deslocamentos prescritos não nulos

A Equação de equilíbrio (3.30) resulta em um sistema de equações não lineares devido à não linearidade da parcela da força interna. Na literatura encontram-se diversas metodologias para resolver problemas não lineares. Dentre as tantas metodologias, uma é desenvolver de forma incremental a Equação (3.30) pelo método da derivação com respeito ao tempo t. Usando a regra da cadeia na Equação (3.30), pode-se obter:

$$\frac{\mathrm{d}F_{\mathrm{int}}}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{\mathrm{d}F_{\mathrm{ext}}}{\mathrm{d}t}$$
(3.35)

onde $\frac{dF_{int}}{du}$ é a matriz Jacobiana definida como:

$$\frac{dF_{int}}{du} = \begin{bmatrix} \frac{dF_{int}^{1}}{du_{1}} & \frac{dF_{int}^{1}}{du_{2}} & \cdots & \frac{dF_{int}^{1}}{du_{n}} \\ \frac{dF_{int}^{2}}{du_{1}} & \frac{dF_{int}^{2}}{du_{2}} & \cdots & \frac{dF_{int}^{2}}{du_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{dF_{int}^{n}}{du_{1}} & \frac{dF_{int}^{n}}{du_{2}} & \cdots & \frac{dF_{int}^{n}}{du_{n}} \end{bmatrix}$$
(3.36)

Derivando-se pela regra da cadeia a Equação (3.31) tem-se:

$$\frac{dF_{int}}{du} = \int_{V} \mathbf{B}^{\mathrm{T}} \frac{d\sigma}{du} dV = \int_{V} \mathbf{B}^{\mathrm{T}} \frac{d\sigma}{d\varepsilon} \frac{d\varepsilon}{du} dV$$
(3.37)

Se os termos que envolvem a segunda derivada da função de plastificação com respeito às tensões forem desprezados, a relação da derivada das tensões com respeito às deformações pode ser expressa como:

$$\frac{d\sigma}{d\varepsilon} = D_{t}$$
(3.38)

onde D_t é a matriz constitutiva tangencial do elemento que depende do modelo constitutivo adotado para representar a relação tensão-deformação.

Similarmente, pode-se obter a matriz cinemática B da relação da derivada das deformações com respeito aos deslocamentos nodais, para o qual se tem:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}u} = \mathrm{B} \tag{3.39}$$

Substituindo a Equação (3.39) e a Equação (3.38) na Equação (3.37), temse que:

$$\frac{dF_{int}}{du} = \int_{V} B^{T} D_{t} B \, dV = K_{t}$$
(3.40)

onde K_t é a matriz de rigidez tangente do elemento que depende da matriz constitutiva tangente D_t a qual é avaliada em função do estado de tensão, σ , no início do incremento em cada elemento.

Substituindo a Equação (3.40) na Equação (3.35), tem-se:

$$K_{t} \frac{du}{dt} = \frac{dF_{ext}}{dt}$$
(3.41)

Finalmente, multiplicando a Equação (3.41) pela inversa da matriz de rigidez tangente do elemento, tem-se:

$$\Delta u = K_t^{-1} \Delta F_{ext} \tag{3.42}$$

onde a Equação (3.42) define o sistema diferencial que governa o comportamento carregamento-deformação de um elemento. Esta contribuição do elemento é adicionada junto ao sistema de equações diferenciais expresso a seguir:

$$\Delta u_{\rm G} = K_{\rm Gt}^{-1} \Delta F_{\rm Gext} \tag{3.43}$$

onde K_{GT} é a matriz de rigidez global definida por:

$$K_{Gt} = \sum_{\text{elementos}} K_{t} = \sum_{\text{elementos}} \int_{V} B^{T} D_{t} B dV$$
(3.44)

e ΔF_{Gext} é o vetor global de forças externas representado como:

$$\Delta F_{\text{Gext}} = \sum_{\text{elementos}} \dot{F}_{\text{ext}} = \sum_{\text{elementos}} \int_{V} N^{\text{T}} b \, dV + \sum_{\text{elementos}} \int_{S} N^{\text{T}} \Delta t \, dS + \sum_{\text{elementos}} - K \Delta u$$
(3.45)

A relação descrita na Equação (3.43) define de forma incremental o comportamento global carregamento-deslocamento de um modelo desenvolvido em elementos finitos.

3.3. Principio de tensões efetivas

O principio de tensões efetivas pressupõe que o vetor das tensões totais σ compreende a soma do vetor das tensões efetivas, σ' e a poropressão, p como segue:

 $\sigma = \sigma' + m p \tag{3.46}$

onde m é o vetor equivalente ao delta de Kronecker, o qual segundo Zhong-Zhi et al. (2011), no elemento de interface pode ser representado como $m\{0 \ 1\}^{T}$.

Segundo Abbo (2005), em análises geotécnicas é convencional decompor a poropressão total em componentes de um estado estacionário, p_s e um excesso da poropressão variando no tempo, como segue:

$$p = p_s + p_e \tag{3.47}$$

Os incrementos poropressão Δp podem ser representados adequadamente como:

$$\Delta p = N_p \ \Delta P \tag{3.48}$$

onde ΔP é o vetor que contém os incrementos de poropressão nodal e pode ser escrito como:

$$\Delta \mathbf{P} = \left\{ \Delta \mathbf{P}_1 \quad \Delta \mathbf{P}_2 \cdots \Delta \mathbf{P}_n \right\}^{\mathrm{T}}$$
(3.49)

e N_p é o vetor das funções de forma dos graus de liberdade da poropressão a qual pode ser definido a seguir:

$$\mathbf{N}_{p} = \left\{ \mathbf{N}_{p1} \quad \mathbf{N}_{p2} \cdots \mathbf{N}_{pn} \right\}^{\mathrm{T}}$$
(3.50)

O subscrito n denota o numero de nós com graus de liberdade de poropressão, os quais não necessariamente são os mesmos dos deslocamentos. Usualmente a ordem do polinômio dos incrementos de poropressão é menor que os incrementos dos deslocamentos (Abbo, 2005).

