

Raúl Ivan Contreras Fajardo

Previsão numérica do comportamento dinâmico da barragem de Breapampa no Peru

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel

Rio de Janeiro Setembro de 2014

Raúl Ivan Contreras Fajardo

Previsão numérica do comportamento dinâmico da barragem de Breapampa no Peru

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Celso Romanel Orientador Departamento de Engenharia Civil – PUC-Rio

Prof^a. Maria Cascão Ferreira de Almeida Universidade Federal do Rio de Janeiro

> Prof^a. Christianne de Lyra Nogueira Universidade Federal de Ouro Preto

> > Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 setembro de 2014

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Raúl Ivan Contreras Fajardo

Graduou-se em Engenharia Civil pela Universidade Nacional de Engenharia – UNI (Lima-Peru) em 2008. Principais áreas de interesse: geomecânica computacional, dinâmica de solos, obras de terra.

Ficha Catalográfica

Contreras Fajardo, Raúl Ivan. Previsão numérica do comportamento dinâmico da barragem de Breapampa no Peru / Raúl Ivan Contreras Fajardo; orientador: Celso Romanel - Rio de Janeiro PUC, Departamento de Engenharia Civil, 2014. v. 152 f.: il.(color.); 29.7 cm 1. Dissertação (Mestrado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2014. Inclui referências bibliográficas. 1. Engenharia civil – Teses. 2. Modelagem numérica. 3. Análise sísmica. 4. Barragem de 5. Comportamento não linear de terra. geoestruturas. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD 624

Aos meus pais Edilberto e Vilma porque eles são a luz da minha vida, e aos meus irmãos Marco, Leydi e Liz.

Agradecimentos

Aos meus pais e minha família, pelo amor e apoio incondicional em tudo o que me aventurei durante toda a minha vida.

À Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio) por terem me concedido a oportunidade de realizar o programa de mestrado e a agência de fomento CAPES que propiciaram condições financeiras, sem as quais não seria possível esta dissertação.

Ao professor Celso Romanel, orientador da presente dissertação, que protagonizou seu papel direcionando e guiando minhas ideias, assim como auxiliando em momentos de necessidade intelectual durante todo o programa do mestrado. Muito obrigado professor.

Aos meus colegas da PUC-Rio que durante toda a convivência desta época foram mais que colegas, se tornaram amigos também.

Ao Denys Parra por sua recomendação e apoio brindado.

A Magaly Dávila, que esteve me brindando seu apoio e escutando nos momentos de necessidade.

Aos Professores e funcionários do Departamento de Engenharia Civil da PUC-Rio.

Resumo

Fajardo, Raúl Ivan Contreras; Romanel, Celso (orientador) **Previsão numérica do comportamento dinámico da barragem de Breapampa no Peru.** Rio de Janeiro, 2014. 152p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta pesquisa investiga o comportamento sísmico da barragem de terra de Breapampa, situada no Peru em zona de atividade sísmica. A previsão numérica é feita com auxílio do programa computacional FLAC 2D v.7, baseado no método das diferenças finitas. É simulada a construção incremental da barragem, a elevação gradual do nível d'água do reservatório durante a etapa do primeiro enchimento do reservatório, é estabelecida a posição da linha freática em regime de fluxo permanente e são calculados os fatores de segurança estático da estabilidade dos taludes nas condições de final da construção e após o primeiro enchimento do reservatório. A simulação do comportamento sísmico da barragem é feita em seguida, discutindo-se vários e importantes aspectos que devem ser considerados para uma correta análise como a seleção do terremoto de projeto, a filtragem de altas frequências para minimizar o número de elementos da malha, a introdução de condições de contorno silenciosas, a escolha de modelos constitutivos incluindo a incorporação de amortecimento histerético, entre outros pontos. A resposta sísmica da barragem, nas condições de reservatório vazio e reservatório cheio, foi obtida em termos de deslocamentos permanentes, história de deslocamentos, amplificações da aceleração horizontal, desenvolvimento de poropressões no corpo da barragem e potencial de ruptura cíclica no material do núcleo.

Palavras – chave

Modelagem numérica; análise sísmica; barragem de terra; comportamento não linear de geoestruturas.