Usando o processo puramente incremental na Equação (3.22) e substituindo-se a Equação (3.46), tem-se:

$$\int_{V} (\nabla w)^{T} (\Delta \sigma' + m\Delta p) dV - \int_{V} w^{T} \Delta b dV - \int_{V} w^{T} \Delta t dS + \sum R_{c} \delta u = 0$$
(3.51)

Utilizando a metodologia de resíduos ponderados e o esquema de Galerkin (1915), tem-se:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \Delta \sigma' \, \mathrm{dV} + \int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{m} \, \Delta p \, \mathrm{dV} - \int_{V} \mathbf{N}^{\mathrm{T}} \Delta b \, \mathrm{dV} - \int_{V} \mathbf{N}^{\mathrm{T}} \Delta t \, \mathrm{dS} - \mathbf{K} \mathbf{u} = 0$$
(3.52)

Os incrementos de tensões efetivas estão relacionados aos incrementos de deformações através da matriz tangente elastoplástica, como segue:

$$\Delta \sigma' = \mathbf{D}_{ep} \Delta \varepsilon \tag{3.53}$$

~

onde D_{ep} , é a matriz elastoplástica definida adiante. As tensões efetivas podem ser calculadas em relação aos incrementos de deslocamentos nodais, como segue:

$$\Delta \sigma' = D_{ep} B \Delta u \tag{3.54}$$

onde Δu é o vetor de incrementos dos deslocamentos nodais e B é a matriz que relaciona os incrementos de deslocamentos nodais com os incrementos de deformação. Substituindo as Equações (3.54) e (3.48) na Equação (3.52), e desprezando a forças de corpo e forças de superfície, resulta em:

$$K\Delta a + L\Delta p = \Delta F_{ext} \tag{3.55}$$

onde K é a matriz de rigidez do elemento definida como:

$$K = \int_{V} B^{T} D_{ep} B dV$$
(3.56)

L é a matriz de acoplamento definida como:

$$L = \int_{V} B^{T} N_{p} dV$$
 (3.57)

3.4. Formulação numérica do elemento de interface

Neste trabalho optou-se pela implementação do elemento de interface de Goodman et.al (1967) e Day & Potts (1994), sendo este o mais utilizado na literatura (Nacht et al., 2010; Ng & Small, 1996; Turon et al., 2004; Burak, 2009, Costa, 1984) e talvez o mais adequado para a representação da falha. São implementados quatro tipos de elementos de interface necessários para a representação do plano de falha no reservatório. As caraterísticas de cada tipo de elemento são apresentadas no Quadro 3.1 apresentado a seguir:

Quadro 3.1 – Tipos de elementos de interface implementados.

Os graus de liberdade deste trabalho seguem a nomenclatura apresentada por (Abaqus *documentation*, 2011) onde 1,2 são os graus de liberdade dos deslocamentos nas componentes x e y respectivamente e 8 é o grau de liberdade da poropressão. Os elementos tipo 1 e tipo 2 possuem 4 nós com interpolação linear. O elemento tipo 1 tem os graus de liberdade 1,2. O elemento tipo 2 tem os graus de liberdade 1,2 e 8. Os elementos tipo 3 e 4 são elementos que possuem 6 nós com interpolação quadrática. O elemento tipo 3 tem os graus de liberdade 1,2. O elemento so graus de liberdade 1,2 e 8 para os nós das arestas e 1,2 nos nós intermediários.

Os elementos tipo 2 e 4 são utilizados no plano de falha que encontra-se adjacente ao reservatório e os elementos tipos 1 e 3 são utilizados no plano de falha fora do reservatório. As hipóteses adotadas para a formulação do elemento de interface são baseadas no trabalho de Mendes et al. (2010), a saber:

 Quando a injeção no reservatório inicia, a extensão da falha dentro do reservatório é considerada ter a mesma poropressão que seus arredores.

 Com o aumento da poropressão, as tensões cisalhantes aumentam e as tensões normais efetivas diminuem sobre a falha. Como consequência, a falha pode reativar e o fluido pode migrar do reservatório para a falha. Neste caso, a pressão interna do fluido da extensão da falha reativada assume a mesma poropressão atuante no reservatório para ao qual a falha está conectada.

 Como a injeção continua e a poropressão aumenta, a extensão da falha fora do reservatório pode também reativar até que as tensões normais diminuam até zero, causando abertura da falha e levando à fratura hidráulica.

Neste capitulo apenas será apresentada a formulação do elemento de interface de 6 nós tipo 3, conforme ilustrado na Figura 3.5, onde ξ representa o sistema local adimensional de coordenadas. Geometricamente assume-se uma espessura nula para evitar problemas de compatibilidade na geração da malha, mas a espessura será levada em conta para o calculo da rigidez do elemento de interface. As tensões e deformações se assumem uniformes ao longo do elemento. As funções de forma não são iguais a um elemento quadrático comum devido à espessura nula do elemento. Portanto, as correspondentes funções de forma são mostradas nesta secção. Os pontos vermelhos representam os pontos de integração e a numeração nodal foi feita pensando na incorporação ao programa Abaqus® através da inclusão de novos elementos e novos modelos constitutivos.