Abstract

Fajardo, Raúl Ivan Contreras; Romanel, Celso (Advisor). **Numerical prediction of the dynamic behavior of Breapampa dam in Peru.** Rio de Janeiro, 2014. 145p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This research investigates the seismic behavior of the Breapampa earth dam, situated in Peru within a seismic activity zone. The numerical prediction is carried out using the computer program FLAC 2D v.7, based on the finite difference method. it is simulated the incremental construction of the dam, the gradual raise of the water level during the stage of reservoir impounding, the establishment of the phreatic line under steady state flow and the determination of safety factor for the stability of the soil slopes considering both conditions of after construction and after reservoir impounding. The modeling of the seismic behavior of the dam is then made with detailed discussion of several important aspects for a correct analysis such as the selection of the design earthquake, the filtering of high frequencies in order to minimize the number of elements in the mesh, the introduction of silent boundaries, the choice of proper constitutive soil models including the representation of hysteretic damping, among others points. The seismic response of the dam, under the conditions of full and empty reservoir, was obtained in terms of permanent displacements, displacement history, amplifications horizontal acceleration amplification, porepressure distribution and potential of cyclic failure in the saturated material of the core of the dam.

Keywords

Numerical modeling; seismic analysis; earth dam; nonlinear behavior of geostructures.

Sumário

1 Introdução	22
1.1. Objetivo	22
1.2. Estrutura da dissertação	23
2 Fundamentos de sismicidade e propagação de ondas	25
2.1. Origem dos sismos	25
2.1.1. Sismos de subducção	25
2.1.2. Sismos intraplaca	27
2.2. Localização de um sismo	27
2.3. Medidas de um sismo	28
2.3.1. Magnitude	29
2.3.2. Intensidade	32
2.4. Parâmetros do movimento do terreno	34
2.4.1. Amplitude do movimento	34
2.4.2. Conteúdo de frequências	34
2.4.3. Parâmetro de duração	35
2.5. Caraterísticas do registro sísmico	36
2.5.1. Deconvolução do registro sísmico	36
2.5.2. Correção da linha base e filtragem	38
2.6. Avaliação da ameaça sísmica	40
2.6.1. Análise determinística	40
2.6.2. Análise probabilística	41
2.7. Ondas sísmicas	43
2.7.1. Ondas de corpo	44
2.7.2. Ondas de superfície	46
2.8. Amortecimento	47
2.8.1. Amortecimento de Rayleigh	48
2.8.2. Amortecimento histerético	50
3 Comportamento estático e dinâmico de barragens de terra	51
3.1. Construção da barragem de terra	51
3.1.1. Distribuição dos recalques	51

3.1.2. Influência da anisotropia nos recalques	53
3.1.3. Transferência de cargas	53
3.1.4. Trajetória de tensões na construção	54
3.2. Primeiro enchimento do reservatório	55
3.2.1. Pressão Hidráulica no Núcleo	56
3.2.2. Pressão Hidráulica na Fundação e Subpressão no Núcleo Central	57
3.2.3. Subpressão à Montante	57
3.2.4. Colapso Devido à Saturação	57
3.2.5. Trajetórias de tensão durante o primeiro enchimento	58
3.3. Comportamento sísmico	59
3.3.1. Análise de estabilidade	60
3.3.2. Fatores que influenciam a resposta sísmica	63
4 Modelos constitutivos para carregamentos cíclicos	70
4.1. Modelo linear equivalente	70
4.2. Modelos cíclicos	75
4.3. Modelos elasto-plásticos	80
5 Aspectos da modelagem numérica	82
5.1. Características gerais do programa FLAC	82
5.2. Modelagem estática	83
5.2.1. Modelos constitutivos	83
5.2.2. Propriedades dos materiais	84
5.2.3. Condições iniciais e de contorno	85
5.2.4. Fator de segurança na estabilidade de taludes	87
5.3. Modelagem sísmica	87
5.3.1. Condições de contorno	87
5.3.2. Discretização da malha para a transmissão da onda	91
5.3.3. Frequência de corte	92
5.3.4. Ajuste espectral no domínio do tempo	92
6 A barragem de terra de Breapampa, Peru	94
6.1. Descrição geral da barragem	94
6.2. Propriedades do material	94
6.3. Simulação estática	95
6.3.1. Processo construtivo	96