Figura 3.5 – Detalhe do elemento de interface tipo 3 de 6 nós

Para o elemento tipo 3 de 6 nós, com respeito ao sistema global de coordenadas, o vetor de deslocamentos nodais é escrito como:

$$\mathbf{u}^{\mathrm{T}} = \left\{ u_{x}^{1}, u_{y}^{1}, u_{x}^{2}, u_{y}^{2}, u_{x}^{3}, u_{y}^{3}, u_{x}^{4}, u_{y}^{4}, u_{x}^{5}, u_{y}^{5}, u_{x}^{6}, u_{y}^{6} \right\}$$
(3.58)

Os deslocamentos contínuos do elemento são expressos como:

$$\mathbf{U}^{\mathrm{T}} = \left\{ \mathbf{U}_{\mathrm{x}}^{\mathrm{base}}, \, \mathbf{U}_{\mathrm{y}}^{\mathrm{base}}, \, \mathbf{U}_{\mathrm{x}}^{\mathrm{topo}}, \, \, \mathbf{U}_{\mathrm{y}}^{\mathrm{topo}} \right\}$$
(3.59)

onde topo e base denotam o lado superior e inferior respectivamente.

Os deslocamentos contínuos e os deslocamentos nodais são relacionados através da Matriz de interpolação N

$$\mathbf{U} = \mathbf{N} \mathbf{u} \tag{3.60}$$

As deformações podem ser definidas como os deslocamentos relativos entre o topo e a base

$$\begin{cases} \boldsymbol{\epsilon}_{x} \\ \boldsymbol{\epsilon}_{y} \end{cases} = \begin{cases} \boldsymbol{U}_{x}^{\text{topo}} - \boldsymbol{U}_{x}^{\text{base}} \\ \boldsymbol{U}_{y}^{\text{topo}} - \boldsymbol{U}_{y}^{\text{base}} \end{cases}$$
(3.61)

ou ainda em função dos deslocamentos nodais

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \end{cases} = \begin{cases} N_{1} \left(u_{x}^{4} - u_{x}^{1} \right) + N_{2} \left(u_{x}^{3} - a_{x}^{2} \right) + N_{3} \left(u_{x}^{6} - u_{x}^{5} \right) \\ N_{1} \left(u_{y}^{4} - u_{y}^{1} \right) + N_{2} \left(u_{y}^{3} - u_{y}^{2} \right) + N_{3} \left(u_{y}^{6} - u_{y}^{5} \right) \end{cases}$$
(3.62)

onde N_1 , N_2 e N_3 são as funções de interpolação expressas como:

$$N_1 = \frac{1}{2}(\xi^2 - \xi) \tag{3.63}$$

$$N_2 = \frac{1}{2}(\xi^2 + \xi)$$
(3.64)

$$N_3 = 1 - \xi^2$$
 (3.65)

sendo N_1 e N_2 as funções de interpolação correspondentes aos nós extremos e N_3 a correspondente ao nó intermediário.

Finalmente, se obtém a matriz B que relaciona as deformações no sistema local de coordenadas aos deslocamentos nodais do sistema global de coordenadas.

$$\begin{cases} \boldsymbol{\varepsilon}_{s} \\ \boldsymbol{\varepsilon}_{n} \end{cases} = \mathbf{B} \mathbf{u}$$
 (3.66)

Na expressão acima os índices $s \in n$ denotam as componentes cisalhantes e normais respectivamente e a matriz B pode ser representada como:

$$\mathbf{B} = \begin{bmatrix} \mathbf{M} \mathbf{T} \end{bmatrix} \begin{bmatrix} -N_1 & 0 & -N_2 & 0 & N_2 & 0 & N_1 & 0 & -N_3 & 0 & N_3 & 0 \\ 0 & -N_1 & 0 & -N_2 & 0 & N_2 & 0 & N_1 & 0 & -N_3 & 0 & N_3 \end{bmatrix}$$
(3.67)

em que MT é a matriz de transformação que pode ser expressa como:

$$MT = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
(3.68)

As expressões trigonométricas $sen\theta e cos\theta$ podem ser calculadas pelas derivadas das coordenadas globais com respeito às coordenadas locais, como ilustrado na Figura 3.6.

Figura 3.6 - Transformação de coordenadas

sendo:

$$\frac{dx}{d\xi} = \frac{dN_1}{d\xi} x_1 + \frac{dN_2}{d\xi} x_2 + \frac{dN_3}{d\xi} x_5$$
(3.69)

$$\frac{dy}{d\xi} = \frac{dN_1}{d\xi} y_1 + \frac{dN_2}{d\xi} y_2 + \frac{dN_3}{d\xi} y_5$$
(3.70)

As funções trigonométricas $sen\theta e \cos\theta$ podem ser expressas como:

$$\operatorname{sen}\theta = \frac{1}{\left|J\right|}\frac{\mathrm{d}y}{\mathrm{d}\xi}$$
(3.71)

$$\cos\theta = \frac{1}{|\mathbf{J}|} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\boldsymbol{\xi}} \tag{3.72}$$

onde |J| é o determinante do jacobiano definido como:

$$\left|\mathbf{J}\right| = \sqrt{\left(\frac{d\mathbf{x}}{d\xi}\right)^2 + \left(\frac{d\mathbf{y}}{d\xi}\right)^2} \tag{3.73}$$

As tensões efetivas normais σ_n , e cisalhantes τ_s , são calculadas através da matriz constitutiva D_t , do elemento, como segue:

$$\begin{cases} \tau_{s} \\ \sigma_{n} \end{cases} = D_{t} \begin{cases} \varepsilon_{s} \\ \varepsilon_{n} \end{cases}$$
 (3.74)

onde $D_{t}\,\acute{e}$ a matriz constitutiva do elemento de interface

A matriz de rigidez K_t que relaciona os deslocamentos nodais com respeito ao vetor de forças nodais ao nível do elemento pode ser representada como:

$$\mathbf{K}_{t} = \int_{-1}^{1} \underbrace{\mathbf{B}^{\mathrm{T}} \mathbf{D}_{t} \mathbf{B} \mathrm{det} \mathbf{J}}_{\mathbf{G}(\xi_{i})} \mathrm{d}\xi$$
(3.75)

e o vetor de força interna do elemento pode ser escrito como:

$$F_{int} = \int_{-1}^{1} \underbrace{\mathbf{B}^{\mathrm{T}} \sigma \det \mathbf{J}}_{\mathbf{H}(\xi_{i})} \mathbf{d}\xi$$
(3.76)