6.3.2. Deslocamentos ao final da construção	97
6.3.3. Primeiro enchimento do reservatório	98
6.3.4. Trajetórias de tensão	104
6.3.5. Fator de segurança	106
6.4. Simulação pseudo-estática	108
6.5. Simulação dinâmica	112
6.5.1. Sismo de Pisco (2007)	112
6.5.2. Correção da linha base e filtragem	114
6.5.3. Avaliação probabilística de ameaça sísmica na área do projeto	115
6.5.4. Ajuste espectral	115
6.5.5. Sismo de projeto	116
6.5.6. Malha e condições de contorno	117
6.5.7. Aplicação da excitação sísmica	118
6.5.8. Frequências predominantes	119
6.5.9. Amortecimento histerético	119
6.5.10. Aferição com o programa SHAKE2000	122
6.5.11. Síntese da resposta sísmica	124
7 Conclusões e Sugestões	131
Referências Bibliográficas	133
Anexos	143
Anexo 1: Modelagem da barragem Breapampa em FLAC	143
Anexo 2: Modelo para camadas do deposito de solo não linear	148

Lista de Figuras

Figura 2.1 - As principais placas tectónicas da crosta terrestre. Fonte NASA 26
Figura 2.2 - Efeitos de subducção entre duas placas tectônicas26
Figura 2.3 - Movimento de subducção entre as placas de Nazca e Sul
Americana27
Figura 2.4 - Elementos para descrição da localização de um sismo
(www.google.com.br/search?hl=pt-BR&q=dinamica+da+terra&meta)28
Figura 2.5 - Energia liberada por terremotos comparada com energia produzida
em explosões nucleares e outros fenômenos naturais (Lopes, A. e
Assumpção, M. (2010), www.afonsovasconcelos.com/aulas/agg5722/
aula04_Magnitude.pptx)30
Figura 2.6 - Escalas de magnitude com ondas P (m_b) e ondas de superfície
(Ms). (Lopes, A. e Assumpção, M. (2010), www.afonsovasconcelos.com/
aulas/agg5722/ aula04_Magnitude.pptx)31
Figura 2.7 - Processo de deconvolução e amplificação (convolução) para
registros de terremotos37
Figura 2.8 - Processo de deconvolução na condição de base flexível com os
programas computacionais SHAKE e FLAC 2D (Mejia e Dawson, 2006)38
Figura 2.9 - Erros introduzidos nas velocidades e deslocamentos pela falta da
correção da linha base no acelerograma (Modificado de Hudson, 1979)39
Figura 2.10 - Efeitos do ruído de alta frequência (esquerda) e de baixa
frequência (direita). (Modificado de Hudson, 1979)40
Figura 2.11 - Movimentos de partícula produzidos por diferentes tipos de ondas.
(Teixeira et al., 2003)47
Figura 2.12 - Variação da razão de amortecimento crítico normalizado com a
frequência angular (Itasca, 2011)49
Figura 3.1 - Construção de aterro de grande extensão por camadas sucessivas-
Law, 1975
Figura 3.2 - Perfil de recalque em um aterro, com valor máximo na altura média
H/2 (Law, 1975)52
Figura 3.3 - Trajetórias de tensão durante a fase de construção (Naylor, 1992).55
Figura 3.4 - Efeitos do primeiro enchimento do reservatório em uma barragem
zonada (de Nobari e Duncan, 1972)56

Figura 3.5 - Trajetórias de tensão típicas no material de enrocamento ao longo da construção e primeiro enchimento (Veiga Pinto, 1983)......59 Figura 3.6 - Trajetórias de tensão típicas no material do núcleo central ao longo Figura 3.7 - Seção transversal da barragem de Lower San Fernando antes e após o sismo de 1971 (http://quake.wr.usgs.gov/prepare/factsheets/ LADamStory/Xsection.gif)......62 Figura 3.8 - Barragem e fundação em vale retangular (Dakoulas, 1990)..........65 Figura 3.9 - Resposta não linear e linear na seção central de uma barragem sobre camada de fundação submetida a excitações harmônicas de 0,05g e 0,20g (Dakoulas, 1990)67 Figura 3.10 - Comparação entre respostas tridimensional (3D) e de deformação plana (2D), para barragens em vale triangular e retangular (Makdisi et al., Figura 4.1 - a) módulo de cisalhamento secante; b) degradação do módulo de cisalhamento normalizado G/Gmax e majoração da razão de amortecimento § em função da deformação cisalhante cíclica......71 Figura 4.2 – Curvas de variação do módulo de cisalhamento para areias sob diferentes densidades relativas - Seed e Idriss (1970)......73 Figura 4.3 – Curvas de variação do módulo de cisalhamento para diferentes índices de plasticidade – Vucetic e Dobry (1991)......74 Figura 4.4 – Curvas de variação da razão de amortecimento para diferentes índices de plasticidade - Vucetic e Dobry (1991)......74 Figura 4.5 - Curvas característica do primeiro ciclo de carregamento76 Figura 4.6 – Relação tensão x deformação hiperbólica (adaptado de Finn et. al.,1977)......76 Figura 4.7 - Curvas de deformação volumétrica incremental (adaptado de Martin Figura 4.8 - Modelos cíclicos disponíveis no programa computacional FLAC2D. Figura 5.1 – Condições de contorno aplicadas à barragem e fundação no programa FLAC 2D (adaptado de Itasca, 2011)......86 Figura 5.3 - Contornos de base flexível e de base rígida (Itasca 2011)......90 Figura 5.4 – Contornos laterais de campo livre (adaptado por Loayza (2009)...91 Figura 6.1 - Localização da barragem de Breapampa.94