Utiliza-se a regra de Simpson para a integração numérica, segundo Zienkewich & Taylor (2000):

$$K_{t} = \sum_{i=1}^{np} w_{\xi i} G(\xi_{i})$$
(3.77)

$$F_{int} = \sum_{i=1}^{np} w_{\xi i} H(\xi_i)$$
(3.78)

Nas expressões acima ξ_i são as coordenadas dos pontos de integração; $W_{\xi i}$ são os pesos respectivos aos pontos de integração e as funções $G(\xi_i)$ e $H(\xi_i)$ são o arranjo de parâmetros que depende de ξ . A qualidade dos resultados depende de forma direta dos pontos de integração escolhidos. Em elementos sólidos, normalmente é utilizado o esquema de integração de Gauss. No entanto, nos elementos de interface em certas condições a integração de Gauss produz oscilações espúrias que podem ser evitadas usando o método de integração de Newton cotes (Turona, 2007; Schellekens, 1992). Por essa razão, nesta dissertação optou-se por utilizar 3 pontos de integração de Newton Cotes para os elementos de interface, conforme a Figura 3.5. O fator de ponderação de cada um deles se apresenta no Quadro 3.2.

Quadro 3.2 – fatores de ponderação dos pontos de Newton Cotes do elemento de Interface

Ponto	Coordenada Natural	Fator de ponderação
Ponto 1	-1.00	1/3
Ponto 2	0.00	1 + 1/3
Ponto 3	1.00	1/3

O uso de elementos de interface no simulador Abaqus é limitado uma vez que sua extensa biblioteca não contém este tipo de elemento. No entanto, o Abaqus é uma ferramenta versátil e permite a integração de sub-rotinas desenvolvidas pelo usuário. A sub-rotina UEL do Abaqus permite criar qualquer tipo de elemento, não obstante, este recurso é destinado apenas para usuários avançados e seu uso nos exemplos mais simples exige considerável codificação pelo usuário / desenvolvedor (Abaqus *documentation*, 2011). No capítulo 4 serão descritos com mais detalhe estes recursos de sub-rotinas desenvolvidas pelo usuário, que representaram uma parte importante no desenvolvimento desta dissertação.

3.5. Equações constitutivas

As equações constitutivas são de grande relevância na solução de problemas geotécnicos, já que são utilizadas para representar de forma ideal o

comportamento tensão-deformação dos materiais em geral. Estas equações devem levar em conta caraterísticas tais como: não linearidade, plasticidade e dilatância.

Nas leis constitutivas que relacionam as tensões com deformações é necessário o conhecimento da matriz constitutiva elastoplástica que determine o estado de tensões atualizado e corrigido. Para a determinação da matriz elastoplástica é utilizada a lei de plastificação do material formando uma superfície em três dimensões no espaço de tensões principais. O estado de tensões que se encontra dentro da superfície de plastificação é considerado como elástico e o estado de tensões que se encontra sobre a superfície de plastificação é considerado plástico. Para materiais elasto-plásticos a superfície de plastificação é representada por uma função de plastificação do tipo $f(\sigma, k)$, onde σ é o vetor de tensões atualizado e k é o parâmetro de endurecimento definido em função de alguma medida de deformação plástica a partir de dados ou observações experimentais. Se $f(\sigma, k) < 0$, o estado de tensão se encontra dentro da superfície de plastificação se plastificação tendo um comportamento elástico, como segue:

$$\sigma = D_e \varepsilon \tag{3.79}$$

Onde D_e é a matriz elástica tensão-deformação, σ é o vetor das componentes de tensão e ϵ é o vetor das componentes de deformação.

Quando a função de plastificação se iguala à zero, $f(\sigma, k) = 0$, as tensões permanecem sobre a superfície de plastificação e ocorre o fluxo plástico. Assim sendo, durante o fluxo plástico tem-se que:

$$\dot{\mathbf{f}} = \left(\frac{\partial \mathbf{f}}{d\sigma}\right)^{\mathrm{T}} \dot{\sigma} + \frac{\partial \mathbf{f}}{\partial \mathbf{k}} \dot{\mathbf{k}} = \mathbf{0}$$
(3.80)

Onde $\frac{\partial f}{d\sigma}$ é o gradiente da função de plastificação, $\dot{\sigma}$ é o vetor da variação infinitesimal das tensões e \dot{k} é a variação infinitesimal do endurecimento.

Neste ponto, a variação infinitesimal das deformações totais, $\dot{\epsilon}$, pode ser expressa como a soma de duas parcelas, uma linear elástica, $\dot{\epsilon}^{e}$, e outra plástica, $\dot{\epsilon}^{p}$.

$$\dot{\varepsilon} = \dot{\varepsilon}^e + \dot{\varepsilon}^p \tag{3.81}$$

A parcela plástica da variação infinitesimal de deformação, $\dot{\epsilon}^{p}$, é obtida através da lei que governa o fluxo plástico, Lei de fluxo, a qual pode ser representada como:

$$\dot{\varepsilon}^{\rm p} = \Delta \gamma \frac{\partial g}{\partial \sigma} = \Delta \gamma h; \, \Delta \gamma \ge 0 \tag{3.82}$$

onde g é o potencial plástico, $\Delta \gamma$ é um parâmetro plástico, sendo uma constante positiva que define a magnitude da variação infinitesimal da deformação plástica e h é o gradiente ao potencial plástico. Quando a função potencial plástico é adotada como a própria função de plastificação, é dito que se tem uma plasticidade associada, ou que se tem uma lei de fluxo associada.