Figura 6.2 – Projeção horizontal da barragem de Breapampa95
Figura 6.3 – Seção transversal A-A analisada da barragem de Breapampa95
Figura 6.4 - Distribuição dos deslocamentos horizontais com a construção de 1,
2, 4, 8, 16 e 33 camadas, respectivamente99
Figura 6.5 - Distribuição dos deslocamentos verticais com a construção de 1, 2,
4, 8, 16 e 33 camadas, respectivamente100
Figura 6.6 - Variação da distribuição dos deslocamentos horizontais com o
número de camadas ao longo do eixo central da barragem de terra 101
Figura 6.7 - Variação da distribuição dos deslocamentos verticais com o número
de camadas ao longo do eixo central da barragem de terra
Figura 6.8 - Variação com o número de camadas dos deslocamentos médios
horizontal (esquerda) e vertical (direita) ao longo do eixo central da
barragem segundo o número de camadas de construção
Figura 6.9 - Influência do número de níveis d'água e incrementos de carga nos
deslocamentos verticais durante o primeiro enchimento do reservatório
(adaptado de Veiga Pinto, 1983)102
Figura 6.10 - Distribuição dos deslocamentos horizontais (acima) e verticais
(abaixo) após o primeiro enchimento do reservatório em 16 etapas de
elevação do nível d'água103
Figura 6.11 - Comparação dos deslocamentos horizontais no eixo da barragem
ao final da construção e após o primeiro enchimento
Figura 6.12 - Comparação dos deslocamentos verticais no eixo da barragem ao
final da construção e após o primeiro enchimento
Figura 6.13 – Trajetórias de tensão total em pontos do espaldar de montante.105
Figura 6.14 - Trajetórias de tensão total em pontos do núcleo central próximos
da região de montante105
Figura 6.15 - Trajetórias de tensão total em pontos do núcleo central próximos
da região de jusante105
Figura 6.16 - Trajetórias de tensão total em pontos do espaldar de jusante106
Figura 6.17 - Fator de segurança determinado com o programa FLAC 2D ao
final da construção da barragem: a) superfície local, FS=1,58, b) superfície
local, FS=1,67 e c) superfície global, FS=1,69107
Figura 6.18 - Fator de segurança determinado pelo programa SLOPE/W pelo
método Spencer ao final da construção da barragem, com FS = 1,72107