Derivando a Equação (3.79) e substituindo na Equação (3.81) e Equação (3.82), tem-se:

$$\dot{\sigma} = D_e \dot{\varepsilon} - \Delta \gamma D_e h \tag{3.83}$$

Inserindo a Equação (3.83) na Equação (3.80), o multiplicador plástico pode ser representado como:

$$\Delta \gamma = \frac{\alpha^{\mathrm{T}} \mathrm{D}_{\mathrm{e}} \dot{\epsilon}}{\mathrm{A} + \alpha^{\mathrm{T}} \mathrm{D}_{\mathrm{e}} \mathrm{h}}$$
(3.84)

onde o parâmetro α^{T} é definido como:

$$\alpha^{\mathrm{T}} = \left(\frac{\partial \mathbf{f}}{d\sigma}\right)^{\mathrm{T}}$$
(3.85)

e o parâmetro A é escrito como:

$$A = \frac{\partial f}{\partial k} \frac{\dot{k}}{\Delta \gamma}$$
(3.86)

Substituindo a expressão $\Delta \gamma$ da Equação (3.84) na Equação (3.83), chega-se à seguinte equação:

$$\dot{\sigma} = D_{ev} \dot{\varepsilon} \tag{3.87}$$

onde

$$\mathbf{D}_{ep} = \mathbf{D}_{e} - \frac{\mathbf{D}_{e} - \mathbf{h}\alpha^{\mathrm{T}}\mathbf{D}_{e}}{\mathbf{A} + \alpha^{\mathrm{T}}\mathbf{D}_{e}\mathbf{h}}$$
(3.88)

 D_{ep} é a matriz constitutiva tangente continua, ou matriz constitutiva elastoplástica, constituída por duas parcelas: uma parcela elástica D_e e outra parcela plástica D_p representada como:

$$D_{p} = \frac{D_{e} - h\alpha^{T}D_{e}}{A + \alpha^{T}D_{e}h}$$
(3.89)

Desta maneira a Equação (3.89) pode ser representada de uma forma mais compacta como:

$$\mathbf{D}_{\rm ep} = \mathbf{D}_{\rm e} - \mathbf{D}_{\rm p} \tag{3.90}$$

As funções f e g e suas derivadas usadas na formulação anterior do problema elasto-plástico são dependentes do modelo constitutivo e devem ser contínuas e diferenciáveis para todo ponto no espaço das tensões (Noreña 2010). O parâmetro A, depende do tipo de endurecimento que é adotado, conforme ilustrado na Figura 3.7.

Figura 3.7- Comportamento elástico-plástico com endurecimento

Quando a superfície de plastificação permanece constante com respeito ao histórico das tensões, o comportamento do material é considerado elástico perfeitamente plástico. Neste caso a tensão do material não pode exceder em valor absoluto o valor da tensão de plastificação, portanto k permanece constante no tempo. Neste caso a equação (3.90) pode ser redefinida como:

$$\dot{\mathbf{f}} = \left(\frac{\partial \mathbf{f}}{d\sigma}\right)^{\mathrm{T}} \dot{\sigma} = \mathbf{0} \tag{3.91}$$

Consequentemente A = 0 e a matriz elastoplástica torna-se:

$$D_{ep} = D_e - \frac{D_e - h\alpha^T D_e}{\alpha^T D_e h}$$
(3.92)

Considerando fluxo associado, ou seja, $\alpha = h$, a matriz elastoplástica pode ser escrita como:

$$D_{ep} = D_{e} - \frac{D_{e} - \alpha \alpha^{T} D_{e}}{\alpha^{T} D_{e} \alpha}$$
(3.93)

3.6. Modelos constitutivos

Quando a solução dos problemas de engenharia geotécnica faz uso de análises como elementos finitos, é necessária a escolha do modelo constitutivo do material. O comportamento do material depende de uma série de variáveis e fatores, tais como as condições iniciais, densidade, saturação, estrutura etc. Portanto, é de grande relevância a escolha do modelo constitutivo que melhor represente o comportamento real da falha levando em conta o maior número possível de variáveis e fatores condicionantes.

3.6.1. Modelo linear elástico

O modelo linear elástico da falha adota a lei de Hooke que define uma relação linear tensão-deformação onde os incrementos de tensão e deformação são avaliados através de uma matriz constitutiva elástica D_e simétrica, a qual pode ser representada como:

$$\mathbf{D}_{e} = \begin{bmatrix} \mathbf{k}_{s} & \mathbf{0} \\ \mathbf{0} & \mathbf{k}_{n} \end{bmatrix}$$
(3.94)

onde k_s e k_n são os coeficientes de rigidez fornecidos em função da espessura considerada para falhas geológicas:

O coeficiente de rigidez normal é definido por:

$$k_n = \frac{E}{t}$$
(3.95)

onde t é a espessura de influência da falha geológica e E é o módulo de Young da rocha hospedeira da falha geológica

O coeficiente de rigidez tangencial é fornecido por:

$$k_s = \frac{G}{t}$$
(3.96)

em que G é o módulo cisalhante da rocha hospedeira da falha geológica, sendo:

$$G = \frac{E}{2(1+\nu)} \tag{3.97}$$

3.6.2. Modelo Constitutivo de Mohr-Coulomb com límite de resistência à tração

Como visto no capitulo anterior o deslizamento e a reativação de falhas é governada pelo critério de Mohr-Coulomb, sendo este critério adequado para uma boa representação do comportamento das rochas na plastificação, segundo Vermeer & Borst (1984). Neste trabalho foi adotado este mesmo modelo constitutivo de Mohr-Coulomb com limite de resistência à tração, aplicável a solos e rochas o qual propõe uma envoltória de resistência como função do ângulo de atrito e a coesão do material. O critério de falha de Mohr-Coulomb assume que a tensão cisalhante alcança o valor limite expressa em termos da tensão normal, como segue:

$$\tau = c - \sigma'_n \tan \phi \tag{3.98}$$

Nesta expressão, τ é a tensão de cisalhamento no plano de ruptura; σ'_n é a tensão efetiva normal à superfície (compressão negativa); c é a coesão do material; ϕ é o angulo de atrito.