PUC-Rio - Certificação Digital Nº 1213376/CA

Figura 6.19 – Fator de segurança determinado com o programa FLAC 2D após o enchimento do reservatório: a) superfície crítica local, FS=1,56, b) superfície crítica global, FS=1,65......108 Figura 6.20 – Fator de segurança determinado com o programa SLOPE/W, pelo método das fatias (método de Spencer), após o enchimento do reservatório Figura 6.21 - Distribuição de iso-acelerações no Peru considerando 10% de excedência em 100 anos (Alva e Castillo, 1993).....110 Figura 6.22 – Fator de segurança pseudo-estático determinado pelo método de Spencer (método das fatias) considerando redução de 20% da resistência não drenada estática do material do núcleo. a) Reservatório vazio - FS_{pseudo} = 1,15. b) Reservatório cheio - FS_{pseudo} = 0,98111 Figura 6.23 – Localização do epicentro do sismo de Pisco, da estação sismográfica de Ica e da localização da barragem de Breapampa (Fonte Figura 6.24 – Acelerogramas do sismo de Pisco registrados na estação Ica: aceleração vertical (superior), aceleração horizontal N-S (intermediária) e aceleração horizontal E-W (inferior) - fonte CISMID/UNI - PERU.113 Figura 6.25 - Histórias de aceleração, velocidade e deslocamento originais e corrigidas pela linha base.....114 Figura 6.28 – Espectro de potência avaliada com base na história de velocidades do sismo de projeto......117 Figura 6.30 – Malha de diferenças finitas e condições de contorno para análise Figura 6.31 – Ajuste da constante a para concordar os registros de velocidade prescrito e computado na base do modelo.....119 Figura 6.32 - Espectros de potência de velocidade determinados em análise elástica não amortecida para pontos do núcleo e espaldares da barragem. Figura 6.33 – Comparação entre as curvas previstas e experimentais da degradação do módulo cisalhante com a deformação cisalhante efetiva para

Figura 6.34 - Comparação entre as curvas previstas e experimentais do aumento da razão de amortecimento com a deformação cisalhante efetiva Figura 6.35 – Comparação entre as curvas previstas e experimentais da degradação do módulo cisalhante com a deformação cisalhante efetiva para o enrocamento......121 Figura 6.36 - Comparação entre as curvas previstas e experimentais do aumento da razão de amortecimento com a deformação cisalhante efetiva Figura 6.37 - Coluna de solo ao longo do eixo central da seção transversal da barragem de Breapampa......123 Figura 6.38 - Coluna modelada no programa FLAC para simulação de um ensaio de cisalhamento cíclico.....123 Figura 6.39 - Comparação dos resultados obtidos com o FLAC 2D e SHAKE2000: a) aceleração horizontal máxima b) tensão cisalhante cíclica Figura 6.40 – Respostas de aceleração horizontal na crista da barragem para as Figura 6.41 – Espectros de potência de aceleração na crista da barragem para as condições de: a) reservatório vazio b) reservatório cheio......125 Figura 6.42 – Distribuição dos deslocamentos horizontais permanentes após a ocorrência do sismo na condição de: a) reservatório vazio, b) reservatório Figura 6.43 – Distribuição dos deslocamentos verticais permanentes após a ocorrência do sismo na condição de: a) reservatório vazio, b) reservatório Figura 6.44 – Distribuição dos deslocamentos horizontais e verticais permanentes após a ocorrência do sismo na condição de reservatório vazio Figura 6.45 – História dos deslocamentos horizontal e vertical no ponto central da crista da barragem. 128 Figura 6.46 – a) Distribuição das poropressões após a ocorrência do sismo em t = 40s. b) Distribuição das poropressões na condição inicial de fluxo Figura 6.47 – Distribuição do parâmetro de poropressão ru imediatamente após

a ocorrência do terremoto......129

Lista de Tabelas

Lista de Símbolos

Α	Amplitude do movimento de terreno
a, b, x ₀	Parâmetros do modelo SIGMA3
a, b, x_0, y_0	Parâmetros do modelo SIGMA4
a, b, x_0	Parâmetros do modelo SIGMA3
a(t)	Acelerograma sem corrigir
α	Coeficiente de amortecimento Rayleigh
β	Coeficiente de amortecimento Rayleigh
с	Coesão
<i>C</i> _n	Amplitude do enésimo harmônico das séries de Fourier
C_1, C_2, C_3, C_4	Constantes
[C]	Matriz de amortecimento viscoso
D	Deslocamento médio da falha
d(t)	Registro de deslocamentos no tempo
D_r	Densidade relativa
δ_e	Distância epicentral
Δ	Distância epicentral em graus
Ε	Módulo de Young
E _h	Módulo de elasticidade na direção horizontal
E_{ν}	Módulo de elasticidade na direção vertical
€ _{vd}	Deformação volumétrica acumulada
$\Delta \varepsilon_{vd}$	Mudança de deformação volumétrica
Ē	Tensor de deformações
F _c	Frequência de corte
f_n	Frequência natural de vibração
Fs	Fator de segurança
Ŧ	Vetor de forças por unidade de volume
φ	Gradiente de um campo escalar
φ	Ângulo de atrito