O modelo constitutivo de Mohr-Coulomb é um modelo elásticoplástico perfeito desenvolvido a partir da composição da lei de Hooke com a forma geral do critério de ruptura de Mohr-Coulomb, onde a envoltória de resistência no plano cartesiano $\tau - \sigma'_n$ é representada por uma função linear, como ilustrado na Figura 3.8.

Figura 3.8 – Envoltória de ruptura de Mohr-Coulomb (adaptado de Souza Neto, 2007)

Para avaliar se ocorre plastificação em uma análise específica o modelo de Mohr-Coulomb adota uma função de plastificação a qual define uma fronteira entre o comportamento elástico e o comportamento plástico do material. Este critério de plastificação é definido a partir da função formulada em termos de tensões efetivas, Smith & Griffith (1999).

$$f = \tau + \sigma'_n \tan \phi - c \tag{3.99}$$

Potts (2002) afirma que se a interface se desloca de tal forma que a tensão de tração normal máxima excede ($c/tan\phi$), a interface consequentemente abre e a tração residual é redistribuída através de algoritmos de solução não lineares. Não obstante, Michal (2009) afirma que na realidade o solo ou rocha pode resistir a valores muito pequenos deste tipo de tensão de tração. Segundo Michal (2009), é aconselhável evitar as tensões de tração ou limitar sua magnitude por um valor específico, R_t , através de uma superfície adicional de corte, representada na forma:

$$f_n = \sigma'_n - R_t$$
 (3.100)

Em que R_t é a resistência à tração da falha, σ'_n é a tensão normal e f_n é a função de corte *("tension cutoff")*.

3.6.3. Integração numérica de tensões

A dedução da matriz tangente elastoplástica, D_{ep} , é baseada nas equações constitutivas já apresentadas anteriormente. O problema na determinação dos incrementos de tensão dado um incremento de deformação de acordo com a relação constitutiva:

$$\Delta \sigma = D_{ep} \Delta \varepsilon \tag{3.101}$$

deve-se a que o estado de tensão final não é conhecido, logo, não é possível determinar a situação de carregamento ou descarregamento. Uma solução para este tipo de problema é o uso de tensões preditoras elásticas, σ_{trial} , calculadas pela soma das tensões atuantes com o incremento de tensão preditor elástico $\Delta \sigma_{trial}$, como segue:

$$\sigma_{\text{trial}} = \sigma + \Delta \sigma_{\text{trial}} \tag{3.102}$$

O incremento de tensão preditor elástico pode ser calculado através da Equação (3.67)

$$\Delta \sigma_{\text{trial}} = D_e : \Delta \epsilon \tag{3.103}$$

onde $\Delta\epsilon$ é o incremento de deformação total e D_e é a matriz constitutiva elástica

Pedroso (2002) afirma que a plasticidade computacional busca elaborar algoritmos precisos e eficientes para a relação constitutiva elastoplástica. Exemplos de algoritmos de integração das equações diferenciais são: método explícito, método implícito e método do ponto médio.

O método utilizado neste trabalho é o método de integração implícita (Backward Euler), já que usualmente são incondicionalmente estáveis (Ortiz & Popov, 1985). Mesquita (2005) afirma que o procedimento de integração implícito das tensões fornece precisão suficiente por si só. Este método implícito determina as tensões iterativamente e avalia as derivadas no final do intervalo do tempo. Além disso, a matriz tangente elastoplástica é consistente com o algoritmo de solução do sistema global preservando a característica de convergência quadrática do método de Newton-Raphson (Simo et al., 1988).

O algoritmo é conhecido como projeção ao ponto mais próximo, já que dado um incremento arbitrário o algoritmo retorna em direção normal à superfície de plastificação através de um corretor plástico, como mostrado na Figura 3.9.

Figura 3.9 – interpretação do método de integração implícito

3.6.4. Algoritmo de integração

O algoritmo procura determinar os incrementos de tensão d σ e o valor de plastificação d σ^p que retorna o ponto definido pelo preditor elástico, σ_{trial} , à superfície de plastificação.

Dado um incremento de deformação $\Delta \epsilon$, pode ser assumida a seguinte hipótese:

$\varepsilon_{i+1}^{p \text{ trial}} = \varepsilon^p$	(3.104a
$5_{i+1} - 6$	(3.104

$$\varepsilon_{i\perp 1} = \varepsilon_i + \Delta \varepsilon \tag{3.104b}$$

$$\varepsilon_{i+1}^{e \text{ trial}} = \varepsilon_{i+1} - \varepsilon^{p}$$
(3.104c)

$$\sigma_{i+1}^{\text{trial}} = D_e(\varepsilon_{i+1} - \varepsilon^p)$$
(3.104d)

O índice subscrito i representa o instante para o qual todas as variáveis internas são conhecidas e o índice i+1, incremento subsequente para o qual se deseja determiná-las.

A condição de plastificação através da função de plastificação é testada para o estado preditor, como segue:

$$f_{i+1}^{\text{trial}}(\sigma_{i+1}^{\text{trial}}) \le 0$$
 (3.105)

Se as tensões obtidas com o preditor elástico não violarem a condição de plastificação, significa que a hipótese assumida é correta, logo, o estado de tensão em i+1 pode ser escrito como:

$$\sigma_{i+1} = \sigma_{i+1}^{\text{trial}} \tag{3.106}$$

Por outro lado, se as tensões obtidas violarem a superfície de plastificação, o algoritmo retorna. Logo deve ser encontrado um novo estado de tensões que seja compatível com o modelo. Dessa forma tem-se:

$$\varepsilon_{i+1}^{p} = \varepsilon^{p} + \Delta \gamma \frac{\partial f}{\partial \sigma}$$
(3.107)

$$\varepsilon_{i+1}^{e \text{ trial}} = \varepsilon_{i+1} - \Delta \gamma \frac{\partial f}{\partial \sigma}$$
(3.108)

$$\sigma_{i+1} = \sigma_{i+1}^{\text{trial}} - D_e \Delta \gamma \frac{\partial f}{\partial \sigma}$$
(3.109)

Substituindo σ_{n+1} na superfície de plastificação, resulta em:

$$f_{i+1}\left(\sigma_{i+1}^{\text{trial}} - D_e \Delta \gamma \frac{\partial f}{\partial \sigma}\right) = 0$$
(3.110)

Resolvendo a Equação 3.110 para o parâmetro plástico $\Delta \gamma$, podem ser atualizadas as equações (3.107), (3.108) e (3.109). Atualizadas as tensões pode-se calcular a matriz tangente elastoplástica consistente, como segue:

$$\mathbf{D}_{ep} = \frac{\partial \left(\sigma_{i+1}^{trial} - \mathbf{D}_{e} \Delta \gamma \frac{\partial \mathbf{f}}{\partial \sigma}\right)}{\partial \left(\varepsilon_{i+1} - \Delta \gamma \frac{\partial \mathbf{f}}{\partial \sigma}\right)}$$
(3.111)

O esquema de integração implícito considerando a teoria da plasticidade associada pode ser resumido como mostrado no Quadro 3.3.

Quadro 3.3– Esquema implícito de integração de tensão

Dados: $\sigma_{i} e \Delta \epsilon$ cacular: σ_{i+1}^{trial} Verificar se: $f_{i+1}^{trial}(\sigma_{i+1}^{trial}) \leq 0$ se (SIM): faça: $\sigma_{i+1} = \sigma_{i+1}^{trial}$ se (NÃO): calcule: $\sigma_{i+1} = \sigma_{i+1}^{trial} - D_e \Delta \gamma \frac{\partial f}{\partial \sigma}$ Substituir: $f_{i+1}(\sigma_{i+1}^{trial} - D_e \Delta \gamma \frac{\partial f}{\partial \sigma}) = 0$ Resolver para: $\Delta \gamma$ Atualizar: σ_{i+1} calcular: D_{ep}

Para aumentar a precisão do algoritmo podem-se dividir os incrementos de deformação em subincrementos, Pedroso (2002)

3.6.5. Hipóteses adotadas para a formulação do algoritmo de integração

O algoritmo de integração implícita desenvolvido nesta dissertação é aplicado ao modelo de Mohr-Coulomb com "cut-off" (Equação 3.99 e 3.100). Neste modelo são adotadas duas hipóteses com respeito à resposta da plastificação da falha quando reativa:

- 1. A resposta plástica está limitada somente pelo cisalhamento
- 2. A resposta plástica ocorre nas duas componentes cisalhante/normal.

A primeira hipótese é baseada dos trabalhos P. C. F. Ng et al. (1997), Michal (2009), Dos Reis (2006), onde o elemento de interface tem um comportamento dividido em: Sem deslizamento: o comportamento do material é elástico linear.

Reativação: a resistência ao cisalhamento é governada pelo critério de Mohr-Coulomb. Neste caso a tensão cisalhante atinge o valor da tensão de ruptura e a falha desliza provocando a plastificação apenas na componente cisalhante.

Descarregamento: a resistência ao cisalhamento é restaurada, se as tensões ao cisalhamento se encontram dentro da superfície de plastificação.

A segunda hipóteses se baseia no trabalho de Ng & Small., (1997) e Potts et al. (2002), onde o comportamento do elemento de interface é dividido em:

Sem deslizamento: o comportamento do material é elástico linear.

Reativação: a resistência ao cisalhamento é governada pelo critério de Mohr-Coulomb. Neste caso um novo estado de tensões que seja compatível com o modelo de Mohr-Coulomb é encontrado, o que provoca a plastificação na componente cisalhante e normal da falha.

Descarregamento: as resistências normal e cisalhante são restauradas, se o estado de tensão é compatível com o modelo de Mohr-Coulomb.

Um terceiro critério é necessário quando as tensões normais efetivas excedem a tensão máxima à tração. Neste caso o comportamento do elemento de interface é dividido em:

Abertura: o comportamento do material é elástico linear só para a deformação cisalhante. A tensão normal atinge o valor máximo à tração, a falha abre e perde sua resistência normal.

Reativação e abertura: a falha perde sua resistência na direção normal e na direção cisalhante.

Recuperação: caso se inverta o valor da tensão normal e o estado de tensões se encontre dentro da superfície de plastificação, restaura-se a rigidez normal e cisalhante.

3.6.5.1. Aplicação ao modelo de Mohr-Coulomb com "cut-off"

O algoritmo de integração desenvolvido é aplicado às duas formulações com respeito às hipóteses adotadas anteriormente

Formulação 1: Como mencionado anteriormente a resposta plástica na reativação está limitada apenas ao cisalhante. Neste caso a derivada da função de plastificação que avalia a reativação, f, (Equação 3.99), pode ser definida como:

$$\frac{\partial \mathbf{f}}{\partial \tau} = \begin{cases} 1\\ 0 \end{cases} \tag{3.112}$$

O método de projeção está representado na Figura 3.10 em que as áreas de cor azul, verde, rosa, indicam o tipo de critério de retorno para a resposta de plastificação. O esquema de integração implícito da seção 3.6.4 aplicado ao modelo de Mohr-Coulomb com limite de resistência à tração está detalhado no Quadro 3.4.