G	Módulo de cisalhamento do material
G_{max}, \mathbf{G}_{mn}	Módulo de cisalhamento máximo do material
G _{sec}	Módulo de cisalhamento secante do material
G _{mo}	Módulo de cisalhamento tangente inicial
6(4)	Espectro de potência ou função densidade espectro de
6(0)	potência
g	Aceleração gravitacional ou gravidade
γ	Peso específico
γ	Deformação cisalhante
Yeq	Deformação cisalhante equivalente
w (1)	Raiz quadrada da média dos quadrados das deformações
TrmsC	cisalhantes no tempo
Н	Altura
Н	Altura do estrato
$H_{1}, H_{2}, H_{3}, H_{4}$	Constantes
h	Altura do aterro pré-existente
IP	Índice de plasticidade
Ī	Tensor identidade
3	Função transformada de Fourier
k	Coeficiente sísmico pseudo-estático
k _h	Coeficiente de permeabilidade horizontal
k_v	Coeficiente de permeabilidade vertical
K	Módulo de compressão volumétrica do material
K _w	Módulo de compressão volumétrica da agua
K ₀	Coeficiente de empuxo do solo no repouso
K_{2}, K_{2max}	Constantes adimensionais
[K]	Matriz de rigidez
[K] _ξ	Matriz de rigidez complexa
L	Comprimento
L1, L2	Parâmetros do modelo SIGMA2
Δl	Tamanho do elemento
λ	Constante de Lamé
M, M_W, M_0	Magnitude, Magnitude de momento, Momento sísmico
[M]	Matriz de massa
M_{l}	Magnitude local

M_S	Magnitude das ondas de superfície
m_b	Magnitude das ondas de corpo
μ	Módulo de elasticidade transversal dos materiais na falha
n	Porosidade
OCR	Razão de pré-adensamento
P	Ondas de corpo longitudinais ou primarias
 <i>P</i> (t)	Vetor das forçãs
p, p', p'_0	Tensão média, tensão média efetiva, tensão efetiva inicial
p_0^*	Sucção inicial
P_{atm}	Pressão atmosférica
Q(Δ, h)	Fator de correção
q	Tensão desviadora
R	Onda Rayleigh
r(t)	Ruído do sinal sísmico
ru	Parâmetro de poropressão
ρ	Massa específica
ρ	Recalque
S	Área de ruptura da falha
S	Ondas de corpo cisalhante ou secundarias
SV	Onda cisalhante horizontal
SH	Onda cisalhante vertical
s(t)	Sinal sísmico corrigido
σ	Tensão normal
₹	Tensor de tensões
σ_1	Tensão normal principal maior
σ_3	Tensão normal principal menor
σ_m	Tensão efetiva principal média
σ_{vo}	Tensão efetiva vertical inicial
σ_{co}	Tensão normal efetiva octaédrica inicial
σ_{v}	Tensão efetiva vertical
$\Delta \sigma_{zz}$	Incremento de tensão vertical
Т	Período do sistema
T _d	Duração do sismo
Δt_{P-S}	Diferença de tempos de chegada da onda P e S
Δt	Intervalo de tempo

Tensão cisalhante
Tensão cisalhante máxima inicial
Tensão cisalhante máxima
Vetor de deslocamentos
Variação da poropressão
Vetores aceleração, velocidade e deslocamento
Registro de velocidades no tempo
Velocidade da onda P
Velocidade da onda S
Velocidade da onda Rayleigh
Velocidade tangencial da partícula de solo
Coeficiente de Poisson
Coeficiente de Poisson na direção horizontal
Frequência natural do sistema
Rotacional de um campo vetorial
Ângulo de dilatância
Fator de redução do modulo cisalhante
Profundidade
Razão de amortecimento

Lista de Abreviaturas

CISMID	Centro Peruano Japonés de Investigaciones Sísmicas y
	Mitigación de Desastres
DLLS	Dynamic link libraries
FDEP	Função de espectro de potência
FFT	Transformada rápida de Fourier
FLAC	Finite Lagrangian Analysis of Continua
MEF	Método dos elementos finitos
MDF	Método das diferenças finitas
MMI	Intensidade de Mercalli Modeficada
PHA	Aceleração horizontal pico (peak horizontal acceleration)
PHV	Velocidade horizontal pico (peak horizontal velocity)
SDOF	Sistema de um grau de liberdade (single degree of freedom)
USGS	United States Geological Survey