Figura 3.10 – Retorno vertical à Superfície de plastificação com a formulação 1 (adaptado de Michal, 2007)

Dados: $\tau_{si}, \sigma_{ni}, \Delta \varepsilon_{si} e \Delta \varepsilon_{ni}$ • Calcular as tensões preditoras: $\tau_{si+1}^{trial} = \tau_{si} + k_s \Delta \varepsilon_{si}; \quad \sigma_{ni+1}^{trial} = \sigma_{ni} + k_n \Delta \varepsilon_{ni}$ • Verificar se: $\mathbf{f}_{i+1}^{\text{trial}} = \tau_{S\,i+1}^{\text{trial}} + \sigma_{n\,i+1}^{\text{trial}} \tan \phi - \mathbf{C} \le 0$; $\mathbf{f}_{n\,i+1}^{\text{trial}} = \sigma_{n\,i+1}^{\text{trial}} - R_t \le 0$ * se $(f_{i+1}^{trial}(\tau_{S i+1}^{trial}) \le 0 \& f_{n_{i+1}}^{trial}(\sigma_{n_{i+1}}^{trial}) \le 0) \rightarrow Elástico$ Atualizar as tensões Matriz tangente do algoritmo $\begin{bmatrix} k_s & 0 \\ 0 & k_s \end{bmatrix}$ $\boldsymbol{\tau}_{S\;i+l} = \boldsymbol{\tau}^{trial}_{S\;i+l}; \qquad \boldsymbol{\sigma}_{n\;i+l} = \boldsymbol{\sigma}^{trial}_{n\;i+l};$ * se $(f_{i+1}^{trial}(\tau_{s_{i+1}}^{trial}) \ge 0 \& f_{n_{i+1}}^{trial}(\sigma_{n_{i+1}}^{trial}) \le 0) \rightarrow Apenas reativação$ $\tau_{\mathrm{S}\,i+1} = \tau_{\mathrm{S}\,i+1}^{\mathrm{trial}} - k_{\mathrm{s}}\Delta\gamma_{\mathrm{s}}\frac{\partial f_{i+1}^{\mathrm{trial}}}{\partial \tau_{\mathrm{s}\,i+1}^{\mathrm{trial}}};$ Avaliar $f_{i+1}(\tau_{S i+1}) = 0$ e resolver para $\Delta \gamma_s$: $\Delta \gamma_s = \frac{f_{i+1}^{\, trial}}{k}$ Atualizar as tensões $\tau_{S i+1} = \tau_{S i+1}^{trial} - k_s \Delta \gamma_s \frac{\partial f_{i+1}^{trial}}{\partial \tau_{S i+1}^{trial}}; \quad \sigma_{n i+1} = \sigma_{n i+1}^{trial}$ Matriz tangente do algoritmo: $\begin{bmatrix} 0 & 0 \\ 0 & k_n \end{bmatrix}$ * se $(f_{i+1}^{trial}(\tau_{Si+1}^{trial}) \le 0 \& f_{ni+1}^{trial}(\sigma_{ni+1}^{trial}) \ge 0) \rightarrow$ Apenas abertura Avaliar $f_{n_{i+1}}(\sigma_{n_{i+1}}) = 0$ e resolver para $\Delta \gamma_n$: $\Delta \gamma_{n} = \frac{f_{n_{i+1}}^{\ trial}}{k_{n}}$ Atualizar as tensões : $\tau_{\text{S}i+1} = \tau_{\text{S}i+1}^{\text{trial}}; \quad \sigma_{\text{n}i+1} = \sigma_{\text{n}i+1}^{\text{trial}} - k_{\text{n}} \Delta \gamma \frac{\partial f_{\text{n}i+1}^{\text{trial}}}{\partial \sigma_{\text{s}i+1}^{\text{trial}}} = R_{\text{t}}$ Matriz tangente do algoritmo: $\begin{vmatrix} \mathbf{k}_{\mathrm{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{vmatrix}$ * se $(f_{i+1}^{trial}(\tau_{Si+1}^{trial}) \ge 0 \& f_{ni+1}^{trial}(\sigma_{ni+1}^{trial}) \ge 0) \rightarrow \text{Reativação e abertura}$ $\tau_{\text{S}\,i+1} = \tau_{\text{S}\,i+1}^{\text{trial}} - k_s \Delta \gamma_s \frac{\partial f_{i+1}^{\text{trial}}}{\partial \tau_{\text{S}\,i+1}^{\text{trial}}}; \quad \sigma_{n\,i+1} = \sigma_{n\,i+1}^{\text{trial}} - k_n \Delta \gamma_n \frac{\partial f_{n\,i+1}^{\text{trial}}}{\partial \sigma_{n\,i+1}^{\text{trial}}};$ Avaliar $f_{i+1}(\tau_{Si+1}) = 0$ & $f_{ni+1}(\sigma_{ni+1}) = 0$ e resolver para $\Delta \gamma_s, \Delta \gamma_n$: $\Delta \gamma_{s} = \frac{f_{i+1}^{\, trial}}{k_{s}}; \quad \Delta \gamma_{n} = \frac{f_{ni+1}^{\, trial}}{k_{n}}$ Atualizar as tensões : Matriz tangente do algoritmo 0 0 $\tau_{Si+1} = C - R_t \tan \varphi a \quad \sigma_{ni+1} = R_t$ 0 0

Formulação 2: Nesta formulação a resposta plástica ocorre nas duas componentes cisalhante/normal, logo, considerando a integração implícita, o retorno do estado de tensões é normal à superfície de plastificação. Neste caso a derivada da função de plastificação que avalia a reativação, f, (Equação 3.99), pode ser definida como:

$$\frac{\partial f}{\partial(\tau,\sigma_n)} = \begin{cases} 1\\ \tan\phi \end{cases}$$
(3.113)

O método de projeção está representado na Figura 3.11 em que as áreas de cor azul, verde, rosa, indicam o tipo de critério de retorno para a resposta de plastificação. O esquema de integração implícito da seção 3.6.4 aplicado ao modelo de Mohr-Coulomb com limite de resistência à tração está detalhado no Quadro 3.5, onde as linhas indicam as mudanças com respeito ao Quadro 3.4.

Figura 3.11 – Retorno perpendicular à Superfície de plastificação com a formulação 2 (adaptado de Michal, 2007)

Quadro 3.5 – Esquema de integração de tensão com a formulação 2

